
Research Article
A FPGA Accelerator of Distributed A3C Algorithm with
Optimal Resource Deployment

Fen Ge ,1,2 Guohui Zhang ,1,2 Ziyu Li ,1,2 and Fang Zhou 1,2

1College of Integrated Circuits, Nanjing University of Aeronautics and Astronautics, Nanjing, China
2Key Laboratory of Aerospace Integrated Circuits and Microsystem, Ministry of Industry and Information Technology,
Nanjing, China

Correspondence should be addressed to Fen Ge; gefen@nuaa.edu.cn

Received 25 November 2023; Revised 7 April 2024; Accepted 3 May 2024; Published 27 May 2024

Academic Editor: Roger Woods

Copyright © 2024 Fen Ge et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The asynchronous advantage actor-critic (A3C) algorithm is widely regarded as one of the most effective and powerful algorithms
among various deep reinforcement learning algorithms. However, the distributed and asynchronous nature of the A3C algorithm
brings increased algorithm complexity and computational requirements, which not only leads to an increased training cost but also
amplifies the difficulty of deploying the algorithm on resource-limited field programmable gate array (FPGA) platforms. In addition,
the resource wastage problem caused by the distributed training characteristics of A3C algorithms and the resource allocation
problem affected by the imbalance between the computational amount of inference and training need to be carefully considered
when designing accelerators. In this paper, we introduce a deployment strategy designed for distributed algorithms aimed at
enhancing the resource utilization of hardware devices. Subsequently, a FPGA architecture is constructed specifically for accelerating
the inference and training processes of the A3C algorithm. The experimental results show that our proposed deployment strategy
reduces resource consumption by 62.5% and decreases the number of agents waiting for training by 32.2%, and the proposed A3C
accelerator achieves 1.83× and 2.39× improvements in speedup compared to CPU (Intel i9-13900K) and GPU (NVIDIA RTX 4090)
with less power consumption respectively. Furthermore, our design shows superior resource efficiency compared to existing works.

1. Introduction

Reinforcement learning (RL) is a machine learning algorithm
that maximizes long-term rewards by interacting with the
environment so that the agent learns optimal behavioral
strategies. By introducing the deep neural network (DNN),
deep reinforcement learning (DRL) greatly improves the
learning ability of algorithms for high-dimensional inputs.
The asynchronous advantage actor-critic (A3C) algorithm
[1] is widely regarded as one of the most effective and pow-
erful algorithms among various DRL algorithms, which is
commonly applied in intelligent control systems in various
fields, including autonomous driving [2, 3], unmanned aerial
vehicle [4, 5, 6], robotics [7, 8, 9], and gaming [10, 11].

However, the introduction of DNN has led to a significant
increase in the time and cost associated with model training.
The substantial time and computational costs severely hinder
the widespread adoption of DRL. Furthermore, the distributed
asynchronous learning framework significantly increases the

algorithmic complexity and computational demands of the
A3C algorithm. Typically, it is deployed on multicore GPUs
for computation, leading to relatively high energy consump-
tion. Additionally, when using a GPU, the mix of small DNN
architectures, small training batch sizes, and contention for
the GPU for both inference and training can lead to a severe
underutilization of the computational resources [12]. Field
programmable gate array (FPGA) has proven to be excellent
hardware acceleration platforms for computationally intensive
algorithms (DNN, DRL, etc.) due to its programmability, high
parallelism, and low power consumption [13]. Consequently,
there has been a growing focus on using FPGA platforms to
accelerate DRL algorithms [14, 15, 16, 17].

This paper aims to accelerate A3C algorithm for both infer-
ence and training on FPGA. Compared to previous research,
we focus on how to improve the resource utilization of the
distributed DRL accelerator. The main contributions of this
paper can be summarized as follows:

Wiley
IET Computers & Digital Techniques
Volume 2024, Article ID 7855250, 13 pages
https://doi.org/10.1049/2024/7855250

https://orcid.org/0009-0002-3162-8389
https://orcid.org/0009-0009-6831-0009
https://orcid.org/0009-0006-5953-1246
https://orcid.org/0000-0001-8274-1846
mailto:gefen@nuaa.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


(1) A hardware deployment strategy for distributed DRL
algorithm is proposed. This strategy focuses on opti-
mizing three key aspects: the deployment of agents,
the deployment of computing units, and the alloca-
tion of hardware resources. Its goal is to achieve a
balanced interaction, inference, and training time,
minimize idle waiting delays of computing units, and
enhance the overall utilization of hardware device.

(2) A FPGA-based A3C algorithm accelerator architec-
ture is proposed. We design dedicated acceleration
units for different computational stages of the A3C
algorithm and allocate mutually independent storage
space for these units to improve data access efficiency.
In addition, we optimize the hardware structure and
control for different computational processes to fur-
ther increase the speed and parallelism.

2. Background and Related Work

2.1. Deep Reinforcement Learning. In RL, an agent interacts
with the environment over a discrete number of time steps.
As shown in Figure 1, at each time step t, the agent obtains
the current state st from the environment and selects an
action at from the action space A according to its policy π.
After executing the selected action at in the environment, the
agent receives the reward value rt and the next state st+ 1.

The aim of RL is to maximize cumulative rewards by
learning a certain strategy through the interaction between
the agent and the environment. RL can either learn a strategy
directly or optimize the strategy indirectly by obtaining a
value function that evaluates the quality of each state-action
pair. DRL can obtain efficient decision-making strategies in
complex, high-dimensional environments by integrating deep
learning technique, and the RL framework. Typically, DRL
employs DNN to approximate the value functions in RL and
selects actions based on the outputs of DNN.

The computation of DRL consists of two main tasks:
inference and training. In the inference task, training data
are generated through interaction with the environment. The
training task uses the data generated from the inference task
to update the parameters of the DNN, thus improving the
performance of the agent. The inference and training tasks
are interrelated and together facilitate the learning and opti-
mization of the agent in complex environments.

2.2. A3C Algorithm. The A3C algorithm, which builds upon
the actor critic algorithm [18], employs a distributed training
approach to simultaneously deploy multiple agents for inter-
acting with the environment. This method enhances the

speed and diversity of experience acquisition, as illustrated
in Figure 2. The A3C algorithm creates a central agent as a
template for the distributed agents and duplicates it N times,
resulting in N local agents.

