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Gender classification on normalized iris images has been previously attempted with varying degrees of success. In these previous
studies, it has been shown that occlusion masks may introduce gender information; occlusion masks are used in iris recognition to
remove non-iris elements. When, the goal is to classify the gender using exclusively the iris texture, the presence of gender
information in the masks may result in apparently higher accuracy, thereby not reflecting the actual gender information present
in the iris. However, nomeasures have been taken to eliminate this informationwhile preserving asmuch iris information as possible.
We propose a novel method to assess the gender information present in the irismore accurately by eliminating gender information in
the masks. This consists of pairing iris with similar masks and different gender, generating a paired mask using the OR operator, and
applying this mask to the iris. Additionally, wemanually fix iris segmentation errors to study their impact on the gender classification.
Our results show that occlusion masks can account for 6.92% of the gender classification accuracy on average. Therefore, works
aiming to perform gender classification using the iris texture from normalized iris images should eliminate this correlation.

1. Introduction

Normalized iris images are commonly used for subject identi-
fication or gender classification [1]. To achieve this, a periocular
image is initially obtained. The iris in this image is then seg-
mented and normalized [2]. As part of the segmentation and
normalization processes, amask that occludes non-iris regions is
obtained to eliminate artifacts such as light reflections, eyelashes,
and eyelids [2, 3]. This occlusion mask is important because it
prevents non-iris information from interfering with the identifi-
cation processes that follow the study by Li and Savvides [3].
After normalizing the iris image, an encoded version is gener-
ated, which is used alongside the occlusion mask to identify the
subject. This process is summarized in Figure 1.

As a source of biometric information, the iris pattern
offers multiple benefits [2]. It has enormous variability,
which facilitates recognition [2]. It is also well-protected
from the environment and stable over time [2]. Gender clas-
sification from iris benefits from these qualities and can

provide complementary information to recognition [4]. For
instance, gender could be used as an additional trait for
identity confirmation, preventing potential false matches
[4]. It could also be used to speed up verification by searching
only among the subjects with matching gender. Another
potential application is to label and add demographic infor-
mation to a previously unlabeled database.

Gender classification from iris has been addressed in sev-
eral publications [5–8], with different degrees of success [4].
Studies have revealed that most gender information is not
actually contained in the iris, but outside of it [4, 9–12]. How-
ever, performing gender classification, using exclusively the iris
texture poses an interesting challenge, considering that differ-
ences in iris texture across genders have been reported in the
medical literature [13]. By isolating the iris texture for gender
classification, we aim to discern the extent to which gender cues
are localized within this specific region. Furthermore, by using
only the iris texture, we can benefit from the robustness and
security associated with iris biometrics.
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It has been reported that the use of occlusion masks
during gender classification from iris may introduce gender
information, e.g., because of the use of cosmetics [14]. If the
goal is to classify gender using exclusively the iris texture,
steps must be taken to remove this additional information.
This way the results will more closely reflect the gender
information in the iris.

Another possible source of additional information is
from automatically generated masks, which may not prop-
erly cover non-iris regions. These regions may contain gen-
der cues, such as presence of makeup, eyelashes length, or
eyelid texture, which could influence gender classification
results. In case these non-iris regions are present, the results
may not be reflecting gender information just from the iris,
but also from the other regions [4, 14].

In this paper, we propose a novel method to eliminate
gender information present in the masks by generating mask
pairs during model training. This is performed by pairing
every male mask with a similar female mask, and then gen-
erating a new mask by applying the union of the original two
masks. By doing this, mask distributions become equal for
both genders, thus neutralizing possible gender information
from the masks. Furthermore, by pairing similar masks, the
amount of iris information that is lost when generating the
new masks is reduced.

Additionally, we created another set of masks where we
manually corrected the automatically generated masks. This
allows us to study the effect of errors in automatically gener-
ated masks. Both factors, mask pairs and mask manual cor-
rections, provide new insights into the effect of masks in
gender classification from iris.

