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Accurate passenger flow forecasting is crucial in urban areas with growing transit demand. In this paper, we propose a method that
combines advanced machine learning with rigorous time series analysis to improve prediction accuracy by integrating different
datasets, providing a prescriptive example for passenger flow prediction in urban rail transit systems. The study employs advanced
machine learning algorithms and proposes a novel prediction model that combines two-stage decomposition (seasonal and trend
decomposition using LOESS–ensemble empirical mode decomposition (STL-EEMD)) and gated recurrent units. First, the STL
decomposition algorithm is applied to break down the preprocessed data into trend terms, periodic terms, and irregular fluctuation
terms. Then, the EEMD decomposition algorithm is employed to further decompose the irregular fluctuation terms, yielding
multiple IMF components and residual residuals. Subsequently, the decomposed data from STL and EEMD are partitioned into
training and test sets and normalized. The training set is utilized to train the model for optimal performance in predicting subway
short-time passenger flow. The synthesis of these sophisticated methodologies serves to substantially enhance both the predictive
precision and the broad applicability of the forecasting models. The efficacy of the proposed approach is rigorously evaluated
through its application to empirical metro passenger flow datasets from diverse urban centers, demonstrating marked superiority
in predictive performance over traditional forecasting methods. The insights gleaned from this study bear significant ramifications
for the strategic planning and administration of public transportation infrastructures, potentially leading to more strategic resource
allocation and an enhanced commuter experience.

1. Introduction

Urban rail transit, as an emergent modality in transporta-
tion, garners widespread public acclaim for its convenience,
comfort, and environmentally friendly attributes, progres-
sively becoming the preferred option for daily commutes
and travel [1]. The influx of passengers during peak hours,
particularly in the mornings and evenings, imposes consid-
erable strain on line operations, manifesting in challenges
such as station congestion and train delays [2]. In this con-
text, the accurate prediction of passenger flow, especially
through the application of multimedia data mining technol-
ogies to apprehend rapid shifts in passenger numbers, is
crucial for ensuring transport safety and enhancing opera-
tional efficiency [3].

Passenger flow predictions are categorized into long-term,
short-term, and short-time forecasts [4]. Long-term forecasts,
relevant during the planning and construction phase of the rail
network, and short-term forecasts, predicting passenger flow
for the upcoming year, offer limited utility for daily operations.
Conversely, short-time forecasting, which projects passenger
numbers for the forthcoming 15min, is instrumental for oper-
ational planning and train scheduling [5]. The inherent
nonlinearity, nonstationarity, and randomness of short-time
passenger flow complicate accurate forecasting, and the effi-
cacy of singular models in this context is limited [6]. Notwith-
standing, scholarly research into nonlinear and combinatorial
optimization models has underscored the viability of predict-
ing short-time passenger flow [7, 8]. However, traditional
parametric and nonparametric models are impeded by
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protracted training durations and low responsiveness, render-
ing them ill-suited for managing large-scale data in practical
applications [9]. Moreover, the extant literature on short-time
passenger flow prediction predominantly concentrates on opti-
mizing model structures and training algorithms, often over-
looking the impact of multimedia data noise on prediction
accuracy [10].

To address these challenges, this study introduces a novel
model that integrates a two-stage decomposition approach,
STL-EEMD (seasonal and trend decomposition using LOESS–
ensemble empirical mode decomposition), with an enhanced
gated recurrent neural network (IGRU) to refine the accuracy
of short-time subway passenger flow predictions. Initially, the
model employs a graph-based depth-first search algorithm to
analyze passenger travel patterns within multimedia data,
thereby constructing a short-time passenger flow time series.
Subsequently, given the pronounced randomness and high
nonstationarity of the short-time subway passenger flow
sequence, the STL-EEMD method is applied to mitigate noise
interference within the time series. Ultimately, an IGRU net-
work model predicated on the residuals of gated cyclic units is
formulated to facilitate precise short-time passenger flow pre-
dictions. Empirical validation utilizing multimedia data sub-
stantiates the model’s efficacy in enhancing the accuracy of
short-time metro passenger flow forecasts, thereby offering
theoretical support for metro operators in the formulation of
advanced operational strategies.