Under the distributed training framework, the computa-
tion of each agent is independent of each other and can be
performed simultaneously. Additionally, the A3C algorithm
uses an asynchronous parameter updating mechanism to
prevent access conflicts that may arise when multiple local
agents concurrently copy or update the parameters of the
central agent.

2.3. The Computational Flow of A3C Algorithm. The com-
plete computational flow of A3C algorithm can be divided
into four parts: parameter synchronization (PS), inference
(Inf), environment interaction (Env), and training (Train),
as shown in Figure 3. The training process is further divided
into four stages: loss gradient calculation (Loss GC), back-
propagation (BP), parameter gradient calculation (Parameter
GC), and parameter update.

The computational flow of the A3C algorithm is as fol-
lows: First, the central agent copies (the process of copying
parameters is called PS) its network parameters (i.e., central
θ) to a local agent (i.e., local θ). Subsequently, the computa-
tion of inference begins (i.e., Inf), and the process generates
the output feature map based on the input feature map and
the DNN parameters of each layer (i.e., θ). The agent then
applies the action selected by Inf to the environment and
receives the corresponding reward value (i.e., Env). When
Tmax inferences are performed, the training computation
starts. The first step of training is Loss GC, which computes
how much the input feature mapping values should be chan-
ged to optimize the objective function (i.e., gradients of the
input feature map). BP propagates the gradient of feature
map computed by Loss GC from the last layer of the network
to the first. The goal of Parameter GC is to compute the
gradient of the DNN parameters (i.e., dθ). After obtaining
the gradients of the DNN parameters, the central agent
updates the parameters using an optimization algorithm
(e.g., RMSProp).

2.4. Related Work.With the development of DRL algorithms,
the training method of DRL is transformed from single agent
to multiple agents. Based on the number of agents working in
the accelerated DRL algorithm, we classify DRL accelerators
into single-agent DRL accelerators represented by the DQN
algorithm [19] and multi-agent DRL accelerators repre-
sented by the distributed DRL algorithm.

Traditional single-agent acceleration work focuses on
tabular RL algorithms acceleration [20, 21]. However, the
key component of tabular RL, the Q table, is prone to becom-
ing excessively large which prevents tabular RL from han-
dling complicated tasks. To overcome this challenge, works
[22, 23, 24, 25] designed dedicated acceleration architectures
for different DRL algorithms, respectively. Nevertheless, all
these works only support the inference computation in DRL
algorithms and cannot be applied to the on-chip training
process of the algorithms.

Environment

Agent

st

rt Action
value

a

Pick
action

at

FIGURE 1: The principle of RL.

2 IET Computers & Digital Techniques



Work [26] implemented the DRL inference and training
process on-chip by configuring the computational units into
different modes. Work [27] implemented a high-throughput
PPO accelerator based on a systolic-array architecture cou-
pled with a novel memory-blocked data layout, targeting
both phases of the algorithm. Further, work [28] proposed
a quantization-aware training algorithm in fixed point. It is
the first DRL hardware accelerator that supports both infer-
ence and training with dual bit-precision in fixed-point for
DRL. Although single-agent DRL accelerators, represented
by [26, 27, 28], efficiently achieve computational acceleration
of algorithms for inference and training. However, these
architectures cannot be migrated to more advanced multi-
agent DRL algorithms.

With the improvements to single-chip computing capa-
bility, on-chip distributed RL acceleration has been proposed
recently [29, 30]. However, work [29] did not conduct mul-
tiple agents on-chip synchronization, restricting the learning
speed of RL model. Work [30] instead only focuses on the
interconnection part of the different agents but focuses little
on the acceleration architecture of single agent. Work [31]
proposed a hardware accelerator (DARL) for supporting
single-agent and multi-agent DRL algorithms. However,
DARL ignores the resource wastage problem caused by the
distributed training characteristics of multi-agent DRL algo-
rithms and the resource allocation problem caused by the

imbalance between the computational amount of DRL algo-
rithms’ inference and training, which makes the main resource
consumption of accelerator show an almost linear increase with
the growth in the number of agents. Work [32] presented
iSwitch, an in-switch acceleration solution that moves the gra-
dient aggregation from server nodes into the network switches,
thus they can reduce the number of network hops for gradient
aggregation. However, work [32] still did not focus on the
resource optimization that should be considered for hardware
acceleration of distributed DRL algorithms.

To overcome these challenges, we propose a hardware
deployment strategy designed for distributed DRL algorithm.
The strategy focuses on how to optimize the resource wast-
age caused by the growth in the number of agents in distrib-
uted DRL algorithms and balance the resource consumption
of training and inference. Then, we design an architecture for
the A3C algorithm based on the proposed strategy to acceler-
ate the inference and training of the algorithm.

3. The Hardware Deployment Strategy for
Distributed DRL Algorithm

3.1. The Deployment Strategy for the Number of Distributed
Agents. The A3C accelerator can deploy more agents to
reduce the computational latency caused by delays in agent
interaction and improve the efficiency of computing resource

Env 1 a0 a1 at–1
r0 r1 rt–1

s0 s1 st–1 st

s0 s1 st–1 st

s0 s1 st–1 st

at
rt

Env 2

Env n

{(st, at, rt)}
Experiences

Experiences

Experiences

Batching

Agent 1

Agent 2

Agent n

···

··· ···

···

···

···

··· ···

at

st

at

st

at

st

Asynchronous update

θ
dθ 1

θ

θ

dθ2

dθ
n

a0 a1 at–1

a0 a1 at–1

r0 r1 rt–1

r0 r1 rt–1

at
rt

at
rt

{(st, at, rt)}

{(st, at, rt)}

FIGURE 2: The principle of A3C algorithm.

PS Inf Env Inf Env Env Train PS Inf

...

...

a ar r r

Tmax inference steps

Generated training dataset

Ba
tc

h
siz

e

Next inference and
training tasks

Central θ1
Central θt

Central θt+1
θt+1→

Local θi
Local θi Local θi Local θi Local θiUpdate

Loss GC BP Parameter GC Parameter update
Time

FIGURE 3: The computational flow of A3C algorithm.

