
Research Article
An Efficient RTL Design for a Wearable
Brain–Computer Interface

Tahereh Vasei , Mohammad Ali Saber, Alireza Nahvy, and Zainalabedin Navabi

School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar,
Tehran 1417614411, Iran

Correspondence should be addressed to Tahereh Vasei; tahere.vasei@ut.ac.ir

Received 22 July 2023; Revised 3 February 2024; Accepted 20 February 2024; Published 8 March 2024

Academic Editor: Seok-Bum Ko

Copyright © 2024 Tahereh Vasei et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article proposes an efficient and accurate embedded motor imagery-based brain–computer interface (MI-BCI) that meets the
requirements for wearable and real-time applications. To achieve a suitable accuracy considering hardware constraints, we explore
BCI transducer algorithms, among which Infinite impulse response (IIR) filter, common spatial pattern, and support vector
machine are used to preprocess, extract features, and classify data, respectively. With our hardware implementation of these tasks,
we have achieved an accuracy of 77%. Our system is designed at register transfer level (RTL) targeting an ASIC implementation,
which significantly decreases power consumption, latency, and area compared to the state-of-the-art (SoA) architectures for
embedded BCI systems. To this end, we fold IIR filters using time-shared and RAM-based techniques and use hardware-friendly
algorithms for the implementation of other tasks. The RTL design is realized on 45 nm CMOS technology consuming 4mW power
and 0.25mm2 area, which outperforms the SoA platforms for embedded BCI systems. To further illustrate the outperformance of
our design, the proposed architecture is implemented on Virtex-7 field program gate array as a prototyping platform consuming
6 μJ energy with 1.52% area utilization.

1. Introduction

Brain–computer interface (BCI) provides a nonmuscular
channel between the brain and the external environment to
send commands to an external device. BCI enables humans
to control external devices without physical movements by
solely thinking about desirable movement, called motor
imagery (MI) [1]. BCIs are divided into two groups, invasive
and noninvasive. The majority of noninvasive systems work
based on electroencephalogram (EEG) signals.

Despite the number of designed BCI systems, due to their
computational complexity and resource requirements, these
systems are limited to personal computers and cloud com-
puting with high-performance computers. However, wear-
able and real-time BCIs have recently attracted academic and
industrial research. In addition, it is necessary to move BCI
technologies from the laboratory to the real world and daily
life of people. Therefore, because of the importance of power
consumption, area, latency, and wearability in BCI applica-
tions, they are implemented in the embedded platform.

Embedded BCI systems are implemented as software
architecture, hardware architecture, or hardware/software
architecture [2]. There are numerous BCI applications for
functional replacements, such as wheelchair control and
prosthetic limb, which are used by people with disabilities.
The majority of BCI systems are implemented as software
code embedded within a microcontroller, such as ARM,
Nios, and MicroBlaze [2]. Lin et al. [3] proposed an EEG-
based smart living environmental control system to adjust
the living environment using algorithms such as dawn sam-
pling, Hanning window multiplier, and ICA decomposition,
which was implemented on a dual-core processor within
OMAP1510 platform. The accuracy, delay, and power con-
sumption of this system were 78%, 2 s, and 1W, respectively.
An field program gate array (FPGA)-based P300 speller was
developed in [4] using an integrated forward filter and fisher
linear discriminator algorithm. This system was codded in
C/C++ and implemented on the Xilinx Spartan BE-FPGA
board. The proposed system reached an accuracy of 65.37%
without any report of power consumption and run-time.

Hindawi
IET Computers & Digital Techniques
Volume 2024, Article ID 5596468, 15 pages
https://doi.org/10.1049/2024/5596468

https://orcid.org/0009-0000-6644-0867
mailto:tahere.vasei@ut.ac.ir
https://creativecommons.org/licenses/by/4.0/


Jiang et al. [5] used a software code and implemented it on an
iPhone as an embedded platform to control the wheelchair
using brain signals achieving 61.6% accuracy, 6W power
consumption, and 34ms delay. Li and Chung [6] proposed
an embedded platform for detecting the level of driving
drowsiness. The C/C++ code of the algorithms such as infi-
nite impulse response (IIR), fast Fourier transform (FFT),
and support vector machine (SVM) used in this system
was implemented within STM32F103CB, LMC6464, and
L3G4200D platforms based on ARM processors. The accu-
racy of this system was 96%, while consumed 9W power.
Software architecture is useful for prototyping to achieve a
reasonable time and cost. However, for BCI implementation,
it does not meet critical time and power consumption
constraints.

To deal with timing constraints that cannot be satisfied
by the software solution, some articles proposed hardware/
software architecture. In this solution, the critical compo-
nents of BCI system are implemented in the register-transfer
level (RTL), and the noncritical components are kept in
high-level abstraction. This enables the development of a
program in a much more user-friendly programing context
and is generally independent of the computer’s hardware
architecture. Therefore, the time-consuming components
such as preprocessing ones are implemented on the hard-
ware accelerator, and the rest of the components run on an
embedded softcore processor. Belwafi et al. [7] proposed the
prototype of a BCI system for controlling home devices using
hardware/software architecture. In this system, the time-
consuming block was the artifact removal component imple-
mented as a hardware accelerator. Other components of the
system ran on an embedded Nios-II softcore processor. To
validate their filtering approach, an FPGA-based platform
was used. The accuracy was reported at 94.6%; however,
the power consumption exceeded 1W. Belwafi et al. [8]
used the hardware/software solution to propose an embed-
ded BCI system to implement an adaptive filter bank for BCI
systems. Detecting MI signals using a dynamic filter based on
the weighted overlap-add (WOLA) technique was defined as
a software code embedded within FPGA-based hardware
architecture, running on the integrated core processors.
They achieved an accuracy of 76.80% under the power con-
sumption of 0.7W.

In applications with timing and power constraints such as
wearable applications for healthcare, software, and hardware/
software architectures cannot meet these constraints. The
pure hardware architecture is appropriate to meet crucial
requirements of wearability such as low power consumption,
area, and cost. Some articles implemented frequently used
BCI algorithms. For instance, Palumbo et al. [9] introduced
a hardware implementation for EEG acquisition and prepro-
cessing components. They presented the design and implemen-
tation of spatial filtering, known as independent component
analysis (ICA), using the compact-RIO platform. Karkon et al.
[10] focused on a computational algorithm known as canonical
correlation analysis (CCA), which required numerous complex
matrix transformations. This algorithm is widely used in
steady-state visual evoked potential (SSVEP)-based BCI

systems. They used some simplifications and developed a fully
hardware fixed-point CCA engine to achieve less power con-
sumption and exploit it in real-time applications. This CCA
engine was synthesized on an FPGA platform. Some articles
used pure hardware implementation for a complete BCI
system. For example, Malekmohammadi et al. [11] suggested
an efficient hardware implementation for MI-based BCI sys-
tems. They used a DC block, surface Laplacian, separable com-
mon spatial spectral pattern (SCSSP), linear discriminant
analysis (LDA), and SVM as different parts of the system.
Their proposed system was tested on a Virtex-6 FPGA and
achieved 80.55% accuracy for two classes and 0.09W power
consumption.

In addition to conventional algorithms, feature extrac-
tion and classification can also perform as a single processing
block using deep learning (DL). Widely used architectures in
MI-BCI systems are convolutional neural networks (CNNs),
RNNs, stacked autoencoders, and deep belief networks,
which outperform traditional algorithms such as SVM and
common spatial pattern (CSP) in terms of accuracy [12].