2. State of the Art

The prediction of short-time passenger flow is pivotal for the
effective scheduling of train operations and passenger flow
management, ensuring the timely and safe arrival of passen-
gers at their destinations. Subway passenger flow data, though
exhibiting periodic characteristics that are amenable to pre-
diction, presents challenges due to its nonlinearity, pro-
nounced randomness, and nonsmooth nature. Extensive
research has been conducted in this domain, with forecasting
methods broadly categorized into three paradigms: those
based on mathematical statistics, intelligent algorithms, and
hybrid models [11].

Methods grounded in mathematical statistics include com-
monly used models such as the Kalman filter [12], differential
integrated moving average autoregressive (ARIMA) model
[13], and seasonal differential autoregressive sliding average
(SARIMA)model [14].While thesemodels are straightforward
and user-friendly, their efficacy in predicting nonlinear passen-
ger flow remains limited [15]. On the other hand, intelligent
algorithm-based methods leverage their strong learning and
adaptive capabilities to effectively capture the nonlinear attri-
butes of multimedia passenger flow data. These include tradi-
tional neural networks and advanced deep learning methods
such as support vector machines [16] and artificial neural net-
works [17]. Traditional neural networks, with their shallow
structures, often fail to encapsulate complex nonlinear relation-
ships in data, leading to significant prediction errors [18]. In
contrast, deep-structure-based methods like long- and short-
term memory (LSTM) and gated recurrent neural networks

(GRU) have gained prominence due to their enhanced ability
to capture spatio-temporal relationships. Ma et al. [19] applied
LSTM networks to urban traffic flow prediction, though the
complexity of LSTM’s parameter determination remains a
challenge. Conversely, Dai et al. [20] employed spatiotemporal
analysis in conjunction with GRUs for short-term traffic flow
prediction, noting that while GRUs, with their reduced gate
structure, offer faster training, they may compromise on net-
work performance.

Hybrid models, which amalgamate two or more forecasting
methods, effectively surmount the limitations inherent in singu-
lar models. By harnessing the strengths of various methodolo-
gies, these combined models, such as SVM-LSTM [21], RF-
LSTM [22], and SSA-SVR [23], significantly enhance prediction
accuracy, representing a burgeoning trend in passenger flow
forecasting. However, existing research predominantly focuses
on optimizing model structures and training algorithm effi-
ciency, often overlooking the impact of sample noise on model
prediction performance. To mitigate noise interference and
adeptly handle complex signals, experts have integrated filtering
techniques, such as wavelet transform and empirical modal
decomposition, into short-time subway passenger flow predic-
tion models. Zhu et al. [24] developed a WT-ARMA combined
prediction model utilizing wavelet transform to diminish noise
in multimedia passenger flow data. Wu et al. [25] proposed a
model combining variational modal decomposition (VMD)
with GRU neural networks to enhance the accuracy of short-
timemetro passenger flow prediction by attenuating fluctuations
in multimedia data. Similarly, Chen et al. [26] and Jo et al. [27]
incorporated the season-trend decomposition procedure of time
series by loess (STL) into LSTM and GRU neural network mod-
els, respectively, to improve short-term subway passenger flow
prediction by counteracting the effects of irregular data fluctua-
tions. Collectively, these models underscore the significance of
employing filtering techniques to weaken the interference of
noise in multimedia data samples in short-term traffic flow
prediction.

3. Methodology

In order to improve the performance of the subway short-
time passenger flow prediction model, a combined model
based on two-stage decomposition (STL-EEMD) and GRU
is constructed based on the characteristics of strong random-
ness and high nonstationarity of subway short-time passen-
ger flow sequences in order to achieve higher prediction
accuracy, thus providing theoretical support for subway
operators to develop operation plans in advance. The pro-
posed model consists of three parts: data preprocessing, data
noise reduction, and passenger flow prediction. The model
architecture is shown in Figure 1.

3.1. Data Preprocessing. Based on the swipe card data of the
subway automatic ticketing system (AFC), the passenger flow
in and out of the subway interchange station can be directly
extracted. Since internal metro interchange does not require
entry and exit stations, it is not possible to obtain interchange
passenger flow information directly based on swipe card data.
Therefore, the graph-based depth-first search algorithm is
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FIGURE 1: Architecture of the proposed metro short-time passenger flow prediction model.
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used to identify the travel path of subway passengers, which
can more accurately extract the subway transfer passenger
flow information and lay the foundation for the subway inter-
nal transfer passenger flow prediction.

