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Electric vehicle charging stations (EVCSs) are important infrastructures to support sustainable development of electric vehicles
(EVs), by providing convenient, rapid charging services. Therefore, the planning of electric vehicle charging network (EVCN) has
attracted wide interest from both industry and academia. In this paper, a multiobjective planning model for EVCN is developed,
where a fixed number of EVCSs are planned in the traffic network (TN) to achieve two objectives, i.e., minimizing both average
travel distance for charging (TDfC) of EVs and investment costs of EVCN. According to the random characteristics of EVs’ TDfC,
its constraint is presented as a chance constraint in the developed EVCN planning model. The nondominated sorting genetic
Algorithm II with the constraint domination principle (NSGA-II-CDP) is customized to solve the developed multiobjective EVCN
planning model, by designing a special coding scheme, a crossover operator, and a mutation operator. Then, a maximum gradient
principle of investment revenue is designed to select the optimal planning strategy from the Pareto-optimal solution set, when
taking the investment return ratio as primary consideration. A 25-node TN is used to justify the effectiveness of the developed
methodology.

1. Introduction

1.1. Background and Motivation. With the exacerbation of
environmental pollution and the overuse of fossil fuels, elec-
tric vehicles (EVs) are receiving increasing attention in the
auto market [1, 2]. Until now, rapid charging at EV charging
stations (EVCSs) is one of the most commonly used charging
models. The location of EVCSs can have dramatic impacts
on the charging convenience for EV owners. Thus, it is criti-
cal to investigate the optimal planning strategy for EV charg-
ing networks (EVCN) in both urban areas [3] and highway
networks [4, 5], to boost the shares of EVs in the auto mar-
ket [6, 7].

In EVCSs, EV owners normally adopt rapid charging,
whose rated power can be as high as tens or even hundreds
of kW for each charger. By charging several EVs with rapid

charging mode in an EVCS simultaneously, the total power
could reach the level of MW, thus significantly affecting the
secure and efficient operation of the power distribution sys-
tem (PDS) [8–11]. Therefore, it is important to consider PDS
operation in EVCN planning, so as to ensure a reliable power
supply to EVCN. In detail, it requires optimizing the location
and rated power for the EVCSs to mitigate adverse impacts
on the PDS resulting from charging large-scale EVs [12–14].

As important service facilities in the traffic network
(TN), EVCSs play a role similar to “gas stations”. The pri-
mary function of EVCSs is to provide high-quality and conve-
nient charging services to EV owners [15, 16]. Therefore,
planners should pay close attention to the needs by optimizing
EVCS deployments when planning the EVCN [17, 18].

Currently, EVCN is expanding at a very early stage, espe-
cially in some developing countries. It rarely exists the
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scenario that multiple EVCSs are connected to the same PDS
and have significant impacts on the PDS. Therefore, at this
stage, the industry should take the primary function of
EVCSs, i.e., providing convenient charging service to custo-
mers, as the main task in planning the EVCN. The locations
of EVCSs are directly related to the convenience of charging
services.

1.2. Literature Review. When planning EVCN, two types of
models are mainly used to optimize the locations of EVCSs,
i.e., flow-based and spatial-based models.

As to the flow-based model, Hodgson [19] developed the
flow-capturing location method (FCLM) to optimize the
location of the service facilities within a TN. The optimal
planning strategy could maximize captured traffic flows,
i.e., providing a maximal quota of service to vehicles. Kuby
and Lim [20] developed the flow-refueling location model
(FRLM) method by improving the FCLM, which considered
available driving distances of the vehicles, thus achieving
better planning strategies. Furthermore, Capar et al. [21],
Kadri et al. [22], and Lee and Han [23] improved the funda-
mental FRLM method by considering uncertain travel dis-
tance for charging (TDfC) of EVs in calculating the traffic
flow captured by the EVCN, which is therefore more practi-
cal. A generalized FRLM was introduced in [21]. This
method measured the initial driving ranges of EVs as the
distance between the origin and first EVCS on the EV driving
paths. A multistage stochastic planning model was developed
in [22] based on the generalized FRLM to derive the optimal
sites of EVCSs, which was solved by the Benders decompo-
sition approach and the genetic algorithm (GA). Lee and
Han [23] developed a Benders-and-Price method to select
the optimal locations for EVCSs. This method performed
three advantages: (1) assuming that the distribution of maxi-
mum TDfC for EVs should be normally distributed; (2) con-
sidering uncertain characteristics of EV flows in TN, and; (3)
EV owners might choose the nonshortest paths to suggested
EVCSs. Convenient charging service means that EV owners
could find an EVCS within their expected range when their
EVs need to be charged, i.e., the shorter the average TDfC the
better. This principle indicates that flow-based models
[19–23] have limitations because they just devoted to maxi-
mizing the traffic flow captured by the EVCN, but have not
taken the minimization of EVs’ TDfC as a significant target
of EVCN planning.

