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Multitarget tracking is prone to target loss, identity exchange, and jumping problems in the context of complex background, target
occlusion, target scale, and pose transformation. In this paper, we proposed a target tracking algorithm based on the conditional
adversarial generative twin networks, using the improved you only look once multitarget association algorithm to classify and
detect the position of the target to be detected in the current frame, constructing a feature extraction model using generative
adversarial networks (GANs) to learn the main features and subtle features of the target, and then using GANs to generate the
motion trajectories of multiple targets, finally fuzing the motion and appearance information of the target to obtain the optimal
match. The optimal matching of the tracked targets is obtained. The experimental results under OTB2015 and IVOT2018 datasets
demonstrate that the proposed multitarget tracking algorithm has high accuracy and robustness, with 65% less jumps and 0.25%
more accuracy than the current algorithms with minimal identity exchange and jumps.

1. Introduction

Targets in complex real-world scenes are susceptible to inter-
ference factors such as motion blur, low resolution, illumina-
tion scale changes, and occlusion deformation, so designing a
robust tracking algorithm to achieve robust real-time tracking
of targets still faces a great challenge among existing target
tracking algorithms, which are mainly divided into traditional
classical target tracking algorithms based on the artificial fea-
tures and deep network target tracking algorithms based on
the depth features [1]. The overall artificial features widely
used in traditional target tracking algorithms can be divided
into grayscale features, color features concave, and gradient
features. Grayscale features are the simplest and most intui-
tive feature representationwith high-computational efficiency
[2]. However, color features are more affected by illumination
and are susceptible to illumination changes as well as back-
ground interference with similar colors [3]. Gradient features
characterize the appearance by counting the local gradient
distribution of the target image. The widely used gradient
feature in the target tracking algorithms is the HOG ((histo-
gram of oriented gradient) feature [4]. The core idea of the

HOG feature is tomake full use of the chunking unit to extract
the gradient information of the image, so that the appearance
and shape of the local target can be well-described by the
gradient or the directional density distribution of the edges,
while having good invariance to the illumination changes.

Although the above artificial features are rich in target
information, they cannot extract higher level semantic infor-
mation and require a strong priori information, which are
highly adaptable in the specific scenes but difficult to achieve
robust tracking of the targets in complex scenes [5]. In recent
years, deep neural networks (DNNs) have made break-
throughs in image classification and target detection due to
their excellent feature learning and representation capabili-
ties, which indicate that deep features have powerful charac-
terization capabilities for targets, and therefore people apply
deep learning to the visual tracking [6]. The accuracy of the
depth feature-based target tracking algorithm has great
advantages over the artificial feature-based target tracking
algorithm; however, the complexity of the adopted network
structure leads to a large amount of computation, which
greatly limits the tracking speed of the tracking algorithm
and makes the accuracy and real-time performance of the
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tracking algorithm not reach a good balance [7]. The posi-
tion response of the target is obtained. Due to the advance
offline training and online similar evaluation during track-
ing, the speed aspect is far beyond the real time while ensur-
ing high-accuracy tracking.

The feature extraction networks used in the twin network
framework are relatively shallow Alexnet [8] networks, and
the motion blur and low-resolution video frames generated
when the target is in violent and fast motion make the
tracked target indistinguishable, making it difficult for the
Alexnet network to extract the effective features of the target
and making the model drift easily, leading to poor tracking
results or even tracking failure [9].

In order to address the problem that the lack of an effec-
tive adjustment mechanism leads to the degradation of the
model’s characterization ability when the target generates
motion blur and low-resolution video frames due to fast
motion, this paper embeds a conditional adversarial genera-
tive network module (CGAN) in the feature extraction net-
work to advance the model’s characterization ability and
enhance the robustness of the tracking algorithm in the
case of motion blur and low resolution [9]. In order to fully
validate the effectiveness of the CGAN deblurring network
module proposed in this paper on the tracker performance
improvement, a test evaluation was conducted and com-
pared with the traditional deblurring algorithm based on
the Lrsiamfo, the original Siamfo, and several other classical
target algorithms for analysis. The experimental results show
the effectiveness of the method in this paper.

2. Related Work

In recent years, many scholars have conducted in-depth
research on target tracking technology, and many excellent
target tracking algorithms have emerged. At present, target
tracking algorithms are generally divided into classical tradi-
tional tracking algorithms based on the artificial features and
deep learning tracking algorithms based on the depth fea-
tures [10]. The development history of target tracking algo-
rithms is mainly divided into three development stages.

