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With the deepening of research, how to construct a fully homomorphic signcryption scheme based on standard assumptions is a
problem that we need to solve. For this question, recently, Jin et al. proposed a leveled fully homomorphic signcryption scheme
from standard lattices. However, when verifying, it is supposed to unsigncrypt first as they utilize sign-then-encrypt method. This
leads to users being unable to verify the authenticity of the data first, which resulting in the waste of resources. This raises another
question of how to construct an fully homomorphic signcryption (FHSC) scheme with public verifiability. To solve this problem,
we propose a leveled fully homomorphic signcryption scheme that can be publicly verified and show its completeness, IND-CPA
security, and strong unforgeability.

1. Introduction

With the rapid development of the digital economy, data
have become an extremely important social resource. In
practical applications, we often need to rely on third-party
computing power to help us perform calculations on data. In
this process, how to ensure the privacy and authentication of
data have become a problem that we need to solve.

The groundbreaking development of fully homomorphic
encryption (FHE) by Gentry [1] makes it possible for server
to homomorphically perform arbitrary computations over
the ciphertexts. Inspired by Gentry’s work, many FHE
schemes have emerged subsequently such as in studies by
Brakerskiand Vaikuntanathan [2], Brakerski [3], Brakerski
et al. [4], Gentry et al. [5], and Cheon et al. [6]. FHE helped
us achieve homomorphic operations on ciphertext, but it can-
not provide the verifiability of the data.

In the terms of its duality problem, Gorbunov et al. [7]
proposed the first leveled fully homomorphic signature
(FHS) schemes based on the short integer solution (SIS)
problem in standard lattices and come up with a new

primitive named homomorphic trapdoor function (HTDF)
in 2015. Given a set of messages ~μ, corresponding signatures
~σ , and a function f , FHS allows third party to obtain the
signature f ~σð Þ of plaintext f ~μð Þ through homomorphic com-
putation. In the same year, Wang et al. [8] devised a leveled
identity-based FHS scheme with strong unforgeability. In
their paper, they first extended the notion of HTDF and
obtained the identity-based HTDF, which has better param-
eters and stronger security. Li et al. [9] established an FHS
scheme based on NTRU and provided a new content for this
field in 2022. Unfortunately, FHS only guarantees the
authenticity of the data, while the private data itself remain
exposed.

In many situations, we need to simultaneously realize
privacy and authenticity. In 1997, Zheng [10] proposed a
new cryptographic primitive named digital signcryptation
to balance the privacy and authenticity of data. However,
their scheme does not support homomorphic operations.
In 2017, Rezaeibagha et al. [11] proposed a homomorphic
signcryption (HSC) scheme based on the decisional
Diffie–Hellman assumption which only supported linear
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homomorphic operations. Furthermore, Li et al. [12] con-
structed two leveled fully homomorphic signcryption
(FHSC) schemes under nonstandard assumptions as they
used indistinguishable obfusion, zero knowledge proof, and
multiple input function encryption. Recently, Jin et al. [13]
proposed a leveled FHSC schemes based on lattices. How-
ever, it cannot be publicly verified, as it needs to decrypt the
ciphertext first and then verify, which resulting in the waste
of resources. How to construct an FHSC scheme with public
verifiability is a problem that needs to be addressed. In this
paper, we provide a positive answer.

1.1. Contribution. To solve the problem of how to construct
an FHSC scheme with public verifiability, we propose a pub-
licly verifiable leveled FHSC scheme, which is more practical
than Jin’s scheme. For this purpose, we extend the encrypt-
then-sign method from signcryption setting to FHSC setting
to achieve the function of public verification. Due to the
method, we don’t need to decrypt the ciphertext first before
verifying. In other words, our FHSC supports public verifi-
ability. Furthermore, given a set of encrypted data, our
scheme can achieve fast verification through the homomor-
phism. Additionally, we show the completeness, strong
unforgeability, and IND-CPA security of our scheme.

1.2. Organization. The structure and basic content of this
article are as follows. First, we describe some background
on lattice, related homomorphic schemes, and some defina-
tions related to FHSC in Section 1. Second, we provide our
scheme construction, homomorphic operation, noise analy-
sis, and security in Section 3. Finally, we conclude our paper
in Section 4.

2. Preliminaries

2.1. Basic Notion. In this paper, we denote the ring of integers
as Z. We use lowercase bold letters, e.g., x to represent vec-
tors and capital letters, e.g., X to denote matrices. Given a
distribution χ, the formula x $← χ denotes the process that
sample x from χ uniformly at random. In addition, we
denote the infinite norm of A as Ak k1. Throughout, we
denote the security parameter as λ and denote negligible
functions as negl λð Þ.

2.2. Background on the Lattices. Let A¼ a1;ð a2;…; anÞ for
each ai2 n½ � 2Rn be a set of linearly independent basis vectors.
We say that Λ¼L Að Þ¼ Az¼f ∑n

i¼1zi ⋅ ai : zi 2Zg is a lat-
tice generated by A.

Definition 1 ([14] (short integer solution)). Let n¼ n λð Þ;
m¼m λð Þ; q¼ q λð Þ; β¼ β λð Þ>0 be integer parameters
defined in terms of the security parameter λ. Given a matrix
A2Zn×m

q consists of m vectors ai 2Zn
q selected uniformly at

random. In the SIS problem, the adversary wants to find a
small vector t2Zm satisfying t ≠ 0 and tk k1 ≤ β such that
At¼ 0, and the SIS problems can be reduced to certain
worst-case problems in the standard lattices [15–18].

Definition 2 ([5] (α-bounded distribution)). A set of distri-
butions χnf gn2N supported over the integers is α-bounded if
the distribution satisfies Pr

ϵ←χn
ϵj j>α½ � ¼Negl nð Þ.