This article proposes an embedded implementation of a
BCI system based on MI tasks with exploring in different
RTL designs to meet the real-world requirements for BCI
applications such as timing constraints, low power consump-
tion, low cost, and wearability besides accuracy. The main
contributions of this paper are as follows:

(1) Exploring among BCI transducer algorithms for the
main components of a BCI system such as prepro-
cessing, feature extraction, and classification opti-
mizing their hardware cost besides accuracy.

(2) Designing components in RTL to meet power con-
sumption, area, and latency constraints.

(3) Proposing methods to reduce the area and hardware
resources without reduction in the number of chan-
nels and accuracy such as time sharing.

(4) Using pipelining to reduce latency and hardware-
friendly formula for computationally heavy and time/
power-consuming algorithms.

(5) Using ASIC as an efficient target platform to implement
the proposed system to meet wearable and real-time
requirements. Therefore, the proposed architecture is
realized on 45nm CMOS technology as well as synthe-
sized on an FPGA as the prototyping platform.

The rest of this paper is organized as follows. Section 2
introduces all required components for a BCI system. Pre-
evaluation of design in software platforms is explained in
Section 3. Section 4 depicts the RTL designs of all compo-
nents and the complete system. Section 5 presents and dis-
cusses a wide range of experimental results to demonstrate
the efficiency and applicability of the proposed MI-BCI sys-
tem, and the paper is concluded in Section 6.

2. An MI-BCI Block Diagram

The purpose of a BCI is to detect and quantify the character-
istics of brain signals and to translate measurements into

2 IET Computers & Digital Techniques



desired commands in real time [13]. Three steps are required
to achieve this goal: preprocessing, feature extraction, and
classification. First, the signal-to-noise ratio of recorded sig-
nals increases in the preprocessing step [14]. Then, the sig-
nals are fed into the feature extraction algorithm to extract
the features in the time and frequency domains. Finally, the
features are translated by a classifier to convert the indepen-
dent variables to dependent ones [15]. Figure 1 shows the
components of a BCI system. Different methods have been
proposed by researchers for each of these three sections. One
type of preprocessing, which is commonly used in BCI sys-
tems, is spatial filtering, such as finite impulse response (FIR)
and IIR filters. It is worth noting that IIR filters are more
efficient than FIR ones from a computational point of view;
however, their use is recommended when throughput is
desired. Therefore, they are utilized when a causal filter is
needed. On the other hand, FIR filters are easier to control,
stable, and provide a clear pass band. However, their imple-
mentation is not cost-effective [16].

As for feature extraction, there are different methods
including CSP [17–21], augmented CSP [22], FFT, and
wavelet. In Aggarwal and Chugh’s [23] study, these methods
were compared. According to this comparison, FFT has a
good frequency accuracy, and its speed is higher than the
other methods. This method has many problems including
adaptivity, localization of frequency, and timing window.
The worst problem of this method is that it does not consider
time information. The limitation of the wavelet method is
that the proper mother wavelet is required to be selected. By
reviewing the articles, it can be seen that the CSP method is
used more than the others thanks to its suitability for multi-
channel signal analysis, but it is not able to handle temporal
dynamics.

In the field of classification, various methods have been
investigated including SVM [24, 25], CNN [26–29], deep
neural networks, and LDA. Among these methods, SVM
has better generalization properties and it is insensitive to
dimensionality. However, it is not suitable for handling the
dynamic nature of the signals. Neural networks balance the
accuracy and speed, but they have large computational com-
plexity for training and testing. The LDA method requires a
few calculations, which makes it easier to use, but it is not
suitable for nonlinear signals.

3. Predesign Evaluation

In this section, first, the dataset used to verify the proposed
design is explained. Then, for each component of the system,
several methods are investigated to achieve the proper
method and calculate the coefficients. Finally, the coefficients
obtained from the train phase are saved to be used in the test
phase. To compare the performance of these systems, all the
experiments are performed in MATLAB.

3.1. Dataset Description. In this work, the publicly available BCI
Competition IV-2a [30], the dataset is used, containing EEG
recordings of seven subjects. The goal of “BCI competition IV”
is to validate the signal processing and classificationmethods for
BCIs. Figure 2 shows the 2D position of the electrodes.

3.2. Choosing Integer and Fractional Bits. In the proposed
architecture, all intermediate calculations and results are per-
formed in a 16-bit fixed-point numeric system. We proposed
a technique to find the best integer and fraction length of
data for each computational block. To this end, first, each
block of the system is modeled in MATLAB and then the
final accuracy of the system is checked. Further accuracy
check for different integer and fractional length of data
indicates that the filter block achieves better accuracy with
higher integer length while the other components behave the
exact opposite. Hence, 5-bit integers and 11-bit fractions are
considered for the filters, while other parts of the system
require 2 and 14 bits for the integers and fractions,
respectively. It should be noted that in sensitive calculations
such as the variance unit, a longer bit length is considered. In
the proposed technique, the data are categorized based on the
minimum number of bits required for the binary representation
of the integer part of the data. Figure 3 shows the percentage of
data loss versus the correspondingminimumnumber of bits. For
example, by considering 5 bits for the integer part of the input
data, 3% of the data is lost. According to this diagram, no data are
lost for the input data with 16 bits.

Preprocessing

Feature
extraction

Classification Br
ai

n–
co

m
pu

te
r i

nt
er

fa
ce

CommandExternal
device

Feedback

EEG signal acquisition

FIGURE 1: Brain–computer interface system.

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

–1
–1

–0.5 0 0.5 1

AF3 AF4

F6
F4F2Fz

FCz FC2 FC4 FC6

CFC6 CFC8
CFC4CFC2CFC1

C3 C1 Cz C4C2 C6 T8T7

CCP7 CCP5 CCP3 CCP1 CCP2 CCP4 CCP6 CCP8

CP5 CP3 CP1 CPz CP2 CP4 CP6

P6
P4P2PzP1P3

P5

PO2PO1

O2O1

C5

CFC3CFC5CFC7
FC1FC3

FC5

F1F3
F5

FIGURE 2: Location of electrodes on the head.

IET Computers & Digital Techniques 3



3.3. Preprocessing. Recording and processing brain EEG is
the key to a BCI-based system. Recorded EEG often has
environmental noises. These noises originate from other
EEG channels and electrical equipment noise. The first
step of processing the EEG is purifying each EEG signal
channel from all unwanted noises and selecting the proper
frequency bandwidth. EEG contains five major brain waves:
gamma, beta, alpha, theta, and delta. These brain waves have
different frequency ranges from 0.5Hz to above 30Hz. Stud-
ies indicate that alpha and beta brain waves have all the
necessary information for MI tasks. Therefore, filter band-
width should pass alpha and beta brain waves (8–30Hz) and
eliminate others along with environmental noises.

To select the proper frequency bandwidth (8–30Hz)
including alpha and beta rhythm, the frequency response
of the FIR and IIR filters were compared. Figure 4 shows
that FIR has a good attenuation capability, but the degree
of the designed filter is 48, which has a high hardware cost.
However, according to Figure 5, to implement Chebyshev
IIR, the minimum suggested order is 8. Chebyshev filter is
closer to the ideal filter than other IIR filters since it has a
higher attenuation capability because of its high ripple.

