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Unconventional functions, including activation functions and power functions, are extremely hard-to-realize primarily due to the
difficulty in arriving at the hierarchical design. The hierarchical design allows the synthesis tool to map the functionality with that
of standard cells employed through the regular ASIC synthesis flow. For conventional functions, the hierarchical design is
structured and then supplied to the synthesis flow, whereas, for unconventional functions, the same method is not reliable, since
the current synthesis method does not offer any design-space exploration scheme to arrive at an easy-to-realize design entity. The
unconventional functions either take a long synthesis run-time or additional efforts are spent in restructuring the hierarchical
design for the desired function to synthesizable ones. Cartesian genetic programing (CGP) allows to not only incorporate custom
logic gates for synthesizing the hierarchical design but also aids in the design-space exploration for the targeted function through
the custom gates. The CGP configuration evolves difficult-to-realize complex functions with multiple solutions, and filtering
through desired Pareto-optimal requirements offers a unique hierarchical design. Incorporating CGP-derived hierarchical designs
into the traditional synthesis flow is instrumental for implementing and evaluating higher-order designs comprising nonlinear
functional constructs. Six activation functions and power functions that fall in the category of unconventional functions are
realized by the CGP method using custom cells to demonstrate the capability. Further, the hierarchical design of these unconven-
tional functions is flattened and compared with the same function that is directly synthesized using basic gates. The CGP-derived
synthesis method reports 3× less synthesis time for realizing the complex functions at the hierarchical level compared to the
synthesis using basic gate cells. Hardware characteristics and error metrics are also investigated for the CGP realized complex
functions and are made freely available for further usage to the research and designers’ community.

1. Introduction

The standard rule-based and top-down synthesis flow [1–6]
is adopted regularly for realizing various arithmetic and log-
ical functions, including higher operand bit-widths. How-
ever, these methods neither allow any room to augment
custom cells toward arriving at the hierarchical design nor
offer any design-space exploration to realize the hardware-
reliable design. The focus of the synthesis flow has always
been to map the hand-crafted structured design optimally
with the functionally equivalent logical gates toward attain-
ing minimum delay with less gate count. The heuristic design
is further supplied to the standard ASIC flow to realize the
hardware parameters. The whole synthesis process and the

gates list are industry-protected and, hence, are not custom-
izable for any refinement while realizing the design [3, 7, 8].
The advances in standard cell design for the ASIC flow to
realize custom hardware gain are acceptable; however, this
demands extra design effort and time to characterize new
gates and their feasibility for realizing other designs, includ-
ing traditional computational design entities, apart from the
nonlinear functions which are of interest in this work [9, 10].
Hence, a need for a hierarchical design flow to represent
unconventional functions that allow (i) design-space explo-
ration to achieve optimal hardware parameters, (ii) augment
custom cells for high-level synthesis, (iii) remains indepen-
dent of the standard cell library that is adopted for ASIC
flow, and (iv) easily integrate with standard ASIC flow to
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realize system designed on-the-chip. Combining the much-
needed hierarchical design flow and ASIC flow into one
synthesis flow is an option, but one has to be careful, consid-
ering any minor functionality upsets need fine-tuning and
reiterating the overall process. The time-consuming process
is still pleasantly absorbed by today’s designers toward real-
izing linear or arithmetic functions. However, this strategy
does not hold well for realizing unconventional designs such
as nonlinear activation and power functions [9, 10]. Hence,
keeping the hierarchical design flow separate from the regu-
lar ASIC flow is suitable, yet the process of hierarchical
framework and its smooth integration to ASIC flow will be
beneficial for quick characterization of the design. This paper
establishes a framework to evolve the best hierarchical design
constructs for nonlinear functions, such as activation and
power functions, which are then seamlessly fed to the
ASIC flow to extract the hardware parameters. The two-level
synthesis method proposed in this work aims to simplify the
unconventional function to a level that is further easy-to-
synthesize through the regular ASIC synthesis flow. Other
forms of realization do exist in the literature but the complete
silicon realization requires more effort in structuring the
design for easy-to-synthesize. Application-specific activation
functions are not only difficult to design but also realize the
same using traditional methods of Look-Up-Tables, and IP
cores incur a heavy penalty in the hardware resources used
[9, 11–13]. Hierarchical gate-level design synthesized for
unconventional functions generated from a custom-defined
set of gates is extremely beneficial to the designers. The pro-
posed hierarchical synthesis flow with a quick turnaround
time is likely to aid designers to not only validate the func-
tional requirement but also offers an opportunity to alter
behavioral design whenever desired. The overall synthesis
process for arriving at hierarchical design is intended to be
a black-box implementation, where the designers remain
isolated from the details of the characterized gates till the
last level of synthesis. Invariably, the hierarchical netlist gen-
erated by the proposed fast synthesis method is desired to
break down the realization process to an intermediate level
and then proceed further toward ASIC-level synthesis. Elec-
tronic design automation has evolved over the years, but few
methods offer optimal gate-level design solutions by performing
a thorough design-space exploration under tight constraints
[7, 14–16]. This includes metrics-driven design methodologies,
especially in the digital design domain [17, 18]. The primary
objective of the logic synthesis process is to develop optimized
versions of gate-level designs with a minimum number of cells
and logic depth, which directly contributes to the circuit’s per-
formance on silicon [19, 20].

The existing ABC synthesis tool [21] employs directed
acyclic graphs that use two-input AND nodes and their asso-
ciated edges, forming an AND-Inverter Graph (AIG) to rep-
resent circuits. The optimization process entails reducing the
AIG size by replacing the subgraphs with precomputed ones
iteratively, while preserving the node functionality [22].
Despite being straightforward and scalable, this synthesis
method is unable to represent XOR and XNOR gates with
less than three AIG nodes each. As a result, the current

synthesis method is considered insufficiently robust to rep-
resent real-world designs that are typically nonlinear in
nature [18, 23]. The disjunctive normal form method is
another alternative approach for synthesizing and realizing
digital circuits incorporating all possible input combinations
to achieve the required output. Although this method is
accurate, it is highly exhaustive in process [14, 15] and hence
is not a feasible solution for realizing higher-order circuits.
An efficient two-level heuristic minimization scheme via a
logical regression technique was investigated for structural
synthesis in [24]. However, it fails to incorporate a high
number of XOR and XNOR gates whenever required, espe-
cially for the accumulator and its associated system design.
The synthesis scheme adopts a Karnaughmap-driven mini-
mization function but does not account for realizing the
function through custom cells. The evolutionary algorithm
fulfills the requirement of thoroughly exploring the design-
space to arrive at an optimal hierarchical structure, in low
synthesis time, and it also allows to customize the list of gates
to be employed for designing hierarchical design. Cartesian
genetic programing (CGP) is an evolutionary algorithm that
explores two-dimensional design space to evolve a list of
nodes representing connected gates for the desired functions
[18, 25]. As an iterative process, CGP evolves by picking
gates from the predefined list and converges to a gate-level
design to closely match the specified fitness [25]. The CGP
approach suitably fits to express functional blocks using stan-
dard logical elements on a plane [26]. CGP considers the
given truth table specified with all possible input–output
combinations to render a gate-level structure under the
user-configured design resolution and fitness parameters.
CGP attempted to synthesize smaller approximate digital
block functions in the past [27]. In the past, the evolutionary
algorithm was applied to design 4-bit multipliers, 25-input
median circuits [28], and 8-bit multipliers using basic logic
gates [29]. The proposed work aims to establish quick reali-
zation of complex nonlinear functions of different data for-
mats, range, and precision, using a low number of gates and
yet maintaining the desired nonlinear profile. CGP has the
ability to incorporate selected gates to generate the intended
function and its approximate derivatives by modifying
the fitness parameter. Other popular methods, including
CORDIC and piecewise-linear (PWL), have shown the capa-
bility to realize a few complex functions in the past [30–35];
however, function implementations are predefined, and these
methods do not allow for realizing any new functions on the
fly. Hence, these methods do not satisfy toward building a
generic framework for realizing new complex functions.
Besides, these methods do not completely explore the design
space and thereby concede more hardware resources, as
shown in [36]. Hence, the CGP method works as a suitable
candidate for synthesizing optimal hierarchical gate-level
constructs by exploring large design space with the predefined
list of custom gates and seamless integration with the ASIC
flow. In this paper, CGP as a synthesis tool using a predefined
set of gates is discussed and demonstrated for six activation
and three power functions. A predefined set of 4-input gates
comprising both basic and compound gates (MUX, AOI, and
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OAI) was used for generating a hierarchical netlist, which is
further flattened to 2-input gates to obtain a flattened netlist.
The hierarchical results of all six activation functions and
power functions are presented and compared with the results
of the flattened netlist and directly CGP-synthesized basic
gates. An elaborate investigation of various configurations
of CGP, including a list of gates employed, desired data-
format, size of the gates utilized along the nodes, and fit-
ness-and-mutation strategies employed for realizing complex
functions, is performed for the first time. The hardware char-
acteristics and error metrics for all six activation functions
and power functions are made freely available in [37] for
further usage by the research community. This is the first
time a comprehensive list of nonlinear and hard-to-realize
functions was synthesized and characterized at a hierarchical
level using predefined gates.