Different from the flow-based model, the spatial-based
model was studied in [24–30] for optimizing the locations of
EVCSs. Hakimi [24] developed the p-median model (PMM)
to minimize the overall distance between demand and ser-
vice facilities. And he improved the PMM by developing a p-
median competitive location model to solve the competitive
locations between different charging service providers [25].
Further, there are two other spatial-based models: the set
covering model (SCM) and the maximal covering location
model (MCLM). SCM is to derive the minimum number of
service facilities by assuming all demands are met [26, 27]. By
contrast, MCLM is to cover maximum demand under a
given number of service facilities [28, 29]. PMM is compared

with SCM and MCLM, based on case studies of EVCN plan-
ning in Beijing, China [30]. The results show that both SCM
and MCLM ignore the distance between the demands and
EVCSs, although the TDfC of EVs is believed to be signifi-
cant. This, in turn, justified the fact that PMM is more effec-
tive than SCM and MCLM in solving EVCN planning
problems. Nevertheless, PMM also has limitations in imple-
mentation. For example, PMM defines EV charging demand
and EVCSs as nodes in TN. This would turn the dynamic
process into a “node-to-node” scenario, thus neglecting
charging requirement of those EVs driving in paths. Further-
more, the TDfC of EVs is highly correlated to locations of
EVs in TN, thus having random characteristics. However,
there is no investigation into using spatial-based model to
address the random characteristics of EVs’ TDfC.

1.3. Contribution and Paper Organization. In the current
research, neither the flow-based model nor the spatial-based
model takes EVs’ TDfC, which seriously affects the charging
convenience of EVs, as an important consideration when
planning the EVCN. To address the limitations described
above, this paper develops a novel multiobjective EVCN
planning model with a chance constraint on the random
TDfC of EVs. The proposed method has two objectives: (a)
to minimize the average TDfC of EVs, (b) to minimize the
investment in EVCN construction. The candidate sites are
given beforehand as a planning boundary according to the
topologies of TN and conditions of PDS. The optimization is
solved by the nondominated sorting genetic Algorithm II
with constraint domination principle (NSGA-II-CDP) to
obtain the Pareto-optimal set. Then, a maximum gradient
principle of investment revenue is proposed to select the
optimal planning strategy from the derived Pareto-optimal
solution set, when taking the investment return ratio as
primary consideration. The effectiveness of the developed
methodology is justified by applying it to a case TN with 25
nodes.

This paper brings the following key contributions:

(a) It introduces a method for calculating the TDfC of
EVs in TN and analyzes the probabilistic character-
istic of the TDfC.

(b) It originally develops a chance-constraint multiob-
jective optimization model to minimize both the
average TDfC of EVs and the investment of EVCN
construction by optimizing the locations of EVCSs.

(c) It customizes the NSGA-II-CDP to solve the devel-
oped EVCN planning model, by designing a special
coding scheme, a crossover operator, and a mutation
operator.

(d) It proposed a maximum gradient principle of invest-
ment revenue, which can be used to select the opti-
mal EVCN planning strategies from the Pareto-
optimal solution set, when taking the investment
return ratio as primary consideration.

This paper is organized as follows. As a basis for model-
ing, the details of TDfC calculation for EVs are discussed in

2 IET Electrical Systems in Transportation



Section 2. Then, a multiobjective EVCN planning model
considering chance constraints on EV’s TDfC is developed
in Section 3. Section 4 customizes the NSGA-II-CDP to solve
the developed EVCN planning model. To validate the devel-
oped model and solution method, a case study is presented in
Section 5. At last, the conclusion of the paper is summarized
in Section 6.

2. TDfC Calculation for EVs

Compared to PMM, the FCLM could consider the charging
demands of EVs in both scenarios of driving and stopping in
the TN, as illustrated in Section 1.2. Therefore, a method to
calculate random TDfC of EVs based on counting the EV
flows in the TN by the FCLM is developed in this paper. In
addition, the Floyd algorithm, also known as the interpola-
tion method, is an algorithm that uses the idea of dynamic
programing to find the shortest path between multiple
source points in a given weighted graph with positive or
negative edge weights [31]. The set of the shortest path in
TN is derived by the Floyd algorithm in this paper.

Currently, with the rapid development of smart term-
inals and wireless communication technology, navigation
software, such as Google Maps, has been widely used. There-
fore, it can be assumed that EV owners follow the shortest
path planned by the navigation software while driving [32].
According to the realistic origin and destination flow struc-
ture, which is provided by a simple gravity spatial interaction
model [19], the EV flow fq for the shortest path q, can be
defined as follows:

fq ¼
WS;qWE;q

1:5dq
q 2Ωq; ð1Þ

where WS,q, and WE,q are the weights of origin and destina-
tion of the shortest path q, respectively; Ωq is a set of the
shortest path in TN derived by the Floyd algorithm; dq is the
length of the shortest path q, which can be calculated by the
set and length that the path q passes.