3.4. Feature Extraction. The next step in processing the EEG
signal is extracting features from raw filtered data. This pro-
cess helps us to focus on the extracted features instead of raw
data and leads us to achieve higher accuracy with simple
classifiers. Consequently, using feature extraction techniques
allows us to reduce silicon area and power consumption. By
comparing the CSP and FBCSP methods, the accuracy of
FBCSP is just 3% more than that of CSP, while FBCSP
uses more hardware resources than CSP. Therefore, CSP
feature extraction is used. This feature extraction technique
separates the variance of each class on different axes and
allows us to use a simpler classifier like SVM. Each channel
was considered a feature. This algorithm aims to extract m
optimal channels from n available channels. In the selected
dataset, each trial includes 59× 400 data which is converted
to 2× 400 after applying the CSP. This algorithm affects the
variance in each class. Figure 6 shows that the variance of
data in one class increased along the Y-axis and decreased
along the X-axis. In contrast, the variance of other classes
increased along the X-axis and decreased along the Y-axis.
The salient feature that distinguishes two classes in the CSP
output is the variance of data. Hence, by applying variance to
the output, the output data of CSP become more separable.
This is an important step to increase the accuracy of
classification. Figure 7 shows the output of variance that
feeds the classifier.

3.5. Classification. The evaluation parameters, such as accu-
racy are compared to choose the best classifier. Table 1 shows
that KNN offers the highest accuracy than the others. It is
notable that on average the difference between the accuracy
of classifiers is just around 5%. Therefore, the classifiers are
compared on the basis of hardware costs. Nonlinear SVM
and KNN use all train data for each test data, so the hardware
has to process as much as the train data. Using these classi-
fiers is not suitable for hardware implementation because the
dependence on the training data is high, and nonlinearity
causes an increase in hardware resource usage. The only
linear classifier is the linear SVM, the test phase of which
is independent of the train data that only relies on the num-
ber of classes. As a result, the linear SVM is suitable for the
hardware implementation of BCI systems.

10987654321
Number of integer bits

0

20

40

60

80

100
Lo

st 
da

ta
 (%

)

FIGURE 3: The percentage of loosing data in different number of
integer bits.

403020100
Frequency (Hz)

–60

–40

–20

0

M
ag

ni
tu

de
 (d

B)

FIGURE 4: Frequency response of FIR filter.

403020100
Frequency (Hz)

–60

–50

–40

–30

–20

–10

0

M
ag

ni
tu

de
 (d

B)

FIGURE 5: Frequency response of Chebyshev IIR filter.

4 IET Computers & Digital Techniques



3020100–10–20–30
Channel-1

–30

–20

–10

0

10

20

30
Ch

an
ne

l-2

Class-1
Class-2

ðaÞ

6420–2–4–6
X-axis

–6

–4

–2

0

2

4

6

Y-
ax

is

Class-1
Class-2

ðbÞ
FIGURE 6: Data distribution on input and output of CSP block. (a) Distribution of raw data before applying CSP. Because of huge dimension of
data, only two channels are drawn. (b) Distribution of extracted features after applying CSP.

10.750.50.250
X-axis

0

1

2

3

Y-
ax

is

Class-1
Class-2

FIGURE 7: Distribution of classes after applying variance.

TABLE 1: Classification accuracy of different classifiers.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Average

SVM 81 69 75 78.3 82 77.6 79.3 77.45714
KNN 85 74.8 77 82 84 80 82 80.68571
LDA 80 63.3 73.3 83.3 80 75 73.3333 75.4619

IET Computers & Digital Techniques 5



Table 2 demonstrates an accuracy of 77.4%, sensitivity of
75.1%, and specificity of 79.8% through k-fold cross-validation.
The use of fivefold cross-validation is a strong indicator of the
system’s robustness. Thismethod ensures that the performance
metrics are not biased toward a specific subset of the data. By
dividing the data into k equally sized folds and iteratively train-
ing and testing the model on different combinations, we mini-
mize the likelihood of overfitting and provide more reliable
performance estimates. A balanced combination of sensitivity
and specificity is crucial for a robust BCI system. In this case,
the sensitivity of 75.1% suggests that the system can correctly
identify 75.1% of the true positive instances, while the specific-
ity of 79.8% indicates that the system can correctly identify
79.8% of the true negative instances. This balance between
sensitivity and specificity is essential for minimizing both false
positive and false negative rates, which contributes to the over-
all reliability of the system. The reported performance metrics
suggest that the proposed BCI system has the potential to
generalize well to new data. This is particularly important in
the context of BCIs, which often face challenges related to
intersubject and intrasubject variability. The robust perfor-
mance across different folds of data during cross-validation
supports the system’s ability to adapt to varying conditions
and user-specific characteristics.

To compare the proposed MI-BCI system with other
methods that use the same dataset, other machine learning
methods like effect-size based CSP (E-CSP) [31], spatiotem-
poral filtering strategy [32], Parzen window based methods
[33], and spatiospectral feature representation [34] achieve an
accuracy of 80.56%, 79.6%, 86.01%, and 86.96%, respectively.
In addition, DL-based methods proposed in Schirrmeister
et al.’s [35–38] study achieve an accuracy between 80% and
86%. While these methods improve their accuracy, theymight
be computationally more demanding and would requiremore
resources due to their increased complexity. The proposed
MI-BCI system offers advantages in terms of power consump-
tion and area, making it a more energy-efficient and compact
solution. However, it may not achieve the highest accuracy
compared to other methods. Depending on the specific appli-
cation and constraints, such as power and space limitations,
the given approachmight be more suitable compared to more
complex methods. An accuracy of 77% is actually quite good
given the difficulty of this problem. Many similar studies
report classification accuracies in the 60%–93% range. How-
ever, it is essential to consider the trade-offs between the
accuracy and energy consumption and area efficiency since
achieving high accuracy levels often requires more energy-
intensive processing techniques. For example, intracortical
recordings may provide higher accuracy, but they are invasive
and require significant amounts of energy to maintain.

Similarly, EEG-based systems are noninvasive but may be
more susceptible to noise and other artifacts that reduce accu-
racy. The energy efficiency of a BCI system is an essential
factor, especially for practical applications, such as developing
portable, long-lasting, and wearable BCI devices. High energy
consumption can limit the usability of a BCI system, as it may
require frequent recharging or replacement of batteries, mak-
ing it less practical for everyday use. Some applications, where
a MI-based BCI with 77% accuracy could be sufficient, are
assistive technologies for individuals with disabilities, gaming,
and virtual reality control, and even neuromarketing research.
High-risk or complex continuous control applications would
require a higher accuracy. But for many entry-level or casual-
use scenarios, this level of accuracy may be sufficient. While
higher accuracy is always better, 77% can still be practical and
useful for certain applications, especially given the other
metrics like low cost, short training, good user experience,
and low power consumption.

4. RTL Design and Implementation

This section explains details about RTL designs and improve-
ments in the implementation of each component. Three com-
plete BCI systems using designed components are proposed.

4.1. Preprocessing. Reduction in hardware leads us to use IIR
filter instead of FIR filter due to lower order for a required
bandwidth. In this study, 59 eighth-order filters are needed
to filter each EEG channel. All filters are designed in Trans-
posed-Direct-Form-II (TDF-II) IIR form; TDF-II IIR form is
shown in Figure 8. Low sampling frequency allows us to
propose three schemes for implementing the filter bank.