The contributions of this paper are listed below:

(i) Two major modifications to the traditional CGP
method in a view to improve its usage for synthesiz-
ing nonlinear functions, which are (i) improve the
speed of evolution using variable mutation rate and
(ii) achieving circuit output to be highly correlated
by using binary-weighted fitness (BwF) function.

(ii) Perform a comprehensive review of CGP configura-
tions (fitness function, evolution strategy, and muta-
tion scheme) across a wide range of bit-widths and
data formats.

(iii) Benchmark the modified CGP for realizing basic
nonlinear functions (x2, x3, x4) and extend the
same to six complex activation functions.

(iv) Explore suitable methods to integrate CGP into the
standard cell synthesis flow experiment with both
basic gates and popular standard cells.

(v) Highlight the improvement in fitness convergence and
correlation of circuit output with expected output.

(vi) Analyze the impact of data format on the evolution
process, and comparison of cell usage in different
standard cell libraries.

2. Proposed Method

2.1. CGP for Synthesizing Complex Functions. CGP is a type
of genetic programing that is specifically used for designing
combinational digital circuits [23, 38, 39]. It creates directed
acyclic graphs that function as combinational arrays of gates,
which represent the digital circuits. The nodes in the graph
are part of a predetermined list of gates used for building the
circuit. Each node is identified by 2D coordinates on the
graph. In CGP, a directed acrylic graph (DAG) consisting
of an array of gates is evolved iteratively for the desired
function [38]. Nodes of the DAG are gates picked from the
predefined list employed to build the combinational circuit.
The DAG, which is defined using an encoded genotype, is
mutated repeatedly in an attempt to obtain the correspond-
ing phenotype (digital circuits) that performs better in the
desired objective functions. Typically, the objective functions

are configured to the functional correctness of the circuit,
hardware performance metrics (area, delay, or power of the
circuit), or a multiobjective function combining both func-
tional correctness and hardware metrics.

Figure 1 shows a general node-level representation of
CGP DAG, where each node represents a functional block.
The graph represents a circuit with k+ 1 inputs, j+ 1 out-
puts, and m× n computation nodes arranged in n rows and
m columns. For n rows and m columns, each node is a
functional gate selected from a predefined set of f2 F. The
arity r defines the number of inputs for each node. In this
work, the function set F is a combination of 4-input gates and
other basic standard gates of 2-inputs. The strength of CGP
lies in its ability to obtain hardware-efficient circuits through
heuristic search-space exploration. However, as the complex-
ity of intended design requirements increases, the evolution-
ary approach may fail for gate counts above 10K or require
excessive time to generate gate-level circuits [40]. To address
this issue, a cut-based method for evolutionary synthesis was
proposed in [40], which offers fewer gate designs at the expense
of slower convergence. Another approach involved CGP being
applied to extracted subcircuits and placed back into the original
circuit for global-level optimization, but selecting subcircuits for
CGP-driven resynthesis can be time-consuming for larger sizes,
and small subcircuits may not offer significant benefits [40].
Furthermore, a search-based strategy that adopted CGP to
resynthesize circuits for FPGA system design was presented in
[41]. Overall, CGP provides better tradeoff metrics between
hardware design parameters and error metrics than traditional
methods [38], but the synthesis runtime is exceptionally high for
a large number of inputs and complex nonlinear functionalities
[42]. Additionally, the increased use of machine learning and
artificial intelligence techniques mandates higher-order compu-
tations in 32- or 64-bit data formats [43]. Consequently, faster
genetic programing algorithms are required to evolve hardware
designs with a large number of inputs without compromising
fitness. However, higher-order functional design is likely to
impose tight constraints on fitness because even a slight devia-
tion can induce significant errors in processed data. Thus, there
is an immediate need to speed up the CGP algorithm while
maintaining fitness. In the past, CGP and its variants have
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FIGURE 1: A schematic representation of Cartesian genetic program-
ing (CGP) showing 2D DAG for inputs I, generating outputs O.
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been extensively studied and analyzed [44, 45]. To provide a
brief summary, various CGP variants, such as graph-based
crossover and mutation operators, have been discussed in
[44]. However, the use of multiple mutations on multiple
threads or processes leads to higher computational resource
consumption due to context switching, and achieving a quick
graphical crossover depends heavily on the initial seeding and
correlated mutation operators. Modular CGP is another ver-
sion that utilizes additional mutation operators to reevaluate
and resynthesize CGP-encoded subfunctions. However, evolv-
ing to a subfunctional genotype initially requires significant
computational resources, and evolved subfunctions may not
converge to an optimized solution, leading to functionally
incorrect designs. An alternative approach involves taking
the CGP phenotype to machine code for faster execution,
resulting in a speedup of the CGP runs executed on hardware
units such as FPGAs and application-specific virtual reconfi-
gurable circuits [46, 47]. However, most modifications aim to
addmore operative dimensions or shift execution to a different
platform without addressing the speedup mechanism to arrive
at fitter solutions. Previously, the authors explored and dem-
onstrated the desired modifications to the existing CGP con-
figuration, namely BwF and exponentially varying mutation
rate (eVar), which can produce functionally correct solutions
at a remarkably fast pace [48]. The advantages of the modifica-
tions are showcased for basic nonlinear power functions and

are verified for usage in activation functions that are otherwise
difficult to achieve. This paper further elaborates on the distri-
bution of the gates picked for hierarchical synthesis, seamless
integration to the regular ASIC synthesis flow, data format
impact on the synthesis, and node representation impact on
the synthesis. This research provides an in-depth investigation
of 12 different CGP configurations with alterations in muta-
tion schemes and evolutionary strategies for power functions.
The article presents and discusses a comparison between the
benefits of BwF and eVar adopted CGP versus traditional CGP
methods in detail. The parameters listed in Table 1 are utilized
to configure the CGP algorithm for synthesis. Algorithm 1
presents the (µ+ λ) evolutionary strategy steps, which return
the fittest genotype in an algorithm run for randomly gener-
ated seed candidate solutions. The µ value indicates the num-
ber of solutions promoted to the next generation as parents.
The λ value indicates the number of offsprings generated from
the µ parents from the previous generation.

