Research Article

Optimizing Metro Passenger Flow Prediction: Integrating Machine Learning and Time-Series Analysis with Multimodal Data Fusion

Li Wan, Wenzhi Cheng, and Jie Yang

College of Intelligent Manufacturing, Hunan University of Science and Engineering, Hunan 425199, China

Correspondence should be addressed to Li Wan; wanli@huse.edu.cn

Received 17 November 2023; Revised 15 March 2024; Accepted 5 April 2024; Published 26 April 2024

1. Introduction

Urban rail transit, as an emergent modality in transportation, garners widespread public acclaim for its convenience, comfort, and environmentally friendly attributes, progressively becoming the preferred option for daily commutes and travel [1]. The influx of passengers during peak hours, particularly in the mornings and evenings, imposes considerable strain on line operations, manifesting in challenges such as station congestion and train delays [2]. In this context, the accurate prediction of passenger flow, especially through the application of multimedia data mining technologies to apprehend rapid shifts in passenger numbers, is crucial for ensuring transport safety and enhancing operational efficiency [3].

Passenger flow predictions are categorized into long-term, short-term, and short-time forecasts [4]. Long-term forecasts, relevant during the planning and construction phase of the rail network, and short-term forecasts, predicting passenger flow for the upcoming year, offer limited utility for daily operations. Conversely, short-time forecasting, which projects passenger numbers for the forthcoming 15 min, is instrumental for operational planning and train scheduling [5]. The inherent nonlinearity, nonstationarity, and randomness of short-time passenger flow complicate accurate forecasting, and the efficacy of singular models in this context is limited [6]. Notwithstanding, scholarly research into nonlinear and combinatorial optimization models has underscored the viability of predicting short-time passenger flow [7, 8]. However, traditional parametric and nonparametric models are impeded by...
protracted training durations and low responsiveness, rendering them ill-suited for managing large-scale data in practical applications [9]. Moreover, the extant literature on short-time passenger flow prediction predominantly concentrates on optimizing model structures and training algorithms, often overlooking the impact of multimedia data noise on prediction accuracy [10].

To address these challenges, this study introduces a novel model that integrates a two-stage decomposition approach, STL-EEMD (seasonal and trend decomposition using LOESS-ensemble empirical mode decomposition), with an enhanced gated recurrent neural network (IGRU) to refine the accuracy of short-time subway passenger flow predictions. Initially, the model employs a graph-based depth-first search algorithm to analyze passenger travel patterns within multimedia data, thereby constructing a short-time passenger flow time series. Subsequently, given the pronounced randomness and high nonstationarity of the short-time subway passenger flow sequence, the STL-EEMD method is applied to mitigate noise interference within the time series. Ultimately, an IGRU network model predicated on the residuals of gated cyclic units is formulated to facilitate precise short-time passenger flow predictions. Empirical validation utilizing multimedia data substantiates the model’s efficacy in enhancing the accuracy of short-time metro passenger flow forecasts, thereby offering theoretical support for metro operators in the formulation of advanced operational strategies.

2. State of the Art

The prediction of short-time passenger flow is pivotal for the effective scheduling of train operations and passenger flow management, ensuring the timely and safe arrival of passengers at their destinations. Subway passenger flow data, though exhibiting periodic characteristics that are amenable to prediction, presents challenges due to its nonlinearity, pronounced randomness, and nonsmooth nature. Extensive research has been conducted in this domain, with forecasting methods broadly categorized into three paradigms: those based on mathematical statistics, intelligent algorithms, and hybrid models [11].

Methods grounded in mathematical statistics include commonly used models such as the Kalman filter [12], differential integrated moving average autoregressive (ARIMA) model [13], and seasonal differential autoregressive sliding average (SARIMA) model [14]. While these models are straightforward and user-friendly, their efficacy in predicting nonlinear passenger flow remains limited [15]. On the other hand, intelligent algorithm-based methods leverage their strong learning and adaptive capabilities to effectively capture the nonlinear attributes of multimedia passenger flow data. These include traditional neural networks and advanced deep learning methods such as support vector machines [16] and artificial neural networks [17]. Traditional neural networks, with their shallow structures, often fail to encapsulate complex nonlinear relationships in data, leading to significant prediction errors [18]. In contrast, deep-structure-based methods like long- and short-term memory (LSTM) and gated recurrent neural networks (GRU) have gained prominence due to their enhanced ability to capture spatio-temporal relationships. Ma et al. [19] applied LSTM networks to urban traffic flow prediction, though the complexity of LSTM’s parameter determination remains a challenge. Conversely, Dai et al. [20] employed spatiotemporal analysis in conjunction with GRUs for short-term traffic flow prediction, noting that while GRUs, with their reduced gate structure, offer faster training, they may compromise on network performance.