The contributions of this paper are the following:

(i) A method, called mask pairing, for eliminating gen-
der information in the occlusion masks, which
allows for studying gender information exclusively
in the iris texture.

(ii) A study of the impact of occlusion masks in gender
classification.

(iii) An open-source toolbox for aidingmanual mask cor-
rection (https://github.com/Nosferath/fixMasks).

The rest of this paper is organized as follows: Section 2
describes previous relatedwork. Section 3 describes the employed
methodologies and the datasets used in this paper. Section 4
shows and discusses the results of our experiments. Finally, Sec-
tion 5 discusses our conclusions and proposes future work.

2. Related Work

Gender classification using iris images has been addressed in
several studies following two main approaches [4]: classifica-
tion using periocular iris images, and classification using nor-
malized iris images. Classification using periocular iris images
usually yields results close to and above 80% accuracy and has
been repeated successfully over time [4, 9–12, 15–27]. Using
periocular images for gender classification benefits from addi-
tional gender cues that are not present in the iris. For instance,
Figure 2 shows a periocular image and a normalized iris
image. The periocular image contains information that is
additional to the iris, including skin texture, lacrimal caruncle,
lacrimal puncta, sclera, pupil, eyebrows, eyelashes, and orbital
bone structure cues [4, 9]. In contrast, the normalized iris
image contains only the iris texture, and small portions of
the eyelids, eyelashes, sclera, and pupil.

1. Capture 2. Segmentation 3. Normalization 4. Encoding 5. Identification

FIGURE 1: Stages of iris processing and recognition.

ðaÞ ðbÞ
FIGURE 2: Periocular image (a) and normalized iris image (b).
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Studies that perform gender classification using normal-
ized iris images have reportedmixed results. Some [1, 28–, 32]
report accuracies comparable to those obtained using perio-
cular images, while others [4, 9, 14] report results closer to
60%. Explanations for these discrepancies have been briefly
discussed in the past [4, 14], including possible non–subject-
disjoint partitions, presence of non-iris information, or per-
forming only one data partition.

Occlusion masks are used in iris recognition in order to
remove non-iris elements [2, 33]. When the iris image is
processed, an occlusion mask is generated during the iris
segmentation stage; this can be done using various techni-
ques depending on the algorithm [33, 34]. The occlusion
mask is normalized alongside its corresponding iris. To per-
form iris recognition, a binary code is extracted from the
normalized iris by applying Gabor filters to the iris and
encoding the result. When two iris images are compared
during the recognition process, both of their binary codes
and occlusion masks are used. The masks are used to indicate
which pixels should be accounted during comparison and
which should be ignored. This improves recognition rates

by preventing non-iris elements from influencing iris com-
parisons [2, 3].

Not all publications on gender classification have included
occlusion masks (Table 1). Those are usually because of the
software used to normalize the iris images. As a result, all the
publications that we report using occlusion masks were on the
normalized iris images. They have used either IrisBEE [42, 43]
or OSIRIS [33, 44, 45] software, both of which were originally
intended for iris recognition.

Earlier works on gender classification that used occlusion
masks [1, 30] used the IrisBEE software to segment and nor-
malize iris images. Later versions of IrisBEE added an occlu-
sion mask that is based not only on iris segmentation, but also
on so-called “fragile bits”, bits in the iris code that are more
prone to change due to imaging noise or occlusions [46]. In
[1, 30], the location of fragile bits was used to perform gender
classification. The occlusion mask was applied before feature
extraction is performed, which hides the intensity value of
these pixels while preserving their location. Neither of these
publications comment on the impact of the occlusion masks
on gender classification, although Tapia et al. [30] mentions

TABLE 1: Summary of works on gender classification from iris.

