
Research Article
System for PCB Defect Detection Using Visual Computing and
Deep Learning for Production Optimization

Gabriel Gomes de Oliveira , Gabriel Caumo Vaz , Marcos Antonio Andrade ,
Yuzo Iano , Leandro Ronchini Ximenes , and Rangel Arthur

Univeridade Estadual de Campinas, 400 Albert Einstein Avenue, Cidade Universitária, Campinas 13083-852, Brazil

Correspondence should be addressed to Gabriel Gomes de Oliveira; oliveiragomesgabriel@ieee.org

Received 30 May 2023; Revised 16 October 2023; Accepted 18 October 2023; Published 3 November 2023

Academic Editor: Paolo Marconcini

Copyright © 2023 Gabriel Gomes de Oliveira et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

With the growing competition between the various manufacturers of electronic products, the quality of the products developed and
the consequent confidence in the brand are fundamental factors for the survival of companies. To guarantee the quality of the
products in the manufacturing process, it is crucial to identify defects during the production stage of an electronic device. This
study presents a system based on traditional visual computing and new deep learning methods to detect defects in electronic
devices during the manufacturing process. A prototype of the proposed system was developed and manufactured for direct use in
the production line of electronic devices. Tests were performed using a particular smartphone model that had 22 critical compo-
nents to inspect and the results showed that the proposed system achieved an average accuracy of more than 90% in defect
detection when it was directly used in the operational production line. Other studies in this field perform measurements in
controlled laboratory environments and identify fewer critical components. Therefore, the proposed method is a real-time
high-performance system. Furthermore, the proposed system conforms with the Industry 4.0 goal that process system digitization
is essential to improve indicators and optimize production.

1. Introduction

In recent years, deep learning (DL) techniques and visual com-
puting have accelerated the classification and identification
processes in industry [1], medicine [2, 3], and society [4, 5].

The design of electronic devices constantly trends toward
miniaturization and high performance [6]. Therefore, their
manufacturing complexity has increased, resulting in a less
error-proof production process. This fact, combined with the
rise of new electronics companies, has made quality assur-
ance a determining factor in competition by market share.

A printed circuit board (PCB) is the main part of an
electronic circuit and comprises an insulated material plate,
wherein the conductive tracks are printed according to the
circuit design. In addition, there are specific points at which
the components and integrated circuits are welded. The PCB
manufacturing process is highly susceptible to an increase in
the complexity of new products. Therefore, defects such as
open circuit, short circuit, tracks too close, spur, spurious

copper, missing hole, wrong hole size, hollow, pad jam,
scratches, depression, protrusion, lack or misalignment of
components, and welding failures can occur [7–9].

The quality of electronic products is closely related to the
number of PCB defects. Thus, the electronics industry
includes PCB inspection processes at various manufacturing
line points. The most common are the in-circuit test (ICT)
and visual inspection [7, 8, 10–12].

ICT may be unable to inspect the entire PCB circuit if the
circuit design requires inputs to inject current or voltage. How-
ever, this concern is often nonexistent during the PCB design
stage. Consequently, electronic industries use visual inspection in
conjunction with ICT to guarantee PCB quality [6–8, 10–12].

Visual inspection can be divided into two subcategories:
manual and automatic. Manual inspection is performed by
operators who visually identify defects, whereas automatic opti-
cal inspection (AOI) is performed by specialized machines [9].

Manual visual inspection is tedious, costly, and time con-
suming [8]. However, AOI machines consist of a considerable

Hindawi
IET Circuits, Devices & Systems
Volume 2023, Article ID 6681526, 11 pages
https://doi.org/10.1049/2023/6681526

https://orcid.org/0000-0001-7164-2068
https://orcid.org/0000-0002-4566-1051
https://orcid.org/0000-0002-9384-1129
https://orcid.org/0000-0002-9843-9761
https://orcid.org/0000-0001-8282-0851
https://orcid.org/0000-0002-4138-4720
mailto:oliveiragomesgabriel@ieee.org
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2023/6681526


number of parameters, thereby requiring professionals with
advanced knowledge of image processing techniques to oper-
ate them. Therefore, the replacement of human operators and
reduction in AOI complexity are aspirations of electronics
companies, which presents opportunities for new research
on PCB defect detection.

In this context, this study introduces an ensemble of
methods for detecting PCB defects. The ensemble is com-
posed of both traditional image processing and DL-based
methods. This approach is expected to improve defect detec-
tion accuracy by at least 90%. The ensemble can be applied to
any PCB; however, in this study, it is applied to images
acquired from an actual smartphone production line of
industrial electronic devices [13].