Hybrid models, which amalgamate two or more forecasting methods, effectively surmount the limitations inherent in singular models. By harnessing the strengths of various methodologies, these combined models, such as SVM-LSTM [21], RF-LSTM [22], and SSA-SVR [23], significantly enhance prediction accuracy, representing a burgeoning trend in passenger flow forecasting. However, existing research predominantly focuses on optimizing model structures and training algorithm efficiency, often overlooking the impact of sample noise on model prediction performance. To mitigate noise interference and adeptly handle complex signals, experts have integrated filtering techniques, such as wavelet transform and empirical modal decomposition, into short-time subway passenger flow prediction models. Zhu et al. [24] developed a WT-ARMA combined prediction model utilizing wavelet transform to diminish noise in multimedia passenger flow data. Wu et al. [25] proposed a model combining variational modal decomposition (VMD) with GRU neural networks to enhance the accuracy of short-time metro passenger flow prediction by attenuating fluctuations in multimedia data. Similarly, Chen et al. [26] and Jo et al. [27] incorporated the season-trend decomposition procedure of time series by loess (STL) into LSTM and GRU neural network models, respectively, to improve short-term subway passenger flow prediction by counteracting the effects of irregular data fluctuations. Collectively, these models underscore the significance of employing filtering techniques to weaken the interference of noise in multimedia data samples in short-term traffic flow prediction.

3. Methodology

In order to improve the performance of the subway short-time passenger flow prediction model, a combined model based on two-stage decomposition (STL-EEMD) and GRU is constructed based on the characteristics of strong randomness and high nonstationarity of subway short-time passenger flow sequences in order to achieve higher prediction accuracy, thus providing theoretical support for subway operators to develop operation plans in advance. The proposed model consists of three parts: data preprocessing, data noise reduction, and passenger flow prediction. The model architecture is shown in Figure 1.

3.1. Data Preprocessing. Based on the swipe card data of the subway automatic ticketing system (AFC), the passenger flow in and out of the subway interchange station can be directly extracted. Since internal metro interchange does not require entry and exit stations, it is not possible to obtain interchange passenger flow information directly based on swipe card data. Therefore, the graph-based depth-first search algorithm is
Input short-term passenger flow data of subway

Data cleaning → Data integration → Data statistics → Data normalization

Passenger flow time series data

Residual component → STL decomposition → EEMD decomposition

IMFs component → Secondary residual component → Trend component → Period component

IGRU prediction → IGRU prediction → IGRU prediction → IGRU prediction

Superposition of component prediction results

Output prediction results

Model performance evaluation

Start

End

FIGURE 1: Architecture of the proposed metro short-time passenger flow prediction model.
used to identify the travel path of subway passengers, which can more accurately extract the subway transfer passenger flow information and lay the foundation for the subway internal transfer passenger flow prediction.

The original data of metro AFC contains 43 fields, and the main fields are extracted, including user card number, entry and exit time, entry line and station code, exit line and station code, etc., as shown in Table 1.

In machine learning and data mining, the quality of multimedia data directly determines the prediction effect of the model. In real multimedia traffic data, there may be a large number of outliers, duplicate values, missing values, etc. This kind of data is very unfavorable to the training of neural network models. The purpose of data preprocessing is to obtain valid, standard, and continuous data for model training and data mining by processing invalid data accordingly. The preprocessed data can improve the learning speed of the model and make the model perform better in prediction results. Data preprocessing generally includes data cleaning, data integration, and data normalization processes. Figure 2 gives the data preprocessing flowchart.

3.1.1. Data Cleaning. The data-cleaning process is mainly to clean the outliers and missing values in multimedia passenger flow data. The time series model generally needs to ensure the integrity of the time series data, and if the missing values are directly removed, it will easily lead to the misalignment of data cycles. To ensure data integrity, the missing values in the original data need to be interpolated. During the data-cleaning process, we employed a time-series-based linear interpolation method to fill in missing values [28]. Specifically, we focused on interpolating missing values within timestamp information (such as entry and exit times) to ensure the continuity and consistency of the data. For discrete features (such as route/station codes), we did not perform interpolation but retained their original states.