When an EV needs to be charged at any point in TN, the
owners will drive to the closest EVCS according to the navi-
gation software. The scenario is shown below.

Figure 1 is an example to present how to calculate TDfC
of EVs. In Figure 1, both A and B are traffic nodes in TN and
do not have EVCSs; AB is a road in TN with a length of lAB;
the closest EVCS to Node A is located at Node C in TN, AC
is the shortest path from A to C with a length of lAC; simi-
larly, the closest EVCS to Node B is located at Node D in TN,
BD is the shortest path from B to D with a length of lBD. Both

AC and BD are elements in Ωq. An EV is assumed to be
located between A and B with a distance of x to A. There will
be two optional charging strategies for the EV: (1) driving
through Node A to the EVCS at Node C with a TDfC of
lAC+ x; (2) driving through Node B to the EVCS at Node D
with a TDfC of lBD+ lAB−x. Assuming that the EV owner
will drive to the closest EVCS for charging, the TDfC of the
EV T(x) illustrated in Figure 1 can be calculated as follows:

T xð Þ ¼min lAC þ x; lAB þ lBD − x½ �0 ≤ x ≤ lAB: ð2Þ

In addition, if there is an EVCS in Node A or B, lAC or lBD
equals to 0 in Equation (2), respectively. Equation (2) demon-
strates that EVs’ TDfC is related to the multiple variables, e.g.,
the topology of TN, the deployment of EVCSs in TN, and the
locations of EVs on the road.

3. EVCN Planning Model

Based on the EV flow on each shortest path in the TN, a
multiobjective EVCN planning model is developed here to
optimize locations of a fixed number of EVCSs for achieving
two objectives: (1) to minimize average TDfC of EVs, and (2)
to minimize investment of the EVCN construction. In the
developed EVCN planning model, constraint on the TDfC of
EVs is presented as a chance constraint according to the
random characteristics of EVs’ TDfC.

3.1. Objectives. The developed EVCN planning model con-
tains two objectives, which is to minimize both the average
TDfC of all EVs in TN and the overall investments of
the EVCN.

For an EVCN, its main function is to provide convenient
charging services for EVs. In TN, EVs could drive on any
road and stay at any location on different roads. It implies
that the location of any EV is a random variable. When
charging is required, EV owners would rush into the EVCS
with the shortest distance or the least driving time. There-
fore, Objective 1 of the developed EVCN planning model is
to minimize the average TDfC of all EVs in TN, as shown by:

minTave ¼
∑

i2ΩR

fiTav;i

∑
i2ΩR

fi
; ð3Þ

where Tave is a weighted average from the average TDfC of
EVs on each road in TN and represents the average TDfC of
all EVs in TN, the EV flows on the roads are the weighting
factors; the road set in TN is represented by ΩR; fi is the EV
flows on the ith road and summed from EV flows of the
passing shortest path in the shortest paths set Ωq; Tav,i is
the average TDfC of EVs on the ith road, and can be given by:

lAC lAB lBD

A B

EV

DC

x

FIGURE 1: TDfC of EVs.
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Tav;i ¼
Z

ld;i

0

Ti xð Þ
ld;i

dx; ð4Þ

where ld,i is the length of the ith road; x is the distance of the
EV to be charged from the vertex of the ith road, it is assumed
to follow a uniform distribution at the range of [0, ld,i] as a
random variable; Ti(x) is defined in Equation (2), represent-
ing the TDfC of the EV on the ith road.

Objective 2 of the developed EVCN planning model is to
minimize the overall investments of the EVCNs, as given by:

minCtotal ¼ ∑
N

j¼1
Ccon;jyj; ð5Þ

where Ctotal is the overall investments of EVCNs; Ccon,j is
the investment of deploying an EVCS at candidate site j,
including land occupation cost, equipment cost, operation-
maintenance cost, and extra energy losses cost in PDS result-
ing from supplying power for the EVCS; yj is a 0–1 binary
optimization variable in the developed EVCN planning
model: yj= 1, if deploying the EVCS at candidate site j;
yj= 0, otherwise.

3.2. Constraints. The developed EVCN planning model con-
siders two constraints, i.e., chance constraint on TDfc and
constraint on the number of planned EVCS.