In this work, different evolutionary strategies were ana-
lyzed to identify the ideal µ, λ values for achieving faster
evolution of nonlinear digital circuits. To showcase the
impact of a novel mutation rate and modified fitness func-
tion, power functions were realized using the modified fea-
tures of the CGP technique. The original CGP with constant
mutation rate and traditional fitness function for the same
functions were also evaluated and compared against the

TABLE 1: CGP parameters.

Parameter Value Description

No. of generations G> 0 The maximum no. of generations in an evolutionary run
Nodes (n) n> 0 Number of usable nodes for the algorithm
Arity A> 0 Arity of each node
Function Set — Available functions to be used as nodes
Mu µ> 0 No. of parents passed to the next generation, also used to create children
Lambda λ> 0 No. of children created using µ parents

forall i such that 0≤ i< (λ+ 1) do

Randomly generate individual i

end

Select μ individuals, that are promoted as the parents.

while the generation limit is not reached do

forall i such that 0≤ i< λ do

Mutate the μ parents based on the mutation scheme to generate λ offsprings

end

Generate the fittest individual using the following rules:

if an offspring genotype ranks better in a selection scheme then

Offspring genotype is chosen as fittest

else

The parent chromosome remains the fittest

end

end

ALGORITHM 1: (μ+ λ) evolutionary strategy.
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proposed modified CGP techniques. All possible options and
typically selected configurations are listed in Table 2. The
four mutation schemes vary in terms of the mutations per-
formed on the node and chromosome level. The mutation
schemes are elaborated below.

Probabilistic: Conducts probabilistic mutation on the
given chromosome. Each chromosome gene is changed to
a random valid allele with a specified probability.

Probabilistic only active: Conducts probabilistic mutation
on the active nodes in the given chromosome. Each chromo-
some gene is changed to a random valid allele with a speci-
fied probability.

Point: Conducts point mutation on the given chromo-
some. A predetermined number of chromosome genes are
randomly selected and changed to a random valid allele. The
number of mutations is the number of chromosome genes
multiplied by the mutation rate. Each gene has an equal
probability of being selected.

Single: Conducts a single active mutation on the given
chromosome.

In this work, novel BwF function and eVar are employed
for running CGP. The other configurations, including evolu-
tionary strategy, mutation scheme, selection scheme, and
reproduction schemes, were also investigated for the synthe-
sis application. Select Fittest selection scheme and Mutate
Every Parent reproduction scheme were incorporated for
all the evolutionary runs. As indicated in Table 2, typical
CGP in the form of supervised learning (SL) and constant
mutation rates were compared against BwF and variable
mutation rate (eVar) CGP technique toward synthesizing
digital circuits of unconventional functions.

2.2. Modified CGP. This work proposes two new modifications
to the existing CGP methodology to achieve the desired synthe-
sized gate-level circuits with lesser generations and extract a
group of fitter solutions. These two modifications are listed: (i)
Applying a different mutation rate, similar to [49]. Especially for
realizing nonlinear functions instead of a constant mutation rate
adopted in the traditional methods, and (ii) Incorporating a BwF
function instead of the same weight across the data format of
the functions under synthesis. The proposedmodifications to the
CGP algorithm are particularly beneficial for designing hardware
that can perform nonlinear functions, which are essential for
the modern-day neural network and other computational net-
works. The authors demonstrate the effectiveness of their
approach by implementing two types of nonlinear functions—
power functions and activation functions. The work introduces

two novel features, namely the exponential mutation rate (eVar)
and the BwF function, for synthesizing nonlinear functions. To
the best of the authors’ knowledge, this is the first time that a
varyingmutation rate and a BwF function have been applied and
analyzed for circuit synthesis across different data formats.

2.3. eVar. In traditional CGP, the mutation rate is configured
to be a constant value in a view to have the same mutation
rate across the generations and continue to evolve until a
desired fitness or termination criteria is achieved [38]. In
this work, we intend to formulate a mechanism that intui-
tively selects between rough topologies in the initial genera-
tions and then mutates subparts of the best-performing
circuit topologies, followed by minimal and single gate-level
selection in the final generations. This mechanism is inspired
by varying learning rates in various ML optimization algo-
rithms during the training phase. The fitness function used
can achieve the selection between the rough topologies in the
initial generations and subsequently among the finer sub-
parts of the designs in the later runs. We tried several types
of mutation rate variations, including linear and various
nonlinear decays. It is observed that an exponential variation
of the mutation rate converges fastest to functionally correct
circuits.

Mutation; rate gð Þ ¼  R  × e
−g

0:1×G: ð1Þ

The exponential variation of the mutation rate used is
stated in Equation (1), whereG= total number of generations,
g= current generation, and R= initial rate of mutation. It is
observed that a decay rate of 10 is suitable based on our
heuristic studies on evolving nonlinear functions. If the muta-
tion rate reduces lower than one gene, the mutation scheme
was changed to mutate at least one gene for further genera-
tions to continue the evolution process. The sequence of a
first-up rough design requires high mutations to evolve to a
relatively adequate design topology. Further fine-tuning the
design topology with fewer mutations requires lower muta-
tion rates. The process of following eVars was found to inher-
ently reduce the evolution time to achieve similar fitness as
other variations. The selection between multiple mutated
designs at all generations is driven by the configured fitness
function.

2.4. BwF. BwF was introduced to evolve designs that are
closer to the data-formatted functional output. The tradi-
tional SL fitness can either be devised to formulate a

TABLE 2: CGP configurations.

Configuration Possible choices Typical choice

Evolutionary strategy (µ+ λ) (1+ 4)
Mutation scheme Probabilistic, probabilistic only active, point, single Point
Selection scheme Select fittest, Tournament Select fittest
Reproduction scheme Mutate every parent, Mutate random parent Mutate every parent
Fitness Supervised learning (SL), binary-weighted fitness (BwF) Supervised learning
Mutation rate Constant, variable Constant
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minimizing or maximizing objective function for the evolu-
tionary algorithm. For the minimizing case, SL uses the
Hamming distance between the evolved circuit output
data-bits and expected output data-bits over all input com-
binations, indicating the total number of incorrect circuit
output data-bits. In the maximizing case, the number of
correct output data-bits of the evolved circuit is used as the
fitness score. In this work, we use the minimizing case, as
stated in Equation (2), where z is the number of inactive
nodes in the solution circuits.

SL fitness¼ b when b>0

b − z otherwise

(
: ð2Þ

This method continues to evolve designs till the number
of generations is exhausted, even if a functionally correct
circuit is found while trying to minimize z. We minimize
the circuit size by reducing the number of active gates. How-
ever, running the SL-configured CGP method to evolve the
best-fit design mandates millions of generations, especially
for realizing nonlinear functions under investigation.
Besides, the SL method adopts a similar Hamming distance
rule across all bits, leading to smaller refinements along all
the design paths associated with the output bits. The SL
process ceases to drive major topological changes for the
most significant bits associated with design paths and thereby
lags in evolving best-fit design solutions in consolidation
with all the output bits of the investigated nonlinear func-
tions. BwF attempts to improve the selection among the
available solutions by considering the weighted fitness across
the output bits of the design evolved instead of considering
the Hamming distance across all the established output bits.
The BwF fitness function is stated in Equations (3) and (5).
The binary-weighted sum (BWS) is a weighted score, giving
positional weightage to an error in individual output bits
derived from the evolved circuit design (C(Oi)) when com-
pared with the expected (E(Oi) functional output, where ith
output bit is scaled by the magnitude of error contributed.
BWS of the overall input combinations was applied to evalu-
ate the BwF for a solution. We also include the term z to
minimize the circuit size post a functionally correct circuit is
evolved.