TABLE 2: Validation parameters of different subjects.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Average

Accuracy 81 69 75 78.3 82 77.6 79 77.4
Sensitivity 76.6 73 70 76.6 80 73 76.6 75.1
Specificity 86 66 80 80 83.3 80 83.3 79.8

en
Reg

clk

en Reg

clk

x(n)y(n)

×(–a1)

×(–a2)

×b1

×b2

×b0

FIGURE 8: TDF-II IIR filter form.

6 IET Computers & Digital Techniques



Figure 9 shows a module named “one order.” This mod-
ule, which contains two multipliers and a three-operand
adder, is capable of calculating a single order of a filter. Later
on, we used this module to build all three filters. The eighth-
order IIR filter is architected as a series of eight identical first-
order IIR filtermodules connected in a cascaded fashion. Each
module is responsible for applying a single stage of the IIR
filtering process, which can be expressed as follows:

yi n½ � ¼ numi ⋅ xi n½ �ð Þ − denumi ⋅ yi n − 1½ �ð Þ; ð1Þ

where:

(i) yi½n� : is the output of the ith module at time n,
(ii) xi½n� : is the input to the ith module at time n,
(iii) numi is the numerator coefficient for the ith module,
(iv) denumi is the denominator coefficient for the ith

module, and
(v) yi½n− 1� : is the output of the ith module at time n− 1.

As shown in Figure 10(a), the eighth order of a single
simple form filter is built using nine “one order” modules
and eight registers which are called “partial registers” to store
the partial result of each filter order. Once a single filter was
implemented, 59 of them were used to filter all channels
separately. Due to implementing 59 completely separate fil-
ters, this approach consumes the highest silicon area among
all three proposed schemes. This approach is shown in
Figure 10(b).

The input xi½n� : to each module is the output yi−1½n� : from
the preceding module, except for the first module where the
input is the original signal x½n� :. The output of the last module
y8½n� : is the final output of the eighth-order IIR filter
(Figure 10(a)).

Each module’s output is stored in a register to create a
delay element, representing the yi½n− 1� : term for the next
clock cycle. This register also serves as the interconnection
between consecutive modules, ensuring that the output of
one module is fed as the input to the next module in the
sequence.

The proposed RAM-based design, using the time-shared
technique, shares a single filter among all 59 EEG channels
and filters each EEG channel signal one at a time. To perform
this idea, a single filter should be capable of storing the
history of all channels and calculating filter signals within a
sampling interval. Recoding EEG channel history is imple-
mented by replacing each and every partial register with a

RAM module. An input is provided to indicate the channel
number that the filter should operate on, as well as the
address of RAM to obtain the history of that channel. The
eighth-order IIR filter is composed of eight cascaded first-
order IIR filter stages. Each stage performs the necessary
filtering operation and then writes the output to a dedicated
section of the RAM. This RAM acts as a buffer, storing the
output of each stage before it is read by the subsequent stage
in the next clock cycle. By doing so, we eliminate the need for
59 sets of registers shown in Figure 10(b) for each electrode
channel, significantly reducing the hardware footprint.

The nature of BCI and EEG signals does not require a
sampling rate of more than 1 kHz. This low sampling rate
allows us to propose this time-shared RAM-based filter bank.
By sharing the “one-order” block of a specific order among
all others in filters and replacing all corresponding partial
registers with RAM, the silicon area of the filter bank is
reduced significantly. This reduction in the area comes
from eliminating the other 58 “one order” blocks. On paper,
this should reduce silicon area by about 98%. In the result
section, the area of these three schemes is presented. The
overall structure is shown in Figure 11.

To further reduce silicon area, a third form is presented.
In this form, all of the “one-order” blocks within the time-
shared filter are replaced with only one “one-order” and all
RAM modules are combined together to form a single RAM
that contains all of the partial results. Unlike the two previ-
ous designs, all coefficients are hardcoded in the filter, in this
one, the coefficients are stored in a ROM. This ROM helps us
to apply the corresponding coefficient to the “one-order”
module. A control unit is implemented to control the filter
and maintain its proper functionality. A module named
“address gen” calculates proper addressing for state RAM
based on the current EEG channel that is being filtered
and the current filter order that is being calculated. Figure 12
shows a structural view of this filter. Design shown in
Figure 12 leverages a counter, an address generator, a weight
ROM containing the numerator (num) and denominator
(denum) coefficients of the filter, and RAM to store partial
sums. The counter’s output corresponds to the channel num-
ber, ensuring that the filter processes the signals from each
electrode in sequence. The weight ROM stores the filter
coefficients, which are then fetched and applied to the single
first-order IIR filter module according to the current channel
number indicated by the counter. As the filter operates on
the signal from each channel, the partial sums-representing
intermediate results of the filtering process-are stored in spe-
cific addresses within the RAM. These addresses are dynam-
ically generated by the address generator, which takes into
account the current channel number and the stage of the
filtering process. This design allows for the sequential pro-
cessing of signals from all 59 channels using just one filter
module. The RAM serves as a temporary storage for the
intermediate results, which are then sequentially updated
as the filter processes each channel’s signal. By cycling
through all channels and stages of the filter, the system effec-
tively emulates an eighth-order IIR filter for each channel
without the need for 59 separate filter instances. By replacing

y

Den

Par-in

Par -out

x

Num

FIGURE 9: One order.

IET Computers & Digital Techniques 7



One order

Num

P-in

DenomP-out

yx

en
Reg

clk

One order

Num

P-in

DenomP-out

yx

en
Reg

clk

One order

Num

P-in

DenomP-out

yx

en

Reg

clk

Data in

0Num(0)

Denom(1)Num(1)

Denom(k)Num(k)

Data out

ðaÞ

en
Reg 8

clk

en
Reg 1

clk

x(n)

. . .

en
Reg 8

clk

en
Reg 1

clk

. . .

Channel 1

Channel 59

y(n)

y(n)

×b0

×b1

×b8

×(–a1)

×(–a8)

×b0

×b1

×b8

×(–a1)

×(–a8)

ðbÞ
FIGURE 10: Simple form filter: (a) eighth-order IIR filter and (b) filter bank containing 59 eighth-order IIR filter (Filter I).

One order

Num

P-in

DenomP-out

yx

One order

Num

P-in

DenomP-out

yx

One order

Num

P-in

DenomP-out

yx

en Reg

clk

Data in

0Num(0)

Denom(1)Num(1)

Denom(k)Num(k)

Data out

Add
Wr-en

D-out

D-in

RAM

Add
Wr-en

D-out

D-in

RAM

. . .

Channel
address

FIGURE 11: RAM-based filter bank (Filter II).

8 IET Computers & Digital Techniques



nine “one order”modules with only one, theoretically, this filter
bank should have saved nearly 99.8% and 89% silicon area com-
pared to filter bank designs one and two, respectively.