The rest of the paper is organized as follows: a literature
survey about PCB anomaly detection is presented in Section
2. The description of the methods and materials used is pre-
sented in Section 3. Section 4 provides the results of the
experiments and the discussion of the results. Section 5 con-
cludes the paper and proposes future research to improve the
results obtained.

2. Literature Survey

de Mello and Stemmer [8] proposed a PCB defect analysis
method for detecting track failures. Initially, the following
preprocessing techniques were applied to the test image:
grayscale conversion, wavelet denoising, histogram equaliza-
tion, and Otsu binarization. The defects were discovered by
analyzing the binary large object (BLOBS) features after sub-
traction between the template PCB image and the test image.
The method identified 100% of the defects and classified 90%
of them correctly.

Silva et al. [10] proposed a method for identifying defects
in PCBs based on the 2D Fourier reconstruction using a
template image and a test image. The test using 95 images
showed an efficiency of 100% in detecting scratches, open
circuits, short circuits, and misaligned components.

Zhu et al. [11] and Meattini et al. [12] proposed similar
PCB inspectionmethods, both of which were based on feature
extraction from test and template images. Chaudhary et al.
[14] used the accelerated segment test algorithm, whereas De
Oliveira et al. [15] selected the scale-invariant feature trans-
form for feature extraction. The geometric transform matrix
was also calculated using similar methods. Chaudhary et al.
[14] used the M-estimator sample consensus algorithm, and
De Oliveira et al. [15] used the random sample consensus
algorithm. The main difference between these studies is the
method of finding defects. Chaudhary et al. [14] selected sub-
traction between the template and test images, whereas De
Oliveira et al. [15] used the support vector machine (SVM)
method. Their results also differed; De Oliveira et al. [15]
achieved an accuracy of 77% by testing 572 images of an
adulterated fuel pump control PCB, whereas Chaudhary
et al. [14] detected 14 types of defects in PCB tracks and pads.

Chaudhary et al. [14] proposed a machine-learning
framework to detect tracks and pad defects in PCBs. In
this method, the first step is to extract features using

histograms of oriented gradients and local binary pattern
methods. The extracted features are then used to train two
SVM models, which are then combined through Bayesian
fusion. This method achieved an accuracy of 89.22% by test-
ing 56 images.

De Oliveira et al. [15] proposed a method for inspecting
the correct positions of the PCB components. This method
segments and classifies components based on the random
forest method using depth images. Tests with 40 synthetic
images and 10 real images showed an accuracy of 83.64% for
classifying 32 components.

Lu et al. [16] and Cattell et al. [1] proposed methods
based on variations of you only look once (YOLO) model.
Both methods can be used to detect defects in PCB compo-
nents. Adibhatla et al.’s method achieved an accuracy of
98.32%, whereas Li et al. [17] used the mean average preci-
sion (mAP) and achieved a result of 93.07%.

Li et al. [17] proposed a method for detecting and classi-
fying components of PCBs, wherein the region proposal net-
work first predicts the regions the components can be in.
These regions are submitted to a graph network, and the
generated features of this process are then submitted to a
similarity prediction network (SPN). The SPN result is
then compared with a component template database. Tests
performed using 48 PCB images showed an mAP of 0.653
and an accuracy of 82%.

Yuk et al. [6] proposed a method for detecting scratches
on the PCB, wherein feature extraction is performed through
speeded-up robust features. The features are manually
divided into two sets: those representing defects and those
of normal regions. The categorized set is submitted to a
random forest classification method, and the calculated
probabilities are then used to create a weighted kernel den-
sity estimator map. On 10 images, the method obtained an
area under the curve of 0.91.

Adibhatla et al. [18] proposed a convolutional neural
network (CNN) comprising three stages, which can identify
defects on PCB tracks. Each CNN stage contains a convolu-
tional layer, rectified linear unit activation function, and max
pooling layer. After the three stages, two fully connected
layers and six output neurons are used to classify the image.
On 640 test images, this method achieved an accuracy
of 89.89%.

Kuo et al. [19] proposed a fully convolutional network to
segment PCB components. After segmenting the region
where the component is in the image, a second CNN archi-
tecture is applied to classify the components, such as capa-
citors, inductors, and ICs. The main purpose of this study
was to offer data to train more complex detection methods.
An accuracy of 90.8% was achieved for testing on 4,822
images.

Zhang et al. [20] proposed a semisupervised learning
method to find PCB defects related to tracks, such as short
circuits, open circuits, spurious copper, mouse bites, and
spurs. This method is a variation of the generative adversarial
network (GAN), wherein an encoder is added to the archi-
tecture. An area under a curve of 0.869 was achieved when
120 images were tested.