Target eye tracking algorithms mainly use statistics-
based iterative prediction and feature point-based optical
flow methods. The classical target tracking algorithms are
mainly mean drift tracking algorithm, particle filtering track-
ing algorithm, and optical flow tracking algorithm.

Single-target long-time tracking algorithm I-TLD24
algorithm was first proposed by Cui et al. [11]. This algo-
rithm is a discriminative tracking algorithm that learns the
features of positive and negative sample ports 2–26 through
training and then uses the features to collect samples at pre-
dicted locations for classification to distinguish the target
from the background [12]. The emergence of TLD has
greatly promoted the development of the tracking field,
Khattak et al. [8] proposed the correlation filter-based track-
ing algorithm KCF32 based on MOSSEL3 and CSK3 algo-
rithms, KCF uses Fourier transform and circular matrix to
correlate the template and sample in the frequency domain
to obtain the outgoing response map, and the maximum

response position is the target position. By Sha et al. [13], a
circular matrix equivalent sliding window is designed to
replace the dense sampling, which solves the problem of
unbalanced positive and negative samples in the tracking
algorithm, and greatly reduces the computational effort
and increases the tracking speed to more than 100s. The
core-needle biopsy by Ali et al. [14] uses color features to
characterize the appearance of the target, refines the RGB
three-channel color into 11 color features, and then uses
principal component analysis to reduce the 11-dimensional
color features to 2 dimensional, and selects the most significant
color features as the target features for tracking. A new transfer
learning approach is proposed to improve the stability and
training speed of generative adversarial networks (GANs).
Themethod involves using pretrained variational autoencoders
with the controlled degrees of freedom. By sampling from a
standard normal distribution and inputting it into the model,
the method achieves faster convergence and increased model
accuracy across the different datasets. This approach addresses
the limitations of GANs and shows promising results in the
domain of generative modeling [15]. Two innovative visual
object tracking approaches are introduced to improve the clas-
sifier performance and integration with existing trackers. The
first method, MDResNet, replaces MDNet’s convolutional
layers with ResNet-50 layers to enhance the feature extraction
capabilities. The second method, ROIAL, integrates GAN net-
works with MDResNet and MDNet, harnessing GAN-based
learning to further enhance tracking performance. Both
approaches aim to leverage ResNet’s strengths and GAN-based
learning to achieve superior results in the visual object tracking
[16]. Zin [17] proposes a novel object tracking method that
uses generative adversarial learning and incorporates distrac-
tors and a distractor generator into a Siamese network. This
approach enables robust tracking in scenes with dramatic
shape changes or environmental variations by removing dis-
tractors from the input instance search image. The method
utilizes a generalized intersection over union (GIoU) loss dur-
ing training, leading to more accurate tracking results. Experi-
mental evaluations on challenging benchmarks demonstrate
the method’s effectiveness and precision in the object tracking.

Since 2012, deep learning has been applied to the field of
target tracking and many algorithms with excellent tracking
results have been proposed by the experts and scholars due to
the large number of results achieved in the field of classifica-
tion and detection. By Yau et al. [18], DLT network was
proposed, which used the idea of offline pretraining+ online
fine-tuning to solve the problem of insufficient training sam-
ples in tracking. By Zhou et al. [19], FCNT38 was proposed
to build a feature filtering network and two complementary
heat map prediction networks by analyzing different layers of
feature maps, which have better tracking effect on targets
that produce deformation. Zhou et al. [19] proposed the
end to end target tracking algorithmMdnet, which creatively
proposed a multibranch training method, i.e., pretraining V
Genet using video dataset to obtain the features of the
tracked target, and robustly tracking the target by searching
for the appropriate tracker in each frame, but with poor real-
time performance and speed of only 1 FPS.
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3. Algorithm Framework

The overall algorithm framework proposed in this paper con-
sists of four modules, which are detection module, feature
extraction module, prediction module, and matching module
[20, 21]. Our model structure is shown in Figure 1. Firstly, by
detecting the current frame of the tracked video sequence, we
can obtain the position information of the target. Then, the
relevant target frame and edge frame are detected simulta-
neously, which can compensate for the coarse features of the
target frame. The feature extraction module consists of two
networks for feature extraction. Net1 is a pedestrian feature
extraction network based on generative adversary, andNet2 is
a common module [22, 23]. The state of each target’s motion
trajectory is also estimated using a generative adversarial-
based pedestrian multitarget trajectory prediction network
[24]. The above information is fed to the final matching mod-
ule for trajectory update to achieve continuous tracking of
each target.