4.2. Feature Extraction. Two separate pipelines are imple-
mented to calculate two classes simultaneously. This decision
eliminates the need of storing redundant data. Required
coefficients are stored in a ROM block. By entering new
data, the counter increases by one and applies a new coeffi-
cient to the MAC unit. After one data of each EEG channel is
applied to the CSP unit, it automatically generates a pair of
outputs and informs the next unit. The block diagram of the
CSP block is shown in Figure 13. In the training phase for
applying the CSP algorithm to the data in an MI BCI, the
weights are first stored in a ROM. The dimensions of the

weight matrix are 2 × 59, indicating that there are two sets of
weights for each of the 59 channels. The CSP module produces
two outputs, which are generated in parallel. This is achieved by
processing the input from each channel in turn. As each chan-
nel’s data is inputted into the system, a counter retrieves the
corresponding weight from the ROM andmultiplies it with the
input. The result of this multiplication is then accumulated
with the previous values. This operation is controlled by a
signal named init2. After the data from all 59 channels have
been processed, which takes 59 clock cycles, a signal named en3
is activated. Once en3 is active, the output is ready and can be
passed on to the next stage of processing. The output of the
counter is a number corresponding to the channel number.
The relevant coefficients are transferred from the weight ROM
to Module 1. Based on the output of the counter, the previous
sum and the subsequent sum are stored in the corresponding
memory address, which is generated by the address generator.
To elaborate, as the data from each channel are processed by
Module 1, the counter indicates the channel number, and the
corresponding weights are fetched from the weight ROM.
These weights are then used to multiply the input signal for
that specific channel. The product of this multiplication is
added to the cumulative sum of the previous products. The
address generator plays a crucial role here. It generates the
specific memory addresses where the sums (both the previous
and the subsequent ones) are to be stored. This ensures that the
data are organized correctly in memory, facilitating efficient
retrieval, and processing in subsequent stages.

In this paper, we present a robust method for the real-
time calculation of variance and average within a fixed-size
sliding window of samples. This technique is particularly
advantageous for BCI applications where the sampling rate
is relatively low, such as in the case of electroencephalogram
(EEG) signal processing. The proposed method ensures
computational efficiency and accuracy, enabling the variance
to be updated incrementally with each new sample, thereby
eliminating the need for recalculations from the entire data-
set. The methodology comprises the following steps:

(1) Initial conditions: We start with a window of 400
samples, each with an initial variance denoted as VI
and an initial average denoted as MI .

(2) Updating for new sample: When a new sample,
Datanew, enters the window and an old sample,
Dataold, exits, we update the sum and sum of squares
to reflect this change.

(3) Sum of samples: The sum of samples is updated by
adding the new sample and subtracting the old sam-
ple, ensuring that we are always considering the cur-
rent set of 400 samples:

Updated ∑
400

k¼1
xk ¼ 400 ×MIð Þ þ Datanew − Dataold:

ð2Þ

(4) Sum of squares of samples: The sum of the squares of
samples is updated in a similar fashion:

One order

Num P-in Denom

Input

en
Reg

clk

Reg

clk

Counter
en

clk

en

Add
Wr-en

D-out

D-in

P-out

yx

Address
generator

Channel
addressWeight

ROM

RAM

Filter output

Input

Co

FIGURE 12: RAM-based and multiplier shared filter bank (Filter III).

D-out D-out

Add Add

ROM

Counter
en

clk

clk
en1

Re
g

clk
en2

Re
g

clk
en3

Re
g

Out 1
InitInit 2

clk
en1

Re
g

clk
en2

Re
g

clk
en3

Re
g

Out 2
InitInit 2clk

Re
g

Lo
ad Reg

clk

Lo
ad Reg

clk

en 1 en 2

Lo
ad Reg

clk

Lo
ad Reg

clk

Init 1 Init 2

Data in

en

Enable

Init 

FIGURE 13: CSP block schematic.

IET Computers & Digital Techniques 9



Updated ∑
400

k¼1
x2k ¼ 400 × VI þM2

Ið Þð Þ þ Data2new − Data2old:

ð3Þ

(5) New average calculation: The new average, Mf , is
then calculated using the updated sum of samples:

Mf ¼
1
400

× Updated sumof samples¼ 1
400

∑
400

k¼1
xk:

ð4Þ

This calculation gives us the true average of the current
window, not a partial average.
(6) New variance calculation: The new variance, Vf , is

calculated using the updated sum and sum of
squares:

Vf ¼
1
400

∑
400

k¼1
x2k −

1
400

∑
400

k¼1
xk

� �
2
: ð5Þ

This formula correctly computes the variance based on
the true average of the current window.
(7) Final variance formula: The final variance formula

provided in the paper is derived from the previous
steps and accurately calculates the new variance
based on the true average of the current window of
samples:

Vf ¼ VI þM2
I þ

Data2new − Data2old
400

� �
−M2

f : ð6Þ

The sequence of operations detailed above facilitates a
continuous and real-time update of the variance, which is
critical for adaptive filtering and signal analysis within BCI
systems. The efficiency of this method lies in its ability to
maintain accurate variance calculations withminimal compu-
tational overhead, thereby making it suitable for applications
with stringent resource constraints.

Implementation results show that in comparison to the
main formula, the recursive variance formula leads to reduc-
tion of energy consumption by 96%, respectively.

The RTL design for the variance calculation module, as
illustrated in Figure 14, is optimized to perform the computa-
tion within eight clock cycles. The output from the CSP mod-
ule, once available, is sequentially fed into the variance module.
For the sake of clarity, only one of the dual variance modules
operating in tandem is shown in the figure. The computation
process initiates in the first clock cycle by enabling the load
registers for the new value (nv) and the old value (ov), alongside
the push and pop commands of the first-in-first-out (FIFO)
queue. This setup permits the accommodation of the incoming
new data into nv and the displacement of the oldest data into
ov. Concurrently, the register m4 is loaded with the product of
the prior mean multiplied by 400, while the multiplexer mx2 is
engaged to capture the preceding mean for subsequent

operations. Subsequently, in the second clock cycle, the multi-
plexer mvv selects the content of register x2, triggering the load
registers for both the variance and the cumulative sum. The
variance is updated by incorporating the square of the prior
mean. Concurrently, the multiplexer maa retrieves the value
from register m4, which is then loaded into the register desig-
nated for the new mean. As the third clock cycle commences,
the multiplexer maa selects the new data residing in nv, adding
it to the existing sum inma, which is then stored back inma. In
parallel, the multiplexer mx2 captures the new data value,
directing it to register x2 to compute and store its square. In
the fourth clock cycle, the multiplexer maa is set to select the
value of the outgoing data, and through the adder/subtracter,
the old data value is subtracted from the cumulative sum inma.
Meanwhile, the multiplexer md4 selects the value from register
x2, and the load register d4 is engaged. This action results in the
storage of the new squared value divided by 400 in d4, while
simultaneously computing the square of the old value divided
by 400. During the fifth clock cycle, the multiplexer mvv selects
the value in d4, and with the activation of the variance register
load and the add operation, the variance is augmented by the

FIFO

Load-NV

Sel-AA

Load-NA

Sel-X2

Sel-MV

Load-VAR

Load-D4

Load-PA

Load-M4

X2

Data in

MUX
Sel

Sel
MUX

Sel
MUX

Sel
MUX

Sel-D4

clk

Reg
New_ValueLo

ad

Load-OV
clk

Reg
Old_ValueLo

ad

clk

Lo
ad Reg_X2

Load–X2

Lo
ad

Reg
New_Average

clk

clk

Lo
ad

Lo
ad

Reg 
P_Average

Lo
ad Reg M4

clk

clk

Lo
ad

Reg
Variance

clk

>>9 >>11
400
X

<<8 <<7 <<4400X

± +

Reg_D4

± +

FIGURE 14: Variance block schematic.

