
Research Article
A Fast Fully Parallel Ant Colony Optimization Algorithm
Based on CUDA for Solving TSP

Zhi Zeng ,1 Yuxing Cai ,1 Kwok L. Chung ,1 Hui Lin ,2 and Jinwei Wu3

1School of Computer Science and Engineering, Huizhou University, Huizhou, Guangdong 516007, China
2College of Resources and Environment, Beibu Gulf University, Qinzhou, Guangxi 535011, China
3School of Mathematics and Statistics, Huizhou University, Huizhou, Guangdong 516007, China

Correspondence should be addressed to Kwok L. Chung; klchung@hzu.edu.cn and Hui Lin; linhui@bbgu.edu.cn

Received 5 June 2023; Revised 29 August 2023; Accepted 20 September 2023; Published 31 October 2023

Academic Editor: Roger Woods

Copyright© 2023 Zhi Zeng et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In view of the known problems of parameter sensitivity, local optimum, and slow convergence in the ant colony optimization
(ACO), we aim to improve the performance of the ACO. To solve the traveling salesman problem (TSP) quickly with accurate
results, we propose a fully parallel ACO (FP-ACO). Based on the max–min ant system (MMAS), we initiate a compensation
mechanism for pheromone to constrain its value, guarantee the correctness of results and avoid a local optimum, and further
enhance the convergence ability of ACO. Moreover, based on the compute unified device architecture (CUDA), the ACO is
implemented as a kernel function on a graphics processing unit (GPU), which shortens the running time of massive iterations.
Combined with the roulette wheel selection mechanism, FP-ACO has powerful search capabilities and is committed to obtaining
better solutions. The experimental results show that, compared with the effective strategies ACO (ESACO) that runs on CPU, the
speed-up ratio of the proposed algorithm reaches 35, and the running time is less than that of the max–min ant system-roulette
wheel method-bitmask tabu (MMAS-RWM-BT) that runs on GPU. Furthermore, our algorithm outperforms the other two
algorithms in the speed-up ratio and less runtime, proving that the proposed FP-ACO is more suitable for solving TSP.

1. Introduction

Traveling salesman problem (TSP) is a typical NP complete
problem in the field of combinatorial optimization, which is
easy to describe but difficult to solve. The number of possible
paths and cities increases exponentially, making it very diffi-
cult to solve. So far, there is still no perfect solution to address
this problem. With the rapid development of computer hard-
ware technology, exploring TSP solutions has become avail-
able. TSP is essentially the search for a minimum-weight
Hamiltonian cycle in a weighted complete undirected graph.
Therefore, the problem of Hamilton cycles in graph theory
has great significance in academic research and practical
applications. Suppose that we have a graph G= (V, E), where
V is the vertex set and E is the edge set. A path p meets the
conditions that it contains all the vertices of G, and the edges
on p are a subset of E. Starting from one of the vertices of G,
traversing with path p, and finally back to itself. If a path like
p exists, this path is a Hamilton cycle of G. It is usually

necessary to find a minimum Hamilton cycle (a Hamilton
cycle with a minimum sum of weights) in a graph. A given
graph with N vertices has (N-1)!/2 different Hamilton cycles
and there is no simple and efficient algorithm to acquire a
Hamilton cycle [1]. In 1992, Dorigo [2] proposed a famous
algorithm called ant colony optimization (ACO), and his
experiment [3] showed that the length of the output result
was close to the shortest path using ACO. By converting the
TSP into an iterative probabilistic optimization problem, a
likely shortest path will come out after hundreds or thou-
sands of iterations.

The algorithm flowchart of the ACO is shown in
Figure 1.

The main idea of the ACO is to transform a minimum
Hamilton cycle problem into a probability problem of itera-
tive optimization. In general, solving TSP with ACO contains
five steps:

S1: Randomly placing ants on different initial cities.

Hindawi
IET Computers & Digital Techniques
Volume 2023, Article ID 9915769, 14 pages
https://doi.org/10.1049/2023/9915769

https://orcid.org/0000-0003-4355-249X
https://orcid.org/0000-0002-9129-5726
https://orcid.org/0000-0002-5381-7327
https://orcid.org/0000-0002-2456-0411
mailto:klchung@hzu.edu.cn
mailto:linhui@bbgu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2023/9915769

S2: Calculating the probabilities of selecting unvisited
cities, as shown in Equation (1).

pij tð Þ ¼ τij tð Þ
À Á

α × 1=dij
À Á

β=∑
n

j¼1
τij tð Þ
À Á

α × 1=dij
À Á

β: ð1Þ

S3: Choosing a city for the next exploration until all the
cities are visited.
S4: Releasing pheromone on the chosen path.
S5: Repeating steps S1–S4 until finishing all iterations.

As shown in Equation (1), pij(t) represents the probabil-
ity of selecting a path from node i to j at t condition, τij(t)
represents the value of the pheromone on a path from node i
to j at t condition, α represents the importance degree of the
pheromone, dij is the distance from node i to j, and β repre-
sents the importance degree of the distance.

Nowadays, ACO has been applied in various realms such
as pricing transmission rights [4], predicting turbine engine
vibration [5], and path planning and localization for mobile
robot [6, 7]. Solving the TSP is the most representative appli-
cation of ACO [8]. TSP is a classic problem in which a
salesman travels from one city to all cities and returns to
the first city. Cities apart from the first city can be visited
only once. An effective approach to TSP should be that the
average length of the output result is close to the shortest
length and the speed is fast meanwhile. The emergence of
ACO provides an optional algorithm for solving TSP; how-
ever, we found it remains some problems.

First, the quality of results length of the output result is
affected by the parameters of ACO greatly. Research [3, 9,
10] tries different values of the parameters according to the
datasets showing that the ACO displayed different results on
each dataset because of the values of the parameters. To
make the average length of the result close to the shortest

length on each dataset or to ensure the output result is the
best solution as much as possible, it is necessary to set
parameters at reasonable ranges after massive debugging,
which is an expenditure of massive time.