Currently, the range of most EVs is still less than that
of traditional fossil fuel vehicles. Therefore, EVs’ TDfC is
expected to be less than a given threshold in the EVCN
planning model. However, EVs’ TDfC is random. If we man-
ually set distances less than the given threshold, the optimi-
zation would generate unreasonable results. Therefore, the
constraint on EVs’ TDfC is defined using a chance con-
straint, as given by:

Pr φd−char ≤ Tcha−limf g ¼
∑

i2ΩR

fipi

∑
i2ΩR

fi
≥ β; ð6Þ

where Pr{·} is the probability of the occurrence of the event in
the brace; φd-char represents the TDfC of EVs in TN as a
random variable; Tcha–lim is the given range threshold. The
lower the Tcha–lim, the better the charging convenience pro-
vided by the EVCN; β is a confidence level of satisfying the
constraint on the TDfC of EVs, the higher the β, the better
the charging convenience provided by the EVCN. pi is the
probability that the TDfC of EVs on the ith road is less than
the given range threshold, which can be given by:

pi ¼
Z

ld;i

0

gi xð Þ
ld;i

dx; ð7Þ

where gi(x) is an auxiliary function to judge whether the
TDfC of EV (which is x apart from the vertex of the ith

road) is less than the given range threshold, which has two
values: 0 or 1, as shown:

gi xð Þ ¼ 1; Ti xð Þ ≤ Tcha−lim

0; Ti xð Þ ≥ Tcha−lim

(
 0 ≤ x ≤ ld;i: ð8Þ

In the developed EVCN planning model, planners pre-
determine the number of EVCSs and their candidate sites
based on the boundary conditions, e.g., estimated invest-
ments, municipal planning, EV penetration rate, and so on.
Hence, there is an additional constraint on the number of
EVCS constructed in the model, as given by:

M ¼ ∑
N

j¼1
yj; ð9Þ

where M is the number of EVCSs to be constructed.

4. Solution Method

The developed EVCN planning model is a chance-constraint
binary programing problem with two optimization objec-
tives. There is a lack of clear analytical expressions among
optimization objectives, constraints, and control variables.
Therefore, it is difficult to adopt traditional mathematical
solvers, e.g., a general algebraic modeling system to solve
the developed EVCN planning model.

To achieve multiobjective optimization, it requires coor-
dinating relationships among multiple objectives to obtain a
solution set [33]. The constrained multiobjective evolution-
ary algorithms (CMOEAs) can coordinate multiple objec-
tives in the optimization, thus giving the solution set of
the multiobjective optimization [34–37]. NSGA-II-CDP is
a famous CMOEA, which is customized and then utilized
to solve the developed EVCN planning model in this paper.

4.1. Solving Framework. Figure 2 presents a flowchart for
solving the EVCN planning model developed by the custom
NSGA-II-CDP.

In Figure 2, Npop is the population size, i.e., the number
of chromosomes in the population; g is an index of evolu-
tional generation; Tave,k represents an average TDfC of all
EVs to the closest EVCS when the EVCN is constructed
according to the deployment strategy given by the kth chro-
mosome; Ctotal,k is an overall investment of the EVCN, and
Pev,k represents a probability that the TDfC of EVs is less
than the given threshold; Gmax is a predetermined maximum
evolutionary generation. The customized NSGA-II-CDP
stops when the evolution reaches the maximum generation.

4.2. Detailed Solution Procedure. The detailed solution using
the custom NSGA-II-CDP for the developed EVCN plan-
ning model is as follows:

4.2.1. Calculations of Parameters in TN. First, the shortest
path set Ωq of the TN is derived by the Floyd algorithm
according to the TN topology. Then, EV flows fq (q2Ωq)
on each shortest path are calculated according to Equation (1).
At last, EV flows fi (i2ΩR) on each road are calculated by
summing the EV flows.
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Set NSGA-II-CDP parameters: population size Npop,
crossover rate Pc, mutation rate Pm, and evolutionary

generation Gmax etc.  

Randomly initializing the parent population
Qpar,0 that has Npop chromosomes

Decode the kth chromosome in the pre-evolved
population and calculate Tave, k, Ctotal, k, and Pev, k

The index of evolution  generation g is
initialized to be 0, i.e., g = 0

Let g = g + 1, start the gth evolutionary
generation

k = 2Npop

g = Gmax

Output the first level of the feasible solution the
Pareto-optimal solution set of the developed 

multiobjective EVCN planning model

k = k + 1

Select the top 50% of the chromosomes from the
pre-evolved population to constitute the parent

population in next evolutionary generation

Yes

Sort all chromosomes in the
pre-evolved population

Calculations of parameters in TN

Generate offspring population Qoff,g based on parent
 population Qpar,g by tournament method and

operators of crossover and mutation

Merges Qpar,g and Qoff,g together to create a
pre-evolved population Rg 

The index of chromosome k is
initialized to be 1, i.e., k = 1

No

Yes

No

FIGURE 2: The flowchart for solving the EVCN planning model developed by the custom NSGA-II-CDP.
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4.2.2. Chromosome Coding and Population Initialization.
The developed EVCN planning model is a binary programing
problem, we use a binary-coded approach for encoding and
getting chromosomes, i.e., the solution is represented by a binary
code string with the length of N, as illustrated in Figure 3.