10 IET Computers & Digital Techniques



value in d4. This step also involves storing the new mean value
in register d4. In the sixth clock cycle, the value in d4, now
representing the newmean, is preserved in the pa register upon
activation. Concurrently, the multiplexer md4 selects the value
from register x2. The seventh clock cycle sees the multiplexer
mx2 selecting the value in the pa register, preparing to load the
newmean squared into register x2 in the following cycle. At the
same time, themultiplexermvv selects the value in d4, and with
the subtraction operation from ba and the variance register
load, the variance is adjusted by subtracting the square of the
old value divided by 400. Finally, in the eighth clock cycle, the
new mean squared, held in register x2, is selected by the multi-
plexer mvv. The subtract operation from va is then activated,
and the variance register is loaded, culminating in the storage of
the final variance value in the variance register during the
subsequent clock cycle. The “variance output ready” signal is
then dispatched to the subsequent processing block.

4.3. Classification. As mentioned before, the linear SVM clas-
sifier is used for classification. Its linearity causes a significant
reduction in hardware. The block diagram of this module is
shown in Figure 15. The critical path consists of a multiplier
and an adder. This module should calculate the output data
with a higher frequency than the sampling rate.

4.4. Proposed BCI Systems.All mentioned blocks make up the
proposed BCI system. The proposed system begins to pro-
cess after receiving digitalized signals and makes a decision
after filtering data and extracting features. In the following,
the proposed systems are investigated in detail.

In a simple form system shown in Figure 16, one separate
filter has been considered for each channel. This filter, which
works with the sampling rate, prepares its output after one
clock. The filtered data are applied to CSP to reduce feature
size to two features. This block receives 59 data from

channels at 59 consecutive clocks, then, prepares two outputs
and activates the variance module.

The variance block receives input data by receiving the
start signal and calculates the variance of new data and 399
prior data. This process takes 18 clocks. After preparing the
output, the variance block sends its output to the SVM block
which classifies data at one clock. A timer block is considered
to generate activation signals of the filter and CSP blocks.

The designed filter named Filter II is used in the second
proposed system, which is shown in Figure 17. The second
proposed system differs from the filter block’s first one. In
the way that just one filter has been used for all channels.
Filter II should be activated at a rate of 59 times the sampling
rate to calculate the filtered data of all channels without
losing data. The filter block informs CSP by preparing fil-
tered data. The rest of the second system works similarly to
the first one. The built-in timer unit is responsible for gener-
ating filter activation signals.

The third proposed system, shown in Figure 17, uses
Filter III, which makes it different from other systems. In
this way, 10 clocks are needed to produce the output of each
channel. Other units and connections of this system are like
the second system.

In all three structures, digital clock manager module is
used to set different frequencies of different parts of the
circuit. The task of this module is to receive the working
frequency of the circuit (in this research, 1MHz was chosen)
and make activation signals of different modules using the
working frequency. The design of this module is such that
different frequencies can be applied as input. The system
does not operate at a fixed, predetermined frequency. In
this research, the lowest frequency at which the circuit works
is 5,900Hz, and the highest frequency of the filter is 130MHz,
so any frequency between these two numbers can be applied
to the circuit as a working frequency. Therefore, the system

w1

w2

en
Reg

clk

Sign bit

FIGURE 15: Block diagram of SVM.

M
U

X

Filter I-(1)Reg1

Counter

en-100 Hz

Signal 1

Signal 59

en-5900 Hz
Sel

CSP SVM

en-5900 Hz

CSP-rdy
In

Out

. . .

. . .

en-100 Hz

VAR
In

en
In

enVAR-rdy

en

clk

en en

en

CommandExternal
device

Feedback

Filter I-(59)Reg 59

clk

en en
en-100 Hz

clk

en-100 Hz

FIGURE 16: Block diagram of design I.

IET Computers & Digital Techniques 11



has the ability to create a compromise between response delay
and power consumption by changing the frequency. To
reduce the response delay, the frequency can be increased,
but it should be noted that with increasing frequency, power
consumption increases.

5. Hardware Simulation

Table 3 shows the calculation of response delay for each
module and system. According to the reported frequencies
after synthesis, to compare the minimum period, it is neces-
sary to pay attention to the maximum frequency of each
module of the system.

The accuracy and power consumption are the two key
parameters that show the success degree for the performance
of an embedded BCI system. Belwafi et al. [2] categorized the
amount of accuracy and power consumption into three levels
and estimated that a systemwithmore than 75% accuracy and
less than 1W power consumption performs as a successful
one. In addition, it is necessary to reduce the latency for real-
time and wearable systems. Table 4 compares the perfor-
mance of the three proposed systems with the previous works.
Our proposed designs achieve 77% accuracy, which is almost
similar to [8, 11, 40] and is considered a successful system
according to Belwafi et al. [2]. Although Belwafi et al. [7] and
Feng et al. [39] offered the highest accuracy among the com-
pared designs, their system does not satisfy the power con-
sumption and timing constraints. Compared to Belwafi et al.’s
[8, 11, 40] study, our system is, respectively, 3%, 5%, and 6%
less accurate, which is not a significant amount to consider.

While Belwafi et al. [8] and Malekmohammadi et al. [11]
reduced their power consumption to less than 1W, which is
considered a reasonable power consumption, their latency is
430 and 83ms, respectively, which is far more than the latency
of our system. Our best design achieves similar power con-
sumption to [40] with four times less latency as well as with-
out reduction in the number of channels, which makes it
suitable for wearable and real-time BCI applications.

As for the hardware resources used on the FPGA, Table 5
compares the number of LUT, DSP, and registers used in the
three proposed systems and two previous ones. The lowest
LUT consumption is associated with the system proposed in
Malekmohammadi et al.’s [11] study because of using a large
number of DSPs (reported 24), while the best-proposed
design employs only 10DSPs. Among the three proposed
systems, the effects of the developed techniques are visible.
Design III has 95% and 45% reduction in LUT usage com-
pared to Design I and Design II, respectively. According to
the Vivado report, the number of registers used in Design I
and Design II remains unchanged since only partial registers
are replaced with RAM. Using internal RAMs of FPGA in
design III leads to reduction in the number of registers. The
reason behind the reduction in the number of registers in this
work compared to the other works is the technique used in
the variance calculation.

According to the results of the area consumption on
FPGA in the proposed designs, the filter in design I occupies
the largest area of the chip. By applying the first and second
techniques in design II and design III, the area decreases 90%
and 99%, respectively. Since the implementation of the rest
of the elements is the same, there was an insignificant change
in the occupied area.

Most of the embedded BCIs are implemented on FPGAs
or microcontrollers. The best solution to minimize the size of
the system besides achieving the lowest power consumption
is exporting the system as an ASIC. Therefore, all the pro-
posed designs are implemented using 45 nm CMOS Tech-
nology. It can be observed in Table 6 that designs II and III
are 37.5 times more power efficient than design I. Also, the
consumed area of design III has decreased by 66% compared
to design I. Therefore, the reported methods make design III
suitable for low-power wearable devices. it takes 0.63ms to
response after one trial (400 data) and consumes 0.00 4W
power, so our best design consumes 2 μj energy.

Reg1

Counter

en-100 Hz

Signal 1

Signal 59

en-5900 Hz
Sel

CSP SVM

en-5900 Hz

CSP-rdy
In

Out

. . .

VAR
In

en
In

enVAR-rdy

en

clk

en

en

CommandExternal
device

Feedback

Filter II/III
Reg 59

clk

en

en-100 Hz

clk

en

en-5900/47200 Hz

M
U

X

FIGURE 17: Block diagram of design II/III.

TABLE 3: Latency of modules and proposed systems.