IET Computers & Digital Techniques 3



utilization. However, an increase in the number of agents
results in higher resource overhead, which may exceed the
limitations of most embedded platforms. In this paper, we
propose a methodology for determining the optimal number
of distributed agents. It quantifies the advantages contributed
by each newly added agent to assess its impact on reducing
the training cycle of the A3C agent.

We identify three criteria to determine the optimal num-
ber of distributed agents: the number of experience saturated
agents Ne (the notations used in our proposed deployment
strategy here and below are explained in Table 1), the num-
ber of reward saturated agentsNr, and the maximum number
of agents Nl that can be deployed on hardware devices. A
unified deployment strategy is proposed to determine the
optimal number of agents No based on the numerical rela-
tionship among Ne, Nr, and Nl, as presented in Equation (1):

No ¼
Ne Nl>Ne>Nr

Nr Nl>Nr>Ne

Nl Ne ≥ Nr>Nl

8><
>: : ð1Þ

(1) Nl>Ne>Nr: The optimal number of agents in this
situation is Ne. When the number of agents reaches
Nr, the experience contributed by the newly added
agents effectively utilizes the computing resources of
the accelerator, thereby reducing agent calculation
waiting time and improving the exploration speed
of A3C agents per second.

(2) Nl>Nr>Ne: The optimal number of agents in this
situation is Nr. When the number of agents reaches
Ne, the experience introduced by the newly added
agents enhances the diversity of training samples.
This enables A3C agents to achieve higher cumula-
tive rewards within the same exploration steps, ulti-
mately accelerating the convergence speed of A3C
agents.

(3) Ne≥Nr>Nl: The optimal number of agents in this
situation is Nl. Due to the limited number of agents
that a hardware device can deploy, it is necessary to
maximize the number of agents deployed to improve
the utilization of computing resources and achieve
the best acceleration performance.

3.2. The Deployment Strategy for the Number of PEs. The
distributed nature of the A3C algorithm means that some
agents may be involved in the inference while others are
engaged in the training or interaction process. If the number
of deployed inference processing engines (IPE) and training
processing engines (TPE) in the computational unit matches
the number of agents, it can result in the idle issue of compu-
tational resources, as illustrated in Figure 4. In the figure, IPE
and TPE represent the hardware resources used by a local
agent to complete the inference or training, respectively.

We model the computational process of the A3C algo-
rithm to determine an appropriate level of PE parallelism.
The number of agents is denoted as N, and the number of
deployed IPEs and TPEs is presented as M. We define the
iteration time of the state in the environment as te, the data
transfer time between the accelerator and the host computer
environment as ti, the computation time for forward infer-
ence as tf, and the training time for backward propagation as

TABLE 1: Abbreviation list.

Notation Meaning

Ne The number of experience saturated agents
Nr The number of reward saturated agents
Nl The number of agents limited by hardware resources
No The optimal number of deployed agents
te The iteration time of the state in the environment
ti The interaction time between host computer and accelerator
tf The computation time for forward inference
tb The training time for backward propagation
tw The waiting time due to all resources being occupied
ts The total time consumed to complete all exploration
L The maximum number of explorations
Tmax The upper limit of inference
tmin The minimum time to complete all exploration tasks, related to the number of agents
tr The real time to complete all exploration
M, M ∗ The computational parallelism of accelerators, the optimal computational parallelism of accelerators
η, η ∗ The ratio of training resources to inference resources, the optimal ratio of training resources to inference resources

Env 1 Env 2 Env 4Env 3

Agent 4Agent 3Agent 2Agent 1

TPETPEIPEIPE

TPETPEIPEIPE

Inf TrainIdle Idle

FIGURE 4: The idle issue.

4 IET Computers & Digital Techniques



tb. The accelerator can support M agents performing infer-
ence and training computation simultaneously. If all PEs are
occupied, other agents must wait for their turn, resulting in a
waiting time defined as tw.

When the upper limit of inference steps is set at Tmax,
and the maximum number of exploration tasks is L, the time
required for the agent to complete all exploration tasks can
be expressed as ts= L× ((te+ 2ti+ tf)Tmax+ tb). In the ideal
case, the shortest time for the A3C algorithm to complete L
rounds of tasks is tmin= ts/N. Nevertheless, the presence of
waiting time and the uneven distribution of computational
tasks among threads result in a real execution time tr that
exceeds tmin.

Based on the above modeling, we propose a deployment
strategy for the number of PEs as follows: We adjust the
number of PEs to make the tr change while ensuring that
the total resource cost of the accelerator remains unchanged.
By recording the relationship between M and tr, the number
of PEs corresponding to the shortest real execution time tr
can be found, denoted as M∗.

3.3. The Strategy for Reallocation of Resources. The training
process of A3C algorithm has more computational tasks
compared to the inference process. Therefore, at the same
computational parallelism, the training must take more time
than the inference. This will also bring a new congestion
problem to the A3C accelerator, as shown in Figure 5. In
order to solve this problem, we propose a reallocation strat-
egy for the accelerator computing resources, which reallo-
cates the resources of the inference module and the training
module without changing the total computing resources of
the accelerator, so as to reduce the training latency of the
agents.

The deployment strategy for the number of PEs aims to
determine the optimal number of PE denoted as M∗. We
obtain the real execution time tr for different numbers of
PEs by varying the computational parallelism of inference
and training. Our proposed reallocation strategy of compu-
tational resources is to derive the ratio η of training resources
to inference resources based on a parallelism ofM∗. Then, we
gradually reduce the inference computational resources and
use that part of the resources in the training computation.
Therefore, we can get the relationship between tr and η under
different resource allocation ratios, so as to find the resource
allocation ratio η∗ corresponding to the shortest execution
time tr.

4. The Hardware Architecture of
A3C Accelerator

4.1. System Architecture. We first divide the computational
task into five parts: forward inference computation, loss gra-
dient computation, backpropagation computation, parameter
gradient computation, and parameter update computation.
Then, an FPGA-based A3C algorithm accelerator architecture
is proposed, as shown in Figure 6. It is provided with an
environment by a host computer (PC) and computational
acceleration for inference and training of agents is completed
by FPGA.

