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Neuron circuits are the fundamental building blocks in the modern neuromorphic system. Designing compact and low-power
neuron circuits can significantly improve the overall area and energy efficiencies of a neuromorphic chip architecture. Here,
practical neuron circuits must overcome the variations arising from nonideal behaviors of synaptic devices, such as stuck-at-fault
and conductance deviation. In this study, a compact leaky integrate-and-fire neuron circuit has been designed, with resilience to
synaptic device state variations, for hardware implementation of spiking neural networks (SNNs). The proposed neuron circuit is
simulated on the 0.35-μm Si complementary metal-oxide-semiconductor technology node by a series of circuit simulations based
on HSPICE. The proposed circuit occupies a reduced area and exhibits low power consumption (14.7 µWper spike). Furthermore,
the optimized circuit design results in a high degree of tolerance toward input-current variations arising from conductance-state
variations in the synapse array. Hence, the proposed neuron circuit would be capable of substantially improving the area efficiency
and reliability in the realization of the hardware-oriented SNN architectures.

1. Introduction

In recent years, neuromorphic computing has gained popu-
larity and is used in a wide range of brain-inspired models,
devices, and computers that mitigate the memory bottleneck
of Von Neumann computer architecture. Serial computation
processes of the Von Neumann architectures require high-
energy usage to accomplish massive operations [1]. However,
neuromorphic architectures are remarkable for their high
connectivity and parallelism, low power consumption, and
memory and processing collocation, which have increasingly
captured the attention of the computing world as the end of
Moore’s law approaches [2]. These qualities provide strong
motivation for building electronic devices in neuromorphic
architecture [3]. Neuromorphic computing can be based on
spiking neural networks (SNNs), which imitate biological sys-
tems in which neurons transmit information in the form
of spikes through electrical synapses. The development of

hardware-oriented neuromorphic systems encompassing
from synthetic synapses and neurons to spike-based comput-
ing platforms is under active progress [4]. Taking a further
step, SNN is the third-generation ANN that offers area- and
energy-efficient system architecture [5–7]. Neurons are inte-
gral components of such an SNN architecture and require
highly optimized area and energy considerations for their
hardware design. SNN can be adopted to any form of a neural
network as long as the system requires high-power efficiency
[8, 9]. Among the various applications, low-power accelerated
multiplicate-and-accumulate (MAC) computing, low-power
image, and speech recognition, and low-power processing
units in autonomous vehicles can be sought at the first hand.

System-level implementation of such neuron circuits fre-
quently necessitates the simplification of complicated biolog-
ical neuron functions, as can be found in the examples of the
Hodgkin–Huxley (HH) model, Izhikevich neuron model,
and other threshold-based neuron models [10–11]. Despite
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its simplicity, the leaky integrate-and-fire (LIF) neuron has
become one of the most widely utilized models, because it
emphasizes two fundamental neuronal dynamics: the leaky
accumulation of postsynaptic currents and consequent spiking.
Therefore, hardware-based neurons are implemented as electri-
cal circuits that mimic the behaviors of LIF neuron models
[12, 13]. The LIF neuron circuit is designed to accumulate the
currents from the weighted synaptic connections and instantly
generate an action potential when the membrane potential sur-
passes the threshold voltage of the neuron circuit. The input
current to the neuron circuit emerges from a synaptic array
composed of memory cells, with data nonvolatility in many
cases, as can be found in resistive-switching random-access
memory (RRAM), flash memory, phase-change memory
(PCM), and magnetic random-access memory (MRAM)
[14, 15]. The merging of nonvolatile memories (NVMs) is par-
ticularly susceptible to reliability issues at the cell level, such as
stuck-at-state faults, conductance drift, and cycle-to-cycle varia-
tions [16]. RRAM-based neuromorphic chip design has received
marked research interest, mainly because of its lowwrite voltage,
area efficiency, and complementary metal-oxide-semiconductor
(CMOS) viability [17–19]. However, mitigating the nonidealistic
features can be a more critical issue with RRAM-based synaptic
arrays, since the set and reset currents of RRAM have relatively
low concentration in distribution, whichmight lead to variations
in the bitline currents by which the accelerated MAC operations
are performed. This poses a serious challenge to neuron circuits
that receive these bitline currents as their input signal. It is critical
for the neuron circuit to withstand such synapse array-induced
variations in their input signals. To the best of our knowledge,
the resilience of a neuron circuit against the fluctuation in input
current has seldom been investigated in previous studies.