Besides, ACO methods are known to easily get stuck in
local optima. During the execution, one path will be selected
by ants frequently. For example, if ants constantly walk along
with path p1, the pheromone on p1 will be very high. If there
is a shorter path p2, ants will not take it because the higher
value of the pheromone brings a higher probability of choos-
ing p1. After several iterations, ACO will adopt p1 as the best
solution even though it is not the shortest path.

Another problem is the low execution speed of ACO.
Assume that N is the number of cities, M is the number of
ants, and I is the number of iterations. For each iteration,
operations of all the ants include updating of the pheromone
matrix whose size is N×N. The time complexity of solving
TSP in ACO is O I ×ð M ×N2Þ, which is close to O N4ð Þ. In
terms of speed optimization of ACO, it is crucial to improve
the operations in every iteration.

For the local optima and the high complexity problems
that exist in the ACO, improvements are mainly divided into
the idea of the algorithm and the platform where the ACO
runs. The architecture of computers is improving gradually
and the need for advanced technologies has increased, and,
thus, the requirement for the speed of data processing is
becoming higher. People need to acquire data and results
of the programs executed within a shorter time [11]. Due
to multiple rounds of nested loops in ACO, which leads to a
slow convergence speed, the efficiency of solving TSP is not
high. Efficient optimization of ACO is a research topic. Jeff
et al. [12] proposed a Gbeam-ACO using a greedy searching
strategy. Yan and Jia [13] devised an IFC-based ACO for
planning paths in a Web3D environment more quickly.
Zhang and Ge [14] proposed a hybrid ant colony algorithm
for the solution of the vehicle routing problem with soft time

Begin

Initialize
parameters

Input coordinate
of cities

Calculate the
distance matrix

Randomly generate
the initial city

Calculate the probability
of unvisited cities

Select the next city and
release pheromone

All cities
visited

Update the shortest pathReach the number
of iterations

Initialize Tabu of
all ants

Yes

No

No

Output End

Yes

FIGURE 1: Flowchat of the ACO.

2 IET Computers & Digital Techniques

windows (VRPSTW). Li and Qin [15] proposed an improved
ant colony algorithm based on spark solving the vehicle rout-
ing problem with a time window. These improvements are
relevant to the idea of the algorithm. By improving some
operations of ACO or combining ACO with other algorithms
like genetic algorithms (GA) [16], the improved ACO has a
better performance. However, only the CPU is responsible for
executing these algorithms, bringing the excessive load to the
CPU. Improving the advanced CPU architecture for better
performance is a hard nut to crack, and, therefore, a limitation
of algorithm improvement remains.

Since the appearance of the graphics processing unit
(GPU), its applications have gradually expanded. In the
past, GPU played a role in graphic processing. As the scale
of data becomes massive, GPU is a critical tool for high-
performance computing [17, 18]. Several research works
are related to accelerating ACO’s runtime using GPU, the
hardware foundation of compute unified device architecture
(CUDA). Nie et al. [19] proposed a joint inversion algorithm
based on a GPU parallel ant colony algorithm and the tradi-
tional least-squares inversion method for the fast imaging of
3D resistivity inversion. Their experiments showed that the
ACO based on GPU has a more accurate precision and faster
runtime in 3D resistivity inversion imaging of the tunnel. To
solve the track correlation problemmore effectively, Gao et al.
[20] gained a better result by using a GPU-based parallel
ACO. In solving quadratic assignment problems (QAPs)
[21], Tsutsui and Fujimoto [22] proposed a MATA method
that showed a promising speedup compared with the CPU
computation mode. These achievements have been successful
instances of using GPU to accelerate the execution of ACO.
Programs executed on GPU are in parallel, which provide a
feasible method of improving algorithms by allocating some
complex operations to the GPU for fast processing.

In this research, we make improvements on the ACO for
solving TSP faster with higher accuracy. Our contributions
are as follows:

(1) To accelerate the execution of ACO, we profoundly
consider a fully parallel method at the thread level
and implement ACO with the highest degree of par-
allelism that all the iterations are finished using one
kernel function. Considering a hardware acceleration
method, we implement the ACO on CUDA, in which
the ACO runs in parallel. We analyze the strategy of
setting block size for high degree parallelism and
illustrate the parallel model of the proposed fully
parallel-ACO (FP-ACO).

(2) To alleviate the local optima problem, we come up
with a novel pheromone compensation mechanism
based on the max–min ant system (MMAS), making
the value of the pheromone with a minimum of a
decimal that can be represented on a 64-bit PC and a
maximum that is penalized by previous iterations.

(3) To make the length of the output result close to the
shortest length as much as possible, we combine ACO
with the roulette wheel selection mechanism to
enhance the ability of searching for a better solution.

With the CUDA platform, the proposed pheromone
compensation, and the roulette searching mechanism, the
improved ACO has the advantage of fast speed and high
accuracy. The rest of this article is as follows. In Section 2,
we illustrate the improved ACO—fully parallel method of
ACO designated as FP-ACO, the organization of threads, the
updating mechanism of pheromone based on the MMAS,
and the process of the roulette wheel selection mechanism.
Section 3 presents the analyses and summary of the experi-
mental results using different datasets. Finally, conclusions
are drawn in Section 4.

2. Proposed Methods

2.1. Fully Parallel Model Based on CUDA. CUDA, proposed by
NVIDIA in 2006, refers to compute unified device architecture.
GPU, which usually performs matrix computations for speeding
up data processing, is the core of this architecture. The improved
ACOhere uses a Pascal-basedGPU [23] with a capability of 6GB.
Figures 2 and 3 show architecture diagrams of the GPU and the
streaming multiprocessor (SM), respectively.

A kernel function is needed to drive the GPU to work.
Execution of a kernel function is on GPU, and Figure 4
describes the execution process.

A magnitude of data input means an instruction requires
more SP to process data, which explains why the FP-ACO
consumes more hardware resources.