BWS¼ ∑
no−1

i¼0
2i × δi; ð3Þ

Where δi ¼
1 if  OExp ið Þ ≠ OCir ið Þ
0 if OExp ið Þ ≠ OCir ið Þ

(
; ð4Þ

BwF fitness¼ BWS when BWS>0

BWS − Z otherwise

(
: ð5Þ

3. Experimental Results

The modifications proposed for CGP in this work are partic-
ularly useful in realizing hardware designs for nonlinear func-
tions, which are crucial formodern neural networks and other
computational networks. To demonstrate the impact of the
proposed CGP method, this work showcases the hardware
realization of power functions. Detailed experimental results
on realizing power functions with different CGP configura-
tions, including evolutionary strategy and the impact of gates
for synthesizing three of the power functions (x2, x3, and x4),
along with corresponding error metrics, are highlighted in
this section. In the next section, the best possible CGP con-
figuration is employed to realize six nonlinear activation func-
tions for different input and output data-format structures.
The CGP-integrated ASIC synthesized hierarchical netlist of
activation functions is evaluated with respect to the fitness of
the function realized, hardware resources utilized for realizing
the functions, and the impact on the data format. Besides, a
section on the comparison of activation functions with other
hardware implementations is added to understand the signif-
icance of the proposed method over other state-of-the-art
implementations. In the early generations, BwF helps select
the most functionally equivalent topology among the solu-
tions. This is because BwF enables the selection of topologies
with the least deviation in the output function from the
expected function, which was not possible in the SL method
due to its equal weightage rule associated with the output bits.
The evolution process slows down with fewer mutations in
the later generations, only modifying small subparts of the
circuits. BwF continues to evolve the designs at the gate-level
toward the final generations. The authors observed that using
BwF along with the eVar mutation rate not only produces
circuits with the least deviation from the expected nonlinear
function but also evolves the circuit with fewer generations.
To showcase the impact of BwF and eVar adoption in CGP,
we synthesize circuits of power functions and activation func-
tions, which are difficult to synthesize otherwise. For each
configuration discussed in Section 3, the authors ran 20
experiments with the same generation limit for different con-
figurations. For example, the 5-bit x3 has 12 configurations of
mutation schemes and evolutionary strategies. Both BwF and
SL with these 12 configurations are run 20 independent times
to obtain the average behavior of circuits evolved with the
specific configuration. The results discussed in the following
sections are just an illustrative subset of all the experiments,
and the complete comprehensive set of results is available
in [37].

3.1. Error Analysis. Eight different error metrics, including
mean absolute error (MAE), error probability (EP), standard
deviation (STD), mean relative error (MRE), median of abso-
lute error (MeAE), mode of absolute error (MoAE), maxi-
mum absolute error (Max-AE), and minimum absolute
error (Min-AE) were investigated for eVar, and BwF-modi-
fied CGP and traditional CGP configurations for the power
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and activation functions. The error metrics are defined in
Equation (6).

EC¼ ∑
8x inR

OExp xð Þ ≠ OCir xð ÞÀ Á

MAE¼ ∑8x inR OExp xð Þ − OCir xð Þ�� ��
2N

EP¼ EC
2N

STD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AE xð Þ −MAEð Þ2

2N

r
Max AE¼max OExp xð Þ − OCir xð Þ�� ��À Á8x inR
Min AE¼min OExp xð Þ − OCir xð Þ�� ��À Á8x inR
MRE¼

∑8x inR
OExp xð Þ−OCir xð Þj j
max 1;OExpð Þ
2N

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

: ð6Þ

Figure 2 illustrates the 5-bit data-format for power-two
(x2), power-three (x3), and power-four (x4) functions using
the proposed eVar and BwF-modified CGP. To evolve the
power function for 5-bits, three mutation schemes—(1+ 10),
(2+ 8), and (5+ 5) with four different evolutionary strategies
—Probabilistic, Probabilistic Only Active, Point, and Single,
were independently configured. Each colored line represents
the average error metrics of 20 runs for a given configuration
among the 12 investigated. Compared to the SL-driven CGP
method, which employs a constant mutation rate and equal-

weighted fitness, most of the circuits generated by the pro-
posed eVar and BwF-modified CGP method exhibited lower
error metrics for different evolved circuits. The reduced error
metrics confirm that the eVar and BwF-configured CGP
approach produced fitter circuits than the SL-based CGP
approach.

3.2. CGP Configuration Analysis. Figure 3 shows the com-
parison between BwF and SL-generated circuits for all the
configurations. The (5+ 5) evolutionary strategy consistently
performs better than the (1+ 10) and (2+ 8) strategies. The
(2+ 8) strategy is also found to perform better than (1+ 10)
strategy. This result hints that creating fewer child solutions
per parent in every generation is preferred. Fewer children
per parent imply a higher number of circuit topologies are
being carried forward to further generations. The mutation
scheme has a large impact on the generated circuits MAE
when using the SL a fitness function. Furthermore, there is
no clear correlation between the mutation type and MAE
over the functions (x2, x3, x4) and bit width. BwF as fitness
function is found to minimize the variation in MAE with the
mutation type selected. Single and Point mutation types per-
form better than Probabilistic and Probabilistic Only Active
when BwF is used. BwF across 12 mutation schemes emerges
with a clear accuracy advantage ranging from 5% to 50% of
less MAE for x3 and x4 power functions when compared with
the SL method. The same is not established for x2 power
functions, which are smaller designs. Hence, BwF is preferred
to realize functions with higher bit-width and complexity.
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3.3. CGP Configuration Impact on Synthesized Design. In the
conventional configuration of a CGP run, SL is used with
constant mutation rates. However, this work introduces a
modified configuration that produces fitter circuits at a faster
convergence rate. The modified configuration involves BwF,
which evaluates the output bits with assigned binary weights
during each evolution. This approach selects the circuits to
mutate further in each generation by giving weighted impor-
tance to higher-order output bits relative to lower bits. Addi-
tionally, an eVar is used to reach functionally fitter circuits
faster. The goal is to select the best rough topologies in the
initial generation that require high mutation rates and, in
later generations, prefer minimal and single gate level changes,
which demand lowmutation rates. The varying learning rate is
inspired by various machine learning algorithms used in the
training phase. The use of eVars was found to inherently
reduce the evolution time to achieve similar fitness as other
long duration configurations. The selection between multiple
mutated designs in each generation is driven by the BwF
strategy. The BwF and eVAR strategies are used to realize
circuits through CGP runs for all the functions under consid-
eration. A series of 5-bit power functions (x2, x3, x4) are real-
ized to validate the results of the adopted strategy (BwF+
eVAR) with the typical approach (SL+Constant). Finally, a
study on different evolutionary strategies—(1+ 10), (2+ 8),
and (5+ 5)—derived combinatorial circuits, and mutation
schemes Point, Probabilistic, Probabilistic Only Active, and
Single types for 5-bit power functions are presented.

Post-CGP run, the obtained phenotype represents com-
binational circuits. The distribution of six types of gates
picked from the predefined list to derive the circuit is shown
in Figures 4 and 5. Figure 4 indicates that (2+ 8) and (5+ 5)

evolutionary strategies have less active nodes and are more
hardware-efficient than (1+ 10) strategies. Less gate sizes at
the synthesis stage are likely to offer hardware benefits in
terms of silicon footprint, power, and delay parameters.
Within different schemes studied, preference of (5+ 5) over
(1+ 10) suggests that more parents in the form of circuit
topologies are carried forward to further generations during
the evolutionary runs.