Hence, in this work, we propose a novel LIF neuron cir-
cuit that can tolerate the input current fluctuation originating
from either nonidealities or dynamic behaviors of the synapse
devices [20]. The present neuron circuit was motivated by an

explicit design principle for implementing area-efficiency and
low-power circuits [21]. Furthermore, the resilience of the LIF
neuron circuit against the input current fluctuations was
quantified for various conductance-state-based faults of the
synaptic device. All the circuit simulations were performed
using the HSPICE circuit simulator (run on a Linux environ-
ment; ver. released in 2019. 12) employing the 0.35-μm
Si-CMOS technology node library.

2. Analogy between Biological Neuron and
Electronic Neuron Circuit

2.1. Neurons and Synapses. The human brain is the most
complex organ in the body, composed of approximately
86 billion neurons. Neural networks are associated with
highly organized connections between neurons and their
interactions, resulting in effective information transfer. A
conventional neural structure consists of three parts: den-
drites, somas, and axons, as shown in Figure 1. Most neurons
are polarizing cells, and polarization belongs to the spatial
diversity in form, structure, and function inside a cell. All
cell types have a degree of polarity that allows them to execute
certain activities. Dendrites in nerve cells are organized in a
dendrite pattern and transfer the input signals to the soma.
The soma modifies its membrane potential in response to
information received from dendrites, and an action potential
is triggered when the membrane potential crosses a specific
threshold. The spike signal is transmitted to the axon termi-
nal, whereas the action potential is output via the axon. Infor-
mation is exchanged through the synapses that connect
neurons. Presynaptic and postsynaptic neurons are located
before and after the synapse, respectively. Presynaptic neu-
rons are linked to postsynaptic neurons via the space between
them, which is known as the synaptic gap [22, 23]. The action
potential travels through the axon to the presynaptic terminal,
where it triggers the production of vesicular-packaged
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FIGURE 1: Schematic of a biological neuron cell and its circuit analogy. A biological neuron consists of an axon, a soma, and dendrites (a). Basic
relation of a leaky integrate-and-fire (LIF) neuron circuit and synaptic interconnections (b). Concept of the synaptic array accepting the
spikes generated from the presynaptic neuron (c).
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chemicals known as neurotransmitters. These vesicles are
fuzed to the membrane by an action potential and are subse-
quently released back into the synaptic gap, where they attach
to receptors on the cell surface of the postsynaptic terminal,
which in turn affects the synaptic transmission of numerous
neurotransmitters [24].

2.2. Neuron Circuit Analogy. In the early 1950s, Hodgkin and
Huxley designed the first neuron model (H–Hmodel), which
showed the relation between the ionic currents through the
neuron cell membrane and the membrane voltage. In the
1990s, a CMOS neuron model, popularly known as the LIF
neuron circuit, was demonstrated. LIF is modeled on the
H–H neuron and adapts biological neuron functions into
the equivalent electrical circuitry [25–30].

LIF is a simplistic form of the neuron model, which is
universally treated as the fundamental part of SNNs due to
its comparatively low computational difficulty. As shown in
Figure 1, postsynaptic input currents (Is) acquired via den-
drites are summed (Im=∑i Is; i) to charge the membrane
capacitor, as the current onto the membrane (Im), resulting
in a membrane potential (Vmem). When a soma crosses a
certain threshold, the neuron generates spikes and completes
its LIF function. The generated spike passes through the axon,
and the event is transmitted to other associated neurons. The
weighted connection between the LIF neuron circuits forms a
synapse array, as schematically shown in Figure 1. In the
electrical sense, these weights in connections can be described
as conductance values that can be modulated based on the
occurrence of pre- and postsynaptic spikes.

Operations of neurons and synapses require power con-
sumption in the SNN system. Biological brain-inspired net-
work features have an enormous number of presynapses
(1,000–10,000) per neuron, indicating that synaptic power
dominates the total power consumption in the neural net-
work. Previous researches have shown that, even in the
worst-case scenarios, i.e., the neuron consumes 15%–50%
of the total power consumption in various digital and analog
SNNs specifically adapted for inference tasks [31–36]. If the
ratio in number (10,000 : 1) is considered, it can be judged
that a neuron circuit consumes a huge power per unit, which
calls for compact and highly power-efficient neuron circuits.