Citation Year Spectrum Image type Occlusion masks Best accuracy (%)

[1] 2015 NIR Normalized ✓ 91.33
[35] 2015 NIR Normalized ✗ 89.74
[30] 2016 NIR Normalized ✓ 91.00
[9] 2016 NIR Both ✗ 69 Normalized, 85.7 periocular
[15] 2017 NIR Periocular ✗ 83.17
[10] 2017 NIR/VIS Periocular ✗ 89.59
[16] 2017 VIS Periocular ✗ 90.20
[31] 2017 NIR Normalized ✓ 84.66
[14] 2017 NIR Both ✓ 66 Normalized, 80 periocular
[17] 2018 VIS Periocular ✗ 90.00
[18] 2018 NIR Periocular ✗ 87.26
[11] 2018 NIR Periocular ✗ 85.93
[12] 2018 NIR Periocular ✗ 85.90
[19] 2019 NIR Periocular ✗ 85.40
[32] 2019 NIR Normalized ✓ 95.45
[4] 2019 NIR Both ✓ 63.40 Normalized, 80.80 periocular
[20] 2019 NIR Periocular ✗ 94.63
[21] 2019 NIR/VIS Periocular ✗ 86.89
[22] 2019 NIR/VIS Periocular ✗ 91.90
[23] 2019 NIR Periocular ✗ 91.90
[36] 2019 NIR Normalized ✓ 94.66
[24] 2019 VIS Periocular ✗ 90.15
[25] 2019 NIR Both ✗ 66.67 Normalized, 93.34 face
[26] 2020 VIS Periocular ✗ 92.00
[27] 2020 NIR/VIS Periocular ✗ 81.59
[37] 2020 NIR Normalized ✗ 96.00
[38] 2021 VIS Periocular ✗ 75.10
[39] 2021 NIR/VIS Periocular ✗ 75.72
[40] 2023 NIR Both ✗ 98.92 Normalized, 73.96 periocular
[41] 2023 VIS Periocular ✗ 98.71

Works that do not use the NIR spectrum have not been thoroughly included. Image type “Both” means experiments were performed with normalized and
periocular images.
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that the segmentation algorithm does not effectively mask out
eyelashes when there is presence of makeup.

Kuehlkamp et al. [14] showed how makeup can cause
errors in segmentation, which directly impacts occlusion
masks. As a result, they demonstrated that occlusion masks
contain information correlated with gender. This was done
by performing gender classification using only the occlusion
masks, which yielded up to 65% of accuracy. This work also
highlights the importance of performing multiple random
trials to obtain realistic results, because a single trial could
yield anywhere from 40% to 100% accuracy.

Kuehlkamp and Bowyer [4] compared the accuracy
achieved using normalized and periocular iris images in gender
classification. Their results showed higher accuracies for perio-
cular iris images. Using a makeup-labeled dataset, the authors
also determined that makeup can account for 2%–6% of the
accuracy. Additionally, the authors performed experiments
using a probabilistic occlusion mask, in which pixels are masked
based on how likely they are to be considered not usable. When
no mask is present, an accuracy of 64.2% is obtained. When the
mask is applied to pixels that have a 70% chance of being
masked, this accuracy decreases to 56.8%. The authors make
note that when a single mask is used for all images, gender
cues that could be present in the mask are prevented. Our paper
follows the same classification method used in this work. Our
main differences with Kuehlkamp and Bowyer [4] are the use of
mask pairs andmanualmask correction to remove gender infor-
mation that could be present in the iris occlusion masks. Com-
pared to the study by Kuehlkamp and Bowyer [4], our work
further explores the impact of external information—specifically
occlusion masks—through the use of mask pairing and mask
correction. This aims to reduce as much external information as
possible while preserving iris information.

3. Datasets and Methodology

3.1. Datasets. Twodatasets were used in this work:Gender From
Iris (GFI) [30], and ND-CrossSensor-Iris-2013 (CSI) [47]. Both
datasets were normalized using OSIRIS [44], which generated
images of size 480×80 pixels and their corresponding occlusion
masks. Afterward, the normalized iris images and their masks
were downscaled to 240×20 and 240×40 pixels using bilinear
interpolation. These resolutions are regularly used in iris
processing [1, 9, 14, 30, 31]. Occlusion masks were
downscaled using max-pooling to ensure that undesired
elements remained masked in the smaller resolutions.