2 IET Circuits, Devices & Systems



3. Materials and Methods

All methods described in this section were implemented
using the programming language Python (3.6.12), OpenCV
(4.4.0) image processing library, and Tensorflow machine
learning library (2.2.0 with GPU support).

3.1. Image Acquisition. The images used in this study were
obtained from the smartphone manufacturing line. In this
manufacturing process, smartphones can be rotated on the
conveyor, and only the minimum space between pieces is
guaranteed by the operators.

Figure 1 shows the hardware selected for taking smart-
phone images. A camera resolution of 0.125mm was selected
to detect smaller features.

3.2. PCB Registration. The localization of the components to
be tested is based on a search in specific regions, which was
previously defined by manual image labeling for each com-
ponent. Thus, it is necessary to remove the PCB rotation and
background and register the smartphone PCB based on the
labeled template.

In this context, this study uses a semantic segmentation
CNN called U-Net [21]. According to Kuo et al. [19], seman-
tic segmentation has low accuracy in segmented object bor-
ders. Therefore, in this study, the U-Net result is submitted
to a watershed [22] algorithm to improve the segmentation
accuracy.

The U-Net training process uses data augmentation
(DA) to simultaneously label several images using software
such as Vott [23], which is otherwise an extensively tedious
and time-consuming task.

Figure 2 illustrates the U-Net training process. The
OpenCV drawContours [24] method is used to create masks
based on the PCB points labeled by Vott. Tensorflow Ima-
geDataGenerator [25] expands the dataset using the DA
parameters listed in Table 1.

The fit method [26] executes U-Net training. The hyper-
parameters selected were 200 epochs, learning rate of 0.001,
Adam [27] optimizer, and binary crossentropy [28] loss
function, and the accuracy was used as the metric.

Once the U-Net model was trained, the test images were
input into it. After the prediction phase, the watershed

Trigger sensor 1. Basler 9 mega global shutter.
2. 12 mm, 8 mega lens.
3. White LED dome.

Rotated smartphones

Moving conveyor

FIGURE 1: Image acquisition hardware.

Microsof
Vott

Tensorfow
ImageDataGenerator

Train Validation

U-Net
Tensorfow.ft U-Net model

PCB labeled points

cv.drawContours

Original image
Mask

FIGURE 2: U-Net training procedure.

IET Circuits, Devices & Systems 3



algorithm was applied to achieve better segmentation.
Figure 3 shows the steps for localizing the PCB and creating
its mask. The OpenCV functions [29–31] have the suffix cv
(python package), and the predict [26] function is defined by
TensorFlow (Keras API).

Figure 4 shows the other steps of the method used to
register the PCB image under testing. After locating the
PCB and using the predicted mask, OpenCV functions
[24, 32] are applied to remove any rotation. Thereafter, the
mask positions are used to remove the background.

3.3. Component Localization. Component localization is
based on the labeled positions selected from the template
PCB image using the Vott tool. Figure 5 shows the four
labeled components created through this process.

The proposed registration method is efficient, as dis-
cussed in Section 4. However, any rotation or translation
in the test image caused by inaccurate registration will result
in inefficient component localization. Some ensemble meth-
ods are referential; therefore, their judgment will be compro-
mised. To overcome this problem, a combination of U-Net
and watershed was used to detect each component to be
evaluated.

A search region was created from the coordinates of each
component in the template image. This region was a

rectangle around the component with twice the width and
height of the component.

To train U-Net for the component search, the training
dataset is first registered. Subsequently, new images, which
are represented by the search region, are created for each
component. Masks are also created using the component
coordinates of the template. Figure 6 shows an example of
one component (component A from Figure 5).

The same process is used for each component in the test
list, and the procedure presented in Figure 2 is used to create
a U-Net model for each component. Finally, the procedures
shown in Figures 3 and 4, except for the warp affine trans-
formation, are used to segment the component. The seg-
mented component image is then submitted to an ensemble.

3.4. Defect Detection. In this section, we describe the methods
that are part of the proposed ensemble.

The first method is image subtraction, wherein the com-
ponent image is segmented from the test image and then
subtracted from the component template. If the resulting

TABLE 1: DA parameters used.

Parameter Description Value

Rotation_range
Limit the degrees used to randomly

rotate the image
5

Width_shift_range
Width percentage used to randomly
translate the image horizontally

0.02

Height_shift_range
Height percentage used to randomly

translate the image vertically
0.02

net

Model.predict

cv.dilate([15,15]) cv.erode([10,10])

cv.bitwise_not

cv.subtract

Markers

cv.watershed

Test image

PCB localizedPCB mask

FIGURE 3: PCB localization.

cv.findContours

cv.minAreaRect

cv.getRotationMatrix2D

cv.warpAffine

cv.findContours

cv.boundingBox

Image (x,y,w,h)

(x,y,w,h)

Image

Mask

Image

Mask

Registered PCB

FIGURE 4: PCB registration.