Interface

Cache

Memory
controllers

Memory
controllers

Memory unit

SM SM SM SM SM

GPC

SM SM SM SM SM

GPC

FIGURE 2: Architecture of a Pascal-based GPU. It contains an inter-
face connected with peripheral component interconnect express
(PCI-e), a memory unit with caches and controllers, and several
graphics processing clusters (GPCs) with streaming multiprocessors
(SMs). GPC is a basic unit for carrying out computational tasks.
GPCs work under the control of the thread engine, which dis-
patches tasks and the SMs are responsible for executing specific
operations in parallel.

IET Computers & Digital Techniques 3

Research [28–30] shows that determining an appropriate
parallel model is vital to the performance of the GPU. As
shown in Figure 4, we can infer that when a kernel function
runs on GPU, that is a process of the corporation of the grids,
the blocks, and the threads. Thus, the primary work is to
coordinate the executing units, which aims at suiting our
algorithm for high degree parallelism. First, the block size
should be considered. According to the architecture of SM,
as shown in Figure 3, and the suggestion of setting block size
proposed in [31], we set the block size is 128, which enables
128 threads to be concurrent per block. A highest parallel
degree is under the situation that all the iterations can be
implemented as one kernel function. The finishing of the
kernel function means the result is available. Suppose I is
the number of iterations and m is the number of ants,

theoretically, the number of blocks BN is determined, as
shown in Equation (2):

BN ¼ I ×m=128: ð2Þ

Within each block, the execution of each thread repre-
sents the operation of one ant. Figure 5 shows the diagram of
threads allocation, and Figure 6 shows design of the parallel
model—the kernel function.

Attributed to the concurrency of executing a kernel func-
tion, some synchronization mechanisms are necessary to
ensure the correctness of data processing. Among the data in
ACO, the pheromone matrix maintains itself throughout itera-
tions. If ai is computing probabilities of selecting other cities
while ai-1 has not finished releasing pheromone or ai is utilizing
the pheromone matrix after being updated by ai+k, that means
a wrong result for ai (judging from Equation (1)). To address
this problem, a CUDA function__syncthreads(), which can
synchronize threads within one block to the calling location,
is called to guarantee the correctness of calculation and updat-
ing procession. The kernel function and the FP-ACO flowchat
are shown in Algorithm 1 and Figure 7, respectively.

2.2. Pheromone Compensation. Unlike the conventional as lit-
erature [3], Macro Dorigo proposed an Ant System model
utilized in Ant Colony Optimization, only which consider
the updates of pheromone without considering the threshold
of pheromone. While in 2000, Thomas and Holger [32] first
proposed that the MMAS adopts an improved mechanism of
updating pheromone. In MMAS, only the pheromone on the
path whose length is shorter than the last iteration will be
updated. The pheromone concentration is between the thresh-
olds that are feedback by the result of previous iterations.

During the experiments, it was found that the results were
significantly affected by the range of the pheromone. How-
ever, the setting of the range of pheromone should follow the
distance matrix according to the input data. This issue is
mainly caused by data precision [33]. When using the
CUDA C to program on a 64-bit PC, the minimum of a
positive double-type variable is 10−15. If the value of a variable
is smaller than 10−15, the compiler will set it to 0, which causes
an inaccurate calculation. We did the following analysis.

Assuming D is the distance matrix calculated by the
coordinate of cities, and dij is the element of D. To ensure
the correctness of the probability matrix P, as shown in
Equation (1), Equation (3) is needed:

τ tð Þð Þα × 1=dij
À Á

β>10−15: ð3Þ

Hence, the minimum of pheromone τmin can be
expressed, as shown in Equation (4):

τmin ¼ 10−15=α × dij
À Á

β=α: ð4Þ

In the matrix P, if pij (an element of P) reaches τmin, the
ratio of τ tð Þð Þα and dij

À Á
β is 10−15, which means the value of

pheromone is too low and will cause the value of the matrix P
strongly depends on 1=dij

À Á
β. To maintain the possibility of a

SM
Instructions cache

Shared memory

Texture memory

Controller

Register

CUDA cores

Tensor core

Controller

Register

CUDA cores

Tensor core

Controller

Register

CUDA cores

Tensor core

Controller

Register

CUDA cores

Tensor core

Texture memory

FIGURE 3: Architecture of SM. SM is the unit that conducts specific
operations in the form of instructions that constitute a kernel func-
tion. It consists of an instructions cache for storing instructions,
several tensor cores for dispatching and executing instructions
under the controller of each tensor core, the texture memory and
the shared memory. Each tensor core has its controller contains the
wrap scheduler and the dispatch unit, register, and plenty of CUDA
cores.

4 IET Computers & Digital Techniques

city that the ants will choose for a shorter result, we made
compensation for the pheromone on each path. Supposing K
is an appropriate compensation factor, the range of the pher-
omone can be limited, as shown in Equation (5):

10−k ≤
τ tð Þð Þα
dij
À Á

β
≤ 10k: ð5Þ

If τ tð Þ reaches τmin, we set it to dij
À Á

β=10k
À Á

1=α accord-
ing to Equation (5). In the MMAS, τmax is dynamically
updated by the newfound solution. However, this has not
addressed the local optimum problem caused by fre-
quently choosing one path. We made a limitation of the
maximum of pheromone using the Gaussian function
[34].