The original data of metro AFC contains 43 fields, and
the main fields are extracted, including user card number,
entry and exit time, entry line and station code, exit line and
station code, etc., as shown in Table 1.

In machine learning and data mining, the quality of multi-
media data directly determines the prediction effect of the
model. In real multimedia traffic data, there may be a large
number of outliers, duplicate values, missing values, etc. This
kind of data is very unfavorable to the training of neural net-
work models. The purpose of data preprocessing is to obtain
valid, standard, and continuous data for model training and
data mining by processing invalid data accordingly. The pre-
processed data can improve the learning speed of the model
and make the model perform better in prediction results. Data

preprocessing generally includes data cleaning, data integration,
and data normalization processes. Figure 2 gives the data pre-
processing flowchart.

3.1.1. Data Cleaning. The data-cleaning process is mainly
cleans the outliers and missing values in multimedia passen-
ger flow data. The time series model generally needs to
ensure the integrity of the time series data, and if the missing
values are directly removed, it will easily lead to the misalign-
ment of data cycles. To ensure data integrity, the missing
values in the original data need to be interpolated. During
the data-cleaning process, we employed a time-series-based
linear interpolation method to fill in missing values [28].
Specifically, we focused on interpolating missing values
within timestamp information (such as entry and exit times)
to ensure the continuity and consistency of the data. For
discrete features (such as route/station codes), we did not
perform interpolation but retained their original states.

TABLE 1: Main fields of the raw data of the metro AFC.

User card number Inbound time Exit time
Inbound route

code
Inbound station

code
Outbound route

code
Outbound station

code

84717573
2018-04-04
16:53:00

2018-04-04
18:47:03

1 23 90 29

15179225
2018-04-04
19:33:00

2018-04-04
20:55:45

5 62 6 15

14099543
2018-04-04
20:12:00

2018-04-04
20:51:07

3 37 11 36

Start
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End
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FIGURE 2: Flowchart of data preprocessing.

4 IET Circuits, Devices & Systems



In view of the problem of outliers in the original data,
especially the data whose departure time is earlier than or
equal to the arrival time, the card reading data outside the
operation time of the subway line, and the data whose travel
time is too long (more than 4 hr), the outliers are cleaned
according to the subway AFC data cleaning rules.

3.1.2. Data Integration. Data integration is to make an
organic concentration of data from different sources, for-
mats, and characteristics of nature to facilitate subsequent
statistical analysis of the overall data. Since the original swipe
card data of the subway is a separate file for each day, it is
necessary to use Python’s pandas library to merge the origi-
nal swipe card data and synthesize it into a data table to
facilitate subsequent statistical analysis. In the short-time
passenger flow prediction, it is necessary to make a division
of the time granularity of the passenger flow, if the time
granularity division is too small, it will affect the accuracy
of the prediction. On the contrary, if the time granularity is
too large, the prediction results will not reflect the change of
short-time passengerflow. In this paper, we choose to use 15min
as the time granularity for passenger flow statistics.

3.1.3. Data Statistics. First, we need to split the time of the
original data into three components: days, hours, and min-
utes, and then use 15min as a unit for statistics. According to
the schedule of subway operation for 1 day, the period of
06:00–22:30 is divided into 66 time periods, so the daily
passenger flow data are divided into 66 time periods.

Second, the statistics of the passenger flow in and out of
the subway stations are carried out. From the perspective of
time, by dividing the time interval, we can count the passen-
ger flow in and out of each station every 15min. From the
spatial perspective, we can count the passenger flow statistics
of each station and line. The following data are integrated
with the data to count the passenger flow in and out of the
subway station every 15min. In order to make the data closer
to the real situation, the subway passenger flow during non-
operating hours is filled with 0.