We utilize N independent virtual environments in the
host computer for supporting the learning process of N
agents. On the FPGA accelerator, three computational units
are designed for computing forward inference, backpropaga-
tion, and parameter gradient. In addition, the loss gradient
computation unit (LGCU) is deployed for computing the
gradient of the output layer and the RMSProp Unit is
deployed for parameter updating.

The execution process of proposed accelerator is as fol-
lows: The host computer program extracts the environment
state value st at time t and transfers it to the memory unit of
the FPGA accelerator. Next, the forward computation unit
(FCU) maps the input st into the policy output π (st; θ) and
the value output v (st; θ). Finally, the policy output is fed
to the environment corresponding to the thread to complete
the interaction. When the time step t reaches Tmax, the
LGCU retrieves the forward computation results from the
memory unit and computes the loss gradient of the actor
network and the critic network. Afterward, the loss gradient
of the output layer is propagated layer by layer to the input
layer by the backward computation unit (BCU), while the
gradient value dθ of the parameter is obtained by the param-
eter gradient computation unit (PGCU). When the gradient
calculation of the parameters is completed, the parameter
update of the central agent is done by the RMSProp Unit.

4.2. The Proposed FCU. Each forward processing engine
(FPE) in the FCU is responsible for performing the forward
propagation computation of the neural network. It includes
the multiply-accumulate operation between the input feature
maps and the weights, the computation of ReLU, the com-
putation of Softmax for actor network and the computation
of linearity for critic network. In the above calculations, the
multiply-accumulate calculation and the calculation of the

Env 1 Env 2 Env 3 Env n

Agent 1 Agent 2 Agent 3 Agent n Agent 1 Agent 2 Agent 3 Agent n

Env 1 Env 2 Env 3 Env n

IPE IPE TPE TPE IPE IPE TPE TPE

··· 

··· 

······

··· 

··· 

InfInf TrainTrain Train
Wait Train

M M MM

······

FIGURE 5: The issue of congestion.

IET Computers & Digital Techniques 5



linearity can be considered as matrix multiplication opera-
tions, while the calculation of the ReLU and the calculation
of Softmax are different activation methods. Therefore, each
FPE is divided into three submodules, which correspond to
the above computational process, and its structure is shown
in Figure 7.

In the designed FPE, the Multiplier-AddTree module per-
forms the parallel computation of n weights and input nodes.
In the A3C algorithm, the actor network and the critic network

share all neural network parameters except for the output layer,
and each shared layer uses ReLU as the activation function.
Therefore, only the Multiplier-AddTree module and the ReLU
module are needed to compute these shared layers.

When calculating the output layer, it is necessary to use
the Softmax module and the Multiplier-AddTree module to
complete the calculation. The Multiplier-AddTree module
completes the computation of the output of the critic net-
work, while the Softmax module is used to complete the

Agent 1

Environment
simulation

Agent 2 Agent 3 Agent n

Host computer

...

Ethernet interface

In
fe

re
nc

e
re

qu
es

t

In
fe

re
nc

e
re

su
lt

Tr
ai

n
re

qu
es

t

Agent 1
buffer

Agent 2
buffer

Agent n
buffer

Central
agent buffer

...

RMSProp
Unit

FPE

FPEFPE

FPE
...

BPE BPE

BPE BPE

GPE GPE

GPE GPE

FCU BCU PGCU

S t
, θ

y, 
π,

 ν

FPGA

Back propagation buffer

Memory unit

LGCU

LPE

LPE

...

π,
 ν,

 r t y´
y´

, θ dθ θ´dθ
, θx´ x´
, y

... ...

FIGURE 6: System architecture.

x1

x2

xn

w1

w2

wn

b

··· 

··· Div

Div

Div

ex1

ex2

exn

x1

x2

xn

Mux

xn–1

wn–1

ex

··· 

yi

π1

π2

πn

FP
E

ReLU moduleSoftmax module

Multiplier-AddTree module

FIGURE 7: The structure of FPE.

6 IET Computers & Digital Techniques



computation of the output of the actor network, which will
be fed back to the host computer as the basis for selecting the
action.

4.3. The Proposed LGCU. We define the last shared layer as
the input layer during backpropagation. The calculation of
the loss gradient is to compute the gradient value of the loss
function with respect to the input layer during backpropaga-
tion. We simplify the derivative of the loss function to facili-
tate hardware implementation of the process.

The loss function Lπ (θ) of the actor network is defined by
Equation (2). Assuming that the output of the last shared

layer is a 1D vector Y= (y1, y2,…, yl), and after the Softmax,
it becomes Z= (z1, z2,…, zi,…, zl), where zi (1≤ i≤ l) repre-
sents the maximum value in the output vector Z. The inverse
input map X’π= (x’1, x’2,…, x’l)π of the actor network can be
obtained by Equation (4):

Lπ θð Þ ¼ logπ st at ; θjð Þ rt − vtð Þ þ c∑ − πi st ; θð Þln 1
πi st ; θð Þ ;

ð2Þ

X
0
π ¼ c

1 − lnz1

1 − lnz2

⋮
1 − lnzl

2
66664

3
77775
T z1 1 − z1ð Þ −z2z1 ⋯ −zlz1

−z1z2 z2 1 − z2ð Þ ⋯ ⋮
⋮ ⋮ ⋱ zl−1zl

−z1zl −z2zl ⋯ zl 1 − zlð Þ

2
66664

3
77775þ δ

−z1

⋮
1 − zi

⋮
−zl

2
6666664

3
7777775

T

; ð3Þ

x0 ¼ ∂Lπ zð Þ
∂y

¼ ∂Lπ zð Þ
∂z

∂z
∂y

: ð4Þ

By combining Equations (2) and (4), we can derive a
simplified expression for the inverse input map of actor net-
work X’π by performing the derivative solver operation on x’,
as shown in Equation (3).