3. Leaky Integrate-and-Fire Neuron Circuit

3.1. Circuit Description. The LIF neuron circuit presented in
this work was designed and simulated with 0.35-μm
Si-CMOS process technology through a series of HSPICE
simulations, as shown in Figure 2. The neuron circuit is
composed of two parts: the integration-and-reset part and
the trigger-and-fire part. The former part consists of a
membrane capacitor of 0.01 pF and an n-type MOSFET
(M6) with W/L= 0.70/0.35 μm taking charge of the reset
function. The latter part includes three n-type MOSFETs,
two p-type MOSFETs, and two inverters in which all the
MOSFETs have a dimension of W/L= 0.70/0.35 μm and an
operation voltage VDD= 1.0V. Over the series of simulations,
the input current was assumed to be 10pA. In particular, Cmem

was responsible for integrating the current signal from the

synaptic array. The value of Cmem can be varied, depending on
the quantity of current delivered from the synapse array
depending on the targeted firing frequency. Also, Cmem

determined the W and L of the p-type MOSFET (M4) to
retune the neuron. The integration function was conducted by
Cmem because current signals from the synapse array were
frequently delivered to the neuron. The membrane potential
(Vmem) increased to the threshold voltage (Vth) of the n-type
MOSFET (M1) as charges accumulated in the Cmem. Whenthe
Vmem exceeded the Vth of the M1, M1 was switched on, causing
node 1 voltage to decrease. The output node of inverter 1 (INV1)
was then switched from low to high voltage, allowing the n-type
MOSFET (M2) to initialize Vmem and the high voltage at node 1
was dragged down to a low voltage. Subsequently, to enable M2
to initialize Vmem, INV1 is changed from a low state to a high
state. After the n-type MOSFET (M3) is turned on, the output
node voltage of inverter 2 (INV2) returns to its initial value.
MOSFETs M2, M3, and M4 exist to stabilize the
corresponding node states of the neuron circuit. For the
simulation tasks, the Berkeley short-channel insulated-gate
field-effect transistor model (BSIM) version 3.3 (level 49)
designed for 0.35-μm Si CMOS technology was used [37].

3.2. Circuit Operation. The most essential function of a neu-
ron circuit is to accumulate the input current from the syn-
apse array until it reaches the threshold voltage of the circuit.
Once the neuron circuit exceeds the threshold voltage, a
digital spike takes place, and the circuit returns to its initial
(fully discharged) state. The neuron circuit designed in this
work demonstrates the fundamental behavior of a neuron
circuit, as can be confirmed in Figure 3(a). The figure shows a
transient analysis of the designed LIF neuron circuit validat-
ing the integration function realized by the membrane capac-
itor, Cmem, concerning the input current pulse. The input
signal utilized in the simulations was in the form of a square
pulse. The choice of this input signal shape makes the tran-
sient analysis smooth, which is indispensable in validating
the functionality and the performance of the neuron circuit,
in consideration of the expandability of neuron circuits
cooperating with the digital integrated circuit that feeds the
input to the neuron usually in the form of a square pulse.
When Vmem exceeds the threshold voltage of M1, a spike is
generated at the output node (Vspk), and then it turns on M6,
which is responsible for the complete discharging from
Cmem. Finally, the circuit is reset to the initial state. Cyclic
operations are repeated as the input current signals are con-
tinuously brought into. From Figure 3(b), the firing rate, i.e.,
the number of spikes for a given time versus the input cur-
rent, shows that the firing rate of the neuron circuit propor-
tionally increases with the input current. Also, the firing rate
is inversely proportional to theCmem, as shown in Figure 3(c).
Thus, the circuit can control the firing rate by modulating the
input current and Cmem, as per the designed synaptic device.

4. Simulation Results and Discussion

As discussed earlier, the input currents to the neuron circuit
are fed from the synaptic array, which is mainly composed of
emerging NVMs such as RRAM, PCM, and MRAM. These
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devices undergo state changes representing the individual
conductive states. In general, they either remain in a low-
resistance state (LRS) or a high-resistance state (HRS),
depending on the conduction mechanism. However, these
devices tend to deviate from their intended state in a synapse
array, leading to a variety of nonideal behaviors, such as
failures in set and reset operations and incomplete state
switching. Hence, we can consider some representative spe-
cific fault cases that may occur in the synapse array for
designing a neuron circuit.