3.1. You Only Look Once-Based Multitarget Correlation
Detection Algorithm. In this paper, we propose a you only
look once (YOLO)-based multitarget correlation target detec-
tion algorithm, which mainly solves the difficult problem of
pedestrian target detection in the dense places [25, 26]. Adding
target features can increase the difference in appearance fea-
tures when the target appearance is similar. YOLO uses this
object detection method, while GANs are used to generate
similar data instances. YOLO is a popular object detection
algorithm, which is specialized in real-time object detection
through bounding box predictions and class probabilities on
an image grid, while GANs are used to generate data instances
resembling a given training dataset. However, beyond YOLO
and GANs, various other methods and architectures are avail-
able for feature construction and representation. For example,
convolutional neural networks performs better in capturing
the hierarchical features from edges to object shapes in
image-related tasks, whereas RNNs are valuable for handling
sequential data like text or time series, autoencoders provide
unsupervised learning for the feature extraction, and transfer
learning allows leveraging pretrained models as feature extrac-
tors or for the fine-tuning on new tasks. Moreover,

transformers, originally developed for natural language proces-
sing, have shown powerful feature generation and representa-
tion capabilities even in computer vision tasks. In this paper,
the network of YOLO is improved, and the network structure
is shown in Figure 1. First, the detection images are fed into the
network, and the output layer includes three feature maps of
different scales to ensure the detection capability of the model
for objects of various scales. The vectors containing the fea-
tures are sorted in descending order according to the confi-
dence level, and the position information of the box with top
confidence level (bounding box, bbox for short) is first tra-
versed through other bboxes for IOU calculation. If the value
is greater than the threshold, the bbox is considered as a dupli-
cate box and is eliminated [27–29]. Then we repeat the above
operation from the top2 bboxes of the remaining bboxes after
rejection until the end of the iterative process, and finally
obtain the streamlined detection results.

The improved output layer adds four dimensions to the
original one to store the position information of the target
frame associated with the target frame, which are the hori-
zontal position, vertical position, width and height informa-
tion of the target frame relative to the target frame.

tpersonx ; tpersony ; tpersonw ; tpersonh corresponds to the first four
dimensions of the output feature, and tpersonf acex ; tpersonf acey ;
tpersonf acew ; tpersonf aceh corresponds to the last four dimensions
of the output feature. When the detected object is a target,
the relevant calculation is not performed. In this paper, a
more stable L1 loss is used, and the loss function is as fol-
lows:

losspersonx−y ¼ λpersonx−y ∑∑
xpersoni − bxpersoni
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FIGURE 1: Structure of YOLO-based human face detection network. YOLO, you only look once.
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where losspersonw−h
is the target detection loss function; xpersoni is

the predicted relative lateral position of the pedestrian;bxpersoni is the corresponding true label; ypersoni is the predicted
relative longitudinal position of the pedestrian; bYi person is
the corresponding true label lossfacew−h

is the target detection
loss function xfacei is the relative lateral position of the target
predicted by the algorithm; yfacei is the relative vertical posi-
tion of the target; bx facei ;by facei are the true label; wperson

i ; hpersoni
are the relative width and height of the target prediction.bwperson

i ; bhpersoni corresponding labels. wface
i ; hfacei are the rela-

tive width and height of the target prediction, bwperson
i ; bhpersoni

are the corresponding label. λpersonx−y ; λfacex− ; γpersonw−h
; γfacew−h

are the
parameters.

3.2. Generative Adversarial Based Feature Extraction Algorithm.
In the feature extraction module, this paper adopts a generative
adversarial-based algorithm to extract the pedestrian features.
Compared with the general deep learning feature extraction
methods, the new data is generated by the generative adversarial,
so that the feature extraction network can minimize the intra-
class feature variation among the same ID images and distin-
guish the interclass features among different I image. In this
paper, we use an encoder as the backbone network for recogni-
tion learning and learn themain features as well as fine features of
the target using images generated under the different conditions.