3.1.4. Data Normalization. The preprocessed inbound and
outbound passenger flow data are still relatively large and
require a lot of time to converge the model when it is put into
model training, so the data need to be normalized. Data
normalization is the process of scaling the valid data so
that all the data fall within an interval required for model
training. In order to speed up the convergence of the model,
this paper uses the min–max normalization method to nor-
malize the passenger flow in and out of subway stations,
which is defined in Formula (1).

z ¼ x −min xð Þ
max xð Þ −min xð Þ ; ð1Þ

where x denotes the passenger flow to and from all subway
stations. The min(x) and max(x) denote the minimum and
maximum values of the subway passenger flow, respectively.

3.2. Data Noise Reduction. The short-time passenger flow
data of the metro has the characteristics of nonlinearity and
strong randomness and contains a large amount of noise,
which will reduce the accuracy of the prediction by direct
passenger flow prediction. Therefore, this paper adopts the
STL-EEMD method to reduce the interference of incoming
passenger flow data noise. For the problem that the periodic
terms obtained from the decomposition of the STL method
are periodic terms with fixed amplitude, and for the multiple
IMFs decomposed by EEMD, the trend terms and periodic
terms cannot be accurately distinguished; this paper adopts
a two-stage decomposition method for noise reduction. First,
the STLmethod is used to decompose the time series to obtain
the trend term, the periodic term, and the residual term.
Second, the decomposed periodic and residual terms are
decomposed again using the EEMD method.

3.2.1. STL Decomposition. STL is a time series decomposition
method using locally weighted regression (LOESS) as a
smoothing method, which has the advantages of simplicity
of linear least squares regression and adaptability of nonlinear
regression methods. The method decomposes the original
time series into trend term, period term, and residual term,
as shown in Formula (2).

Yt ¼ Tt þ St þ Rt      t ¼ 1;…m; ð2Þ

where Yt denotes the original time series. Tt, St, and Rt denote
the trend component, the periodic component, and the
residual component at time t, respectively. In general, the
trend term represents the trend of low-frequency variation,
the period term represents the trend of high-frequency vari-
ation, and the residual component represents the irregular
variation formed by random perturbations.

The STL method is a recursive process that requires three
LOESS and a sliding average. The LOESS process is a locally
weighted regression for different locations of points and dif-
ferent weights. This process assumes that it is based on the
closer the distance, the stronger the correlation. It contains
the window length, weight function, and order of the regres-
sion formula for selecting the local regression. Figure 3 shows
the results of the STL method to decompose the raw weekday
passenger flow data. In order to ensure that the period com-
ponent accurately reflects the periodicity of the original time
series, the number of periods of the STL time series decom-
position needs to be chosen to be consistent with the number
of periods of the original data; therefore, the period parame-
ter is set to 66 in this study.

3.2.2. EEMD Decomposition. The EEMD method can effec-
tively suppress the empirical modal decomposition aliasing
phenomenon by adding white noise to the signal to be
decomposed [29]. Therefore, the EEMD method is used to
smooth the passenger flow time series data and decompose
them into time series component data with different feature
scales, spikes, and slower fluctuations, as shown in Figure 4.

The EEMD decomposition principle is as follows:
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(1) Add the normally distributed white noise signal to
the original signal.

X 0 tð Þ ¼ X tð Þ þ ωj tð Þ   j¼ 1; 2;…M; ð3Þ

where X (t) is the original signal and ωjðtÞ : is the white noise
signal. The X0ðtÞ : is the generated new signal sequence. M is
the number of tests.

(2) The new signal sequence is decomposed by EMD to
obtain the IMF components.

X 0 tð Þ ¼ ∑
n

i¼1
 ci;j tð Þ þ rnj tð Þ; ð4Þ

where n is the number of IMF components obtained by EMD
decomposition. ci;jðtÞ : is the ith IMFs component in the jth

experimental decomposition. rnjðtÞ : is the residual compo-
nent obtained from the decomposition.

(3) Repeat steps (1) and (2) above, adding white noise of
different normal distribution each time.

(4) The average IMF component is obtained by averag-
ing each IMF component.

ci ¼
1
M

∑
M

j¼1
 ci;j: ð5Þ

In the EEMD key parameters, the white noise standard
deviation is set to 0.2, and the white noise count is set to 100.