FIGURE 5: Labeling using the Vott tool.

4 IET Circuits, Devices & Systems



sum of pixels is less than a certain threshold, the component
is classified as defect-free; otherwise, it indicates a defect. The
steps to define the thresholds used in all the ensemble meth-
ods are presented in Subsection 3.5 of this paper.

Subtraction from a template is sensitive to illumination
and random variations in the components. Therefore, as
proposed in Silva et al. [10], the reconstruction based on
the 2D discrete Fourier transform is included in the ensem-
ble. This method discards the common frequency compo-
nents presented in both spectra, resulting from the test and
template images. Hence, the components that are not dis-
carded may represent defects, and these areas can be detected
after the inverse Fourier transform. Figure 7 shows an exam-
ple of passing an image of a defect-free component through
the method, wherein only noise can be detected. However,
after reconstruction using an image of a defective compo-
nent, some BLOBS can be detected.

According to OpenCV [33], DL methods yield extraor-
dinary results in vision systems. Complex tasks can be easily
solved with high accuracy using CNNs. The visual inspection
area is not outside this trend; therefore, the ensemble pro-
posed in this study uses some methods based on this
technology.

The clustering created by features extracted from VGG16
[7] is one such method. Initially, transfer learning (TL) is
performed, wherein a new softmax layer is trained using the
components to be inspected. After the training procedure,

the last two layers of VGG16 are discarded and the features
extracted from the last new layer are used to train the
K-means algorithm. After the training, each group is expected
to represent each component type. Component evaluation is
performed using the Euclidean distance between the features
of the component and its respective group centroid. If this
distance is greater than the threshold (Subsection 3.5), the
component is classified as defective. Figure 8 shows the train-
ing process of the proposed method considering three classes
of components.

The next method selected for the ensemble is the convo-
lutional autoencoder (CAE) [34, 35]; which is based on unsu-
pervised learning. In the training process, only defect-free
component images are used. After training, CAE learns to
reconstruct an image based on its compressed representation.

Thus, defect detection is performed using reconstruction
error. The mean square error is calculated between the test
component image and CAE output. Again, if the error is
greater than the threshold (Subsection 3.5), the component
image is classified as defective. Figure 9 shows an example of
component classification using the CAE.

Finally, the last method incorporated into the ensemble is
the Wasserstein GAN with gradient penalty (WGAN-GP)
[36]. Although the implementation of the WGAN-GP in
this study is based on Gulrajani et al. [37], it was trained
from scratch, and the TL process proposed in Gulrajani
et al. [37] was not considered.

Region of search Mask

FIGURE 6: Examples of a search region and mask.

Template

Component with defects

Defect free component

Fourier-based reconstruction

Fourier-based reconstruction

Defects detected

FIGURE 7: 2D DFT reconstruction example.

IET Circuits, Devices & Systems 5



To train the WGAN-GP, only defect-free component
images were used. The generator and the critic models
were trained by playing the minimax game. At the end of
the training, the generator can create synthetic images of
components, and the critic can detect if an image represents
a real or a synthetic image created by the generator. Figure 10
illustrates the training process, and Figure 11 shows the
ensemble summary.

Only the critic of the WGAN-GP was used in the ensem-
ble, when a defective image is presented to it, it’s expected
that the critic classifies the image as synthetic. The critic
output is a real number, so a threshold (Subsection 3.5) is
used to classify the component images based on the critic
output value.

3.5. Threshold Definition. All ensemble methods have a
threshold value for classifying the component image under
test. To determine this value, a set of images without defects
was used after training the CNN-based methods. The set fed
each method, and the mean and standard deviation were
calculated for each method. The threshold was defined as
the meanÆ n standard deviations.

The value of n (number of standard deviations) was cho-
sen using the Z-score graph. All component Z-score graphs
are similar to those in Figure 12. Therefore, in this study, the
n value was 2.

3.6. CNN Train Parameters. All hyperparameters used in the
adopted CNN-based methods are depicted in Table 2.

CNN layers
(Frozen weights)

Fully Connected 
Fully Conected

Softmax

Transfer learning VGG16

Component AComponent D Component E

K -Means 

∗Centroids.

Component D

Component A

Component E

Features [sample,1,000]

FIGURE 8: Cluster based on VGG features.