The binary code string illustrated in Figure 3 represents a
solution of the developed EVCN planning model. In Figure 3,
the value at the jth coding point represents whether deploying
an EVCS at the jth candidate site: if the value is equals to “1”,
an EVCS is deployed at the jth candidate site; otherwise, there
is no deployment plan. To match the constraint on the num-
ber of EVCSs given by Equation (9), there should be only M
coding points having the value of “1” in Figure 3.

In this paper, the parent population in the gth evolution-
ary generation is entitled as Qpar,g. When initializing the
parent population, the index of evolutional generation g is
set to be 0. Therefore, the initial parent population can be
entitled Qpar, 0 and generated as the following steps:

(a) Values of all coding points of each chromosome are
set to be “0”;

(b) For each chromosome, M coding points are ran-
domly selected and their values are changed from
“0” to “1”.

4.2.3. Create a Pre-Evolved Population. Two chromosomes
from the parent population Qpar,g are randomly selected, the
better one is copied to the offspring population Qoff,g. This
process is repeated until the number of chromosomes inQoff,g

reaches Npop. The basis for selecting better chromosomes can
be found in 4.2.4.

Qoff, g is updated by applying crossover and mutation
operations to chromosomes in Qoff,g, respectively, at preter-
mitted probabilities. The operators of crossover and muta-
tion are detailed as follows. Then, Qpar,g andQoff,g are merged
to create a pre-evolved population Rg (Rg=Qpar,g∪Qoff,g)
which has 2Npop number of chromosomes.

(1) Crossover operator. To ensure that the postcrossover
chromosome satisfies the constraint on the number of EVCSs
as given by Equation (9), the conventional crossover operator
is improved as detailed shown in Figure 4.

The improved crossover operator has three steps, detailed
as follows:

Step 1: two chromosomes are selected randomly from
the population as the precrossed chromosomes.

Step 2: a coding point Ncro (1<Ncro<N) is randomly
selected as the precrossed point; if these two chro-
mosomes have the same coding point number equal
to “1” behind Ncro, the coding point Ncro is consid-
ered a feasible crossed point Nave; otherwise, this

process is repeated until the feasible crossed point
Nave that satisfies the above demand is found.

Step 3: the coding string is exchanged behind Nave at a
crossover probability of Pc.

(2)Mutation operator. To ensure the postmutation chro-
mosome satisfies the constraint on the number of EVCSs as
given by Equation (9), a two-point mutation operator is
developed by improving the conventional single-point muta-
tion operator, as illustrated in Figure 5.

The developed two-point mutation operator has three
steps, detailed as follows:

Step 1: a chromosome is randomly selected from the
population as the premutated chromosome.

Step 2: two different coding points Nmut1 and Nmut2

(1≤Nmut1≤N, 1≤Nmut2≤N) as the premutated
coding points are randomly selected, the values of
the coding points Nmut1 and Nmut2 should be
different.

Step 3: the values of the coding points Nmut1 and Nmut2

are changed simultaneously at a mutation proba-
bility of Pm.

4.2.4. Elitism Selection Strategy for the Pre-Evolved Population.
All chromosomes are decoded in the pre-evolved population
Rg to derive the EVCS deployment strategy represented by
each chromosome in the pre-evolved population. 2Npop chro-
mosomes in the pre-evolved population correspond to their
own solutions of the developed EVCN planning model. Both

21 ···

1 2 ··· Nj

M

0 1 0 1 0 01 0 1 0··· ··· ···

···

FIGURE 3: Encoding scheme of the chromosome.

1 2 ··· ··· N

1 2 ··· ··· N

···

···

Nav

0 1 0 1 0 1··· 1 0 ··· 0 ··· 1

0 0 1 0 1 0··· 0 1 ··· 1 ··· 1

0 1 0 1 0··· 0 1 ··· ··· 10

0 0 1 0 1 1··· 1 0 ··· 0 ··· 1

1

Crossover

FIGURE 4: The improved cross-operator.

1 2 ··· ··· N

1 2 ··· ··· N

0 1 0 1 0 1··· 1 1 ··· 0 ··· 1

0 1 0 0 0 1··· 1 1 ··· ··· 11

Nmut1 Nmut2

Mutation

FIGURE 5: The developed two-point mutation operator.
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the parent and offspring populations satisfy the constraint on
the number of EVCS, since the number of EVCS is set in
advance and the improved crossover and mutation operators
are designed for evolution. Thus, the pre-evolved population
can be divided into two categories on whether the solution
can meet the chance constraint on the TDfC of EVs. The
solutions that satisfy the constraint are feasible, and the
unsatisfied solutions are unfeasible. All chromosomes in
the pre-evolved population are reordered according to the
following rules [35, 36].

(a) Any feasible solution should be better than an unfea-
sible solution.

(b) According to the Pareto-dominance principle, non-
dominated sorting is executed for all feasible solu-
tions, thus all feasible solutions are divided into
several levels, as illustrated in Figure 6. If feasible
solutions are on the different levels, the solutions at
a more forward level are better than the others.