The distribution of gates in % remains similar through-
out the three strategies investigated for all three power func-
tions. Figure 5 shows that all mutation schemes have a
similar distribution of the gates. Probabilistic scheme results
in the largest gate size irrespective of SL or BwF fitness func-
tions. An important observation is the distribution of gates in
the evolved circuit. OR and NOR gates are the highest occur-
ring, while XOR and XNOR are the least occurring. AND
and NAND gates are relatively less used than OR and NOR
gates. This result clearly indicates that while the circuit size
remains similar, the accuracy of output improvement of BwF
over the SL method makes BwF, a favorable synthesis option.
Hence, BwF configuration with (5+ 5) mutation strategy and
eVAR mutation rate, along with a single type is configured
for realizing the functions under consideration. The pro-
posed BwF and eVar methods led to faster synthesis of cir-
cuits and gate-level designs that produced nearly exact
output. The eVar mutation rate facilitated faster exploration
of the design space, resulting in functionally correct solu-
tions. The BwF feature aided in selecting and driving evolu-
tionary designs toward weighted fitness along output bits,
resulting in reduced error metrics compared to the SL tech-
nique. Among the evolutionary strategies, (5+ 5) was pre-
ferred due to its low gate count and best fitness for realizing
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power functions. The BwF approach improved fitness by
reducing MAE by 5% to 50% for x3 and x4 functions com-
pared to the SL method.

With respect to CGP implementation, we have demon-
strated two important modifications, such as BwF and eVar,
as compared to SL, which employs the same weight across all
data-bits and a constant mutation rate for evaluating the
fitness parameters. Figures 2–5 depict the three power func-
tions evolved using eVAR and BwF and compared against
equal weighted fitness and constant mutation rate, which
clearly demonstrates that the proposed method converges
faster and yields fitter circuits. eVar contributes in evolving
circuits faster, whereas BwF contributes to realizing fitter
circuits. Adopting a mix of BwF with a constant mutation
rate is likely to yield fitter circuits but demands a large con-
vergence time, whereas eVar with equal weighted fitness is
likely to converge faster but not necessarily comply with the
required fitness.

4. Application: ASIC Synthesis of
Activation Functions

4.1. CGP Integrated ASIC Synthesis. Figure 6 illustrates the
proposed usage of a faster CGP synthesis process to generate

a fitter hierarchical design of unconventional functions in the
ASIC standard cell synthesis flow. This method produces a
pure combinational circuit using a predefined set of gates.
Figure 6 presents two flows to integrate CGP-generated net-
lists into standard ASIC synthesis. In Path-A, the evolved
netlist is directly included as a subdesign or submodule to
the original Verilog design file. In Path-B, CGP-evolved net-
lists are treated as hierarchical modules in the top-level
design hierarchy. Here, CGP runs are expected to run in
parallel to the synthesis of other designs, treating the instan-
tiation as a subdesign that gets integrated into the top design
during global partitioning and optimization. While Path-A is
a better choice for obtaining the most efficient synthesis
result, Path-B is preferred when the evolved circuits are large
in size and require a long run-time to arrive at a solution.

4.2. Optimization of Evolved Circuits. The netlist obtained
from CGP is not optimal in terms of cell usage. The netlists
may contain gates that are either redundant or are not driv-
ing any other node. While pruning of these logic gates is
performed by the synthesis tool in the Path-A flow, it is
necessary to clean the evolved circuit when targeted for the
Path-B flow before applying it in the top design. Following
pruning techniques are applied to the evolved netlist.
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(i) Noncoding nodes: The final genotype obtained from
CGP may contain noncoding nodes that are needed
for the evolution process [50] but are not utilized to
drive other nodes or outputs. Figure 7(a) shows an
example with a noncoding node (“MXI2_4”), which
is not utilized elsewhere in the circuit for generating
the output.

(ii) Ungrouping gates inside cells: When using the selected
gates from standard cells as the function set for nodes,
the final genotypes resulting from CGP become good
candidates for ungrouping techniques. A few optimi-
zation techniques, such as logic sharing, boolean opti-
mization, and redundancy removal, as shown in
Figures 8(a) and 8(b), were implemented to refine
the hierarchical design. One of the 2- AND gates is
redundant, hence removed, and the input is directly

fed to the next stage, as depicted in Figure 8(a). Logic
sharing between the two outputs is shown in
Figure 8(b), where the two 2-AND gates followed by
2-OR are repeated, and hence the same is shared to
generate the output.

4.3. Six Activation Functions. Activation functions have non-
linear output profiles and are considered unconventional con-
structs for traditional synthesis. Hence, they were considered
appropriate to showcase the capability of the novel proposed
CGP synthesis tool. In addition to using classical 2-input basic
gates, the following list of 20 different and popular 4-input
gates was used as node functions to synthesize activation
functions: AND, OR, NAND, NAND4B, NAND4BB, NOR,
NOR4B, NOR4BB, XOR, XNOR, MUX, MUXI, AOI211,
AOI22, AOI2BB2, AOI31, OAI211, OAI22, OAI2BB2, and
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OAI31. These sets of gates were selected in a view that most of
the library, including skywater 130 nm, GPDK 45nm, UMC
65nm, and nanGate 15 nm, consists of these gates and are
likely to directly map to the cells available in the library. To
validate the effectiveness of the modifications, the proposed

eVar and BwF-modified CGP were applied to activation func-
tions such as Gaussian, Sigmoid, hyperbolic-tangent, ReLU,
GeLU, and Softplus. Due to the space constraint, results of
Gaussian, Sigmoid, and hyperbolic-tangent are presented,
and all other results are made freely available in [37].
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FIGURE 6: Schematic showing a synthesis framework for integrating the hierarchical design of unconventional functions using the CGP
method to ASIC flow.
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Sigmoid xð Þ ¼ 1
1þ e−xð Þ

tanh xð Þ ¼ ex − e−x

ex þ e−x

Gaussian xð Þ ¼ e−x
2

ReLU xð Þ ¼
0

x

(
x<0

x ≥ 0
¼ x × 1ð Þx>0

GeLU¼ 1
2
x 1þ erf

xffiffiffi
2

p
� �� �

Softplus xð Þ ¼ ln 1þ exð Þ

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

: ð7Þ

Sigmoid, Gaussian, Hyperbolic-tangent, ReLU, GeLU, and
Softplus are expressed as stated in Equation (7). Fixed-point
data-format is used to represent the input and outputs of the
activation function. Round-to-floor quantization scheme was
used to obtain the fixedpoint representation of the continuous
activation functions. Figure 9 shows the input fixed-point
data format used. The output data format for the Sigmoid,
Hyperbolic-Tangent, and Gaussian activation functions was
configured similarly to the input data format of the Gaussian
function since it offers adequate integer bits to represent the full
range of output values between −1 and 1. A typical evolution-
ary strategy of (1+ 4), along with a pointmutation scheme, was
adopted for this analysis. For invoking the CGP process to
evolve the hierarchical circuit for a required design, the authors
suggest a demarcation in the HDL source file to define the
specification, such as:

// CGP {
// Function= ’ Sigmoid ’;
// QuantizationScheme= ’ Floor ’;
// WordLength= ’7 ’;
// DataFormat= ’FP’;
// RadixPoint= ’3’;
// FcnSet= ’ StdCells ’;
// }

This example shows a call for running the CGP process
to evolve the circuit for a 7-bit Sigmoid implementation. The
Sigmoid function is quantized using round to floor quanti-
zation scheme, and data are represented using 7-bit fixed
point numbers with 3 fractional bits, 3 integer bits, and 1
sign bit. CGP is also fed with the custom cells consisting of 20
different cells of 4-input gates, as listed above.