CodificadorEncoder Decoder

O
rig

in
al

Re
co

ns
tr

uc
te

d

Compressed representation

if MSE > THRESHOLD ⇒ Defective component
if MSE ≤ THRESHOLD ⇒ Normal component

F(X)

MSE

FIGURE 9: Component classification using CAE.

Training
dataset

Noise

Synthetic 
component 

image

Real

Fake

Generator

Critic

FIGURE 10: GAN training.

6 IET Circuits, Devices & Systems



The Adam optimizer was used in this work, as it is one of
the most used and effective. Adam’s main advantage is that it
doesn’t use a single learning rate, each network weight has its
own learning rate which is updated separately during the
training process [38].

4. Results and Discussion

Component segmentation and PCB registration were pro-
vided through the combination of U-Net and watershed
and directly influenced the results of the methods. The

PCB under test

Ensemble result

PCB registration
(U-Net + Watershed)

Components
segmentation

(U-Net + Watershed)

Subtraction

2D DFT
Reconstruction 

VGG +
Clustering

CAE

WGAN-GP

PCB OK?

Template

FIGURE 11: Ensemble summary.

–2.0

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

–1.5 –1.0 –0.5 0.0
Z-Score

In
de

x

0.5 1.0 1.5 2.0

FIGURE 12: Z-score graph example.

IET Circuits, Devices & Systems 7



intersection over union (IoU) score was used to evaluate the
component segmentation performance. The score for each
component was calculated using the predicted component
mask (MP) and the mask created by the real component
position (MR). Equation (1) shows the calculation of this
index:

IoU¼ bitwise and MP; MRð Þð Þ= bitwise or MP; MRð Þð Þ:
ð1Þ

The 22 components of Model A that were used to obtain
the results presented in this section are shown in Figure 13.

The dataset contained 18 defect-free images and 18 with
defects. The Screw_Boss components did not have any
examples of defects. The original dataset was submitted to
the DA process using the parameters listed in Table 1, result-
ing in the following:

(1) 100 test images without defects.
(2) 10 test images with defects for each component.

Eighteen images without defects were used to select the
appropriate thresholds for each method in the ensemble.
Moreover, because these images were used to train the
CNN-based methods, they were labeled manually using the
Vott tool, and the coordinates of the PCB and the compo-
nents were used to calculate the IoU score.

Considering the dataset presented in this section, Table 3
lists the mean IoU scores for PCB registration and compo-
nent segmentation.

Table 4 lists the defect detection results of the ensemble.
The accuracy result indicates that the model is efficient

for defect detection. Moreover, the false alarm rate is low,
which further contributes to this assumption. However,
when analyzing the ability of the method to classify defec-
tive components, it is evident that the model is inefficient
and presents several components (Click, Cable_1, Gnd_1,
Gnd_2, Watermark, Rubber_1, and Rubber_2) with an
index of defect detection close to or equal to 0. Thus,
when using this model in a production line, several defec-
tive PCBs will not be identified.

TABLE 2: Hyperparameters used in CNN-based methods.

VGG

Epochs 200
Learning rate 0.001
Loss function Categorical crossentropy
Metrics Accuracy
Optimizer Adam

CAE

Epochs 200
Learning rate 0.001
Loss function MSE
Metrics Accuracy
Optimizer Adam

WGAN-GP

Epochs 300
Learning rate 0.0002
Loss function Wasserstein with gradient penalty
Optimizer Adam

Rubber_1

USB_conn

Speaker
Conn_1

Click

Screw_Boss_1

Screw_Boss_2

Screw_Boss_3

Screw_Boss_4

Screw_Boss_5

Rubber_2

Screw_1
Screw_2

Conn_2

Conn_3

Cable_1

Motor

Gnd_1
Water_mark

Gnd_2 Gnd_3

Mem

Shamashed click

Violated water mark
Damaged motor

Damaged speaker

Defective components examples

FIGURE 13: Components to be inspected and defect examples.

TABLE 3: IoU score model A.

Mean IoU score

PCB registration 0.9846
Component segmentation 0.8027

8 IET Circuits, Devices & Systems



Component Gnd_1 had an average IoU score of approx-
imately 0.7000, which was lower than the average of all
components (0.8027). Thus, this component was not well
located and segmented, which impaired the analysis. In addi-
tion, the difference between samples with and without
defects was very small, as shown in Figure 14. Despite this,
78% of the defects were found when only the subtraction
method was considered. Similar reasoning can be applied
to the Gnd_2 component.

The Rubber_2 component obtained an IoU score of
0.7063; therefore, the defect analysis was also hampered by
the imprecision in the segmentation.