Modules and systems Latency

Filter I 1 clk
Filter II 1 × N clk
Filter III (2+ order) × N clk
CSP 3 × N clk
Variance 10 clk
SVM 1 clk
Prop. design I 12+ 3 × N clk
Prop. design II 4 × N+ 11 clk
Prop. design III (2+ order) × N+ 3 × N+ 11 clk

12 IET Computers & Digital Techniques



T
A
B
LE

4:
C
om

pa
ri
so
n
of

di
ff
er
en
t
pa
ra
m
et
er
s
of

pr
op

os
ed

de
si
gn
s
an
d
pr
ev
io
us

de
si
gn
s.

D
at
a

Sa
m
pl
in
g
ra
te

(H
z)

A
lg
or
it
hm

s
P
la
tf
or
m

A
cc
ur
ac
y

P
ow

er
(W

)
La
te
nc
y
(m

s)

[7
]

M
I,
SS
E
V
P
,P

30
0

N
/I

A
da
pt
iv
e
fi
lte
r,
C
SP

,M
D

St
ra
ti
x-
IV

94
.4
7

1.
06
7

39
4

[8
]

M
I

25
6

W
O
LA

fi
lte
r
ba
nk

,C
SP

,M
D

St
ra
ti
x-
IV

80
.2

0.
67

43
0

Su
rf
ac
e
la
pl
ac
ia
n

[1
1]

M
I

12
8

SC
SS
P
,M

I,
LD

A
,S
V
M

V
ir
te
x-
6
FP

G
A

80
.5
5

0.
09

83

[3
9]

SS
E
V
P

20
0

FI
R
fi
lte
r,
av
er
ag
in
g
m
et
ho

d
C
yc
lo
ne

II
E
P
2C

35
D
SP

90
.6
2

27
2,
00
0

[4
0]

M
I

10
0

C
N
N

A
R
M

C
or
te
x-
M
4
an
d
M
7

82
.5
1

0.
01

2.
95

P
ro
p.

de
si
gn

I
M
I

10
0

II
R
,C

SP
,V

A
R
,S
V
M

V
ir
te
x-
7
xc
vu
-6
5
FP

G
A

77
.4
5

0.
02
6

0.
13

P
ro
p.

de
si
gn

II
M
I

10
0

II
R
,C

SP
,V

A
R
,S
V
M

V
ir
te
x-
7
xc
vu
-6
5
FP

G
A

77
.4
5

0.
01
1

0.
19

P
ro
p.

de
si
gn

II
I

M
I

10
0

II
R
,C

SP
,V

A
R
,S
V
M

V
ir
te
x-
7
xc
vu
-6
5
FP

G
A

77
.4
5

0.
01
1

0.
63

IET Computers & Digital Techniques 13



6. Conclusion

In this paper, we proposed efficient hardware for an embed-
ded MI-BCI system. First, we designed a BCI system to clas-
sify two MI tasks by comparing various algorithms for
preprocessing, feature extraction and classification. The best
algorithms were IIR filter for preprocessing, CSP for feature
extraction, and SVM as a classifier in terms of hardware cost
and reasonable accuracy (77.4%). To design components in
RTL, we used methods to reduce the area, power consump-
tion, and latency without losing accuracy. In preprocessing, EEG
signals from each channel should be applied to an IIR filter,
which is area- and power-consuming, so we used time-shared
and RAM-based techniques to reduce the power consumption
and the area of filter bank. In designing other components, we
used pipelining and hardware-friendly equations to meet the
constraints. We implemented our designs on a Virtex-7 FPGA
as a prototyping platform achieving 0.01W power consumption
and 1.52% utilization. Finally, to achieve wearable embedded
BCI constraints and minimize the area, we implemented our
designs using 45 nm CMOS technology which consumed
0.004W power with 0.25mm2 area.

Data Availability

No underlying data were collected or produced in this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] A. Vinod and K. P. Thomas, “Neurofeedback games using eeg-
based brain–computer interface technology,” in Signal Processing
and Machine Learning for Brain–Machine Interfaces, vol. 114 of
IET Control, Robotics and Sensors Series, pp. 301–329, The
Institution of Engineering and Technology, London, United
Kingdom, 2018.

[2] K. Belwafi, S. Gannouni, and H. Aboalsamh, “Embedded brain
computer interface: state-of-the-art in research,” Sensors,
vol. 21, no. 13, Article ID 4293, 2021.

[3] C. T. Lin, F. C. Lin, S. A. Chen, S. W. Lu, T. C. Chen, and
L. W. Ko, “Eeg-based brain–computer interface for smart
living environmental auto-adjustment,” Journal of Medical
and Biological Engineering, vol. 30, no. 4, pp. 237–245, 2010.

[4] K. Khurana, P. Gupta, R. C. Panicker, and A. Kumar,
“Development of an FPGA-based real-time p300 speller,” in
22nd International Conference on Field Programmable Logic
and Applications (FPL), pp. 551–554, IEEE, 2012.

[5] L. Jiang, E. Tham, M. Yeo, and O. G. Phu, “iPhone-based
portable brain control wheelchair,” in 2012 7th IEEE Conference
on Industrial Electronics and Applications (ICIEA), pp. 1592–
1594, IEEE, Singapore, 2012.

[6] G. Li and W.-Y. Chung, “Combined EEG-Gyroscope-tDCS
brain machine interface system for early management of
driver drowsiness,” IEEE Transactions on Human-Machine
Systems, vol. 48, no. 1, pp. 50–62, 2018.

[7] K. Belwafi, F. Ghaffari, R. Djemal, and O. Romain, “A
hardware/software prototype of EEG-based BCI system for
home device control,” Journal of Signal Processing Systems,
vol. 89, no. 2, pp. 263–279, 2017.

[8] K. Belwafi, O. Romain, S. Gannouni, F. Ghaffari, R. Djemal, and
B. Ouni, “An embedded implementation based on adaptive
filter bank for brain–computer interface systems,” Journal of
Neuroscience Methods, vol. 305, pp. 1–16, 2018.

[9] A. Palumbo, F. Amato, B. Calabrese et al., “An embedded system
for EEG acquisition and processing for brain computer interface
applications,” in Wearable and Autonomous Biomedical Devices
and Systems for Smart Environment, vol. 75 of Lecture Notes in
Electrical Engineering, pp. 137–154, Springer, Berlin, Heidelberg,
2010.

[10] R. Karkon, S. M. R. Shahshahani, and H. R. Mahdiani, “A
Custom Hardware CCA Engine for Real-time SSVEP-based
BCI Applications,” in 2020 20th International Symposium on
Computer Architecture and Digital Systems (CADS), pp. 1–6,
IEEE, Rasht, Iran, 2020.

[11] A. Malekmohammadi, H. Mohammadzade, A. Chamanzar,
M. Shabany, and B. Ghojogh, “An efficient hardware
implementation for a motor imagery brain computer interface
system,” Scientia Iranica, pp. 26–94, 2019.

[12] N. Padfield, J. Zabalza, H. Zhao, V. Masero, and J. Ren, “EEG-
based brain–computer interfaces usingmotor-imagery: techniques
and challenges,” Sensors, vol. 19, no. 6, Article ID 1423, 2019.

[13] M. A. L. Nicolelis, “Brain–machine interfaces to restore motor
function and probe neural circuits,” Nature Reviews Neuroscience,
vol. 4, no. 5, pp. 417–422, 2003.