(c) If solutions are on the same level, they can be evalu-
ated by an assigned fitness, i.e., the solution with a
greater assigned fitness is better. In order to calculate
the assigned fitness, all feasible solutions on each
level are first arranged according to the value of Ctotal,
as illustrated in Figure 6. Then, as introduced in [36],
the assigned fitness of all feasible solutions on each
level is determined according to Equation (10).

Fr;n ¼
Cr;nþ1
total − Cr;n−1

total

À Áþ Tr;n−1
ave − Tr;nþ1

ave
À Á

1<n<nr

K n¼ 1; nr

(
;

ð10Þ

where n is the index of the solutions on the same level; r is the
index of the level; Fr,n is the assigned fitness of the nth solu-
tion on the rth level; nr is the number of solutions on the rth

level; Cr; n
total and T

r; n
ave are, respectively, the Ctotal and Tave of the

nth solution on the rth level; K is a predetermined maximal
number.

(d) For an unfeasible solution, the degree of violating
against the chance constraint is entitled as CV, which
is given by Equation (11).

CV ¼ pev
β

− 1

����
����: ð11Þ

The value of CV determines the order of unfeasible solu-
tions, i.e., the less the violating degree, the higher the ranking
in the order.

After reordering 2Npop chromosomes according to the
principles described above, the top 50% of the chromosomes
from the pre-evolved population are selected as the elitisms
to constitute the parent population in the next evolutionary
generation.

(e) When the evolution reaches the maximum evolu-
tionary generation, the chromosomes in the first level
of the feasible solution are outputted as the Pareto-
optimal solution set of the developed multiobjective
EVCN planning model, thus ending the customized
NSGA-II-CDP process.

4.3. The Optimal Deployment Strategy. The set of Pareto-
optimal solutions derived by the custom NSGA-II-CDP con-
tains multiple nondominated solutions. This leads to the
problem that these nondominated solutions cannot be com-
pared due to the conflict between two objectives of the devel-
oped EVCN planning model, that is, these two objectives
cannot reach the optimum at the same time.

The choice of the optimal deployment strategy depends
on the decision maker’s subjective desires, which can be
considered in three cases: (a) if the investment capital is
very limited, the Pareto-optimal solution with the minimum
Ctotal is chosen; (b) if the goal is to minimize the average
TDfC of EVs regardless of the cost, the optimal solution
with the minimum Tave is chosen; (c) if these two objectives
need to be taken into account at the same time, that is, taking
the investment return ratio as primary consideration, a max-
imum gradient principle of investment revenue is proposed
to select the optimal solution from the Pareto-optimal solu-
tion set.

The detailed steps of the maximum gradient principle of
investment revenue are described below.

(a) All solutions in the Pareto-optimal solution set are
sorted according to Ctotal of the solution, from smal-
lest to largest, thus the first solution is the one with
the least investment.

(b) Excluding the first solution in the Pareto-optimal
solution set, investment revenue gradients of the
other solutions are calculated by Equation (12).
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FIGURE 6: Nondominated sorting results for all feasible solutions.
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Eh ¼
Tave;1 − Tave;h

Ctotal;h − Ctotal;1
 1<h ≤H; ð12Þ

where h is the index of the solution in the Pareto-optimal
solution set; H is the number of solutions in the Pareto-
optimal solution set; Tave,h and Ctotal,h are, respectively, the
average TDfC of all EVs in TN and the overall investments of
the EVCN corresponding to the hth solution; Eh is the gradi-
ent of investment revenue of the hth solution.

(c) The solution with the maximum gradient of invest-
ment revenue in the Pareto-optimal solution set
is taken as the optimal deployment strategy of the
EVCN.

5. Case Study

The developed EVCN planning model and NSGA-II-CDP-
based solving method are validated by a case study based on
a 25-node TN.

5.1. Case Detail. The topology of the 25-node TN is shown in
Figure 7, which contains 25 nodes and 43 roads. In Figure 7,
the red numbers indicate the node numbers, and the black
numbers on the lines whose units are kilometers represent
the link lengths between the nodes. Each node in the TN is a
candidate site for EVCS. The weight of each node is

introduced in Table 1 [19], and the construction costs of
EVCS at each candidate site are presented in Table 2.

In the case study, each road is supposed to be bidirec-
tional, i.e., the shortest path from the start node to the end
node is the same as that from the end node to the start node.
Therefore, the shortest path set Ωq contains 300 shortest
paths (i.e., (25×(25 − 1))/2= 300). All shortest paths in the
TN together with the traffic nodes and roads passing by each
shortest path can be determined by the Floyd algorithm. The
overall EV flows on all the shortest paths and roads are 0.307
and 0.84, respectively.

The number of planned EVCSs is set to be four in this
paper. The driving range of the mainstream EVs at the max-
imum state-of-charge (SOC) is between 300 and 500 km.
Most EV owners would charge their EVs at about 20%
SOC. Therefore, the threshold of EVs’ TDfC Tcha–lim and
the confidence level β are, respectively, set as 80 km and 95%.