3.3. Passenger Flow Forecasting Model. The trend, period,
average IMF components, and quadratic residual residuals
obtained from the above STL-EEMD decomposition are
input into the IGRU neural network-based metro short-
time passenger flow forecasting model for prediction.

3.3.1. GRU Network. LSTM solves the long-term dependency
problem of (recurrent neural network) RNN, but it requires
more parameters to be set, and the convergence speed is
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FIGURE 3: Results of STL method to decompose the raw data of passenger flow: (a) raw data; (b) trend component; (c) period data; (d) residual
component.
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slow, which reduces the training efficiency. GRU neural net-
work is an improved version of LSTM, and the update gate
replaces the input gate and forgetting gate in LSTM. The
structure of the hidden layer of the GRU network is shown
in Figure 5.

The update gate is used to determine the amount of
information passed from the previous hidden layer to the
current hidden layer, and the reset gate determines the
amount of information about the forgotten state. The GRU
cell structure works as expressed in the following formulas:

zt ¼ σ Wzxt þ Uzht−1 þ bzð Þ; ð6Þ

rt ¼ σ Wrxt þ Urht−1 þ brð Þ; ð7Þ

at ¼ Tanh WaUa ht−1rtð Þ þ bað Þ; ð8Þ

ht ¼ 1 − ztð Þht−1 þ ztat; ð9Þ

where xt denotes the input value at time t of the current layer,
and ht−1 denotes the state output value at time t− 1 of the
current layer. zt and rt denote the update gate and reset gate
at time t, respectively. Sigmoid functions are used for the
activation functions of update and reset gates σ. at denotes
the candidate hidden state at time t. ht denotes the state
vector at time t. Tanh is the hyperbolic tangent activation
function for the candidate hidden state. wz, wr, wa, uz, ur, and
ua denote the model weight parameters. bz, br, and ba denote
the bias vectors.

3.3.2. IGRU Network. To address the gradient disappearance
and network degradation of the original GRU network, a
residual-based gated cyclic unit is designed in this paper, as
shown in Figure 6. Compared with the GRU unit, the resid-
ual gated loop unit is improved in the following three aspects:

(1) Nonsaturated Activation Function. The core formula
in the algorithm of GRU is the candidate hidden state For-
mula (8). The output value of Formula (8) and the output
value of the previous hidden state together determine the
final output of the GRU hidden state. In this paper, the

activation function of the candidate hidden state of GRU is
replaced by the linear rectification function ReLU, which, the
advantage of the improved network, can well avoid the gra-
dient disappearance caused by the saturation function. It can
cope with the deeper network training. The ReLU function is
defined as follows:

ReLU f xð Þð Þ ¼ f xð Þ; f xð Þ ≥ 0

0; f xð Þ<0

(
: ð10Þ

The ReLU activation function ensures a more direct
information transfer. Compared with saturated activation
functions, ReLU does not have the gradient disappearance
problem caused by saturated activation functions, and it can
better match the residual information transfer. Therefore,
Formula (8) can be changed to the following:

at ¼ ReLU Waxt þ Ua ht−1rtð Þ þ bað Þ: ð11Þ

In traditional RNN neural networks, the use of unsatu-
rated activation functions without boundaries usually gener-
ates the gradient explosion problem. ReLU, a representative
of unsaturated activation functions, also suffers from the
gradient explosion problem. The gradient explosion problem
can be effectively mitigated by combining unsaturated acti-
vation functions with batch normalization techniques [30].

(2) Residual Connection. In this paper, the GRU is
improved by referring to the residual network in the convo-
lutional neural network to solve the problem of gradient
disappearance and network degradation in the GRU. Specif-
ically, we put the residual connection in Formula (11). For
the introduced residual information, we use the candidate
hidden state values that are not yet activated in the previous
layer, because the unactivated values have more original
information than the activated ones. In addition, unlike the
residual network in the convolutional neural network, the

1–

x

ReLUσσ

rt zt at

ht

xt

ht – 1

FIGURE 5: Schematic diagram of GRU unit structure.
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improved scheme designed in this paper introduces residual
connections into each layer of the GRU. The improved hid-
den state formula is as follows:

alt ¼ ReLU netla
À Á

; ð12Þ

netla ¼ Wl
axlt þ Ul

a hlt−1r
l
t

À Áþ bla
À Áþ Vlnetl−1a ; ð13Þ

where alt denotes the output of the candidate hidden states of
layer l at moment t. netla is the candidate hidden state of layer
l that has not yet been activated, and hlt−1 denotes the state
vector of layer l at time t− 1, and Vl is the dimensional
matching matrix of the lth layer. When the dimensionality
of the upper and lower layers of the network is the same, the
dimensionality matching matrix is not needed.