The Click component is a special case because there is
another Click near the component being analyzed. Both
components are present in the same search area; therefore,
the component being detected is the defect-free Click. This
explains the 0% defect detection rate for it.

The components Rubber_1, Cable_1, and Watermark
had low-accuracy detection defects when the ensemble was
considered. However, if the subtraction method is consid-
ered, the accuracy of the defect detection is nearly 100%.

The Cable_1 defect is a case wherein the cable is poorly
fitted to the connector. A superior vision of the PCB does not
provide a view for identifying this type of defect, even with
human vision.

However, the ensemble did not improve the accuracy of
the method, and subtraction yielded the best results. Likely,
DA is not sufficient to train the CNN methods with few
samples. In addition, this study used default hyperpara-
meters and well-known CNN architectures. According to
this, applying existing architectures in new studies is insuffi-
cient for improving accuracy [39, 40].

5. Conclusion

PCB quality assurance is essential for the survival of electronics
manufacturers. For this purpose, automatic visual inspection is
widely used. However, there are significant opportunities for
research because the AOI software is difficult to configure, and

with the advent of CNNs, vision systems are becoming more
efficient.

In this context, this study proposed an ensemble con-
structed using traditional andDL-basedmethods. The ensem-
ble demonstrated an accuracy of >90% under real operation
conditions in a production line of the electronic device indus-
try. Although some papers described in Section 2 have shown
greater accuracy, the novelty of this work is related to the
training using only images without anomalies. This fact is
essential to the electronic industry, because there are other
methods to prevent defects, for example, ICT tests, which
hinders the acquisition of defective images to train the models
in a short period of time. Given the need for visual inspection
systems to be ready as soon as new devices start to be man-
ufactured and the impossibility of acquiring defective images,
the development of agnostic models capable of learning how
to detect PCB defects without knowing the anomalies, that is,
general-purpose models that can be applied to any new
device, is of utmost importance.

In some of these components, the challenge was segmen-
tation inefficiency, and in future work, the use of CNNs, such
as YOLO, is intended to improve the detection accuracy of
the components.

Although the ensemble did not obtain sufficiently satis-
factory results for immediate application in production, PCB
registration followed by component segmentation and clas-
sification using template subtraction can be applied to gen-
erate labeled databases for other neural networks.

Abbreviations

DL: Deep learning
PCB: Printed circuit board
IC: Integrated circuits
ICT: In-circuit test
AOI: Automatic optical inspection
BLOBS: Binary large objects
SVM: Support vector machine
YOLO: You only look once
SPN: Similarity prediction network
mAP: Mean average precision
CNN: Convolutional neural network
GAN: Generative adversarial network
DA: Data augmentation
DFT: 2D discrete Fourier transform
TL: Transfer learning
CAE: Convolutional autoencoder
MSE: Mean square error
WGAN-GP: Wasserstein GAN with gradient penalty
IoU: Intersection over union
MP: Predicted component mask
MR: Real component position.

Data Availability

Data related to the current study are available from the cor-
responding author upon reasonable request.

TABLE 4: Defect detection results.

Defect detection results

Mean accuracy 90.87%
False alarm rate 5.31%
Analysis time 8.57 s (1 PCB image)
Training time About 20 hr

Defect Normal

Cable near
the component

FIGURE 14: GND defect example.

IET Circuits, Devices & Systems 9



Additional Points

Code Availability. Some of the codes generated or used dur-
ing the study are available from the corresponding author
upon request.

Consent

Informed consent was obtained from all individual partici-
pants included in the study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Marcos Antonio Andrade contributed to the conceptualiza-
tion, original draft, software. Yuzo Iano contributed to the
supervision. Rangel Arthur contributed to the supervision.
Leandro Ronchini Ximenes contributed to the supervision.
Gabriel Gomes de Oliveira contributed to the validation,
review. Gabriel Caumo Vaz contributed to the review, edit-
ing. All authors read and approved the final manuscript.

References

[1] R. Cattell, S. Chen, and C. Huang, “Robustness of radiomic
features in magnetic resonance imaging: review and a
phantom study,” Visual Computing for Industry, Biomedicine,
and Art, vol. 2, pp. 1–16, 2019.

[2] T. Sharma and M. Shah, “A comprehensive review of machine
learning techniques on diabetes detection,” Visual Computing
for Industry, Biomedicine, and Art, vol. 4, Article ID 30, 2021.

[3] J. Tian, J. Xue, Y. Dai, J. Chen, and J. Zheng, “A novel software
platform for medical image processing and analyzing,” IEEE
Transactions on Information Technology in Biomedicine,
vol. 12, no. 6, pp. 800–812, 2008.