Host

CPU program

ę

CUDA memory
allocation

CPU program

Kernel 1

Kernel 2

ę

GPU

Grid

Load

Load

Block Block Block

Block Block Block

Block Block Block

Grid

Block Block Block

Block Block Block

Block Block Block

ðaÞ

Block 1

Grid
Block Block Block
Block Block Block
Block Block Block

Block 2 Block 2 ę ę

SM SM SM

GPU

ðbÞ

SM

Wrap scheduler

Dispatch unit

Instructions

core core core coreę

Tensor core

Wrap Wrap

Block
Schedule

Sc
he

du
le

ðcÞ
FIGURE 4: Execution process of the kernel function. When executing a CUDA program, the kernel function is loaded on the GPU and
perceived as a grid (Figure 4(a)). Before that, the programmer can set the dimension of a grid that consists of several blocks. Then, the
controller of GPU will identify and allocate the blocks to SMs. In Figure 4(b), one block runs on one SM until the instructions within this
block are finished. The controller of the GPU will determine which SM block runs on. Figure 4(c) shows the scheduling of threads. In SM, the
wrap scheduler will schedule threads in one block wraps by wraps (a wrap consists of 32 threads), an architecture called single instruction
multiple threads (SIMT) [24], and then send instructions to the dispatch unit. The dispatch unit will dispatch threads to the CUDA cores and
execute the instructions. More details about the execution of threads can be referred to in [25–27]. (a) Kernel functions are loaded from host
to GPU. (b) A grid is divided into several blocks and allocated to SMs. (c) Controller of SM dispatches threads to each CUDA core for
executing.

IET Computers & Digital Techniques 5

τmax ¼
1

1 − ρ
× f soptð Þ

� �
× exp −að Þ; ð6Þ

where a is the number of ants that successfully find out a
path with a length equal to the current optimum. If a shorter
path has been found, we set a to 0 and then continue

counting. Algorithm 2 describes the process of the compen-
sation mechanism.

2.3. Roulette Selection Mechanism. Before improvement, the
selection process of ACO usually chooses the next city with
the maximum probability among unvisited cities, which
placed ACO into a dilemma that is missing a better solution.

ę

Thread_0 Thread_1 Thread_2 ę Thread_127

Thread_0 Thread_1 Thread_2 Thread_127

Thread_0 Thread_1 Thread_2 Thread_127

Block_0

Block_1

ę

Block_N–1

FIGURE 5: Threads allocation diagram.

Set ant a1’s
initial city

Find out a1’s
unvisited cities

Calculate a1’s probability
of selecting other cities

Roulette of a1

a1 release
pheromone

......

......

......

......

......

a2 release
pheromone

am release
pheromone

Find out a2’s
unvisited cities

Find out am’s
unvisited cities

Roulette of a2 Roulette of am

Calculate a2’s probability
of selecting other cities

Calculate am’s probability
of selecting other cities

Set ant a2’s
initial city

Set ant am’s
initial city

FIGURE 6: Parallel model of the kernel function.

6 IET Computers & Digital Techniques

Cities with low selected probability do not attract the ants
even though these cities are a part of a shorter path. The
adoption of roulette [35] is to enhance the search capability
of ACO instead of considering a city with the maximum
probability. A cumulative probability matrix is needed. Sup-
posing Vsum is the cumulative probability matrix, which can
be expressed, as shown in Equation (7):

Vsumi
¼ p1; i¼ 1

Vsumi−1
þ pi; i>1

(
; ð7Þ

where Pi is the probability of selecting the ith unvisited city.
Then, generating a random number R in range [0,1]. The
next selected city C is decided, as shown in Equation (8):

C ¼ Vsumi
;Vsummin

≤ Vsumi−1
≤ R ≤ Vsumi

Vsummin
;R<Vsummin

(
; ð8Þ

where Vsummin
is the minimum of the cumulative probability

matrix. Algorithm 3 shows the roulette selection mechanism.
For example, the probabilities of selecting five cities are

shown in Table 1.
After computing the cumulative probability of these five

cities, the results are summarized in Table 2.
If R is 0.1, ants will select city 1, while R is 0.5, city 3 is the

target. From this testing result, city 2 with the maximum
selected probability is not a fixed choice. The roulette selec-
tion mechanism has a better searching capability that brings
ACO more possible cities for consideration.

3. Experiments and Results

We choose the datasets from the TSPLIB [36] with the num-
ber of cities ranging from 14 to 99. Each dataset with 100
repetitions under the conditions that the number of ants n
was 200, α was 2, β was 5, ρ was set at 0.5, and 2,000 itera-
tions. In each experiment, the average length of the result
and the average solution runtime of a dataset were recorded
after implementing datasets by using the proposed FP-ACO
in this article, the max–min ant system-roulette wheel
method-bitmask tabu (MMAS-RWM-BT) [37] and the
effective strategies ACO (ESACO) [38]. Three experiments
were conducted to reveal the performance of the improved
ACO. The first experiment used the datasets Eil51, Eil76, and
Rat99 to test the overall performance of the improved ACO.
Table 3 shows the environments where all the experiments
were carried out, whereas Table 4 shows the result of the first
experiment. In the first experiment, compared with the GPU-
based MMAS-RWM-BT and the CPU-based ESACO, the
improved ACO showed satisfactory performance on datasets
Eil51 and Eil76. In these two datasets, the results of the FP-
ACO are shown to be the best. Its runtime was much shorter
than the ESACO and closed to the MMAS-RWM-BT, espe-
cially on the dataset Eil51, it took only one-third of the runtime
of the MMAS-RWM-BT. However, as the number of cities
increased, the acceleration effect of the FP-ACO was lessening.
To focus on its performance on TSPwith cities less than 51, the
second experiment was conducted using datasets Att48, Dant-
zig42, Oliver30, Ulysses22, Ulysses16, and Burma14. Table 5
shows and compares the corresponding results.

In terms of the quality of the solution, the FP-ACO
always had a shorter length than the other two algorithms.
Apart from this, the speed-up ratio was excellent in the case

Begin:

idx← blockDim.x× blockIdx.x+ threadIdx.x

idy← blockDim.y× blockIdx.y+ threadIdx.y

thread_id← (gridDim.x ∗ blockDim.x)× idy+ idx

Ini_City← random (int) [1-N]

for i:1 to N

for j:1 to i

//update visited cities

end for

for j:1 to N

flag← 0

for k:0 to N-i//Find out unvisited cities

if visited [k]== k

flag← 1

end if

end for

if flag== 0

unvisited [unvisited_index++]= j

end if

end for

__syncthreads();

for i:1 to unvisited_index

//Calculating probability of selecting unvisited cities
and cumulative probability

End for

//Roulette

End for

L← 0

deta_tao [N][N]← 0

R[N]← 0

for i:1 to N

R [i-1]← visited city [i-1]

end for//Record the nodes on the shortest path

//calculating length of the shortest path

L← distance [[R [N-1]-1] [R [0] -1]]

for i:1 to N-1

L← L+ distance [R[i]-1]] [R[i+ 1]-1]

end for

__syncthreads();

//Pheromone update using compensation mechanism

End.