<table>
<thead>
<tr>
<th>User card number</th>
<th>Inbound time</th>
<th>Exit time</th>
<th>Inbound route code</th>
<th>Inbound station code</th>
<th>Outbound route code</th>
<th>Outbound station code</th>
</tr>
</thead>
<tbody>
<tr>
<td>84717573</td>
<td>2018-04-04 16:53:00</td>
<td>2018-04-04 18:47:03</td>
<td>1</td>
<td>23</td>
<td>90</td>
<td>29</td>
</tr>
<tr>
<td>14099543</td>
<td>2018-04-04 20:12:00</td>
<td>2018-04-04 20:51:07</td>
<td>3</td>
<td>37</td>
<td>11</td>
<td>36</td>
</tr>
</tbody>
</table>

Figure 2: Flowchart of data preprocessing.
In view of the problem of outliers in the original data, especially the data whose departure time is earlier than or equal to the arrival time, the card reading data outside the operation time of the subway line, and the data whose travel time is too long (more than 4 hr), the outliers are cleaned according to the subway AFC data cleaning rules.

3.1.4. Data Normalization. The preprocessed inbound and operating hours is filled with 0.

3.1.2. Data Integration. Data integration is to make an organic concentration of data from different sources, formats, and characteristics of nature to facilitate subsequent statistical analysis of the overall data. Since the original swipe card data of the subway is a separate file for each day, it is necessary to use Python’s pandas library to merge the original swipe card data and synthesize it into a data table to facilitate subsequent statistical analysis. In the short-time passenger flow prediction, it is necessary to make a division of the time granularity of the passenger flow, if the time granularity division is too small, it will affect the accuracy of the prediction. On the contrary, if the time granularity is too large, the prediction results will not reflect the change of short-time passenger flow. In this paper, we choose to use 15 min as the time granularity for passenger flow statistics.

3.1.3. Data Statistics. First, we need to split the time of the original data into three components: days, hours, and minutes, and then use 15 min as a unit for statistics. According to the schedule of subway operation for 1 day, the period of 06:00–22:30 is divided into 66 time periods, so the daily passenger flow data are divided into 66 time periods.

Second, the statistics of the passenger flow in and out of the subway stations are carried out. From the perspective of time, by dividing the time interval, we can count the passenger flow in and out of each station every 15 min. From the spatial perspective, we can count the passenger flow statistics of each station and line. The following data are integrated with the data to count the passenger flow in and out of the subway station every 15 min. In order to make the data closer to the real situation, the subway passenger flow during non-operating hours is filled with 0.

3.1.4. Data Normalization. The preprocessed inbound and outbound passenger flow data are still relatively large and require a lot of time to converge the model when it is put into model training, so the data need to be normalized. Data normalization is the process of scaling the valid data so that all the data fall within an interval required for model training. In order to speed up the convergence of the model, this paper uses the min–max normalization method to normalize the passenger flow in and out of subway stations, which is defined in Formula (1).

\[
z = \frac{x - \min(x)}{\max(x) - \min(x)},
\]

where \(x\) denotes the passenger flow to and from all subway stations. The \(\min(x)\) and \(\max(x)\) denote the minimum and maximum values of the subway passenger flow, respectively.

3.2. Data Noise Reduction. The short-time passenger flow data of the metro has the characteristics of nonlinearity and strong randomness and contains a large amount of noise, which will reduce the accuracy of the prediction by direct passenger flow prediction. Therefore, this paper adopts the STL-EEMD method to reduce the interference of incoming passenger flow data noise. For the problem that the periodic terms obtained from the decomposition of the STL method are periodic terms with fixed amplitude, and for the multiple IMFs decomposed by EEMD, the trend terms and periodic terms cannot be accurately distinguished; this paper adopts a two-stage decomposition method for noise reduction. First, the STL method is used to decompose the time series to obtain the trend term, the periodic term, and the residual term. Second, the decomposed periodic and residual terms are decomposed again using the EEMD method.