The first dataset we used is the GFI dataset [30]. This dataset
is comprised of 3,000 iris images of size 480× 640 pixels,
obtained using the LG-4000 NIR sensor. These images were
obtained from 1,500 subjects, 750 males and 750 females, with
one image per eye. The occlusion masks generated by OSIRIS
from this dataset were manually corrected using the procedure
described in Section 3.3, while preserving the original masks for
comparison. Afterward, the normalized iris images and their
masks (original and corrected) were downscaled to 240× 20
and 240×40 pixels as mentioned previously.

The second dataset we used is the CSI dataset [47]. This
dataset is originally comprised of 29,986 images taken using

the LG-4000 NIR sensor, and 116,564 images taken using the
LG-2200 NIR sensor. These images were taken from 676 sub-
jects, in 27 sessions spanning 3 years. From this dataset, only
the images from the LG-4000 sensor were used, to reduce
sources of variability. Additionally, we limited the number
of images per subject to 20 (10 per eye). These images were
used to verify that our method worked on a different dataset.
The dimensions of the images in the second database are the
same as in the first database; this is 480 x 640 pixels before
normalization, and 240× 20 or 240× 40 after normalization.

3.2. Mask Pairs. As previously mentioned, it is possible that
some models could be trained to classify gender using part of
the mask information. It would be beneficial to eliminate this
source of information when determining gender exclusively
from the iris texture.

To address this, the occlusion mask distributions of both
genders are equalized by generating mask pairs. The steps for
generating mask pairs and equalized occlusion mask distri-
butions are the following:

(1) Occlusion masks are grouped in male–female pairs
based on a similitude criterion.

(2) The OR operation is performed on each pair, which
generates a “paired mask”.

(3) The newly generated paired masks are applied to the
original iris images of each pair. In this way, the mask
of both irises in each pair will be identical, while
covering the undesired elements of each iris.

By applying the same mask to both images in each pair,
the resulting mask distribution is identical for both genders.
Figure 3 shows an example of this operation. The masks used
in this example are not similar, so as to better illustrate the
process. From now on, occlusion masks obtained using this
method will be called paired masks, whereas the original
masks will be called regular masks.

The first step is to group the masks in male–female pairs.
In this step, every male iris is paired with a different female
iris, ensuring no iris is in more than one pair. When a new
paired mask is generated, some iris information can be lost in
the process, as illustrated in Figure 3(b). The pixels shown in
magenta are those that were already masked in both original
masks, and thus will not cause loss of information. How-
ever, red pixels will add new mask pixels to the iris on the
top, and blue pixels will add new mask pixels to the iris on
the bottom. Pairs should be generated in a way that adds the
least number of new mask pixels. This reduces the amount
of iris information lost when generating and applying
paired masks. To achieve this, a metric that reflects this
factor will be defined.

The paired mask generated from a female maskmf and a
male mask mm is denoted by mf ∪mm. If jmj : is the number
of masked pixels in mask m, then the number of mask pixels
that are added by pairing mf and mm, compared to mf , is
given by jmf ∪mmj : − jmf j :. The maximum mask growth
compared to both original masks will be denoted byMG, and
is calculated as follows:
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where N is the number of pixels in each iris image. Under
this definition, an ðmf ;mmÞ : pair will be better when its
MGðmf ;mmÞ : is lower. This value can be expressed as a per-
centage of the area of the iris image.

The pairs are generated by exploring every possible pair
and choosing the combination that minimizes the sum of
growths. To accomplish this, a matrix MMG

with the MG of
every male–female pair is generated. This matrix is defined as
follows:

MMG
i; jð Þ ¼ MG mf ;mm

À Á
mf

�� 2MF ;mm 2MM

È É
; ð2Þ

where MF and MM are the sets of all female and male iris in
the dataset, respectively. With this matrix, generating the
best pairs is a type of combinatorial optimization problem
called assignment problem [48]. This can be efficiently
solved using algorithms such as the Jonker–Volgenant algo-
rithm [49, 50]. This algorithm finds the pairs that minimize
the total MG sum.