ALGORITHM 1: Kernel function <<<BN, 128>>>.

IET Computers & Digital Techniques 7

of the number of cities being less than 51. As the number of
cities decreases, the growth of the speed-up ratio increases
rapidly, as shown in Figure 8. The speed-up ratio is com-
puted as the ratio between the runtime of the two methods.
The figure reveals that the speed-up ratio was constantly
increasing with decreasing number of cities. Moreover, the
smaller the number of cities was, the steeper the curve, show-
ing that compared with the MMAS-RWM-BT (blue solid
curve), the acceleration effect of the FP-ACO gradually
became outstanding. Despite the slope of the curve lessening
when the number of cities decreased from 16 to 14, the
speed-up ratio curve (red-dashed curve), with respect to

ESACO, increased with an upper bound of 35. Under the
situation where the number of cities was less than 42, the
proposed FP-ACO can maximize the effect of acceleration,
which illustrates that the FP-ACO is more suitable for solv-
ing TSP when the number of cities is less than 51.

The third experiment was to explore the performance of
the proposed FP-ACO in solving TSP with the number of
cities greater than 51. Datasets Brazil58, St70, Gr96, and
Lin105 were employed for this experiment. The results are
listed and compared, as shown in Table 6.

The result shows that in the datasets Brazil58, St70,
Gr96, and Lin105, the runtime of the improved ACO was

Begin

Initialize
parameters

Input coordinate
of cities

Calculate distance matrix;
initialize pheromone matrix

Set number of blocks BN according to (2);
set block size = 128

CPU

Load kernel
function

ę

Wrap 0

Set Init_City;
update visited cities;
find unvisited cities

Set Init_City;
update visited cities;
find unvisited cities

Set Init_City;
update visited cities;
find unvisited cities

Set Init_City;
update visited cities;
find unvisited cities

__syncthreads()

__syncthreads()

Roulette;
calculate length

of path

Roulette;
calculate length

of path

Roulette;
calculate length

of path

Roulette;
calculate length

of path

Pheromone
update

Pheromone
update

Pheromone
update

Pheromone
update

Block_0 ę

GPU

Result output

End

Block_127

128 pics

ę

Wrap 1

ę

Wrap 2
Thread (0–31) Thread (0–31) Thread (0–31) Thread (0–31)

ę

Wrap 3

FIGURE 7: Flowchat of the proposed FP-ACO algorithm.

8 IET Computers & Digital Techniques

the shortest. As the number of cities increased, the runtime
was gradually closed to the MMAS-RWM-BT. When the
scale of input data was greater than 96, the speed-up ratio
between the FP-ACO and the ESACO declined. When the
number of cities exceeded 70, the quality of the solution also
weakened. There is a problem with the FP-ACO. During the
third experiment, the memory footprint of the GPU was
only 46% when executing the dataset Lin105, showing
that the utilization of GPU memory was not appropriate.

Consequently, the next improvement is optimizing the
memory allocation and thread scheduling.

In summary, compared with the MMAS-RWM-BT and
the ESACO, the proposed FP-ACO can maintain the shortest
runtime in solving TSP where the number of cities is less
than 105. The runtime of these three algorithms on the data-
sets is shown in Figure 9, whereas the overall solution results
are compared, as shown in Figure 10.

Additionally, the solution results were vulnerable to the
setting of the parameters α, β, ρ,Q, and the number of ants n.
There is no fixed value but to adjust them according to the
input data, which is a time-costly work when using an ACO-
based algorithm to solve problems. Overtopping of α will
place the algorithm into a local optimum, whereas β leads
to a nonconvergence. A feasible way is to set β= 5 initially
and then try different values of other parameters to obtain a
better solution result.

Begin:

a← 0

released pheromone matrix deta_tao [n][n]← 0

//using nodes matrix R in Algorithm 1

for i:1 to n

deta_tao [R [i-1]-1] [R [i]-1]← deta_tao [R [i-1]-1] [R
[i]-1]+Q

//Q is the pheromone release coefficient

end for

deta_tao [R [n-1]-1] [R [0]-1]← deta_tao [R [n-1]-1] [R
[0]-1]+Q

for i:1 to n

for j:1 to n

tao [i-1] [j-1]← tao [i-1] [j-1] ∗ (1-ρ)+deta tao [i-1] [j-1]

//pheromone compensation

if tao [i-1] [j-1]≤ (10−15/α ∗ (D [i-1] [j-1]) β/α))

//D is the distance matrix

then

tao [i-1] [j-1]← ((D [i-1] [j-1]) β/10k)1/α

end if

//constrain maximum of pheromone

if tao [i-1] [j-1]≥ (1/(1-ρ) ∗ L) ∗ exp (-a)

//L is the length of current shortest path

then

tao [i-1] [j-1]← (1/(1-ρ) ∗ L) ∗ exp (-a)

end if

end for

end for

//update shortest path

if L≤Best_Path_value

Best_Path_value← L

a← 0

else if L==Best_Path_value

a← a+ 1

end if

end if

End.

ALGORITHM 2: Compensation mechanism.

Begin:

accumulative matrix V_csum [0]←probability matrix P [0]

for i:2 to number of unvisited cities

V_csum [i]←V_csum [i-1]+P [i]

end for//calculating accumulative matrix

flag← -1

for i:1 to number of unvisited cities

temp← random [0,1]

if V_csum [i]≥ temp

flag← i

else

continue

end if

end for

if flag != -1

selected city← unvisited city [i-1]//selecting the ith city

else

selected city←unvisited city [number of unvisited cities -1]

end if

End.

ALGORITHM 3: Roulette selection mechanism.