3.2.1. STL Decomposition. STL is a time series decomposition method using locally weighted regression (LOESS) as a smoothing method, which has the advantages of simplicity of linear least squares regression and adaptability of nonlinear regression methods. The method decomposes the original time series into trend term, period term, and residual term, as shown in Formula (2).

\[
Y_t = T_t + S_t + R_t \quad t = 1, \ldots, m,
\]

where \(Y_t\) denotes the original time series. \(T_t\), \(S_t\), and \(R_t\) denote the trend component, the periodic component, and the residual component at time \(t\), respectively. In general, the trend term represents the trend of low-frequency variation, the period term represents the trend of high-frequency variation, and the residual component represents the irregular variation formed by random perturbations.

The STL method is a recursive process that requires three LOESS and a sliding average. The LOESS process is a locally weighted regression for different locations of points and different weights. This process assumes that it is based on the closer the distance, the stronger the correlation. It contains the window length, weight function, and order of the regression formula for selecting the local regression. Figure 3 shows the results of the STL method to decompose the raw weekday passenger flow data. In order to ensure that the period component accurately reflects the periodicity of the original time series, the number of periods of the STL time series decomposition needs to be chosen to be consistent with the number of periods of the original data; therefore, the period parameter is set to 66 in this study.

3.2.2. EEMD Decomposition. The EEMD method can effectively suppress the empirical modal decomposition aliasing phenomenon by adding white noise to the signal to be decomposed [29]. Therefore, the EEMD method is used to smooth the passenger flow time series data and decompose them into time series component data with different feature scales, spikes, and slower fluctuations, as shown in Figure 4.

The EEMD decomposition principle is as follows:
Add the normally distributed white noise signal to the original signal.

\[X'(t) = X(t) + \omega_j(t) \quad j = 1, 2, ..., M, \]

(3)

where \(X(t) \) is the original signal and \(\omega_j(t) \) is the white noise signal. The \(X'(t) \) is the generated new signal sequence. \(M \) is the number of tests.

The new signal sequence is decomposed by EMD to obtain the IMF components.

\[X'(t) = \sum_{i=1}^{n} c_{ij}(t) + r_{nj}(t), \]

(4)

where \(n \) is the number of IMF components obtained by EMD decomposition. \(c_{ij}(t) \) is the \(i \)th IMFs component in the \(j \)th experimental decomposition. \(r_{nj}(t) \) is the residual component obtained from the decomposition.

Repeat steps (1) and (2) above, adding white noise of different normal distribution each time.

The average IMF component is obtained by averaging each IMF component.

\[c_i = \frac{1}{M} \sum_{j=1}^{M} c_{ij}. \]

(5)

In the EEMD key parameters, the white noise standard deviation is set to 0.2, and the white noise count is set to 100.

3.3. Passenger Flow Forecasting Model

The trend, period, average IMF components, and quadratic residual residuals obtained from the above STL-EEMD decomposition are input into the IGRU neural network-based metro short-time passenger flow forecasting model for prediction.

3.3.1. GRU Network

LSTM solves the long-term dependency problem of (recurrent neural network) RNN, but it requires more parameters to be set, and the convergence speed is
Figure 4: EEMD method decomposition results: (a) residual component; (b) IMF1; (c) IMF2; (d) IMF3; (e) IMF4; (f) IMF5; (g) IMF6; (h) secondary residual component.
slow, which reduces the training efficiency. GRU neural network is an improved version of LSTM, and the update gate replaces the input gate and forgetting gate in LSTM. The structure of the hidden layer of the GRU network is shown in Figure 5.

The update gate is used to determine the amount of information passed from the previous hidden layer to the current hidden layer, and the reset gate determines the amount of information about the forgotten state. The GRU cell structure works as expressed in the following formulas:

\[
\begin{align*}
 z_t &= \sigma(W_z x_t + U_z h_{t-1} + b_z), \\
 r_t &= \sigma(W_r x_t + U_r h_{t-1} + b_r), \\
 a_t &= \tanh (W_a U_a (h_{t-1} r_t) + b_a), \\
 h_t &= (1 - z_t) h_{t-1} + z_t a_t,
\end{align*}
\]

where \(x_t\) denotes the input value at time \(t\) of the current layer, and \(h_{t-1}\) denotes the state output value at time \(t-1\) of the current layer. \(z_t\) and \(r_t\) denote the update gate and reset gate at time \(t\), respectively. Sigmoid functions are used for the activation functions of update and reset gates \(\sigma\). \(a_t\) denotes the candidate hidden state at time \(t\). \(h_t\) denotes the state vector at time \(t\). \(\tanh\) is the hyperbolic tangent activation function for the candidate hidden state. \(w_z, w_r, w_a, u_z, u_r, u_a\) and \(b_z, b_r, b_a\) denote the model weight parameters. \(b_z, b_r, b_a\) denote the bias vectors.