[4] C. Wiedeman, G. Wang, and U. Kruger, “Modeling of moral
decisions with deep learning,” Visual Computing for Industry,
Biomedicine, and Art, vol. 3, Article ID 27, 2020.

[5] J. Richter, D. Streitferdt, and E. Rozova, “On the development
of intelligent optical inspections,” in 2017 IEEE 7th Annual
Computing and Communication Workshop and Conference
(CCWC), pp. 1–6, IEEE, 2017.

[6] E. H. Yuk, S. H. Park, C.-S. Park, and J.-G. Baek, “Feature-
learning-based printed circuit board inspection via speeded-
up robust features and random forest,” Applied Sciences, vol. 8,
no. 6, Article ID 932, 2018.

[7] D. Anitha and M. Rao, “A survey on defect detection in bare
PCB and assembled PCB using image processing techniques,”
in 2017 International Conference on Wireless Communica-
tions, Signal Processing and Networking (WiSPNET), pp. 39–
43, IEEE, 2017.

[8] A. R. de Mello and M. R. Stemmer, “Inspecting surface
mounted devices using k nearest neighbor and multilayer
perceptron,” in 2015 IEEE 24th International Symposium on
Industrial Electronics (ISIE), pp. 950–955, IEEE, 2015.

[9] M. A. Andrade, P. C. F. Pepe, L. R. Ximenes, and R. Arthur,
“A survey on automatic inspection for printed circuit board
analysis,” in Proceedings of the 7th Brazilian Technology
Symposium (BTSym’21), Y. Iano, O. Saotome, G. L. Kemper

Vásquez, C. Cotrim Pezzuto, R. Arthur, and G. Gomes de
Oliveira, Eds., pp. 423–431, Springer, Cham, 2022.

[10] L. H. D. S. Silva, G. O. D. A. Azevedo, B. J. Fernandes,
B. L. Bezerra, E. B. Lima, and S. C. Oliveira, “Automatic
optical inspection for defective PCB detection using transfer
learning,” in 2019 IEEE Latin American Conference on
Computational Intelligence (LA-CCI), pp. 1–6, IEEE, 2019.

[11] J. Zhu, A. Wu, and X. Liu, “Printed circuit board defect visual
detection based on wavelet denoising,” IOP Conference Series:
Materials Science and Engineering, vol. 392, no. 6, Article ID
062055, 2018.

[12] R. Meattini, S. Benatti, U. Scarcia, D. De Gregorio, L. Benini,
and C. Melchiorri, “An sEMG-based human–robot interface
for robotic hands using machine learning and synergies,” IEEE
Transactions on Components, Packaging and Manufacturing
Technology, vol. 8, no. 7, pp. 1149–1158, 2018.

[13] H. Choi, J. Park, and Y.-M. Yang, “A novel quick-response
eigenface analysis scheme for brain and computer interfaces,”
Sensors, vol. 22, no. 15, Article ID 5860, 2022.

[14] V. Chaudhary, I. R. Dave, and K. P. Upla, “Automatic visual
inspection of printed circuit board for defect detection and
classification,” in 2017 International Conference on Wireless
Communications, Signal Processing and Networking (WiSP-
NET), pp. 732–737, IEEE, 2017.

[15] T. J. M. De Oliveira, M. A. Wehrmeister, and B. T. Nassu,
“Detecting modifications in printed circuit boards from fuel
pump controllers,” in 2017 30th SIBGRAPI Conference on
Graphics, Patterns and Images (SIBGRAPI), pp. 87–94, IEEE,
2017.

[16] Z. Lu, Q. He, X. Xiang, and H. Liu, “Defect detection of PCB
based on Bayes feature fusion,” The Journal of Engineering,
vol. 2018, no. 16, pp. 1741–1745, 2018.

[17] D. Li, C. Li, C. Chen, and Z. Zhao, “Semantic segmentation
of a printed circuit board for component recognition based
on depth images,” Sensors, vol. 20, no. 18, Article ID 5318,
2020.

[18] V. A. Adibhatla, H.-C. Chih, C.-C. Hsu, J. Cheng,
M. F. Abbod, and J.-S. Shieh, “Defect detection in printed
circuit boards using you-only-look-once convolutional neural
networks,” Electronics, vol. 9, no. 9, Article ID 1547, 2020.

[19] C.-W. Kuo, J. D. Ashmore, D. Huggins, and Z. Kira, “Data-
efficient graph embedding learning for PCB component
detection,” in 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pp. 551–560, IEEE, 2019.

[20] L. Zhang, Y. Jin, X. Yang et al., “Convolutional neural
network-based multi-label classification of PCB defects,” The
Journal of Engineering, vol. 2018, no. 16, pp. 1612–1616,
2018.