Equation (5) gives the loss function Lv (θ) of the critic
network. Assuming that the output of the last shared layer is
a 1D vector Y= (y1, y2, …, yl) and the value output v is
obtained by passing through the linear output layer, the
inverse input map of the critic network X’v= (x’1, x’2, …,
x’l)v can be expressed as Equation (6):

Lv θð Þ ¼ rt − vt st ; θð Þ½ �2; ð5Þ

X
0
v ¼ −2δ w1;w2;…;wlð Þ: ð6Þ

Based on the above conclusion, the computation process
for the inverse input map of the actor network and the critic
network can be seen as a matrix operation. As a result, we
design the LPE, as illustrated in Figure 8, to calculate the

inverse input feature map of the actor network. Moreover,
we calculate the inverse input feature map of the critic net-
work by reusing the multipliers within the designated purple
box to minimize resource overhead.

4.4. The Proposed BCU. The BCU consists of several back-
ward processing engines (BPE), as shown in Figure 9. The
control signal generation module (CSG module) and the
input control module (IC module) are employed in the BPE
to execute the derivative operation of the ReLU function.
Additionally, the Multiplier-Acc module is utilized for the
matrix multiplication between the feature map and weights.

In the designed BPE, considering the special derivative
property of ReLU described in Equation (7), the CSGmodule
is employed to capture the positive and negative information
of the output feature map during the forward propagation
calculation, instead of directly computing the derivative
value of the ReLU function. During the calculation of for-
ward inference, if the result yi> 0, then a positive sign is
stored in the buffer, whereas if yi= 0, a zero value is stored
instead, indicating both positive and negative information.
Afterward, the captured information is utilized to regulate
the input of Multiplier-Acc module by IC module, thereby

MultiplierAdder–Ln (x)

Multiplier

Multiplier

AddTree Multiplier

MultiplierAdder M
ux Adder

z1–zn

z1–zn

–z1––zn

–z1––zn

–z1––zn

1

1

c

δ 

LPE

Actor
module

Critic
module

FIGURE 8: The structure of LPE.

IET Computers & Digital Techniques 7



indirectly accomplishing the derivative operation of the
ReLU function:

∂ReLU wx þ bð Þ
∂ wx þ bð Þ ¼ ∂y

∂ wx þ bð Þ ¼
0 y ¼ 0

1 y>0

(
: ð7Þ

In contrast to the Multiplier-AddTree module used in the
FPE, we employ theMultiplier-Acc module for matrix multipli-
cation operations in BPE. These two computational structures
have an inherent transpose relationship in the storage andmap-
ping of weights. Using this relationship, we can solve the prob-
lem of differences in weight mappings during forward and
backward computation, effectively improving the access effi-
ciency of parameters without increasing storage consumption.

4.5. The Proposed PGCU. The PGCU computes the gradient
value dθ for each layer, as expressed by Equations (8) and (9).
Here, x’ refers to the reverse input feature map, A’ stands for
the derivative of the activation function, and x represents the
input feature map computed during forward inference. The
initial input x’ for parameter gradient computation is calcu-
lated by the LGCU, while the subsequent layer inputs are
acquired through the progressive propagation of the BCU:

dθL1¼
∂L θð Þ
∂θL1

¼ ∂L θð Þ
∂yL

∂yL
∂yL−1

∂yL−2
∂yL−3

⋯
∂yL1þ1

∂yL1

∂yL1
∂θL1

; ð8Þ

dw¼ x0A0x; db¼ x0A0: ð9Þ

Like the BCU, the PGCU also requires computing the
derivative of the activation function. We can apply the same
approach used in the BCU to obtain these results. The struc-
ture of the gradient processing engine (GPE) is illustrated in
Figure 10. The CSG module and the IC module are used to
compute the derivatives of the ReLU function, while the n
parallel multiplier array is responsible for calculating the
parameter gradient values.

4.6. The Proposed RMSProp Unit. The RMSProp Unit is
responsible for asynchronously updating parameters of the cen-
tral agent. The A3C algorithm requires gradient value aggrega-
tion prior to training, followed by parameter updates of the
central network using the RMSProp gradient descent method
[33]. Therefore, we design the structure of the RMSPropUnit, as
shown in Figure 11.

0 0101 1

00
0

X1 X2 Xn X1́
X1́ X1́

…

…

…

Δθ1 Δθ2 Δθn

yi > 0?

10

10

1

0

...0 1

...

1

011

CSG
module

M
ul

tip
lie

r-
ar

ra
y 

m
od

ul
e

IC module

CSG module IC moduleG
PE Multiplier-array module

FIGURE 10: The structure of GPE.

w2

w1

wn

0

0

0

…

…

1

0

1

0

1

01 0

...

0

1

...

1 0

1

1

0

1

0

1

yi > 0? Accumulator

Accumulator

Accumulator y´n

y´2

y´1

… …

x´1...

IC
module

CSG
module

Multiplier-Acc
module

CSG module IC module Multiplier-Acc
moduleBP

E

FIGURE 9: The structure of BPE.

8 IET Computers & Digital Techniques



We deploy multiple adder arrays with a parallelism degree
of n in the Gradient aggregationmodule. These adders perform
gradient aggregation calculations for each GPE in the PGCU.
To implement the asynchronous parameter updating method
of the A3C algorithm, we employ a synchronous first-in-first-
out (FIFO) data buffer. This buffer retains the order in which
the distributed agent perform aggregation computation.

When an agent finishes the gradient aggregation calcula-
tion, its corresponding agent number i is sent to the FIFO as
a control signal. If the Parameter update module is idle, the
selector reads the agent number i from the FIFO. Simulta-
neously, it accesses the central agent parameter memory and
the gradient value buffer of the corresponding agent to per-
form the gradient update calculation. Additionally, the
Parameter update module achieves continuous parameter
value updates through multipipeline control, reducing the
data waiting period.

5. Evaluation

5.1. Experimental Setup. We use the Atari game as a virtual
training environment for validating the proposed deploy-
ment strategy and evaluating the performance of the acceler-
ator. Additionally, the RAM version of the Atari game is used

in our work, and the state information of the agents of any
game under this version is described by a vector of size 1×
128. Therefore, the input data for our A3C model have a
uniform shape. The DNN architecture employed by the
A3C algorithm is outlined in Table 2.