With X¼ xif gNi¼1 and Y ¼ yif gNi¼1 denoting the real
images and their corresponding labels, N denoting the number
of images, and yi 2 1;½ K� being the number of IDs identified in
the dataset, two real images xi and xi in the training set are
selected to generate a new image, and their structural codes or
appearance codes are exchanged in the generation module. As
shown in Figure 2, the generation module G ai;ð SjÞ→xij con-
sists of an appearance codingmodel Ea : xi → ai and a structure
codingmodel Es : xj → sj, where the structure coding allows the
geometric and positional features of the target to be preserved.
The discriminative model is used to discriminate the later gen-
erated image from the original real image.

For image generation with different IDs (Figure 3), given
two images xi and xj, The generated image xij ¼G ai;ð sjÞ
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FIGURE 2: Features and discrimination model.
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FIGURE 3: Schematic diagram of images generated by different D.
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needs to retain the appearance codes from xi separately xj
and ai for structural encoding sj. Then, it should be possible
to reconstruct the two latent encodings after encoding the
generated image and to force the ID loss function on the
generated image according to the encoding of the image in
order to maintain the consistency of the identity ID.

Lcode1recon ¼ E ai − Ea G ai; sj
À ÁÀ Á 

1

Â Ã
; ð7Þ

Lcod2recon2 sj − Es G ai; sj
À ÁÀ Á 

1

Â Ã
; ð8Þ

Lcid ¼ E − log p yi∣xij
� �� �h i

; ð9Þ

where p yi∣xij
� �

is the predicted probability of xij and belongs

to the real label class xi of yj, which is provided as encoding in
the generated xij image. In addition, in this paper, an adver-
sarial loss function is used to match the distribution of the
generated images with the distribution of the real data.

Ladv ¼ E logD xið Þ þ log 1 − D G ai; sj
À ÁÀ ÁÀ ÁÂ Ã

: ð10Þ

Reconstruction of images between any two images using
the same identity ID, as shown in Figure 4, To reduce intra-
class feature variation for a given image, xi the generation
module first learns how to reconstruct from itself xi. In addi-
tion, the generator should be able to reconstruct yi ¼ yt by
images xi with the same identity xt using I loss to distinguish
between different identity IDs:

Limg1
recon ¼ E ai − Ea G ai; sj

À ÁÀ Á 
1

Â Ã
; ð11Þ

Limg2
reeon ¼ E xi − Gs at; sið Þk k1½ �; ð12Þ

Lsid ¼ E − log p yi∣xið Þð Þ½ �; ð13Þ

where p yi∣xið Þ is the predicted probability that the image
appearance encoding belongs to the true label category.

The labels are dynamically assigned using a supervised
model xij which depends on the appearance encoding and
structural encoding it obtains from xi and xj. For the dis-
criminative module, in order for it to obtain the recognition

capability of the main features of the image. In this paper, the
discriminant module is trained by minimizing the informa-
tion scatter between its predicted probability distribution

p xij
� �

and the supervised predicted probability distribution

q xij
� �

.

Lprim ¼ E −∑
K
q k∣xij
� �

log
p k∣xij
� �
q k∣xij
� �

0@ 1A24 35: ð14Þ

Instead of using generated data, this paper provides an
alternative approach to generative branching by simulating
the clothing changes of pedestrian targets in images for
learning the main features. When pairs are trained in this
way, the discriminator module is able to learn subtle I-related
attributes unrelated to clothing. The images generated by the
combination of different structural and appearance codes are
considered as the same class of real images that provide the
structural codes. For this implementation of the image minu-
tiae mining discriminator module, training is performed
using identity ID loss.

Lfine ¼ E − log p yi∣xij
� �� �h i

: ð15Þ

In order to optimize the overall objective, the appearance
encoder, structure encoder, decoder, and discriminator are
trained together using the following weighted sum of losses:

Ltotal Ea; Es;G;Dð Þ ¼ λimgI
img
reeon þ Lcoderecon þ Lsid

þλiddL
c
id þ Ladv þ λprim Lprim þ λfine Lfine;

ð16Þ

where: Limg
recon ¼ Limg1

recon þ Limg2
recon is the self (same as ID) dis-

criminant loss in image reconstruction; Lcoderecon ¼ Lcodelrecon þ
Lcode2recon is the coding reconstruction loss in cross-identity (dif-
ferent IDs) generation; λimg; λid; λprim; λfine are the weight that
controls the importance of the associated loss term.