5.2. Solution of the Developed EVCN Planning Model by the
Customized NSGA-II-CDP. Before solving the developed
EVCN planning model by the customized NSGA-II-CDP,
the relevant parameters are set as follows: the population
size Npop is 100; the maximum evolutionary generation
Gmax is 150; the crossover probability Pc; and the mutation
probability Pm are, respectively, 0.05 and 0.1.

The planning strategies derived in the set of Pareto-
optimal solutions are shown in Table 3. All planning strate-
gies have been reordered according to Ctotal of each strategy.
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FIGURE 7: The topology of the 25-node TN.

TABLE 1: Weight coefficients of nodes in the 25-node TN.

Node Weight Node Weight Node Weight

1 0.54 10 0.54 19 0.80
2 0.80 11 0.05 20 0.27
3 0.27 12 0.54 21 0.27
4 0.27 13 0.05 22 0.54
5 0.27 14 0.54 23 0.05
6 0.07 15 0.27 24 1.34
7 0.05 16 0.27 25 0.05
8 0.54 17 0.27
9 0.27 18 1.07

TABLE 2: Construction costs for EVCS at each candidate site.

Node
Cost
/106 · ¥ Node

Cost
/106 · ¥ Node

Cost
/106 · ¥

1 5 10 10 19 10
2 5 11 8.6 20 24
3 5 12 8.6 21 6
4 9 13 9 22 10
5 23 14 24 23 6
6 4.6 15 8.6 24 6
7 8.6 16 22.6 25 6
8 24 17 5
9 10 18 5
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There are seven planning strategies in the set of Pareto-
optimal solutions. Tave is longest at 43.42 km and Ctotal is
25× 106 ¥ in the first planning strategy. Whereas, in the 7th

planning strategy, Tave and Ctotal are, respectively, 34.08 km
and 49× 106 ¥. Compared to the first planning strategy, Tave

in the 7th planning strategy is 21.5% shorter, equivalent to
9.34 km. However, the investments Ctotal increases by 96%,
equivalent to 24× 106 ¥. A short average TDfC of EVs brings
a significant increase in the investment. Therefore, it is nec-
essary to select the optimal strategy from the seven planning
strategies based on the maximummarginal revenue principle.

According to the steps described in Section 4.3, the gra-
dients of investment revenue of all planning strategies are
calculated except the first one, which are shown in Figure 8.

Figure 8 presents that the 2nd planning strategy has the
highest marginal investment revenue, which is 11.17 km/
106 ¥. The 2nd planning strategy is therefore selected as the
optimal planning strategy of the case study.

For the 2nd planning strategy, the locations of the
planned EVCSs are nodes 3, 11, 21, and 23, as illustrated
in Figure 9. Tave is 36.72 km, Ctotal is 25.6× 106 ¥, and the
pev is 96.04%. Figures 10 and 11 are, respectively, the proba-
bility density function (PDF) and the cumulative distribution
function (CDF) of random EVs’ TDfC corresponding to
the 2nd planning strategy. Figures 10 and 11 present that the
maximumTDfC of few EVs can exceed 110 km, but 96.04% of
EVs have a TDfC less than the 80 km threshold, according to

TABLE 3: The planning results in the set of Pareto-optimal solutions (β= 95% and M= 4).

Planning strategy Tave/km
Ctotal

/106 · ¥
pev (%) The locations of the EVCSs

1 43.42 25 95.28 3、13、18、23
2 36.72 25.6 96.04 3、11、21、23
3 35.58 29.6 99.81 4、12、21、23
4 35.22 43.6 95.62 4、11、14、17
5 35.18 47.6 95.54 4、11、14、23
6 34.95 48 95.53 4、13、14、23
7 34.08 49 95.06 4、14、19、23
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FIGURE 8: Gradient of investment revenue of all planning strategies
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FIGURE 9: The optimal planning strategy of the case study (β= 95%
and M= 4).
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the 2nd planning strategy. This follows the chance constraint
on EVs’ TDfC given by Equation (6).

5.3. The Impact of Confidence Level on the Planning Results.
The confidence level β is an important parameter in the
developed EVCN planning model, which is predetermined
by the planners. When the confidence level β decreases from
95% to 90%, the derived planning strategies in the Pareto-
optimal solution set change accordingly, as illustrated in
Table 4. The gradients of investment revenue of the planning
strategies 2, 3, 4, 5, and 6 given in the Table 4 are calculated
and presented in Figure 12.

Tables 3 and 4 show that a different Pareto-optimal solu-
tion set appears when reducing the confidence level β from
95% to 90%. The number of Pareto-optimal solutions
reduces from 7 to 6 resulting from reducing the 5% confi-
dence level. For this case, the minimum and maximum
values of Tave are 33.99 and 45.14 km, respectively, and the
corresponding Ctotal are 44× 106 ¥ and 24.2× 106 ¥.