In the Path-A option of Figure 6, the evolved netlist can
be instantiated as a submodule in the original Verilog file. If
the Path-B option is used, the evolved hierarchical netlist is
either directly mapped to standard cells and treated as a
subdesign (which is independently synthesized) and inte-
grated into the top design or flattening the evolved netlist
before integrating it to the top design. Flattening the evolved
netlist requires a final incremental optimization step to
enable optimizations such as logic sharing and pruning.
Four different data formats were used to analyze the effect
of data format choice on the proposed CGP synthesis run
and are presented below:

(i) Configuration 1, referred to as Config-1, has the
highest range, with (N− 1) bits used to represent
the integer part. A representation for Config-1 is
shown in Figure 10(a). The figure clearly depicts
the format of integer data for N ranging from 4 to
8-bits.

(ii) Configuration 2, referred to as Config-2, was designed
to allocate the maximum possible number of available
bits to the fractional part. This is to achieve maximum
precision while maintaining the full output range for
the corresponding activation function. Hence, circuits
representing the Sigmoid function have dlog2(5)e= 3
bits for the integer part. Circuits representing Gaussian
and Hyperbolic-Tangent functions have dlog2(2)e= 1
bit and dlog2(4)e=2 bits, respectively, for representing
the integer part. Hence, based on the maximum output
range, the integer part and maximum bits to represent
the fractional part are allocated. Different data formats
representing Config-2 for three activation functions are
shown in Figure 9(a)–9(c).
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FIGURE 8: Circuit optimizations: (a) redundancy removal and (b) logic sharing, applied to the proposed hierarchical synthesis.
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(iii) Configuration 3, referred to as Config-3, allocates N
2 bits for the fractional part, and the same is shown
in Figure 10(b). Apart from the sign bit, the frac-
tional part either occupies one bit extra or has a
similar bit-width as that of the integer component.

(iv) Configuration 4, referred to as Config-4, allocates N
2− 1 bits for the fractional part, and the same is
depicted in Figure 10(c). In this configuration, the
fractional part allocation is always 1-bit less than the
integer component.

The four different data-formats allow to evaluate the
effect of fast CGP synthesis run on the configured data-for-
mats. The output data format for Sigmoid, Hyperbolic-
Tangent, and Gaussian activation functions was configured
similarly to Config-2 of the Gaussian function since it offers
adequate integer bits to represent a full range of output
values between −1 and 1. ReLU, GeLU, and Softplus are
configured to have the same output configuration as their
corresponding input configurations.

The proposed CGP synthesis flow was used to validate a
comprehensive set of design variations covering a wide range
of bit-widths (4–8-bits) and four different configurations
applied to six different nonlinear (activation) functions. To
realize this set of functions, three different synthesis runs were
conducted. The first was a hierarchical synthesis run on the
specified functions without flattening, referred to as hierar-
chical. The second was a flattened synthesis run, labeled as
flattened, which was performed after flattening the hierarchi-
cal design. The third synthesis run used basic gates and was
referred to as basic-gates. These three different synthesis runs

allowed for a discussion on optimization and synthesis time
for the selected complex functions.

Figures 7(a) and 7(b) show the circuit synthesized for the
Sigmoid function using selected gates from the custom gates and
basic gates, respectively. The selected gates generated circuit was
further flattened using basic gates. In this work, 20 different runs
for each design variant were performed to benchmark the com-
putation effort, since the aim was to characterize the proposed
synthesis flow to achieve fully-fit circuits. The fully-fit circuit
refers to the one that reproduces the desired truth-table for the
complex function under consideration. Due to the size con-
straint of this manuscript, results presented in the form of tables
and figures are only a small subset of all the experiments. Com-
plete comprehensive results are made available at [37].

4.4. Fitness Convergence. Figure 11 is the plot of percentage-
of-fitness versus generations in logarithm scale for Gaussian,
Sigmoid, and hyperbolic-tangent functions of 4–8-bit data-
formats when configured with (blue runs) constant mutation
rate with SL and (red runs) eVarmutation rate with BwF. We
report the percentage of fitness since the order of magnitude
of SL and BwF values are different. The graph also allows to
recognize potential termination when a functionally perfect
solution is found. The eVarmutation rate evolves to a similar
percentage of fitness attained by constant mutation rate by at
least a decade generation less for lower order bit-widths and
at least 105 generations less for 7, and 8-bit activation func-
tions. Additionally, the best-evolved design for eVar-based
CGP consistently achieved maximum fitness for a similar
number of generations throughout the three activation func-
tions investigated. Considering the evolved design at the last
generation, the percentage of fitness achieved by the eVar
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FIGURE 9: Input data format representing Config-2, that is, employed for (a) sigmoid, (b) hyperbolic tangent, and (c) Gaussian activation
functions.
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applied CGP is better by at least a decade for lower order bit-
width functions and at least 100 times better for the 7 and
8-bit activation functions.

4.5. Correlation of Circuit Output. Figure 12(a) shows the
output profile of the circuit generated from the proposed
scheme, which closely resembles the expected output nonlin-
ear profile. The absolute error remains zero for most of the
input data, with dominant error values close to 0. Figure 12(b)
depicts the output profile of the circuit generated from the
traditional SL method. It demonstrates erroneous output for
different input data. The absolute error is not only spread
across the input data range but also higher in magnitude.
The error rate is also higher compared to the proposed
BwF-eVar modified CGP approach. The error rates for both
methods are indicated next to the absolute error graphs. For
7-bit and 8-bit activation functions, eVar enabled the circuit
design to evolve faster by at least 105 times fewer generations,
and BwF produced output profiles close to the required profile
compared to SL. BwF and eVar enabled CGP-evolved circuits
to closely adhere to the nonlinear profile of the activation
functions studied in this work. Overall, BwF and eVar are
two essential tools for setting up CGP to evolve complex
nonlinear functions with significantly less computational
effort. The designs are freely available in [37] for further use
by the research and design community.

4.6. Dataformat Impact on Evolutionary Run. The choice of
data format involves a tradeoff between precision and range
for a given fixed bit-width, which affects the size of the CGP-
derived circuits. When using a fixed-point format, a higher
range implies a lower bit space for representing the fractional
part, resulting in a loss of precision. As a result, the continu-
ous nonlinear function is approximated more heavily, and a
larger number of input values are mapped to the same output
value. Conversely, more precision in the fixed-point format
reduces the number of bits available for representing integer
data, thereby limiting the range. However, this also means
that fewer input values are mapped to the same output, and
the circuit is expected to produce a higher number of unique
output values.

Table 3 shows four data formats chosen to benchmark
CGP, with Config-2 offering the highest precision and Con-
fig-1 offering the highest range. Config-3 and Config-4 are
designed to allocate half the available bits for the fractional
part, with Config-3 allocating one extra bit for the frac-
tional part.

The fully-fit circuit complexity in CGP runs depends on
the input and output bit-widths. An increase in the bit-width
of the input data-format results in a doubling of the truth-
table size, requiring additional runs to achieve full-fitness.
Similarly, an additional output bit widens the truth-table by
a column, necessitating extra evolutionary steps for achieving
full-fitness for the additional output bit. The impact of the
data format choice on the evolutionary run is apparent from
Figure 13 and Table 4. Higher precision configurations neces-
sitate a significantly higher number of generations and nodes
to achieve a zero-error circuit. For a complicated circuit like
Gaussian, selecting one extra bit for the fractional part nearly

doubles the genotype size. The number of generations needed
to achieve convergence to full fitness also increases by a factor
of 10. As shown in Figure 13, the convergence profile exhibits
substantial variation before reaching 1% on full-fitness (100
on the y-axis). Among the 20 runs, the fitness convergence
trend suggests that approximately correct circuits (circuits
that reach 1% on full-fitness) evolve faster, requiring 1/100
of the generations necessary for full-fitness. Due to the manu-
script’s size restriction, only a small subset of the experiments’
results are presented in upcoming figures and tables, with
comprehensive results available at [37].