(3) Batch Standardization. Batch normalization addresses
the internal covariance bias of the data by normalizing the
mean and variance of the preactivation for each layer of each
training minibatch, and also accelerates training engineering
and improves system performance. In addition, the use of
batch normalization can alleviate the gradient explosion
problem caused by unsaturated activation functions. In this
paper, by changing the activation function of GRU and add-
ing residual connections, and then using the advantages of
batch normalization, we can eliminate the gradient disappear-
ance and network degradation in traditional GRU.

The cell structure of the gated cyclic cell at level l, com-
bining the residuals after batch normalization, is given by the
following:

zlt ¼ σ BN Wl
zxlt

À Áþ Ul
zhlt−1

À Á
; ð14Þ

rlt ¼ σ BN Wl
rxlt

À Áþ Ul
rhlt−1

À Á
; ð15Þ

alt ¼ ReLU netla
À Á

; ð16Þ

netla ¼ BN Wl
ax

l
t

À Áþ Ul
a hlt−1r

l
t

À Áþ Vlnetl−1a ; ð17Þ

hlt ¼ 1 − zlr
À Á

hlt−1 þ zlralt
Á
; ð18Þ

where BN denotes the batch normalization used. Since the
nature of batch normalization is to eliminate bias, the bias
vectors in Formulas (14), (15), and (17) are neglected.

3.3.3. Loss Function for IGRU. The loss function for IGRU
plays a crucial role in guiding the training process of the
model and optimizing its performance in short-time passen-
ger flow forecasting tasks. Unlike standard RNN that often
employ common loss functions such as mean squared error
(MSE) or cross-entropy loss, the formulation of the loss
function for IGRU involves specific considerations tailored
to its architecture and objectives.

Mathematically, the loss function for IGRU is formulated
as a function of the model’s parameters (weights and biases)
and the discrepancy between the predicted and actual pas-
senger flow values. By minimizing this loss function using
optimization algorithms such as stochastic gradient descent

(SGD) or Adam, the model iteratively adjusts its parameters
to improve prediction accuracy and overall performance.

The loss function LIGRU for IGRU is defined as MSE
between the predicted passenger flow values byt and the actual
passenger flow values yt over a given time horizon T:

LIGRU ¼ 1
T

∑
T

t¼1
  byt − ytð Þ2; ð19Þ

where byt represents the predicted passenger flow value at
time step t; yt denotes the actual passenger flow value at
time step t; T denotes the total number of time steps in the
prediction horizon.

By minimizing the loss function LIGRU through SGD or
Adam, the parameters of the IGRU model are adjusted itera-
tively to improve the accuracy of passenger flow predictions.

3.4. The Process of Constructing a Passenger Flow Prediction
Model. Based on the above analysis, the metro short-time
passenger flow prediction model is constructed as follows.

3.4.1. Data Preprocessing.We obtain valid, standardized, and
continuous model training data through data cleaning, inte-
gration, statistics, and normalization for a large number of
outliers, duplicate values, and missing values in passenger
flow data.

3.4.2. Data Noise Reduction. The STL decomposition algo-
rithm is used to decompose the preprocessed data into trend
terms, periodic terms, and irregular fluctuation terms. Based
on this, the EEMD decomposition algorithm decomposes the
irregular fluctuation terms again to obtain multiple IMF
components and RES residual residuals.

3.4.3. Passenger Flow Model Forecast. The STL and EEMD
decomposed data are divided into training set, test set, and
normalized. The training set data is used to train the model
to obtain the best performance of the subway short-time
passenger flow prediction model. The trained passenger
flow prediction model is used to predict the test set data,
and the prediction results are reverse normalized to obtain
the prediction results of each decomposition component.