3.3. Multitarget Path Prediction Algorithm Based on GAN. In
the practical scenario of multitarget tracking, the actual situ-
ation of movement needs to be considered when predicting
the trajectory of pedestrians with the multiple targets, and
the activities of surrounding people also affect the walking
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FIGURE 4: Schematic diagram of same D generated image.
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path of the target. In this paper, we adopt a multitarget path
prediction algorithm based on a generative adversarial model
to cope with complex human interactions, and predict future
trajectories based on a generative adversarial encoder–decoder
structure and a pooling module to simulate the pedestrian
interactions. The target’s relative position to several surround-
ing interfering targets is used as the input of the module, which
is processed by themultilayer perceptron (MLP) andMaxPool-
ing to obtain a vector pooling the position information of the
target and the surrounding pedestrians to simulate the interac-
tion between the target and the surrounding people.

The path prediction model in this paper is shown in
Figure 5, and the whole consists of three main parts: genera-
tor, pooling module, and discriminator. The generator is
based on the LSTM framework of encoding and decoding,
and the pooling module is used to connect the hidden states
of encoding and decoding. Finally, it is fed to the discrimi-
nator to determine whether the trajectory is true or not.

In the generator part, the position of each target is input
to the LSTM cell that acts as an encoder to obtain a fixed-
length vector e. The following loop is introduced:

eti ¼ φ xti ; y
t
i ;Weeð Þ; ð17Þ

htei ¼ LSTM ht−1ei ; eti ;Wencoderð Þ; ð18Þ

where: t is the sequence; i is the target; φ() is the embedding
function with ReLU nonlinearity; Wee is the embedding
weight; Wencoder is the weight of LSTM.

In this paper, we use a pooling module to simulate the
interactions between pedestrians coming and going, and
after the observable moment, the hidden states of all people
in the scene are pooled and each person gets a combined
tensor. The generation of the output trajectory is regulated
by initializing the hidden states of the decoder.

cti ¼ γ Pi; htei;Wcð Þ; ð19Þ

htdi ¼ cti ;Z½ �; ð20Þ

where: γ() is the MLP containing the ReLU nonlinearity; We
is the embedding weight, and the subsequent prediction is as
follows:

eti ¼ ϕ xt−1i ; yt−1i ;Wedð Þ; ð21Þ

Pi ¼ PM ht−1d1 ;…; htdn
À Á

; ð22Þ

htdi ¼ LSTM γ Pi; htdi
À Á

; eti ;Wdecoder

À Á
; ð23Þ

bxti ;bytið Þ ¼ γ htdi
À Á

; ð24Þ

where: φ() is the embedding function with ReLU nonlinear-
ity; Wed is the embedding weight.

The discriminator consists of a decoder with Treal ¼ Xi; ;
Â

Yi�;Tfake ¼ Xi; ;
Â bY i� inputs and classifies them as true or

false. A MLP is applied on the final hidden state of the
decoder to obtain the final classification score. A random
sample of z in N(0, 1) and the “best” prediction in the sense
of L2 is used as the prediction of this paper, and k candidate
output predictions are generated.

Lvariely ¼min
k

Yi −
bYk
i

 
2
: ð25Þ

4. Experiment and Analysis

In order to verify the effectiveness of this algorithm, we use
OTB2015 by Gao et al. [22] and IVOT2018 by Ali et al. [23]
datasets as validation sets and compare them with several
classical tracking algorithms, based on the various experi-
mental analyses, we can see that this algorithm has excellent
performance.

4.1. Training Set. In the training phase, for the training of the
conditional adversarial generative network model, the Gopro
dataset is used, which contains 2013 pairs of blurred and
clear images, and the training dataset for the full convolu-
tional twin network tracker is selected from two open stan-
dard datasets, GOT-10k and ILSVRC2015-VID. Over 1.5
million manually labeled bounding boxes. The ILSV-
RO2015VID contains more than 30 targets with over 4,000
videos and over 1 million frames labeled.

4.2. Analysis of Experimental Results

4.2.1. Quantitative Analysis of OTB2015. OTB2015 has 100
manually annotated video sequences containing 11 attri-
butes, which represent common difficulties in the current
target tracking field. The algorithm in this paper is compared
with CFNet [24], SiamDW, SiamRPN, SRDCF [25], fDSST
[27], Staple [28], and representative trackers of SiamFC.
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FIGURE 5: Multitarget path prediction based on generation countermeasure.
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As shown in Figure 6, the quantitative comparison
results between the algorithm in this paper and the compari-
son algorithm on the OTB2015 data are shown. The accuracy
of this algorithm reaches 85.6% and the success rate reaches
63.7%, both of which are better than other comparison algo-
rithms. Compared with the benchmark algorithm SiamFC,
the algorithm in this paper clearly achieves a good perfor-
mance, with an improvement of 8.5% points in accuracy and
5.5% points in success rate.