To evaluate the performance of the FPGA accelerator, we
implemented the A3C algorithm on both CPU and GPU
platforms for comparison. The CPU is Intel (R) Core (TM)
i9-13900K working at 3,000MHz. The GPU is NVIDIA
GeForce RTX 4090 working at 2,235MHz. The FPGA plat-
form is Virtex-VC707 working at 200MHz.

5.2. The Verification of Deployment Strategy for Distributed
Algorithm. We investigate the impact of varying the number
of agents and the inference upper limit Tmax during model
training. As a result, we found that Ne= 8 and Nr= 6. Addi-
tionally, after evaluating the size of hardware resources
required for deploying each agent, we determined that Nl

= 16. Based on Equation (1) in Section 3.1, we can conclude
that the optimal number of agents No is 8. We measure the
performance of the DRL platforms using the number of
explorations processed per second (EPS) across all agents.
If each A3C agent executes Tmax inference tasks followed by a
training task, with a Tmax value of 5 and an achieved EPS of

TABLE 2: DNN model.

No. Layer type Number of parameters Number of output features

0 Input — 1× 128
1 Fully connected (FC1) 128× 256 1× 256

2 ReLU activation

3 Fully connected (FC2) 256× 128 1× 128

4 ReLU activation

5 Fully connected (FC3) 128× 64 1× 64

6 ReLU activation

7 Fully connected (FC4) 64× 4 1× 4

8 Softmax (activation)/linear (value)
…

New θc

dθ
dθ´dθ + dθ´

dθ

FIFO
Agent number

…, 2, 1 Mux

Gradient value buffer N

Gradient value buffer 2

Gradient value buffer 1

Adder

MultiplierMultiplier

AdderMultiplier

ρ

1–ρ

Reg Multiplier

Multiplier

Adder

a

dθ

g
θc

ε

N
ew

 θ
c

g, θc

Adder
dθ + dθ´dθ´

Adder
array

Adder
array

Adder
array

Adder
array

…

RMSProp Unit

Parameter update module

Gradient aggregation module

1/

FIGURE 11: The structure of RMSProp Unit.

IET Computers & Digital Techniques 9



500, the DRL platform handles 2,500 inference tasks, 500
extra inferences for value bootstrapping, and 500 training
tasks per second. Then, we conducted experiments to assess
the variation in EPS based on the deployment of different
numbers of agents. The corresponding results are presented
in Figure 12. The results show that the highest EPS can be
achieved with the optimal number of agents.

We investigate the real execution time tr, for varying num-
ber of PEs using a software simulation platform. The corre-
sponding results are illustrated in Figure 13. When the
number of deployed PEs exceeds 6, the decreasing trend of
the normalized time remains almost constant. Therefore, we
can infer that the most suitable number of PE deployments
M∗ is 6. Using the optimal number of PEs can reduce resource
consumption by 62.5% compared to the worst configuration
(the number of PEs is 16). This suggests that more PEs do not

necessarily lead to an improvement in performance and con-
firms the effectiveness of our proposed strategy.

After obtaining the optimal number of PEs, we investi-
gate the influence of the resources ratio of training to infer-
ence on the real execution time. Figure 14 displays the real
execution time corresponding to various resource ratios.
Based on these results, we determine that the optimal ratio
of resources η∗ is 2.8.

Furthermore, we compare the number of waiting agents
under the initial and optimal resource ratios, as shown in
Figure 15.When the optimal resource ratio of training to infer-
ence is used, the average number of agents waiting for training
decreases from 6.2 to 4.2, achieving a 32.2% optimization.

161412108642
0

100

200

300

400

500

EP
S

Number of agents

FIGURE 12: The EPS of different number of agents.

161412108642
0

5

10

15

20

N
or

m
al

iz
ed

 ti
m

e

Number of PEs

Tmax = 8
Tmax = 12

Tmax = 16

FIGURE 13: The normalized time of different number of PEs.

6543210

1

2

3

4

5

6

N
or

m
al

iz
ed

 ti
m

e

Resource ratio

Tmax = 8
Tmax = 12

Tmax = 16

FIGURE 14: The normalized time of different resource ratio.

1,0008006004002000
0

2

4

6

8

10

N
um

be
r o

f w
ai

tin
g 

ag
en

ts

Episode

Ratio = 2.00
Ratio = 2.80

FIGURE 15: The number of waiting agents in different ratio.

10 IET Computers & Digital Techniques



5.3. The Evaluation of Accelerator Performance. The resource
overhead of the designed A3C accelerator is presented in
Table 3. The high LUT resource overhead is due to the fact
that the accelerator needs a large number of control signals to
control the distributed asynchronous learning method of the
A3C algorithm. In addition, the distributed deployment
approach of the agents and the large number of parameters
and computation results to be stored cause a high consump-
tion of BRAM.

We investigate the EPS and power consumption of the
three platforms. The obtained results are presented in Table 4.
The experiment indicates that the designed FPGA accelerator
reaches 1.83× and 2.39× speedup compared to CPU and
GPU. Additionally, the power consumption of the designed
accelerator is merely 35.5% and 45.9% of the CPU and GPU,
suggesting a significantly lower power consumption.

Table 5 shows the comparison results with previous works
on several metrics. We focus on comparing the normalized

TABLE 3: Resource overhead.

Component LUT FF BRAM DSP

Ethernet interface 8,066 2,207 — —

Memory unit 16,519 12,901 242.5 3
FC unit 33,093 50,004 — 90
BC unit 89,371 84,598 — 224
PGC unit 8,799 16,934 — 32
LGC unit 11,135 19,512 — 36
RMSProp unit 61,492 98,157 500.5 304

Total
228,475
(303,600)

284,313
(607,200)

743
(1,030)

689
(2,800)

TABLE 4: The experiment results of each platform.

CPU GPU FPGA

Platform Intel i9-13900K NVIDIA RTX4090 Xilinx VC707
Frequency (Hz) 3,000M 2,235M 200M
Power (W) 28.29 21.84 10.03
EPS 348.92 267.05 638.16
EPS/W 12.33 12.23 63.61

TABLE 5: The comparison results with previous works.