It is important to note that mask pairs are only required
during model training; by preventing the classifier from
learning gender cues present in masks during training, the
classifier will not be able to use them during testing. Further-
more, in a real-life scenario, it would not be possible to
generate mask pairs for previously unknown irises, since
they require a priori knowledge of their gender.

3.2.1. Penalizing and Removing Pairs with High Growth.
Despite minimizing the total MG sum, some pairs with
high MG are generated. In these pairs, at least one of the
two irises would lose considerable iris information. To study
the impact of pairs with high MG in classification, two mea-
sures were taken. The first measure consists of penalizing
values in the MMG

matrix above a certain threshold by mul-
tiplying them by 105. In this way, the algorithm will generate
pairs with high MG only if absolutely necessary. The second
measure consists of removing pairs withMG over a threshold
from the dataset, which excludes them from the process.

For both measures, different penalization and removal
thresholds were explored. The penalization threshold was
set to MG values ranging from 3% to 15%. The removal
threshold was set to MG values ranging from 7% to 10%.
This helps us to understand the impact of pairs with high
MG in classification.

3.3. Manual Mask Correction. We used OSIRIS [44] for
normalizing periocular iris images. Occlusion masks generated
using OSIRIS or other software often miss some non-iris areas
[3]. For instance, Figure 4 shows four normalized iris images
using OSIRIS, with incorrectly generated masks. Furthermore,
the two images at the bottom show presence of make-up on the
eyelids.

To study the effects of poorly generated masks, the masks
of the GFI dataset were manually corrected using an open-
source tool developed for this purpose. This tool allows a user
to manually indicate the areas that should be masked while
using the periocular image as a reference to discern these areas
and is available for download (upon paper acceptance).
Through this procedure, all non-iris elements were covered,
and no pixels from the original masks were removed. Figure 5
shows two irises before and after mask correction.

3.4. Gender Classification Method

3.4.1. Features and Classifiers. Our gender classification pro-
tocols were based on those used in [4]. This involved using a
pre-trained VGG-16 convolutional neural network [51] for

FIGURE 4: Normalized iris images. Their occlusion masks, shown in
green, do not correctly cover the eyelids.

(a)

(b)

(c)

FIGURE 3: Mask pairing example. Masks with different shapes were used to better illustrate the process. (a) Masks from different-gendered iris
are paired. The masks are shown in red and blue. These masks should be similar in order to reduce the information that is lost. (b) The OR
operation is performed on both masks generating a paired mask, which is shown in yellow. (c) The new mask is applied to the iris.
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feature extraction and classification. Five different classifica-
tion tests were performed. Test 1 (called “VGG-full”) uses
the VGG-16 network for both feature extraction and classi-
fication. In this case, we defined our own architecture for the
fully connected layers, which includes three dense layers with
decreasing number of neurons, and dropout layers. During
training, the convolutional layers are frozen, so only the fully
connected layers are adjusted.

Tests 2 through 5 use a “VGG+ (classifier)” naming
scheme. We used the following classifiers: linear support
vector machine (LSVM) [52], support vector machine with
radial basis function kernel (SVM-RBF) [52], K-nearest
neighbours (KNN) [53], and random forest (RF) [54]. As
input to these classifiers, 4,096 features are obtained at the
output of the first fully connected layer of the VGG-16.

Tests 1 (VGG-full) and 2 (VGG+ LSVM) were used for
all preliminary experiments. These tests were based on those
used in [4]. Tests 3 through 5 were added for comparison.

3.4.2. Preprocessing. Before entering the classifier, iris images
are preprocessed as follows. The dataset is partitioned while
separating subject IDs into 80% and 20% train test. The
partitions are balanced to ensure each has the same number
of male and female images. Masks, either regular or paired,
are applied in the following manner. First, iris pixel values
are restricted to the 0–254 range. Next, the median of every
image is determined, and this value is assigned to the masked
pixels; this prevents masked pixels from affecting the mini-
mum or maximum values. Afterward, the image pixel values
are rescaled to the 1–255 range. Finally, masked pixels are
assigned the value of 0. This ensures nonmasked pixels use
the whole intensity range, while preserving the 0 for masked
pixels.