TABLE 1: Selected probabilities of given five cities.

City index Selected probability

1 0.15
2 0.3
3 0.25
4 0.275
5 0.025

IET Computers & Digital Techniques 9

TABLE 2: Result of cumulative probability.

City index Selected probability Cumulative probability

1 0.15 0.150
2 0.3 0.450
3 0.25 0.700
4 0.275 0.975
5 0.025 1.000

TABLE 3: Hardware environments of each experiment.

Operating system CPU GPU RAM capacity

Win10, 64-bit Intel(R) Core (TM) i5-8500 3.00GHz Pascal-based architecture, 6GB 8 GB

TABLE 4: Results of the first experiment.

Dataset Algorithm Solution result Runtime (s)

Eil51
MMAS-RWM-BT 435.18 0.489

ESACO 434.63 1.356
FP-ACO 431.55 0.174

Eil76
MMAS-RWM-BT 571.81 0.526

ESACO 570.92 1.512
FP-ACO 568.53 0.527

Rat99
MMAS-RWM-BT 1,349.22 1.383

ESACO 1,349.19 1.734
FP-ACO 1,483.77 1.108

Bold values depict our experiment is better than other algorithms in different dataset.

TABLE 5: Results of the second experiment.

Dataset Algorithm Solution result Runtime (s)

Att48
MMAS-RWM-BT 35,877.76 0.368

ESACO 35,811.11 0.858
FP-ACO 35,790.08 0.149

Dantzig42
MMAS-RWM-BT 751.84 0.304

ESACO 698.09 0.796
FP-ACO 694.54 0.104

Oliver30
MMAS-RWM-BT 437.91 0.204

ESACO 425.77 0.494
FP-ACO 425.76 0.043

Ulysses22
MMAS-RWM-BT 76.19 0.152

ESACO 76.17 0.387
FP-ACO 76.17 0.019

Ulysses16
MMAS-RWM-BT 74.62 0.121

ESACO 74.52 0.302
FP-ACO 74.22 0.009

Burma14
MMAS-RWM-BT 31.18 0.112

ESACO 31.06 0.235
FP-ACO 30.98 0.007

10 IET Computers & Digital Techniques

10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Number of cities

Sp
ee

d-
up

 ra
tio

 (s
/s

)

w.r.t. MMAS-RWM-BT
w.r.t. ESACO

FIGURE 8: Speed-up ratio versus number of cities.

TABLE 6: Results of the third experiment.

Dataset Algorithm Solution result Runtime (s)

Brazil58
MMAS-RWM-BT 25,649.397 0.497

ESACO 25,746.118 1.395
FP-ACO 25,438.407 0.256

St70
MMAS-RWM-BT 731.357 0.501

ESACO 730.319 1.483
FP-ACO 730.316 0.424

Gr96
MMAS-RWM-BT 554.821 1.289

ESACO 552.683 1.659
FP-ACO 553.528 1.069

Lin105
MMAS-RWM-BT 15,479.219 1.539

ESACO 14,812.105 1.801
FP-ACO 15,377.992 1.376

Bold values depict our algorithm sometimes is better than other algorithms in different datasets in third experiment.

10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

20 30 40 50 60
Number of cities

Ru
nt

im
e (

s)

70 80 90 100 110

MMAS-RWM-BT
ESACO

FP-ACO

FIGURE 9: Runtime comparison of MMAS-RWM-BT, ESACO, and proposed FP-ACO.

IET Computers & Digital Techniques 11

4. Conclusion

This article presents a fast ACO algorithm based on CUDA
denoted as FP-ACO that accelerates the runtime in solving
TSPs. Combined with the pheromone compensation method
and the roulette selection mechanism, the solution quality
improved as well. The proposed FP-ACO can update the
pheromone according to the precision of input data and
the feedback of the current result. Meanwhile, it can make
good use of GPU resources. To test the performance of the
proposed method, three experiments were conducted

utilizing datasets from TSPLIB. In each experiment, datasets
were implemented using the FP-ACO, the GPU-based
MMAS-RWM-BT, and the CPU-based ESACO. Compared
with the MMAS-RWM-BT, the acceleration effect of the FP-
ACO constantly exhibited better results with a decreasing
number of cities. When using FP-ACO, the entire ACO is
loaded on GPU, perceived as several blocks of threads, and
dispatched to CUDA cores for executing in parallel while the
MMAS-RWM-BT just allocates partial operations on GPU.
If the memory of the GPU is large enough, the runtime of the
FP-ACO only contains the parallel executing time, as we

31.06
31.18
30.98

74.52
74.62
74.22

76.17
76.19
76.17

0 10

Burma 14

Ulysses 16

Ulysses 22

20 30 40 50 60 70 80 90 100

ESACO
MMAS-RWM-BT

FP-ACO

ðaÞ

0 0.5

Att 48

Brazil 58

Lin 105

1 1.5 2 2.5 3 3.5 4 4.5
× 104

ESACO
MMAS-RWM-BT

FP-ACO

35,811.11
35,877.76
35,790.08

25,746.118
25,649.397
25,438.407

14,812.105
15,479.219
15,377.992

ðbÞ

0

Oliver 30

Dantzig 42

Eil 51

St 70

Eil 76

Gr 96

Rat 99

200 400

425.76
437.91
425.77

694.54
751.84

698.09
431.55
435.18
434.63

730.316
731.357
730.319

568.53
571.81
570.92
553.528
554.821
552.683

1,483.77

1,349.19
1,349.22

600 800 1,000 1,200 1,400 1,600 1,800

ESACO
MMAS-RWM-BT

FP-ACO

ðcÞ
FIGURE 10: Results comparison of different datasets on MMAS-RWM-BT, ESACO, and proposed FP-ACO. (a) Datasets Burma14, Ulysses16,
and Ulysses 22. (b) Datasets Att48, Brazil58, and Lin105. (c) Datasets Oliver30, Dantzig42, Eil51, St70, Eil76, Gr96, and Rat99.