Shiri et al.’s [22]
study

Gankidi and
Thangavelautham’s [34]

study

Meng and
Kuppannagari’s [27]

study

Yang et al.’s [28]
study

FA3C [29] Ours work

Platform
Xilinx
Artix7

Xilinx
Virtex7

Xilinx
U200

Xilinx
U50

Xilinx
VCU1525

Xilinx
VC707

Algorithm HDRL DQN PPO DDPG A3C A3C
Frequency (Hz) 100M 150M 285M 164M 180M 200M
Precision FIX FP FP32 FIX FP32 FP32
LUT 3,345 — 501K 508.1K 677.3K 228.4K
DSP 39 — 3,744 2,302 2,348 689
BRAM 321 — 1,046 1,798 1,267 743
GOPS/GFLOPS 4.4GOPS 0.847 — — — 14.8
Normalized EPS to
FA3C

256 — 1,354 7,696 2,550 3,669

Power (W) 0.873 9.7 — 20.4 18 10.03
LRE 0.0765 — 0.0027 0.0151 0.0038 0.0161
DRE 6.5641 — 0.3616 3.3432 1.086 5.3251
BRE 0.7975 — 1.2945 4.2803 2.0126 4.9381
EPS/W 293.2 — — 377.3 141.7 365.8

IET Computers & Digital Techniques 11



EPS to FA3C (since FA3C is the earlier work on distributed
DRL accelerator, we normalize all the comparison data on
EPS to FA3C), LUT resource efficiency (LRE), DSP resource
efficiency (DRE), and BRAM resource efficiency (BRE). LRE,
DRE, and BRE are obtained from the ratio of EPS to the
consumed LUT, DSP, and BRAM, respectively.

As shown in Table 5, the proposed accelerator exhibits
excellent computational performance in comparison to exist-
ing works. In terms of resource efficiency, our design presents
significant advantages in LRE, DRE, and BRE compared to the
latest works [27, 28, 29] on DRL accelerators. The results show
that the work [22] outperforms ours in LRE and DRE due to
the fact that it only accelerates inference for hierarchical deep
reinforcement learning (HDRL). As a result, less LUT andDSP
resources are consumed in their work. Specifically, our work
achieves higher computational performance, resource effi-
ciency, and energy efficiency compared to FA3C which is
the first accelerator designed for A3C algorithms.

6. Conclusion

This paper introduces a hardware deployment strategy for
distributed algorithms. The proposed strategy optimizes the
number of agents, PEs, and the allocation of resources. Its aim
is to ensure a balanced interaction and training time among
distributed agents in the accelerator while reducing idle wait-
ing delays and improving the utilization of resources. Then,
we propose an FPGA-based architecture for the A3C algo-
rithm. The proposed architecture adopts modular computing
unit design, independent storage resource allocation method,
and parallel deployment of computing resources, which effec-
tively improves the training efficiency of A3C algorithm. The
experimental results show that our proposed deployment
strategy reduces resource consumption by 62.5% and decreases
the number of agents waiting for training by 32.2%, and the
proposed A3C accelerator achieves 1.83× and 2.39× improve-
ments in speedup compared to CPU and GPU, respectively.
The power consumption of the accelerator is only 35.5% of the
CPU and 45.9% of the GPU, which effectively reduces the
execution overhead of the A3C algorithm. Further, the pro-
posed A3C accelerator presents significant advantages in
resource efficiency compared to existing works.

Data Availability

The data used to support the findings of this study are
included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key R&D Program
of China (No. 2022YFD2000700).

References

[1] V. Mnih, A. P. Badia, M. Mirza et al., “Asynchronous methods
for deep reinforcement learning,” in Proceedings of The 33rd
International Conference onMachine Learning, pp. 1928–1937,
PLMR, 2016.

[2] A. Kendall, J. Hawke, D. Janz, P. Mazur, and D. Reda,
“Learning to drive in a day,” in IEEE International Conference
on Robotics and Automation (ICRA), pp. 8248–8254, IEEE,
Montreal, QC, Canada, 2019.

[3] M. Kaushik, V. Prasad, K. M. Krishna, and B. Ravindran,
“Overtakingmaneuvers in simulated highway driving using deep
reinforcement learning,” IEEE Intelligent Vehicles Symposium
(IV), pp. 1885–1890, 2018.

[4] D. Gandhi, L. Pinto, and A. Gupta, “Learning to fly by
crashing,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3948–3955, IEEE,
Vancouver, BC, Canada, 2017.

[5] M. A. Anwar and A. Raychowdhury, “NavREn-Rl: Learning to
fly in real environment via end-to-end deep reinforcement
learning using monocular images,” in IEEE International
Conference on Mechatronics and Machine Vision in Practice
(M2VIP), pp. 1–6, IEEE, Stuttgart, Germany, 1995.

[6] A. Rodriguez-Ramos, C. Sampedro, H. Bavle, P. De La Puente,
and P. Campoy, “A deep reinforcement learning strategy for
UAV autonomous landing on a moving platform,” Journal of
Intelligent & Robotic Systems, vol. 93, no. 1-2, pp. 351–366,
2019.

[7] M. Liang, M. Chen, Z. Wang, and J. Sun, “A CGRA based
neural network inference engine for deep reinforcement
learning,” IEEE Asia Pacific Conference on Circuits and
Systems (APCCAS), pp. 540–543, 2018.

[8] T. Zhang, Z. McCarthy, O. Jow et al., “Deep imitation learning
for complexmanipulation tasks from virtual reality teleoperation,”
in IEEE International Conference on Robotics and Automation
(ICRA), pp. 5628–5635, IEEE, Brisbane, QLD, Australia, 2018.

[9] E. Marchesini and A. Farinelli, “Enhancing deep reinforce-
ment learning approaches for multi-robot navigation via
single-robot evolutionary policy search,” in International
Conference on Robotics and Automation (ICRA), pp. 5525–
5531, IEEE, Philadelphia, PA, USA, 2022.