In the VGG+ (classifier) tests, images must be resized to
accommodate the VGG-16 input size. For this, all images were
resized to 224×224 pixels using linear interpolation. In the
VGG-full test, we were able to minimize the required resize,
allowing us to keep the width intact (240 pixels), while setting
the height to either 32 pixels (for the 240× 20 pixels images) or
the original height of 40 pixels (for the 240×40 pixels images).
Since the pretrained VGG-16 network requires RGB images, our
grayscale NIR images are repeated in each of the three channels
as part of the preprocessing [55]. Each test was repeated using 30
different train-test partitions to ensure results are statistically
significant, as done in [4].

When applying masks, we have the option to use either
regular masks or paired masks. Additionally, for the GFI

dataset, we have the option to use either the original
(OSIRIS) masks, or to use the manually corrected masks.
Together with the mask pairs, this yields a total of four possible
mask combinations. In the case of paired masks, these are only
applied to the train partition, as mentioned in Section 3.2.

4. Results and Discussion

In this section, the results of the proposed mask pairing
method are shown and discussed.

Section 4.1 illustrates how the mask distributions per gen-
der changed after manually correcting and pairing. Section 4.2
describes the effects of changing penalization thresholds on
pair distribution and gender classification. Section 4.3 shows
the effects of changing removal thresholds on gender classifi-
cation. Finally, Section 4.4 summarizes the classification
results, and the effects of mask pairs on gender classification.

4.1. Effects of Pairing on Mask Distribution. The original
distribution of masks per gender, for both manually cor-
rected and original masks, is shown in Figure 6. The areas
without overlap indicate differences in mask distribution
among both genders.

After generating pairs using all the images from the train-
ing partition, mask distribution in this partition becomes
identical for both genders. This is reflected in Figure 7, in
which the histograms completely overlap. Compared to
Figure 6, there are more images with a higher percentage
of mask, because pairing adds mask to the iris.

4.2. Effects of Pair Penalization. As described in Section 3.2.1,
different thresholds for penalizing and removing pairs were
compared. To select the right penalization threshold, two
elements were analyzed: average mask growth of generated
pairs and number of pairs with high (>10%) growth. A
threshold will be better the lower both these numbers are.
Figure 8 shows the distribution of pairs at different penaliza-
tion thresholds. This figure shows that, as the threshold
decreases and becomes stricter, the average growth increases
until it reaches its maximum between thresholds 5% and
7.5%. Beyond this point, because most potential pairs have
been penalized, the behavior reverses as if less pairs had been
penalized. The number of pairs with high growth reaches a
minimum at a threshold of 10%. This is in part caused by
defining “pair with high growth” at the same percentage, as
this is the least strict threshold that will prevent pairs of high
growth from being generated.

ðaÞ

ðbÞ
FIGURE 5: Two normalized iris images, before (a) and after (b) mask correction.
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With regards to the impact in classification results, every
threshold was used in five trials for each resolution. An
ANOVA test was performed to assess if changing the penaliza-
tion threshold has any significant effect on the classification
accuracy. The results are shown in Figure 9. When using the
original masks, the mean accuracy ranged from 59.14% to
60.59%. When using the manually corrected masks, the mean
accuracy ranged from 56.37% to 57.20%. In both cases the effect
of changing the penalization threshold was not significant
(p-value close to 1). From these results and the pair distribution
results, a penalization threshold of 10% was chosen.

4.3. Effects of Pair Removal. The effects of pair removal in
classification were studied. An ANOVA test was performed
to evaluate whether the changes in removal threshold have
any significant effect on the classification accuracy. Results
are shown in Table 2. The p-values indicate that the effect
was not significant. In conclusion, removing pairs with high
growth has no impact on classification.

4.4. Classification Results. Our classification results were
summarized in Table 3 for the GFI dataset, and in Table 4
for the CSI dataset. GFI results show an average decrease in
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FIGURE 7: Mask distribution for each gender, (a) after generating pairs, and using original masks or (b) corrected masks. Columns are shown
in purple when both genders are overlapped.
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TABLE 2: Classification results after removing pairs over a certain growth threshold.