3.4.4. Component Superposition. The prediction results of
each component are superimposed and summed to obtain
the final short-time passenger flow prediction results.

3.4.5. Model Effectiveness Evaluation. Appropriate evaluation
parameters are selected to assess the prediction model effects.

4. Result Analysis and Discussion

4.1. Experimental Data. In view of the availability of data,
this paper selects Shanghai Metro automatic card swipe data
for one consecutive month from April 1 to 30, 2015 and
preprocesses the missing and abnormal values. The metro
automatic ticketing data contains travel information such as
the card number used by passengers, the name of entering
and leaving the station, the time of entering and leaving the
station, and the fare, which provides data support for the
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study of passenger travel patterns. As of April 2015, Shanghai
Metro has operated 14 metro lines with 313 stations (inter-
change stations are not counted repeatedly). People’s Square
Station is a three-line interchange station of metro lines 1, 2,
and 8, with large passenger flow and complex travel charac-
teristics; therefore, People’s Square Station is chosen as the
target station. In this paper, the prediction step is taken as 15
min, and the prediction time range is 6:00–22:30, which
means there are 66 prediction values per day.

There is some similarity in the change of passenger flow
on weekdays from Monday to Friday, and also on nonwork-
ing days on Saturday. The study was based on passenger flow
data for 1 week (April 6–12, 2015), and a correlation analysis
was conducted. The correlation analysis of the weekday and
nonworkday data is shown in Table 2.

As can be seen from Table 2, the correlation between
weekday data and the correlation between nonworkday
data are significant and are both highly correlated. There
are large differences between nonworkday and workday
data, which are moderate to low correlations. Therefore,
the passenger flow forecast is studied from two perspectives,
weekday and nonworkday. Therefore, the data from 20 out
of 21 weekdays during April 1–30, 2015, were used as the
training set, and data from 1 weekday were used as the test
set. The data from 8 out of 9 nonworking days were used as
the training set, and data from 1 nonworking day were used
as the test set.

4.2. Model Parameters and Evaluation Indexes. In this paper,
the IGRU network is set up with 2 hidden layers, 1 input
layer and 1 output layer, with 10 neurons in the input layer, 1
neuron in the output layer, and 50 neurons in the hidden
layer. The number of iterations is 100, and the batch size is 8.
To avoid overfitting of the model due to the high specializa-
tion of neuron weights, a dropout layer is added, and the
random deactivation probability is set to 0.1. The mean abso-
lute error MAE is chosen as the target loss function. The
Adam optimizer is used, which customizes the initial learn-
ing rate to 0.001 and automatically updates the learning rate
of each parameter every round by an adaptive method.

In this paper, mean absolute percentage error (MAPE)
and root mean square error (RMSE) are used as the evalua-
tion indexes of the forecasting model. MAPE reflects the
relative deviation of the observed value from the true value
and can directly measure the goodness of the forecasting
result, which is defined as follows:

MAPE¼ 1
n
∑
n

i¼1
 

yi − byij j
yi

× 100%; ð20Þ

where yi and byi are the ith actual observation and the pre-
dicted value, respectively. n is the total number of predic-
tions. MAPE, which is often used to evaluate the merit of
prediction models, does not directly reflect the difference
between the observed and true values.

The RMSE directly reflects the absolute difference
between the observed and true values and is very sensitive
to the reflection of very large or very small errors, and is a
useful complement to MAPE when comparing model pre-
diction accuracy, which is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
∑
n

i¼1
  yi − byið Þ2

r
: ð21Þ

4.3. Comparison Experiments. To verify the effectiveness of
the proposed model, the model was tested using experimen-
tal data, and the results were compared with advanced mod-
els such as ARIMA [13], BPNN [13], GRU [20], VMD-GRU
[25], STL-LSTM [26], and STL-GRU [27]. The prediction
results of several forecasting models for weekdays and
nonworking days are given in Figures 7 and 8, where the
horizontal coordinates represent the time of 1 day divided
by 15min.

In order to quantitatively evaluate the performance of the
models, two evaluation indexes, MAPE and RMSE, are used
to compare and analyze several forecasting models. The
values of MAPE and RMSE are the average values of
short-time passenger flow forecasting models after 10 inde-
pendent runs, and the test results of several forecasting mod-
els are shown in Figures 9 and 10.