3.3.2. IGRU Network. To address the gradient disappearance and network degradation of the original GRU network, a residual-based gated cyclic unit is designed in this paper, as shown in Figure 6. Compared with the GRU unit, the residual gated loop unit is improved in the following three aspects:

(1) Nonsaturated Activation Function. The core formula in the algorithm of GRU is the candidate hidden state Formula (8). The output value of Formula (8) and the output value of the previous hidden state together determine the final output of the GRU hidden state. In this paper, the activation function of the candidate hidden state of GRU is replaced by the linear rectification function ReLU, which, the advantage of the improved network, can well avoid the gradient disappearance caused by the saturation function. It can cope with the deeper network training. The ReLU function is defined as follows:

\[
\text{ReLU}(f(x)) = \begin{cases}
 f(x), & f(x) \geq 0 \\
 0, & f(x) < 0
\end{cases}
\]

The ReLU activation function ensures a more direct information transfer. Compared with saturated activation functions, ReLU does not have the gradient disappearance problem caused by saturated activation functions, and it can better match the residual information transfer. Therefore, Formula (8) can be changed to the following:

\[
a_t = \text{ReLU}(W_a x_t + U_a (h_{t-1} r_t) + b_a).
\]

In traditional RNN neural networks, the use of unsaturated activation functions without boundaries usually generates the gradient explosion problem. ReLU, a representative of unsaturated activation functions, also suffers from the gradient explosion problem. The gradient explosion problem can be effectively mitigated by combining unsaturated activation functions with batch normalization techniques [30].

(2) Residual Connection. In this paper, the GRU is improved by referring to the residual network in the convolutional neural network to solve the problem of gradient disappearance and network degradation in the GRU. Specifically, we put the residual connection in Formula (11). For the introduced residual information, we use the candidate hidden state values that are not yet activated in the previous layer, because the unactivated values have more original information than the activated ones. In addition, unlike the residual network in the convolutional neural network, the
improved scheme designed in this paper introduces residual connections into each layer of the GRU. The improved hidden state formula is as follows:

\[a^l_t = \text{ReLU}(\text{net}^l_t), \quad (12) \]

\[\text{net}^l_t = (W^l a^l x^l_t + U^l a^l h^l_{t-1}) + b^l_t + V^l \text{net}^{l-1}_t, \quad (13) \]

where \(a^l_t \) denotes the output of the candidate hidden states of layer \(l \) at moment \(t \). \(\text{net}^l_t \) is the candidate hidden state of layer \(l \) that has not yet been activated, and \(h^l_{t-1} \) denotes the state vector of layer \(l \) at time \(t-1 \), and \(V^l \) is the dimensional matching matrix of the \(l \)th layer. When the dimensionality of the upper and lower layers of the network is the same, the dimensionality matching matrix is not needed.

3.3.3. Loss Function for IGRU. The loss function for IGRU is formulated as follows:

\[L_{\text{IGRU}} = \frac{1}{T} \sum_{t=1}^{T} (\hat{y}_t - y_t)^2, \quad (19) \]

where \(\hat{y}_t \) represents the predicted passenger flow value at time step \(t \); \(y_t \) denotes the actual passenger flow value at time step \(t \); \(T \) denotes the total number of time steps in the prediction horizon.

By minimizing the loss function \(L_{\text{IGRU}} \) through SGD or Adam, the parameters of the IGRU model are adjusted iteratively to improve the accuracy of passenger flow predictions.

3.4. The Process of Constructing a Passenger Flow Prediction Model. Based on the above analysis, the metro short-time passenger flow prediction model is constructed as follows.

3.4.1. Data Preprocessing. We obtain valid, standardized, and continuous model training data through data cleaning, integration, statistics, and normalization for a large number of outliers, duplicate values, and missing values in passenger flow data.

3.4.2. Data Noise Reduction. The STL decomposition algorithm is used to decompose the preprocessed data into trend terms, periodic terms, and irregular fluctuation terms. Based on this, the EEMD decomposition algorithm decomposes the irregular fluctuation terms again to obtain multiple IMF components and RES residual residual.