[21] D.-u. Lim, Y.-G. Kim, and T.-H. Park, “SMD classification for
automated optical inspection machine using convolution
neural network,” in 2019 Third IEEE International Conference
on Robotic Computing (IRC), pp. 395–398, IEEE, 2019.

[22] W. Shi, L. Zhang, Y. Li, and H. Liu, “Adversarial semi-
supervised learning method for printed circuit board
unknown defect detection,” The Journal of Engineering,
vol. 2020, no. 13, pp. 505–510, 2020.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: convolutional
networks for biomedical image segmentation,” in Medical
Image Computing and Computer-Assisted Intervention—
MICCAI 2015: 18th International Conference, pp. 234–
241Springer, Munich, Germany, Proceedings, Part III 18, 2015.

[24] K. Parvati, B. S. Prakasa Rao, and M. Mariya Das, “Image
segmentation using gray-scale morphology and marker-
controlled watershed transformation,” Discrete Dynamics in

10 IET Circuits, Devices & Systems



Nature and Society, vol. 2008, Article ID 384346, 8 pages,
2008.

[25] Microsoft, Microsoft/Vott, “Visual object tagging tool: an
electron app for building end to end object detection models
from images and videos,” 2021, https://github.com/microsoft/
VoTT.

[26] OpenCV, “Finding contours in your image,” 2020, https://docs
.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html.

[27] TensorFlow, “Tf.keras.preprocessing.image.imagedatagenera-
tor & tensorflow v2.12.0,” 2023.

[28] TensorFlow, “Module: Tf.keras & tensorflow v2.12.0,” 2023,
https://www.tensorflow.org/api_docs/python/tf/keras/.

[29] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” , January 2017, http://arxiv.org/abs/1412.6980.

[30] Y. Ho and S. Wookey, “The real-world-weight cross-entropy
loss function: modeling the costs of mislabeling,” IEEE Access,
vol. 8, pp. 4806–4813, 2019.

[31] OpenCV, “Operations on arrays,” 2020, https://docs.opencv.
org/4.4.0/d2/de8/group__core__array.html.

[32] OpenCV, “Eroding and dilating,” 2020, https://docs.opencv.
org/4.4.0/db/df6/tutorial_erosion_dilatation.html.

[33] OpenCV, “Affine transformations,” 2020, https://docs.opencv.
org/4.4.0/d4/d61/tutorial_warp_affine.html.

[34] N. O’Mahony, S. Campbell, A. Carvalho et al., “Deep learning
vs. traditional computer vision,” in Advances in Computer
Vision: Proceedings of the 2019 Computer Vision Conference
(CVC), vol. 11, pp. 128–144, Springer, 2020.

[35] D.-M. Tsai and P.-H. Jen, “Autoencoder-based anomaly
detection for surface defect inspection,” Advanced Engineering
Informatics, vol. 48, Article ID 101272, 2021.

[36] M. Ke, C. Lin, and Q. Huang, “Anomaly detection of logo images
in the mobile phone using convolutional autoencoder,” in 2017
4th International Conference on Systems and Informatics (ICSAI),
pp. 1163–1168, IEEE, 2017.

[37] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and
A. C. Courville, “Improved training of wasserstein GANs,” in
NIPS’17: Proceedings of the 31st International Conference on
Neural Information Processing Systems, pp. 5769–5779, 2017.

[38] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” in 3rd International Conference for Learning
Representations, San Diego, https://arxiv.org/abs/1412.6980,
2015.

[39] H. Wang, M. Li, F. Ma, S.-L. Huang, and L. Zhang,
“Unsupervised anomaly detection via generative adversarial
networks,” in Proceedings of the 18th International Conference
on Information Processing in Sensor Networks, pp. 313-314,
IEEE, 2019.

[40] J. Lu, P. Gong, J. Ye, and C. Zhang, “Learning from very few
samples: a survey,” arXiv preprint arXiv:2009.02653, 2020.

IET Circuits, Devices & Systems 11

https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
https://github.com/microsoft/VoTT
https://docs.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html
https://docs.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html
https://docs.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html
https://docs.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html
https://docs.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html
https://docs.opencv.org/4.4.0/df/d0d/tutorial_find_contours.html
https://www.tensorflow.org/api_docs/python/tf/keras/
https://www.tensorflow.org/api_docs/python/tf/keras/
https://www.tensorflow.org/api_docs/python/tf/keras/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/d2/de8/group__core__array.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html
https://docs.opencv.org/4.4.0/d4/d61/tutorial_warp_affine.html