First, we consider a scenario in which a fraction of the
synapse devices are stuck in the LRS. Therefore, the current
from the synapse array fluctuates within in value (∼10 pA)
with a lower bound, which is determined as a fraction
(between 0% and 10%) of the original current. For the random
fluctuation in input signals, the input data were generated
using Python, by which random fluctuations from 0% to
10% of the amplitude of the reference input pulse were intro-
duced. This variability was conceived to bring more realistic
scenarios where the input signals might exhibit inherent
noises or process-induced variations. In applying these ran-
dom fluctuations, a piecewise linear signal type was employed.

This type of signal representation allows to model the time-
varying characteristics of the input signal in a more time-
efficient way. This approach not only ensures transparency
in simulation but also reflects the realistic variability fre-
quently encountered in integrated circuits. Figure 4(a) shows
the input current, membrane voltage, and spiking behavior
of the LIF neuron for the stuck-at-LRS synapse array condi-
tion. The spike position and amplitude did not change con-
siderably as the stuck-at-LRS fraction increased to 10%.
Similarly, for the HRS (Figure 4(b)), the resistance increased
because the fluctuation of the input current pulse amplitude
decreased. Finally, we consider a scenario in which there is a
fraction of both stuck-at-LRS and stuck-at-HRS devices in the
synapse array, as shown in Figure 4(c). Spiking behavior is
clearly not affected by such a combination of fault states. The
above results are confirmed by the fluctuation analysis results
in Figure 4(d)–4(f), which correspond to Figure 4(a)–4(c) in
sequence, respectively. In Figure 4(f), although the spike shifts
do not occur in any specific direction, alternations through
left and right shifts are found, depending onwhether the input
current variation is based on LRS or HRS fault at a specific
time. Figure 4(d) reveals that there are only nominal leftward
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FIGURE 2: Circuit diagram of the designed leaky integrate-and-fire (LIF) neuron circuit.
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shifts in the spikes, as indicated by the marked arrows. This
takes place since the required threshold voltage is exceeded in
a short time due to the additional amount of current provided
by the stuck-at-LRS synaptic devices. The output spikes are
shifted in the rightward direction as the fluctuation percent-
age increases, as shown in Figure 4(e) in conjunction with
Figure 4(c). This result is brought since a longer time is
required for the membrane potential to exceed the threshold
voltage of the neuron circuit owing to a drop in the input
current. The circuit can be optimally designed with the capa-
bility of stronger tolerance against the fluctuation in input
current with minimizing the loss in functionalities of the neu-
ron circuit. Equation (1) defines the index for a shift in spike

time: the amount of shift taking place at the output node with
respect to fluctuation in the input signal in the unit of
percentage.

Δx% ¼ Tspk0% − Tspkx%

Tspk0%

× 100 %ð Þ; ð1Þ

where Δx% is defined as the spike time shift index that repre-
sents the time difference between spike times at which fluc-
tuations of 0% (reference point) and x% take place while the
input signals are fed into the neuron circuit. Here, Tspk0%and
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FIGURE 3: Analyses of the neuron circuit behaviors: (a) transient analysis of the leaky integrate-and-fire (LIF) neuron circuit; (b) number of
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FIGURE 4: Continued.
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Tspkx% indicate the spike times. Figure 5(a)–5(c) shows the
spike time-shift index of the fluctuation for different states of
the synaptic device. The overall shift index level for LRS was
14% (Figure 5(a)); for HRS, it was 10% (Figure 5(b)), and for
the combined state, the maximum shift index was 2%
(Figure 5(c)), respectively. In consequence, it can be addressed
that the designed LIF neuron circuit can tolerate a 10% fluc-
tuation with a minor spike time shift index, considering dif-
ferent stuck-at-fault states. Moreover, conventional neuron
circuits usually contain a couple of capacitors. In the study
of Kang et al. [21], a typical neuron circuit uses two capacitors:
one for accumulating the input current and the other for
controlling the width of the output spike. In an integrated
circuit, a capacitor occupies a large area even if the capaci-
tance is only a few picofarads. If the gate oxide thickness of
9 nm for a 0.35-μm technology node [37] and 1 pF of capaci-
tance are assumed, the area can be simply predicted as
261 μm2, which corresponds to an area of a square with a
16.2-μm edge. Thus, it can be figured out that the capacitor
seriously threatens the area efficiency of a neuron circuit with
the tremendous imbalance with the MOSFET scalability. In
this work, we have designed a neuron circuit that has only one
capacitor, the membrane capacitor, truncating the secondary
capacitor, confirming that the neuron circuit functionality is
not lost at all. Reduction of one capacitor significantly reduces
the area of a neuron circuit, and thus, higher compactness of
the neuron circuit in this work is substantially expected. Com-
pared with the conventional neuron circuit having two capa-
citors and a CMOS circuit part, at least 30% of area reduction
is practically realized. In addition, the performances of the
neuron circuit designed in this work are compared with the