The results for various difficult attributes in the OTB2015
dataset are shown in Figure 7, especially for low resolution,
fast motion, and motion blur of the object, and achieved
0.933, 0.832, and 0.849 in the accuracy rate, respectively.
Further proving the effectiveness of the conditional adver-
sarial generative network model and the effectiveness of con-
ditional adversarial generative network model and multilayer
feature fusion in the target tracking is further demonstrated.

4.2.2. OTB2015 Qualitative Analysis. In order to compare the
differences between this algorithm and other excellent algo-
rithms, the test results of OTB2015 were selected for the
qualitative analysis. The test results are shown in Figure 8
from top to bottom for Skating1, Coke, Motor Rolling Skiing
Carscale, Football video sequences, six video sequences con-
taining six challenging scenes such as illumination change,
occlusion, motion blur, low resolution, scale change, and
similar background interference. Red is the algorithm of
this paper, green, blue, black, and pink are Siamdw, SiamFC,
Cnet, and SiamRPN algorithms, respectively.

(1) Illumination changes: in the Skating video sequence,
the target moved rapidly, which also included occlu-
sion, illumination changes etc., which greatly affected
the tracking process. At around frame 173, the target
is blocked and the algorithms show some tracking
drift. Around frame 31, the SiamFC algorithm failed
to track the target because the target features were
not obvious due to the change of illumination, but
the algorithm in this paper could obtain more target
features due to the addition of multifeature fusion
model, so that it could make effective judgment on
the current target position.

(2) Occlusion: in the tracking process, the target is
occluded, and the target is gradually occluded by
the green leaves in the Coke video sequence, and
Siamfo has already made a certain offset, and the
target continues to move, but in the whole tracking
process, compared with other comparative algo-
rithms, this algorithm has good effect on the overall
tracking of the target.

(3) Motion blur: due to the rapid motion of the target, it
can bring problems such as image blur. In the Motor
Rolling video sequence, the motorcycle is moving
fast, which causes motion blur, and along with the
target rotation and other challenges, the tracking is
difficult. In about 32 frames, Siamfo and Cnet have
lost the target, causing the subsequent tracking fail-
ure, but this algorithm and SiamRPN can achieve
continuous tracking.
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FIGURE 6: Comparison of accuracy and success rates of different algorithms on OTB2015 dataset.
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FIGURE 7: Comparison of accuracy rates of different algorithms under six types of challenges.

FIGURE 8: Tracking effects of various algorithms under different OTB2015 video sequences.
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(4) Low resolution: when the resolution of image frames
is low, the extracted features are not obvious. In Ski-
ing, only the present algorithm and SiamRPN can
achieve continuous tracking, and both Siamfo and
Cnet lose the target at about 60 frames. Compared
with SiamRPN, this algorithm has better tracking
accuracy in low-resolution scenes, which is largely
due to the deblurring effect of the video frames based
on the adversarial network model.

(5) Scale change: in the tracking process, the target scale
often changes, in the Carscale video sequence, as the
car comes from far and near, the target becomes
larger, compared with other comparison algorithms,
this algorithm has better scale estimation results.

(6) Similar background interference: the interference of
similar targets has always been one of the difficult
problems in target tracking, especially in Football,
where the tracking target moves faster on the one
hand and the illumination changes drastically on
the other hand, and there is the situation that the
target is obscured. The target is obscured at around
frame 289, and the tracking of the benchmark algo-
rithm Siam is lost, while the algorithm in this paper
achieves a continuous and stable tracking of the tar-
get with the multilayer feature increment.

4.2.3. Quantitative Analysis of VOT2018. The visual object
tracking (VOT) is a challenge for single target tracking.
VOT2018 has a total of 60 finely labeled short-time tracking
video sets, and the evaluation metrics are more refined.
VOT2018 has more complex target changes in the tracking
sequence compared to the OTB2015, and the tracking diffi-
culty is higher.