Test type Resolution (px) Threshold (%) Accuracy (%) p-Value

VGG-full

240× 20

10 58.38Æ 2.59

0.78
9 57.64Æ 2.93
8 57.78Æ 3.32
7 57.74Æ 3.37

240× 40

10 59.61Æ 2.91

0.99
9 59.54Æ 2.86
8 59.72Æ 3.07
7 59.54Æ 2.83

VGG+ LSVM

240× 20

10 58.66Æ 2.16

0.97
9 58.83Æ 2.19
8 58.72Æ 2.35
7 58.90Æ 2.09

240× 40

10 60.48Æ 2.03

0.98
9 60.64Æ 1.98
8 60.56Æ 2.06
7 60.41Æ 1.97

Highest and lowest accuracies are shown in bold letters.

TABLE 3: Results using the GFI dataset, showing the effect of using paired and corrected masks.

Test type Paired masks Resolution Corrected masks Accuracy (%)

VGG-full

No
240× 20

No 62.13Æ 2.37
Yes 61.69Æ 2.72

240× 40
No 63.34Æ 2.64
Yes 61.89Æ 2.95

Yes
240× 20

No 58.36Æ 2.84
Yes 56.39Æ 3.36

240× 40
No 59.11Æ 3.10
Yes 55.99Æ 2.82

VGG+ LSVM

No
240× 20

No 63.97Æ 1.64
Yes 62.79Æ 1.67

240× 40
No 65.43Æ 1.93
Yes 62.01Æ 2.12

Yes
240× 20

No 58.72Æ 2.02
Yes 56.42Æ 1.77

240× 40
No 60.62Æ 2.13
Yes 56.96Æ 1.69

VGG+ SVM-RBF

No
240× 20

No 63.94Æ 2.27
Yes 63.24Æ 2.18

240× 40
No 64.09Æ 2.50
Yes 62.74Æ 1.87

Yes
240× 20

No 58.02Æ 2.21
Yes 56.14Æ 1.79

240× 40
No 60.46Æ 2.01
Yes 55.83Æ 1.85

VGG+KNN

No
240× 20

No 57.17Æ 1.55
Yes 56.85Æ 1.55

240× 40
No 57.63Æ 1.85
Yes 55.79Æ 1.62

Yes
240× 20

No 52.81Æ 1.85
Yes 51.98Æ 1.62

240× 40
No 54.15Æ 1.71
Yes 51.93Æ 1.89
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accuracy of 5.16% when using mask pairs, whereas using
corrected masks decreases accuracy by 1.76% on average.
Using both paired and corrected masks decreases accuracy
by 6.92% on average. CSI results also show an average
decrease in accuracy of 3.64%. We performed ANOVA tests
to evaluate the impact of using paired masks and corrected
masks, and both were shown to be significant (p <0:01). This
demonstrates that occlusion masks introduce significant
gender information, and that the actual gender information
in the iris texture is less than the previously reported.

These results are consistent with those obtained in [4], on
the GFI dataset. The accuracy in their equivalent VGG+
LSVM test was 60.0%, and in their equivalent VGG-full test
was 60.1%. Our nonpaired results were slightly better, whereas
our paired results were slightly worse. This means that despite
having higher baseline results, using paired masks reduced the
gender classification accuracy significantly.

However, our results are not consistent with the previous
papers that reported accuracies of over 70% when using
normalized iris [30–32]. Nevertheless, none of these papers
account for the bias that the masks may introduce.

The information provided by the masks can potentially
contribute to gender classification as it may exhibit correla-
tions with gender through factors such as makeup, the seg-
mentation algorithm employed, and the specific conditions
encountered during image acquisition. Therefore, if the
objective is to perform gender classification using the iris
texture exclusively, it is essential to remove this information.