circuits in the previous reports, as shown in Table 1. For the
designed neuron circuits, the power and energy consumption
can be calculated based on the following equations, which are
numerically calculated by the circuit simulation package.

Energy consumption Eð Þ ¼
Z

T
V tð Þ ⋅ I tð Þdt Jð Þ; ð2Þ

Power consumption Pð Þ ¼ 1
T

Z
T
V tð Þ ⋅ I tð Þdt Wð Þ; ð3Þ

where T is the length of a single period for an integrate-and-
fire event. For a unit integrate-and-fire operation, the
designed LIF neuron circuit consumes an energy of 2.2 nJ
per event, which corresponds to a power consumption of
14.7 μW. Also, the unique feature of the designed neuron
circuit is its resilience against the fluctuations in the synaptic
devices, and the power/energy efficiency can be plausibly
accompanied for the hardware SNNs realization.

5. Conclusion

The LIF neuron circuit presented in this paper was developed
and simulated with 0.35-μm Si-CMOS process technology
using the HSPICE simulator. The designed circuit fulfills
the fundamental characteristics of the LIF neuron circuit.
The focus of this study was to design a simple and compact
neuron circuit that can deal with the fluctuation of a synapse
array. We showed that the LIF circuit can tolerate up to 10%
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FIGURE 4: Transient analyses on the integrate-and-fire operations of the neuron circuit at different synaptic states: (a) low-resistance state
(LRS); (b) high-resistance state (HRS); (c) combined state (both LRS and HRS are mixed); (d), (e), and (f ) are the fluctuation percentages
corresponding to the results in (a) through (c), respectively.
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TABLE 1: Comparison among the performances of reported neuron circuits and the proposed one in this work.

References
Synaptic
input

Neuron model Circuit type
Technology
node (µm)

Firing
frequency

Power
consumption

(μW)
Special features

[18] Current Conductance-based Analog — ∼300Hz 60
Neuro-physiological

principles
[23] Current Integrate-and-fire Analog 1.5 ∼1.2 kHz 1.5 Spike frequency adaptation
[26] Current Hindmarsh–Rose Mixed mode 0.25 ∼2 kHz 163.4 Time-scaling techniques
[27] Current Izhikevich Analog 0.35 ∼1MHz 40 Firing pattern and shape
[28] Current Integrate-and-fire Mixed mode 0.8 ∼100Hz 120 Spike-based learning
[29] Voltage Integrate-and-fire Mixed mode — ∼1 kHz — Positive feedback neuron

This work Current Leaky integrate-and-fire Analog 0.35 ∼5 kHz ∼14.7 Resilience against the
synaptic device fluctuations
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FIGURE 5: Analysis of spike time-shift index: (a) low-resistance state (LRS); (b) high-resistance state (HRS); (c) combined state (both LRS
and HRS).
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fluctuation, with minor output spike time shifts for differ-
ent states of the synaptic device. Hence, the results of this
study describe how the LIF neuron circuit might behave
properly, depending on the synaptic device states in the
SNN hardware, and how it can be specifically designed to
maximize parallelism in data-intensive decision-making.
Furthermore, featuring the low-power operation capability,
the application of SNNs can be expanded into other areas,
such as autonomous vehicles, drug discovery, and
brain–computer interfaces.
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