12 IET Computers & Digital Techniques

know, which is much faster than that of the CPU. Actually,
the constraint of memory capacity leads to the failure of
finishing ACO in one iteration. Consequently, the unfinished
parts of the ACO must wait for other idle CUDA cores to
execute, which is a large consume of time. That accounts for
why the number of cities increases, the speed-up ratio
degrades, and even the runtime becomes larger than the
MMAS-RWM-BT. Compared with the ESACO, the acceler-
ation effect was found to be more obvious, where its speed-
up ratio reaches 35. In the case that the number of cities is
less than 99, the quality of the results attained by FP-ACO is
better than the two other methods.

In summary, the results showed that the proposed FP-
ACO is suitable for solving TSPs faster in the case that the
number of cities is less than 100. Apart from the application
in TSP, practical problems similar to TSP can be solved by
FP-ACO. For instance, the arrangement of traveling to a
tourist site. People can use FP-ACO to acquire the shortest
path to the places of their interest and the application in
express delivery. An express delivery company can attain
the shortest delivery path for saving costs. In the real
domains, the constituent plots of a problem are relatively
in small quantity, which meets the condition that the FP-
ACO can show its best performance.

However, some problems exist. As shown in Equation
(5), the setting of k remains a difficulty. The experiments
also inspired the next step is to optimize the arrangement
of threads and the utilization of GPU memory, so that it can
quickly solve large-scale TSPs.

Data Availability

Due to the research focus on using a parallel ACO algorithm
upon CUDA to solve TSP, the dataset availability from the
previously reported TSPLIB data was used to support this
study and is available at http://comopt.ifi.uni-heidelberg.de/
software/TSPLIB95/tsp/. These prior studies (and datasets)
are cited at relevant places within the text as references
[3, 9, 10, 36–38].

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Conceptualization, Y.X. Cai and H. Lin; methodology,
Y.X.Cai and J. Wu; formal analysis, Z.Z., Y.X. Cai, H. Lin,
and J.W.; investigation, Z.Z., K.L. Ch, H. Lin, and J. Wu; data
curation, Y.X. Cai and H. Lin; writing—original draft prepa-
ration, Y.X. Cai and K.L. Ch; writing—review and editing,
Z.Z. and K.L. Ch.; supervision, Z.Z.; funding acquisition, Z.Z.
All authors have read and agreed to the published version of
the manuscript.

Acknowledgments

This research was funded by the key projects of Guang-
dong Provincial Department of Education of China
(no. 2022ZDZX3030), Science and Technology Project of

Huizhou City of Guangdong Province of China (no.
2016X0423038), and partly by the project of 2020 Rural Com-
missioner of Provincial Science and TechnologyDepartment of
China (2020; no. 409), the National Natural Science Founda-
tion of China (no. 42261024), Beibu Gulf University High-level
Talents Research Start-up Fund Project (no. 2021KYQD03),
and Marine Science Guangxi First-Class Subject, Beibu Gulf
University (no. DTA004).

References

[1] Z. H. Gao and Z. Chen, “Path-operation matrices of graph for
solving Hamilton cycles and other path problems,” Journal of
Huazhong University of Science and Technology (Natural
Science Edition), vol. 49, no. 2, pp. 32–36, 2021.

[2] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system:
optimization by a colony of cooperating agents,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), vol. 26, pp. 29–41, 1996.

[3] A. Colorni, M. Dorigo, and V. Maniezzo, “Distributed
optimization by ant colonies,” in Proc. ECAL, pp. 134–142,
Paris, France, 1991.

[4] K. S. Sameer, K. T. Ruppa, and T. Parimala, “Pricing
transmission rights using ant colony optimization,” in Proc.
GECCO ’11, pp. 809-810, Association for Computing
Machinery, New York, NY, USA, 2011.

[5] E. AbdElRahman, W. Brandon, E. J. Fatima, H. James, and
D. Travis, “Optimizing LSTM RNNs using ACO to predict
turbine engine vibration,” in Proc. GECCO ’17, pp. 21-22,
Association for Computing Machinery, New York, NY, USA,
2017.

[6] Q. Zhang, “Path planning and location for mobile robot,” Ph.D.
dissertation, Dept. Astro., Harbin Institute of Technology,
Harbin, China, 2014.

[7] L. Chen, Y. Su, D. Zhang, Z. Leng, Y. Qi, and K. Jiang,
“Research on path planning for mobile robots based on
improved ACO,” in 2021 36th Youth Academic Annual
Conference of Chinese Association of Automation (YAC),
pp. 379–383, 2021.

[8] L. H. Tao, Z. N. Ma, P. T. Shi, and R. F. Wang, “Dynamic ant
colony genetic algorithm based on TSP,” Machinery Design &
Manufacture, vol. 12, no. 346, pp. 147–149 154, 2019.

[9] Z. Ma, “Research on the improvement of ant colony algorithm
and its application in TSP,” M.S. thesis, Dept. Comp. Eng.,
Qingdao University of Technology, Qingdao, China, 2016.

[10] Y. J. Xiang, “Research on parameter setting in ant colony
algorithm—take TSP as an example,” Modern Information
Technology, vol. 4, no. 22, pp. 95–98+102, 2020.

[11] W. J. Bian, “Research on the development of computer
technology under the background of digital information age,”
Science & Technology Information, vol. 19, no. 36, pp. 4–6,
2021.

[12] H. Jeff, O. Suely, E. S. David, and W. Laura, “GBeam-ACO: a
greedy and faster variant of Beam-ACO,” in Proc. GECCO ’20,
pp. 1434–1440, Association for Computing Machinery, New
York, NY, USA, 2020.

[13] F. T. Yan and J. Y. Jia, “IFC-based improved ACO for multi-
agent path planning in Web3D mountain environment,” in
Proc. ICCAE ’17, pp. 99–103, Association for Computing
Machinery, New York, NY, USA, 2017.

[14] Y. Zhang and B. Ge, “VRP with soft time window and its
hybrid ant colony algorithm,” Journal of Chifeng University
(Natural Science Edition), vol. 37, no. 7, pp. 9–12, 2021.