[10] D. Silver, A. Huang, C. J. Maddison et al., “Mastering the
game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[11] Y. Sun, B. Yuan, Y. Zhang et al., “Research on action strategies
and simulations of DRL and MCTS-based intelligent round
game,” International Journal of Control, Automation and
Systems, vol. 19, no. 9, pp. 2984–2998, 2021.

[12] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz,
“Reinforcement learning through asynchronous advantage
actor-critic on a gpu,” arXiv preprint, arXiv: 1611.06256, 2016.

[13] K. Abdelouahab, M. Pelcat, J. Serot, and F. Berry, “Accelerat-
ing CNN inference on FPGAs: a survey,” arXiv preprint, arXiv:
1806.01683, 2018.

[14] S. Spano, G. C. Cardarilli, L. Di Nunzio et al., “An efficient
hardware implementation of reinforcement learning: the Q-
learning algorithm,” IEEE Access, vol. 7, pp. 186340–186351,
2019.

[15] N. K. Manjunath, A. Shiri, M. Hosseini, B. Prakash,
N. R. Waytowich, and T. Mohsenin, “An energy efficient
EdgeAI autoencoder accelerator for reinforcement learning,”
IEEE Open Journal of Circuits and Systems, vol. 2, pp. 182–
195, 2021.

12 IET Computers & Digital Techniques



[16] K. Chen, L. Huang, M. Li, X. Zeng, and Y. Fan, “A compact
and configurable long short-term memory neural network
hardware architecture,” IEEE International Conference on
Image Processing (ICIP), pp. 4168–4172, 2018.

[17] A. X. M. Chang and E. Culurciello, “Hardware accelerators for
recurrent neural networks on FPGA,” in IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–4, IEEE,
Baltimore, MD, USA, 2017.

[18] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing,
vol. 71, no. 7–9, pp. 1180–1190, 2008.

[19] V. Mnih, K. Kavukcuoglu, D. Silver et al., “Human-level
control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

[20] Y. Meng, S. Kuppannagari, R. Rajat, A. Srivastava, R. Kannan,
and V. Prasanna, “QTAccel: a generic FPGA based design for
Q-table based reinforcement learning accelerators,” in IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 107–114, IEEE, New Orleans, LA,
USA, 2020.

[21] A. R. Baranwal, S. Ullah, S. S. Sahoo, and A. Kumar, “ReLAccS: a
multilevel approach to accelerator design for reinforcement
learning on FPGA-based systems,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
vol. 40, no. 9, pp. 1754–1767, 2021.

[22] A. Shiri, B. Prakash, A. N. Mazumder, N. R. Waytowich,
T. Oates, and T. Mohsenin, “An energy-efficient hardware
accelerator for hierarchical deep reinforcement learning,” in IEEE
International Conference on Artificial Intelligence Circuits and
Systems (AICAS), pp. 1–4, IEEE, Washington DC, DC, USA,
2021.

[23] D. P. Leal, M. Sugaya, H. Amano, and T. Ohkawa, “FPGA
acceleration of ROS2-based reinforcement learning agents,” in
Eighth International Symposium on Computing and Network-
ing Workshops (CANDARW), pp. 106–112, IEEE, Naha,
Japan, 2020.

[24] M.-J. Li, A.-H. Li, Y.-J. Huang, and S.-I. Chu, “Implementation
of deep reinforcement learning,” in International Conference
on Information Science and Systems, pp. 232–236, ACM, 2019.

[25] A. Shiri, A. N. Mazumder, B. Prakash, H. Homayoun,
N. R. Waytowich, and T. Mohsenin, “A hardware accelerator
for language-guided reinforcement learning,” IEEE Design &
Test, vol. 39, no. 3, pp. 37–44, 2022.

[26] J. Su, J. Liu, D. B. Thomas, and P. Y. K. Cheung, “Neural
network based reinforcement learning acceleration on FPGA
platforms,” ACM SIGARCH Computer Architecture News,
vol. 44, no. 4, pp. 68–73, 2017.

[27] Y. Meng and S. Kuppannagari, “Accelerating proximal policy
optimization on CPU-FPGA heterogeneous platforms,” in IEEE
International Symposium on Field-Programmable Custom Com-
putingMachines (FCCM), pp. 19–27, IEEE, Fayetteville, AR, USA,
2020.

[28] J. Yang, S. Hong, and J.-Y. Kim, “FIXAR: a fixed-point deep
reinforcement learning platformwith quantization-aware training
and adaptive parallelism,” in ACM/IEEE Design Automation
Conference (DAC), pp. 259–264, IEEE, San Francisco, CA, USA,
2021.

[29] H. Cho, P. Oh, J. Park, W. Jung, and J. Lee, “FA3C: FPGA-
accelerated deep reinforcement learning,” in International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 499–513, ACM, 2019.

[30] Y. Wang, M. Wang, B. Li, H. Li, and X. Li, “A many-core
accelerator design for on-chip deep reinforcement learning,” in

International Conference on Computer-Aided Design, pp. 1–7,
IEEE, San Diego, CA, USA, 2020.

[31] H. Chen, M. Issa, Y. Ni, and M. Imani, “DARL: distributed
reconfigurable accelerator for hyperdimensional reinforce-
ment learning,” in IEEE/ACM International Conference on
Computer-Aided Design, pp. 1–9, IEEE, San Diego, CA, USA,
2022.

[32] Y. Li, I.-J. Liu, Y. Yuan, D. Chen, A. Schwing, and J. Huang,
“Accelerating distributed reinforcement learning with in-switch
computing,” in 2019 ACM/IEEE 46th Annual International
Symposium on Computer Architecture (ISCA), pp. 279–291, IEEE,
Phoenix, AZ, USA, 2019.

[33] T. Tieleman, “Lecture 6.5-rmsprop: divide the gradient by a
running average of its recent magnitude,” COURSERA: Neural
Networks for Machine Learning, vol. 4, no. 2, pp. 26–31, 2012.

[34] P. R. Gankidi and J. Thangavelautham, “FPGA architecture
for deep learning and its application to planetary robotics,” in
IEEE Aerospace Conference, pp. 1–9, IEEE, Big Sky, MT, USA,
2017.

IET Computers & Digital Techniques 13