As shown in Figure 9, this algorithm is compared with
the other seven algorithms in the VOT2018 dataset at base-
line. Table 1 shows that the average expected overlap rate
EAO and accuracy A of this algorithm are only lower than
SiamRPN, but the robustness R is better than SiamRPN,
where the higher the accuracy is, the lower the robustness
is, and the higher the expected average overlap rate is. Com-
pared with the benchmark algorithm Siamfo, the EAO of this
algorithm is improved by 16.4% points. At the same time, the
running speed is 39 frames per second, which further proves
that the algorithm is robust and meets the real-time require-
ments and can achieve good tracking results.

4.2.4. Qualitative Analysis of VOT2018. Five video sequences
are selected on the VOT208 dataset for quantitative analysis
to prove that this algorithm outperforms SiamRPN and
other algorithms for small target tracking and fuzzy target
tracking. The test results are shown in Figure 10, red is the
algorithm of this paper, purple, blue and green are SiamFC,
SiamRPN, and KCF [26] algorithms respectively, and cyan is
the annotation result of VOT2018 dataset.

In the birds1 sequence, on the one hand, the tracking
object of the sequence is a small target, on the other hand,
the image is blurred and the target features are not obvious,
the algorithm in this paper can still effectively track the
target, and compared with other algorithms, the algorithm
in this paper has more overlap with the self-labeled results of
VOT. In the basketball video sequence, the image is blurred
and there is interference from similar targets, in about 265
frames, there are already tracking anomalies in the algo-
rithm. In the bicycle moto-X sequence, other algorithms
have been unable to track the overall characteristics of the
target effectively due to target rotation and appearance
changes, e.g., frames 37 and 69 of bicycle moto-X. In the
soccer sequence, due to the blurred image, it is easy to inter-
fere with the tracker, and in frame 115, the target is obscured,
and Siamfo has a tracking loss. In the fernando sequence, the
tracking is difficult due to the illumination change and the
occurrence of occlusion, but the tracking effect is excellent
compared with the benchmark algorithm [28, 29].

4.2.5. Ablation Experiments. Ablation experiments are con-
ducted for the algorithm in this paper to analyze the effect of
parameters. The dataset is OTB2015, and the experimental
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FIGURE 9: Comparison of EAOs of different algorithms on VOT2018
dataset.
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results are shown in Figure 11. Where, YOLO-based multi-
target correlation target detection algorithm, YOLO-based
multitarget correlation target detection algorithm-VGG
means the benchmark algorithm replaces only the back-
bone network as VGG-19 and fuzes the hierarchical fea-
tures, YOLO-based multitarget correlation target detection
algorithm-DeblurGAN means the DeblurGAN model for
fuzzy removal is added to the benchmark algorithm, and

YOLO-based multitarget correlation target detection
algorithm—CGAN means the typical adversarial genera-
tive network CGAN model is added. From Figure 11, we
can see that the improvement strategies such as conditional
adversarial network and fusion of multilayer features are
effective in improving the performance of the original algo-
rithm, and the DeblurGAN model improves the perfor-
mance of the algorithmmore significantly than CGAN [30].

FIGURE 10: Tracking effect of selected VOT2018 video sequence.

TABLE 1: Comparison of test results of different algorithms on VOT2018 dataset.

Tracker Accuracy Robustness EAO Speed/(frame/s)

SiamRPN 0.586 0.276 0.383 59
YOLO-based multitarget correlation
target detection algorithm

0.575 0.261 0.352 39

SASiam 0.566 0258 0.337 32
ECO 0.484 0.276 0.280 4
SiamFC 0.503 0.585 0.188 32
Staple 0.530 0.688 0.169 47
KCF 0.447 0.773 0.135 60
SRDCF 0.490 0.974 0.119 3

YOLO, you only look once.
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5. Conclusion

In this paper, a multitarget tracking algorithm based on
GANs is proposed to address the problems of target loss,
identity exchange, and jumping easily in the case of complex
background, target occlusion, target scale and pose change in
multitarget tracking. By using the YOLO-based multitarget
association algorithm to detect the target to be detected in
the current frame, a feature extraction model based on GANs
is proposed, and target features are introduced to make the
feature representation of the target more robust. The experi-
mental results show that the algorithm can track the target
smoothly and accurately in the presence of interference such
as complex background, target occlusion, and scale change,
and the occurrence of target identity jump is significantly
reduced with high accuracy.
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