4.7. Impact on Synthesis. The CGP evolved designs from both
basic gates representation and custom gates were synthesized
using the Cadence Genus synthesis tool. The evolved netlists
were mapped to four different standard cell libraries: Cadence
gpdk45 (480 cells), Skywater 130 nm (386 cells), UMC 65nm
(1077 cells), and nanGate OCL 15 nm (76 cells). Figure 14
shows the Gaussian activation function realized in four dif-
ferent standard cell libraries across three different synthesis
topologies: basic, hierarchical, and flattened. All the cells in
the evolved netlist and synthesized designs were categorized
into eight groups of incorporated gates. The majority of cells
in the basic gates synthesized design are of OR, AND, and
XOR type, while the hierarchical design utilizes around 53%
cells from AOI, OAI, MUX, and the remaining 47% cells are
basic gates AND, OR, XOR, XNOR. Post flattening, the netlist
shows a higher percentage of AOI, OAI, and MUX. Figure 15
shows the difference in power, delay, and area of the design
postsynthesis. Config-2 utilizes the highest resources, while
Config-1 circuits concede the lowest resources. This is
expected as the number of nodes in the evolved design is lower
in the reduced precision configurations, as stated in Table 4.
On flattening, the synthesized design improves the resources
slightly but is not as significant as adopting basic gates in the
CGP run.

The richness of the library (number of available cells) used
for synthesis directly affects the type of cells in synthesized
netlists. Nangate library, with just 76 cells, has the lowest
percentage of AOI, OAI, and MUX, while the UMC library,
with 1,077 cells, has around 52% of AOI, OAI, and MUX. As
an inverter is not included in the function set, netlists
obtained from CGP runs do not use inverters. CGP netlists
have the lowest average number of cells and a uniform distri-
bution in the type of cell, while the netlists postsynthesis
introduces inverters and does not have even distribution of
type of cells. On inspecting the timing reports, it was learned
that the synthesis tool picks the cells to improve the timing.
The distribution of type of cells shows no significant differ-
ence between hierarchical and flattened netlist synthesis.

4.8. Nodes Representation Impact on Evolutionary Algorithm.
The impact of the choice of CGP node-gates is evident from
Tables 4 and 5 and Figure 16. Choosing CGP nodes from the
standard cells greatly reduces the size of the genotype (num-
ber of nodes) and the number of computations in each gen-
eration. Besides standard cells, selected CGP nodes show
faster convergence to achieve full fitness. Using standard cells
as nodes reduces computations required per run, thereby
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enhancing the scalability to realize larger bit-widths and
higher precision data formatted designs. While standard
cell nodes improve the speed of convergence, it does not
necessarily produce efficient designs postsynthesis. Figures 14
and 15 show the disadvantage in terms of power, delay, and
area. This result is due to the limitation of optimizations that
can be performed by the synthesis tool, as circuits implemen-
ted with basic gates contain largely active nodes that are
driving other nodes, while standard cell representation may
contain a large number of redundant gates.

5. Comparison with Other
Hardware Implementations

Generally, hardware implementations of activation functions
in accelerators follow clocked-sequential designs, utilizing
register files, cache, or RAM memories. Traditional LUT-
based approaches demand substantial memory resources,
typically on the order of 2N words, each storing N-bit values
[51, 52]. Other methods, such as series expansions and the
CORDIC algorithm, involve hardware-intensive components

TABLE 3: Four data format configurations used for inputs in the six activation functions represented as (integer part, fractional part) bits in a
n-bit number.

Function Config-1 Config-2 Config-3 Config-4

Sigmoid, ReLU, GeLU, Softplus (n− 1, 0) (3, n− 4) (n − ⌊n/2⌋ − 1, ⌊n/2⌋) (n − ⌊n/2⌋ − 1, ⌊n/2⌋ − 1)
Tanh (n− 1, 0) (2, n− 3) (n − ⌊n/2⌋ − 1, ⌊n/2⌋) (n − ⌊n/2⌋ − 1, ⌊n/2⌋ − 1)
Gaussian (n− 1, 0) (1, n− 2) (n − ⌊n/2⌋ − 1, ⌊n/2⌋) (n − ⌊n/2⌋ − 1, ⌊n/2⌋ − 1)
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Gaussian function over four data formatted configurations (in log scale).

TABLE 4: Average number of generations (gens) and nodes required to achieve full fitness for 8-bit activation function synthesized circuits for
all configurations.

Function CGP nodes Config-1 (gens, nodes) Config-2 (gens, nodes) Config-3 (gens, nodes) Config-4 (gens, nodes)

Gaussian
Basic gates 9.33E+ 06, 19 6.05E+ 07, 144 2.96E+ 07, 91 4.80E+ 06, 44
Std cells 2.94E+ 06, 9 4.63E+ 07, 105 2.42E+ 07, 55 9.75E+ 06, 33

GeLU
Basic gates 4.58E+ 06, 23 1.76E+ 07, 54 1.76E+ 07, 54 2.23E+ 07, 49
Std cells 9.81E+ 05, 17 7.86E+ 06, 36 7.86E+ 06, 36 4.63E+ 06, 32

Sigmoid
Basic gates 5.57E+ 06, 26 3.48E+ 07, 98 3.48E+ 07, 98 3.72E+ 07, 80
Std cells 6.18E+ 06, 17 3.31E+ 07, 61 2.30E+ 07, 62 2.03E+ 07, 46

Softplus
Basic gates 8.84E+ 04, 9 3.85E+ 07, 90 3.85E+ 07, 90 2.12E+ 07, 51
Std cells 2.74E+ 05, 8 1.60E+ 07, 49 1.60E+ 07, 49 3.97E+ 06, 31

tanh
Basic gates 5.21E+ 06, 22 5.92E+ 07, 131 4.49E+ 07, 104 1.98E+ 07, 66
Std cells 4.65E+ 06, 11 3.46E+ 07, 82 2.21E+ 07, 61 9.55E+ 06, 37
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like multipliers and adders. While it may be impractical to
directly compare the synthesis results of unconstrained combi-
natorial designs in this study with timing-constrained designs in
terms of PPA, we do discuss the resource advantages. The cir-
cuits obtained from CGP offer a wide range of hardware-
accuracy tradeoffs. One of the largest circuit presented, 8-bit
configurations under Config-2 data format, exhibit minimal
error with the highest precision, comprising 150–160 basic gates.
This gate count is significantly lower than any other implemen-
tation and requires fewer resources than an 8-bit multiplier.
Additionally, pure combinational implementation offers the
advantage of further optimization during synthesis, a capability
generally unavailable when using standard memory blocks. Cir-
cuits from different configurations are likely to have fewer gates
than those selected from Config-2.

The novel hardware implementations of activation func-
tions were evaluated for hardware advantages when deployed
in FPGA using the DNNWeaver accelerator [53] and BRAM in
hls4ml [54]. The Xilinx CORDIC-IP method for Hyperbolic-
Tangent implementation was also included in the comparison.
Additionally, the PWL method with 16 segments [34] was
compared with the proposed CGP evolved activation function

designs. The FPGA utilization was assessed on Artix-7 FPGA
fabric, and ASIC results were extracted using a 45 nm gpdk
technology library. For the comparison, 8-bit Config2 circuits
of these activation functions, featuring themaximum gates and
generating the least error, were considered. Memory-table-
based implementations utilized 256 bytes with an 8-bit bus
RAM and a 2-way set associative DDR3 cache, both modeled
in 45nm technology. It is important to note that register-based
memory introduced an additional clock cycle, while cache and
RAM implementations required an overhead access time of
0.15–0.2 ns. Furthermore, PWL circuits with 16 segments
were implemented for all the 8-bit activation functions.