When using mask pairs, gender information can be lost
in two ways: (1) through the gender cues present in the
occlusion masks, and (2) through the iris pixels covered by
the paired masks. However, we have yet to quantify the
amount of gender information lost through these covered
iris pixels. Interestingly, we found that removing the worst

TABLE 3: Continued.

Test type Paired masks Resolution Corrected masks Accuracy (%)

VGG+RF

No
240× 20

No 60.64Æ 2.31
Yes 61.29Æ 1.93

240× 40
No 61.28Æ 2.10
Yes 60.46Æ 2.31

Yes
240× 20

No 55.90Æ 2.08
Yes 54.37Æ 1.77

240× 40
No 56.55Æ 1.73
Yes 54.44Æ 1.94

Highest and lowest accuracies for each test are shown in bold letters.

TABLE 4: Results using the CSI dataset, showing the effect of using paired masks.

Test type Paired masks Resolution Accuracy (%)

VGG-full
No

240× 20 59.90Æ 2.68
240× 40 60.13Æ 3.05

Yes
240× 20 56.54Æ 2.28
240× 40 57.18Æ 2.95

VGG+ LSVM
No

240× 20 61.44Æ 2.71
240× 40 61.10Æ 2.54

Yes
240× 20 57.44Æ 2.82
240× 40 57.25Æ 2.60

VGG+ SVM-RBF
No

240× 20 62.34Æ 3.12
240× 40 62.36Æ 3.07

Yes
240× 20 58.37Æ 3.14
240× 40 58.96Æ 2.92

VGG+KNN
No

240× 20 56.70Æ 2.08
240× 40 56.46Æ 1.73

Yes
240× 20 52.66Æ 1.65
240× 40 52.50Æ 1.43

VGG+RF
No

240× 20 59.42Æ 2.71
240× 40 59.90Æ 2.55

Yes
240× 20 56.15Æ 2.55
240× 40 56.31Æ 2.44

Highest and lowest results for each test are shown in bold letters.

10 IET Biometrics



mask pairs and using stricter penalization thresholds did not
lead to a decrease in accuracy. This suggests that the infor-
mation lost through the masks is greater than the informa-
tion lost through the masked iris pixels. Nevertheless, we still
need to demonstrate that the iris information covered by the
paired masks does not contain important gender cues.

5. Conclusions

In this work, we proposed a novel method for studying gender
information exclusively in the iris by removing gender informa-
tion that could be present in the iris occlusion masks. This is
achieved by pairing masks according to gender. Using this
method, gender classification accuracy decreased by 4.65% on
average on the GFI and CSI datasets. Furthermore, when using
both corrected and paired masks, accuracy decreased by 6.92%
on average. This demonstrates that occlusion masks introduce
significant gender information, and that iris classification results
from the other works do not reflect the information exclusively
in the iris but also in the occlusion masks and non-iris elements.
Using iris information exclusively may yield significantly lower
accuracy than the previously reported.

Pairing the masks eliminates possible correlation between
gender and mask shape. Our results showed that the loss in
accuracy after applying our method is significative. Therefore,
works aiming to perform gender classification using the iris
texture from normalized iris images should eliminate this
correlation.

Future work could focus on quantifying the information
loss while generating mask pairs.

If any such information exists and is significant, a meth-
odology that recovers this information without reintroducing
skews would be of interest. Additionally, using a larger dataset
where presence of makeup is annotated (such as in [4]) could
provide better insight on the impact of masks and makeup in
the gender classification.

Newer normalization and segmentation techniques uti-
lize deep learning for the purpose of processing iris images
[56, 57]. These techniques could be utilized instead of
OSIRIS, as they perform more accurate segmentation, which
would make manual mask correction unnecessary. This
improved segmentation could also reduce the amount of
iris information that is lost when generating pairs.

Data Availability

GFI and CSI datasets were provided by the University of
Notre Dame and are available for request at the following
URL: https://cvrl.nd.edu/projects/data/. The toolbox for
manually correcting occlusion masks is freely available at
https://github.com/Nosferath/fixMasks. Other algorithms,
code, and results may be requested to Claudio Yáñez, clau-
dio.yanez@ug.uchile.cl.
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