IET Computers & Digital Techniques 13

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/

[15] Y. Y. Li and G. Qin, “Solving vehicle routing problem with
time window based on spark’s improved ant colony
algorithm,” Computer Systems & Applications, vol. 28, no. 7,
pp. 9–16, 2019.

[16] F. Dahan, W. Binsaeedan, M. Altaf, M. S. Al-Asaly, and
M. M. Hassan, “An efficient hybrid metaheuristic algorithm
for QoS-aware cloud service composition problem,” IEEE
Access, vol. 9, pp. 95208–95217, 2021.

[17] B. Y. Zhou, Q. K. Chen, L. P. Gao, and C. Qin, “Image
matching algorithm based on CUDA,” Computer Engineering
and Applications, vol. 51, no. 12, pp. 165–170, 2015.

[18] D. Zlotrg, N. Nosović, and A. Huseinović, “Utilizing CUDA
architecture for improving application performance,” in 2011
19th Telecommunications Forum (TELFOR) Proceedings of
Papers, pp. 1458–1461, 2011.

[19] L.-C. Nie, X.-X. Zhang, B. Liu et al., “A study on resistivity
imaging in tuznnel ahead prospecting based on GPU joint
inversion,” Chinese Journal of Geophysics, vol. 60, no. 12,
pp. 4916–4927, 2017.

[20] Y. Gao, X. Chen, Y. T. Wang, and M. J. Wu, “Improved ant
colony solution algorithm accelerated by GPU in track
correlation,” Journal of Northwestern Polytechnical University,
vol. 34, no. 3, pp. 514–519, 2016.

[21] P. Merz and B. Freisleben, “Fitness landscape analysis and
memetic algorithms for the quadratic assignment problem,”
IEEE Transactions on Evolutionary Computation, vol. 4, no. 4,
pp. 337–352, 2000.

[22] S. Tsutsui and N. Fujimoto, “ACO with tabu search on a GPU
for solving QAPs using move-cost adjusted thread assign-
ment,” in Proc. GECCO ’11, pp. 1547–1554, Association for
Computing Machinery, New York, NY, USA, 2011.

[23] Pascal Architecture Whitepaper, “NVIDIA Corp.” 2021,
https://www.nvidia.com/de-de/data-center/resources/pascal-
architecture-whitepaper/.

[24] H. T. Bai, “Research on high performance parallel algorithms
based on GPU,” Ph.D. dissertation, Dept. Comp. Sci. and
Tech., Jilin University, Jilin, China, 2010.

[25] J. A. Robinson, S. V. Vrbsky, X. Hong, and B. P. Eddy,
“Analysis of a high-performance TSP solver on the GPU,”
ACM Journal of Experimental Algorithmics, vol. 23, no. 1,
pp. 1–22, 2018.

[26] J. Fu, “Study and realization of parallel ant colony optimization
based on GPU,” M.S. thesis, Dept. Wuhan Digital Engineering
Institute, China Ship Research and Development Academy,
Beijing, China, 2011.

[27] A. Filippou, D. A. Karras, and I. Tsatrafyllis, “On the detailed
design issues of a multi-agent architecture based on CUDA
threads towards efficiently Simulating WSN Systems,” in 2015,
23rd Telecommunications Forum Telfor (TELFOR), pp. 349–
352, 2015.

[28] S. Larisa, E. Murali, P. H. Lin, and C. H. Liao, “Data
placement optimization in GPU memory hierarchy using
predictive modeling,” in Proc. MCHPC ’18, pp. 45–49,
Association for Computing Machinery, New York, NY,
USA, 2018.

[29] M. U. Ashraf, F. Alburaei Eassa, A. Ahmad Albeshri, and
A. Algarni, “Performance and power efficient massive parallel
computational model for HPC heterogeneous exascale
systems,” IEEE Access, vol. 6, pp. 23095–23107, 2018.

[30] Y. Torres, A. Gonzalez-Escribano, and D. R. Llanos, “Llanos,
uBench: exposing the impact of CUDA block geometry in
terms of performance,” The Journal of Supercomputing,
vol. 65, no. 3, pp. 1150–1163, 2013.

[31] “CUDA C++ Best Practices Guide,” NVIDIA Corp., 2022,
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
index.html.

[32] S. Thomas and H. H. Holger, “MAX–MIN ant system, future
gener,” Computing Systems, vol. 16, no. 8, pp. 889–914, 2000.

[33] S. Prata, Data and C, in C Primer Plus, pp. 60–88, Posts &
Telecom Press, Beijing, China, 6th edition, 2016.

[34] Z. Zhang, S. Xia, Y. Cai, C. Yang, and S. Zeng, “A soft-YoloV4
for high-performance head detection and counting,”
Mathematics, vol. 9, no. 23, Article ID 3096, 2021.

[35] Q. Huang, Y. Xu, Y. Chen, H. Zhang, and F. Min, “An adaptive
mechanism for recommendation algorithm ensemble,” IEEE
Access, vol. 7, pp. 10331–10342, 2019.

[36] G. Reinelt, “TSPLIB—a traveling salesman problem library,”
ORSA Journal on Computing, vol. 3, no. 4, pp. 376–384, 1991.

[37] R. Skinderowicz, “Implementing a GPU-based parallel
MAX–MIN ant system,” Future Generation Computer
Systems, vol. 106, pp. 277–295, 2020.

[38] H. Ismkhan, “Effective heuristics for ant colony optimization
to handle large-scale problems,” Swarm and Evolutionary
Computation, vol. 32, pp. 140–149, 2017.

14 IET Computers & Digital Techniques

https://www.nvidia.com/de-de/data-center/resources/pascal-architecture-whitepaper/
https://www.nvidia.com/de-de/data-center/resources/pascal-architecture-whitepaper/
https://www.nvidia.com/de-de/data-center/resources/pascal-architecture-whitepaper/
https://www.nvidia.com/de-de/data-center/resources/pascal-architecture-whitepaper/
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