The synthesis results of circuits generated through the
CGP method are depicted in Figure 17, alongside other
implementations. The 8-bit activation functions evolved by
CGP demonstrate remarkably low LUT utilization when
compared to alternative methods, including DNNweaver-
LUT, hls4ml, CORDIC, and PWL, within the FPGA flow.
Specifically, CGP designs require approximately (1/7) the
number of LUTs as DNNweaver-LUT and hls4ml, which
are an order of magnitude less than CORDIC and nearly
100 times fewer than PWL implementations. Furthermore,

TABLE 5: Average number of nodes for CGP synthesized circuits under Config2 format, which is required to achieve full fitness.

Function CGP nodes 4 bit 5 bit 6 bit 7 bit 8 bit

Gaussian
Basic gates 10 20 39 80 144
Std cells 7 14 28 56 105

GeLU
Basic gates 10 14 18 31 54
Std cells 7 8 12 22 36

Sigmoid
Basic gates 7 14 27 47 98
Std cells 4 8 15 28 61

Softplus
Basic gates 5 8 23 47 90
Std cells 4 6 14 28 49

tanh
Basic gates 6 15 35 64 131
Std cells 4 10 20 42 82
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CGP implementations exhibit favorable power consumption,
comparable to hls4ml, and superior to the other three meth-
ods. While hls4ml also has similar power requirements, it
necessitates seven times as many LUTs. In the ASIC flow,
CGP circuits offer substantial benefits in terms of footprint
and power efficiency when compared to other implementa-
tions. RAM and Cache implementations consume approxi-
mately ten times more silicon space than the CGP-based
activation function implementation. Meanwhile, PWLmethod
implementations require nearly 10 times more silicon space,
and DNNweaver-LUT takes up more than two decades’ worth
of silicon space compared to the proposed CGP method. The
power consumption of CGP-based activation functions is
exceptionally low when compared to other methods.

In summary, even the largest CGP-generated circuits,
which have the highest gate count and produce minimal
errors, offer substantial hardware advantages when com-
pared to other implementations. Relaxing error performance
requirements in error-tolerant designs enables approximate
designs to provide additional hardware and performance
benefits beyond existing implementations. CGP-evolved cir-
cuits offer a spectrum of hardware-error performance trade-
offs. Being purely combinational enables single-clock-cycle
calculations for activations at each neural network layer. This
results in savings in memory-access time and a reduction in
dynamic power per computation.

The time complexity of the proposed method to evolve
and realize the complex functions may be more than other
methods such as CORDIC, PWL, DNNweaver-LUT, and
other memory-based RAM and CACHE methods. However,
postevolution and synthesis of circuits from the modified
CGP method, these circuits are extremely power, perfor-
mance, and footprint efficient. A direct comparison with
other methods in terms of time complexity is difficult

because of the heuristic nature of the algorithm. A majority
of evaluations (9 out of 10 in the case of (1+ 10) strategy) do
not necessarily contribute to improvement every generation.
Noncoding nodes in the solutions are also a major source of
redundant computations in the algorithm, but they are cru-
cial for the evolutionary process. Memory-based methods are
primarily tool-based, full-custom derived CORDIC or PWL
implementations for each function are designer-dependent.

Custom implementation using memory blocks (LUTs
and PWL methods) is dependent on the technology node,
and memory blocks available. For FPGA implementation, we
had to optimize the physical implementation using BRAM
blocks in Xilinx. The major overhead of this method involves
the usage of a large number of LUTs, Registers, and Multi-
plexers for saving results in 8-bits. Here, the optimization is
toward lower usage of memory blocks and other hardware
resources to map the output and achieve results in low
latency. However, the complexity and intricacies in realiza-
tion are minimal, considering the 8-bit result is fed to the
LUT by the designers. Similarly, the PWL method saves
coefficients of every segment in the LUTs; thereby, the com-
plexity in realizing the output is of lower order, but the
hardware resources utilized are fairly high, whereas the pro-
posed technique has the vast combinatorial design space to
evolve a group of gates that maps the output. The complexity
of the proposed technique is in realizing the output and later
minimizing the number of cells employed. For realizing the
evolved gate-level design in the FPGA system, these sets of
cells are mapped to the hardware resources in-built into the
system.

Implementing the activation function as a shared system-
level subsystem in an SoC involves designing a memory con-
troller for the custom SRAM blocks. This is required for both
LUT and PWL implementations. For data sizes that are not
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power-of-two result in unused parts of the memory block
that occupy hardware space. Hence, the tradeoff in realizing
the activation functions in LUTs or PWL methods is in
designing additional memory controller blocks besides living
with unused memory blocks. The proposed technique evolves
to a purely combinatorial design and neither worries about
any controller overhead design nor on unused memory
blocks. The combinatorial design representing the activation
functions is realized on SoC as a subsystem block by mapping
to the defined standard cells.

The CGP synthesis requires high computing resources
over other traditional methods, such as LUTs and PWL,
where the output of the function is either directly stored or
approximated to extract a linear profile. On the other hand,
CGP implementation runs through the entire exhaustive
design space search and attempts to find node-level design
representing the function under consideration. Hence, time
complexity to arrive at a design solution is always easy with
other implementations; however, the proposed approach is
demonstrated to offer a fitter circuit that is hardware and
power-efficient than other existing implementations. For lin-
ear functions, one can always opt for other existing methods
since CGP is likely to scan a large design space before arriv-
ing at a solution. However, for realizing AI subsystems,
which are generally in the form of nonlinear functions, the
proposed CGP synthesis approach is valuable.

The activation functions studied are a few of the most
complex circuits to custom-implement. The main aim was to
target quantized implementations (sub-8 bit) of neural net-
works, as they are crucial for low-power edge implementa-
tions. The potential limitations will be with the runtime of
the CGP algorithm to obtain circuits with acceptable error-
hardware performance. Our implementation is purely CPU-
based C code utilizing multiple threads to speed up runtime;
GPU or FPGA implementation of the algorithm itself will
help address the long runtimes.

6. Conclusions

CGP, an evolutionary design methodology, was implemen-
ted to synthesize hierarchical designs mapped to 20 common
standard cells of 4-input gates. CGP allowed to explore
design-space search for realizing complex functions. The
paper employs CGP to realize and analyze popular nonlinear
activation and power functions that are hard to realize for
different configurations of data format and bit-widths. Addi-
tionally, CGP runs using the BwF fitness scheme and eVAR
mutation rate offer quicker evolution and fitter circuits. The
evolved netlist from the CGP run was further flattened to
characterize the hardware metrics through the ASIC flow.
CGP evolved netlist for activation functions mapped to basic
gates were also generated for comparison purposes. The syn-
thesis run through the selected standard cells saves run-time
and computational effort compared to the synthesis run
using classical basic gate cells. The CGP-derived synthesis
method reported 3× less synthesis time for realizing the
complex functions at the hierarchical level compared to using
basic gates. Further flattening of the hierarchical design to their

constituent basic gates showed no significant improvement in
hardware metrics. The scope of the CGP-generated circuits
using standard cells is easily extendable to the regular ASIC
synthesis flow in twoways: Path-A, as referred previously, waits
for the CGP synthesis run to complete and hence suffers from
high turnaround time, but this flow is expected to produce
hardware-efficient design solutions. Alternately, Path-B pro-
duces the design solution at a shorter turnaround time but is
likely to present functionally suboptimal designs.

Data Availability

All the results of this work are made freely available for
further benchmarking and easy usage to the researchers
and designers community at https://sites.google.com/view/
evolutionarysynthesis/home.
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