As can be seen from Figures 9 and 10, the error values of
the proposed STL-EEMD-IGRU model are smaller than the
other six forecasting models. Compared with the single
model ARIMA, BPNN, and GRU models, the advantage of
the combined model is very obvious, and the errors are
smaller than those of the single model on both weekdays
and nonweekdays. For the combined model, the STL-
EEMD-IGRU model has the smallest error value and the
highest prediction accuracy because the model proposed in
this paper has appropriate improvements in both data noise
reduction and passenger flow prediction models. In particu-
lar, compared with the STL-GRU model, the MAPE is

TABLE 2: Correlation analysis of workday and nonworkday data.

Correlation sequence Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Monday 1 0.9941 0.9936 0.9923 0.9887 0.5418 0.4932
Tuesday 0.9941 1 0.9936 0.9949 0.9911 0.5537 0.5279
Wednesday 0.9936 0.9936 1 0.9938 0.9907 0.5665 0.5193
Thursday 0.9923 0.9949 0.9938 1 0.9922 0.5631 0.5209
Friday 0.9887 0.9911 0.9907 0.9922 1 0.6208 0.5837
Saturday 0.5418 0.5537 0.5665 0.5631 0.6208 1 0.9235
Sunday 0.4932 0.5279 0.5193 0.5209 0.5837 0.9235 1
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reduced by 28.34%, and the RMSE is reduced by 25.01% in
the weekday passenger flow prediction. The EMD-PSO-
LSTM model reduces AMAPE and ARMSE by 20.36% and
26.84%, respectively, compared with the STL-GRUmodel for
nonworking day passenger flows.

4.4. Ablation Experiments. In order to investigate the pro-
posed noise suppression technique and the improved GRU
algorithm in the proposed model, ablation experiments were
performed on the model using the workday data from the
experimental data and compared using MAPE and RMSE
metrics. The comparison graph of the ablation experiment
is shown in Figure 11.

It can be seen from Figure 11 that the contribution of
noise suppression technology is greater than that of the
IGRU network to the proposed model. The reason for this
is that the strong randomness and high nonstationarity of

the metro short-time passenger flow data noise are particu-
larly disturbing to the prediction model, and only by decom-
posing the original time series into a set of relatively simple
submodal smooth fluctuations, higher prediction accuracy
can be obtained. The forecasting capability and robustness
of the model can be improved. In addition, the residual-
based IGRU network mainly targets the gradient disappear-
ance and network degradation of the original GRU network.
The more layers of the GRU network, the better the effect,
and only two hidden layers are used in this paper, so the
effect of the IGRU network is not outstanding.
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5. Conclusion

This research introduces an advanced metro short-time pas-
senger flow prediction methodology employing a combined
STL-EEMD-IGRU model. This approach aims to enhance
the predictive accuracy of short-time passenger flow in urban
rail transit systems. In the realm of machine learning and
data mining, the integrity and quality of multimedia data are
pivotal for the effectiveness of predictive models. Given the
potential presence of outliers, duplicate values, and missing
data in real-world multimedia passenger flow datasets, an
initial phase of data preprocessing is essential in the applica-
tion of the STL-EEMD-IGRU combined model.

Subsequently, the STL-EEMD two-stage decomposition
technique is utilized to attenuate noise interference within
the short-time passenger flow time series, thereby diminish-
ing the impact of sample noise on the passenger flow predic-
tion model. Following this noise reduction, the data are
further processed through a GRU neural network.

A critical aspect of this research is addressing the chal-
lenges of gradient vanishing and network degradation com-
monly associated with conventional GRU networks. To this
end, the study proposes a novel design of a residual-based
gating cycle unit aimed at bolstering the predictive perfor-
mance of the network model.

Empirical evaluations of this combined forecasting
model demonstrate its effectiveness, particularly in enhanc-
ing the accuracy of the subway short-term passenger flow
prediction. The outcomes of this study offer valuable data-
driven insights for subway operation management depart-
ments, facilitating improved passenger flow management at
stations and the development of more efficient daily traffic
plans.
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