[14] R. Aler, I. M. Galván, and J. M. Valls, “Applying evolution
strategies to preprocessing EEG signals for brain–computer
interfaces,” Information Sciences, vol. 215, pp. 53–66, 2012.

[15] J. P. Donoghue, “Connecting cortex to machines: recent
advances in brain interfaces,” Nature Neuroscience, vol. 5,
no. S11, pp. 1085–1088, 2002.

[16] A. Widmann, E. Schröger, and B. Maess, “Digital filter design
for electrophysiological data—a practical approach,” Journal
of Neuroscience Methods, vol. 250, pp. 34–46, 2015.

[17] W. Yi, S. Qiu, H.Qi, L. Zhang, B.Wan, andD.Ming, “EEG feature
comparison and classification of simple and compound limb
motor imagery,” Journal of NeuroEngineering and Rehabilitation,
vol. 10, no. 1, pp. 1–12, 2013.

[18] R. Aler, I. M. Galván, and J. M. Valls, “Evolving spatial and
frequency selection filters for brain–computer interfaces,” in
IEEE Congress on Evolutionary Computation, pp. 1–7, IEEE,
Barcelona, Spain, 2010.

[19] C. Y. Chen, C. W. Wu, C. T. Lin, and S. A. Chen, “A novel
classificationmethod formotor imagery based on brain–computer

TABLE 5: Comparison of hardware resource usage.

LUT DSP Flip flop

Prop. design I 157,556 6 28,570
Prop. design II 13,268 6 28,502
Prop. design III 6,900 10 14,158
[8] 12,025 8 16,556
[11] 2,663 24 2,988

TABLE 6: Comparison of ASIC result.

Power (W) Area (mm2) Delay (ns)

Prop. design I 0.15 0.753124 2.37
Prop. design II 0.004 0.275067 2.27
Prop. design III 0.004 0.250889 2.27

14 IET Computers & Digital Techniques



interface,” in 2014 International Joint Conference on Neural
Networks (IJCNN), pp. 4099–4102, IEEE, Beijing, China, 2014.

[20] C. Lindig-Leon and L. Bougrain, “A multi-label classification
method for detection of combinedmotor imageries,” in 2015 IEEE
International Conference on Systems, Man, and Cybernetics,
pp. 3128–3133, IEEE, 2015.

[21] Y. Chang, “Architecture design for performing grasp-and-lift tasks
in brain–machine-interface-based human-in-the-loop robotic
system,” IET Cyber-Physical Systems: Theory & Applications,
vol. 4, no. 3, pp. 198–203, 2019.

[22] H. Yang, S. Sakhavi, K. K. Ang, and C. Guan, “On the use of
convolutional neural networks and augmented CSP features for
multi-class motor imagery of EEG signals classification,” in 2015
37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 2620–2623, IEEE,
Milan, Italy, 2015.

[23] S. Aggarwal and N. Chugh, “Signal processing techniques for
motor imagery brain computer interface: a review,” Array,
vol. 1-2, Article ID 100003, 2019.

[24] L. Q. Thang and C. Temiyasathit, “Increase performance of four-
class classification for motor-imagery based brain–computer
interface,” in 2014 International Conference on Computer,
Information and Telecommunication Systems (CITS), pp. 1–5,
IEEE, Jeju, Korea (South), 2014.

[25] H. Wang and A. Bezerianos, “Brain-controlled wheelchair
controlled by sustained and brief motor imagery BCIs,”
Electronics Letters, vol. 53, no. 17, pp. 1178–1180, 2017.

[26] H. K. Lee and Y. S. Choi, “A convolution neural networks
scheme for classification of motor imagery EEG based on
wavelet time-frequecy image,” in 2018 International Confer-
ence on Information Networking (ICOIN), pp. 906–909, IEEE,
Chiang Mai, Thailand, 2018.

[27] J. Zhang, C. Yan, and X. Gong, “Deep convolutional neural
network for decoding motor imagery based brain computer
interface,” in 2017 IEEE International Conference on Signal
Processing, Communications and Computing (ICSPCC), pp. 1–5,
IEEE, Xiamen, China, 2017.

[28] S. Sakhavi, C. Guan, and S. Yan, “Parallel convolutional-linear
neural network for motor imagery classification,” in 2015 23rd
European Signal Processing Conference (EUSIPCO), pp. 2736–
2740, IEEE, 2015.

[29] W. Ko, J. Yoon, E. Kang, E. Jun, J.-S. Choi, and H.-I. Suk,
“Deep recurrent spatio-temporal neural network for motor
imagery based BCI,” in 2018 6th International Conference on
Brain–Computer Interface (BCI), pp. 1–3, IEEE, Gangwon,
Korea (South), 2018.

[30] B. Blankertz, G. Dornhege, M. Krauledat, K.-R. Müller, and
G. Curio, “The non-invasive berlin brain–computer interface:
fast acquisition of effective performance in untrained subjects,”
NeuroImage, vol. 37, no. 2, pp. 539–550, 2007.

[31] A. K. Das and S. Suresh, “An effect-size based channel
selection algorithm for mental task classification in brain
computer interface,” in 2015 IEEE International Conference on
Systems, Man, and Cybernetics, pp. 3140–3145, IEEE, 2015.

[32] A. Jiang, J. Shang, X. Liu, Y. Tang, H. K. Kwan, and Y. Zhu,
“EfficientCSP algorithmwith spatio-temporal filtering formotor
imagery classification,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 28, no. 4, pp. 1006–1016,
2020.

[33] J. Wang, Z. Feng, X. Ren, N. Lu, J. Luo, and L. Sun, “Feature
subset and time segment selection for the classification of EEG
data based motor imagery,” Biomedical Signal Processing and
Control, vol. 61, Article ID 102026, 2020.

[34] J.-S. Bang, M.-H. Lee, S. Fazli, C. Guan, and S.-W. Lee, “Spatio-
spectral feature representation for motor imagery classification
using convolutional neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 33, no. 7, pp. 3038–
3049, 2022.

[35] R. T. Schirrmeister, J. T. Springenberg, L. D. J. Fiederer et al.,
“Deep learning with convolutional neural networks for EEG
decoding and visualization,” Human Brain Mapping, vol. 38,
no. 11, pp. 5391–5420, 2017.

[36] K. Zhang, G. Xu, Z. Han et al., “Data augmentation for motor
imagery signal classification based on a hybrid neural network,”
Sensors, vol. 20, no. 16, Article ID 4485, 2020.

[37] J. Yang, Z.Ma, J.Wang, and Y. Fu, “Anovel deep learning scheme
for motor imagery EEG decoding based on spatial representation
fusion,” IEEE Access, vol. 8, pp. 202100–202110, 2020.

[38] S. Kumar, A. Sharma, and T. Tsunoda, “Brain wave classification
using long short-term memory network based OPTICAL
predictor,” Scientific Reports, vol. 9, no. 1, Article ID 9153, 2019.

[39] Z. Feng, L. Zeng, H. Wu, F. Tian, and Q. He, “Design of an online
brain-computer interface system based on field programmable
gate array,” Journal of Physics: Conference Series, vol. 1624,
Article ID 042061, 2020.

[40] X. Wang, M. Hersche, M. Magno, and L. Benini, “MI-BMInet:
an efficient convolutional neural network for motor imagery
brain–machine interfaces with EEG channel selection,” IEEE
Sensors Journal, 2022.

IET Computers & Digital Techniques 15