3.4.3. Passenger Flow Model Forecast. The STL and EEMD decomposed data are divided into training set, test set, and normalized. The training set data is used to train the model to obtain the best performance of the subway short-time passenger flow prediction model. The trained passenger flow prediction model is used to predict the test set data, and the prediction results are reverse normalized to obtain the prediction results of each decomposition component.

3.4.4. Component Superposition. The prediction results of each component are superimposed and summed to obtain the final short-time passenger flow prediction results.

3.4.5. Model Effectiveness Evaluation. Appropriate evaluation parameters are selected to assess the prediction model effects.

4. Result Analysis and Discussion

4.1. Experimental Data. In view of the availability of data, this paper selects Shanghai Metro automatic card swipe data for one consecutive month from April 1 to 30, 2015 and preprocesses the missing and abnormal values. The metro automatic ticketing data contains travel information such as the card number used by passengers, the name of entering and leaving the station, the time of entering and leaving the station, and the fare, which provides data support for the
4.3. Comparison Experiments. To verify the effectiveness of the proposed model, the model was tested using experimental data, and the results were compared with advanced models such as ARIMA [13], BPNN [13], GRU [20], VMD-GRU [25], STL-LSTM [26], and STL-GRU [27]. The prediction results of several forecasting models for weekdays and nonworking days are given in Figures 7 and 8, where the horizontal coordinates represent the time of 1 day divided by 15 min.

In order to quantitatively evaluate the performance of the models, two evaluation indexes, MAPE and RMSE, are used to compare and analyze several forecasting models. The values of MAPE and RMSE are the average values of short-time passenger flow forecasting models after 10 independent runs, and the test results of several forecasting models are shown in Figures 9 and 10.

As can be seen from Figures 9 and 10, the error values of the proposed STL-EEMD-IGRU model are smaller than the other six forecasting models. Compared with the single model ARIMA, BPNN, and GRU models, the advantage of the combined model is very obvious, and the errors are smaller than those of the single model on both weekdays and nonweekdays. For the combined model, the STL-EEMD-IGRU model has the smallest error value and the highest prediction accuracy because the model proposed in this paper has appropriate improvements in both data noise reduction and passenger flow prediction models. In particular, compared with the STL-GRU model, the MAPE is

\[
\text{MAPE} = \frac{1}{n} \sum_{i=1}^{n} \left| \frac{y_i - \hat{y}_i}{y_i} \right| \times 100\%,
\]

where \(y_i\) and \(\hat{y}_i\) are the \(i\)th actual observation and the predicted value, respectively. \(n\) is the total number of predictions. MAPE, which is often used to evaluate the merit of prediction models, does not directly reflect the difference between the observed and true values.

The RMSE directly reflects the absolute difference between the observed and true values and is very sensitive to the reflection of very large or very small errors, and is a useful complement to MAPE when comparing model prediction accuracy, which is defined as follows:

\[
\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}.
\]
reduced by 28.34%, and the RMSE is reduced by 25.01% in the weekday passenger flow prediction. The EMD-PSO-LSTM model reduces AMAPE and ARMSE by 20.36% and 26.84%, respectively, compared with the STL-GRU model for nonworking day passenger flows.

4.4. Ablation Experiments. In order to investigate the proposed noise suppression technique and the improved GRU algorithm in the proposed model, ablation experiments were performed on the model using the workday data from the experimental data and compared using MAPE and RMSE metrics. The comparison graph of the ablation experiment is shown in Figure 11.

It can be seen from Figure 11 that the contribution of noise suppression technology is greater than that of the IGRU network to the proposed model. The reason for this is that the strong randomness and high nonstationarity of the metro short-time passenger flow data noise are particularly disturbing to the prediction model, and only by decomposing the original time series into a set of relatively simple submodal smooth fluctuations, higher prediction accuracy can be obtained. The forecasting capability and robustness of the model can be improved. In addition, the residual-based IGRU network mainly targets the gradient disappearance and network degradation of the original GRU network. The more layers of the GRU network, the better the effect, and only two hidden layers are used in this paper, so the effect of the IGRU network is not outstanding.
The labeled data set used to support the findings of this study is available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the construct program of applied characteristic discipline in Hunan Province and the Project of Hunan Provincial Natural Science Foundation of China (grant no. 2023J50421).

References