Figure 12 presents that the 3rd planning strategy in the
Pareto-optimal solution set is an optimal one, because it has
the maximum value of Eh, which is 6.01 km/106 ¥. Further
observation shows that the 3rd planning strategy in Table 4 is
the same as the 2nd one in Table 3. When the confidence level
decreases from 95% to 90%, the optimal planning strategy
does not change, despite a different Pareto-optimal solution.
However, the comparison between Figures 8 and 12 shows
that the advantage of the optimal solution over other solu-
tions decreases with the decrease in confidence level.

5.4. The Planning Results in Different Numbers of EVCSs. In
previous cases, the number of planned EVCSs is set to 4. As
an important boundary condition, the number of planned
EVCSs may delivers a significant impact on the planning
results. Table 5 shows the optimal planning strategies corre-
sponding to the different numbers of planned EVCSs.
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TABLE 4: The planning results in the Pareto-optimal solution set
(β= 90% and M= 4).

Planning strategy Tave/km
Ctotal

/106 · ¥ pev (%)
The locations of

the EVCSs

1 45.14 24.2 90.76 3、6、12、21
2 43.42 25 95.28 3、13、18、23
3 36.72 25.6 96.04 3、11、21、23
4 36.30 26 92.97 4、17、21、23
5 35.58 29.6 99.81 4、12、21、23
6 33.99 44 93.31 4、14、17、23
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FIGURE 12: Gradient of investment revenue of all planning strategies
except the first one (β= 90% and M= 4).

TABLE 5: The optimal planning strategies corresponding to different
numbers of planned EVCSs (β= 95%).

M Tave/km
Ctotal/
106 · ¥

The locations of the EVCSs

4 36.72 25.6 3、11、21、23
5 35.48 30.2 3、6、11、21、23
6 30.3 35.2 3、6、11、17、21、23
7 28.68 40.2 2、3、6、11、17、21、23
8 27.54 45.2 2、3、6、11、17、18、21、23
9 22.22 59.2 2、3、7、10、11、17、18、21、23
10 24.83 59.2 1、2、3、4、6、11、17、18、21、23
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Table 5 shows that Tave would decrease and Ctotal would
increase consistently with the increasing number of planned
EVCSs. When the number of planned EVCSs increases from
9 to 10,Ctotal remains unchanged, equals 59.2× 106 ¥, however,
Tave increases from 22.22 to 24.83 km. It shows that a greater
number of the planned EVCSs is not always better. Therefore,
planners should take a comprehensive consideration of the
number of the planned EVCSs in the developed EVCN.

Figures 13 and 14 present the PDF and the CDF of the
EVs’ TDfC in the different numbers of planned EVCSs,
respectively. These two figures demonstrate that the different
number of planned EVCSs brings different probabilistic
characteristics of the EVs’ TDfC. The greater the number
of planned EVCSs, the higher the probability that the TDfC
of the EVs is less than the set threshold. When the number of
planned EVCSs is more than 5, the pev approaches 100%.
When the number of planned EVCSs increases to 9, most
of the EVs’ TDfC is between 0 and 50 km with a probability
of 94.44%.

6. Conclusion

To improve the charging convenience of EVs, this paper
developed a chance-constraint multiobjective EVCN plan-
ning model. With a fixed number of planned EVCSs, the
developed EVCN planning model desires to minimize the
average TDfC of all EVs in the TN and the investment costs
of EVCN by selecting locations of the EVCSs from candidate
sites. NSGA-II-CDP is customized and utilized to solve the
developed EVCN planning model, thus deriving the Pareto-
optimal solution set which contains several planning strate-
gies. In addition, when taking the investment return ratio
as primary consideration, a maximum gradient principle of
investment revenue is proposed to select the optimal plan-
ning strategy from the derived Pareto-optimal solution set,
i.e., to determine the optimal deployment strategy of the
planned EVCSs.

In this paper, EV flows on each road in the developed
EVCN planning model are calculated by the FCLM. In prac-
tice, these can also be determined according to the measured
traffic data to ensure that the planning strategy obtained
through the developed methodology is more suitable for
the actual demand.

Abbreviations

EVCSs: Electric vehicle charging stations
EVs: Electric vehicles
EVCN: Electric vehicle charging network
TN: Traffic network
TDfC: Travel distance for charging
NSGA-II-CDP: Nondominated sorting senetic Algorithm II

with the constraint domination principle
PDS: Power distribution system
FCLM: Flow-capturing location model
FRLM: Flow-refueling location model
GA: Genetic algorithm
PMM: P-median model
SCM: Set covering model
MCLM: Maximal covering location model
GAMS: General algebraic modeling system
CMOEAs: Constrained multiobjective evolutionary

algorithms
PDF: Probability density function
CDF: Cumulative distribution function.
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