Definition 3 ([19] (learning with error (LWE))). Given posi-
tive integers n;m; q, and χ which is a distribution over Zq.
The LWE problem is to find a vector s which satisfies A;ð A;h
siþ eÞ over Zm×n

q ×Zm
q , where A consists of ai

$← Zm
q ; i2 n½ �;

e← χm and s $← Zn
q . The LWE assumption is that the LWE

problem is infeasible.

Lemma 4. [7, 20–23] There exist a tuple of efficient algorithm
consists of TrapGen;SamplePre;Sample such that the fol-
lowing holds. Given positive integers n>1; q≥ 2, we can
obtain the following relationships about m∗ n;ð qÞ and
βsam n;ð qÞ for all m≥m∗ and all k¼ poly nð Þ:

(1) U ← Sample 1m;ð 1k; qÞ: We sample a matrix U 2
Zm×k
q which satisifies Uk k1 ≤ βsam

(2) The following two distribution statistics are indistin-
guishable: A≈SA∗ and A;ð Td;U ;VÞ≈S A;ð Td;U∗;
V∗Þ, where

A;Tdð Þ← TrapGen 1n; 1m; qð Þ
A∗ $←Zn×m

q

U ← Sample 1m; 1k; q
À Á

V ≜A ⋅ U
U∗ ← SamplePre A;V∗;Tdð Þ
V∗ $←Zn×k

q :

8>>>>>>>>><>>>>>>>>>:
ð1Þ

Moreover, any U∗ 2 SamplePre A;ð V∗;TdÞ always satisfies
AU∗ ¼V∗ and U∗k k1 ≤ βsam. From this, it can be concluded
that the statistical distances are negligible in λ.

(3) Received n;m; q as above, there is a deterministic
matrix G2Zn×m

q and a deterministic algorithm G−1

that can be effectively calculated. For a V 2Zn×m
q , we

can obtain bV ¼G−1 Vð Þ where bV 2 0; 1f gm×m and
G ⋅ bV ¼V.

Next, we will introduce two homomorphic schemes that
play important roles in our scheme.

2.3. Associated Homomorphic Schemes

2.3.1. GSW-FHE [5]. A GSW-FHE scheme consists of a tuple
of algorithms Setup;ð KeyGen;Enc;Dec;EvaluateÞ as
follows:

(i) GSW:prms←GSW:Setup 1λ;ð 1LÞ: Input security
parameter λ, maximum homomorphic depth L, and
output GSW:prms¼ n1;ð m1; q1;N1Þ, where N1 ¼
n1ð þ 1Þ log q.

(ii) pk;ð skÞ←KeyGen GSW:prmsð Þ: Take the GSW:
prms as input and samples t← Zn1

q1 . Then, generate
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a matrix D← Zm1×n1
q1 uniformly and a vector

e← χm1 . Set b=Dt +e and B¼ b;ð DÞ. Then, we can
obtain the public key pk¼B (Remark: Observe that
Bs= e). Output pk¼B; sk¼ 1;ð − tÞ 2Zn1þ1

q1 .

(iii) C ← Enc GSW:prms;ð m; pkÞ: Input the public
parameter GSW:prms, a message μ2M, and public
key pk. Then, output C¼ Flatten Bitdecomp RBð Þþð
μINÞ 2ZN1×N1

q1 where R $← 0; 1f gN1×m1 .

(iv) μ← Dec GSW:prms;ð C; skÞ: Compute C;h
Powersof 2 sð Þi¼ μPowersof 2 sð ÞþRe.

(v) C∗ ← Evaluate GSW:prms;ð C1;C2;…;CL; f Þ: Input
C1;ð C2;…;CL; f Þ and output C∗.

2.3.2. GVW-FHS [7]. A GVW-FHS scheme consists of a
tuple of algorithms ðSetup;KeyGen;Sign;Sign-Eval;
Process;VerifyÞ as follows:

(i) GVW:prms←GVW:Setup 1λ;ð 1N2Þ: It takes V1;ð
V2;…;VN2

Þ by sample Vi
$←V as the input and gen-

erates parameters n2;ð m2; q2Þ. We record all gener-
ated parameters as GVW:prms¼ V1;ð V2;…;VN2

;
n2;m2; q2Þ.

(ii) pk;ð skÞ←KeyGen GVW:prmsð Þ: It outputs A;ð TdÞ
←TrapGen 1n2 ;ð 1m2 ; q2Þ and denotes as pk¼A;
sk¼Td.

(iii) U ← Sign GVW:prms;ð μ; skÞ: Input the data x to be
signed, GVW:prms, the secret key sk, and out the
signature U .

(iv) U∗ ← SignEval f ;ð μ1;ð V1;U1Þ; μ2;ð V2;U2Þ;…;
μN2

;
À

VN2
;UN2

Þ; pkÞ: Input ðf ; μ1;ð V1;U1Þ; μ2;ð V2;
U2Þ;…; μN2

;
À

VN2
;UN2

Þ and output U∗.

(v) Vf ← Process GVW:prms;ð f Þ: Input f ;ð V1;V2;
…;VN2

Þ. And output Vf .

(vi) 0=1← Verify GVW:prms;ð pk;U∗; μ∗; f Þ: If f pk;yð Þ
U∗ð Þ¼V∗, where y¼ f ;ð μ1; μ2;…; μN2

Þ, then out-
put 1. Otherwise output 0.

Lemma 5. Based on SIS problem, which is considered difficult,
the GVW-FHS scheme [7] satisfies existential unforgeability.
Furthermore, we can obtain that the GVW-FHS scheme is
strongly-unforgeable adapted from the identity-based FHS
scheme [8].

2.4. Definitions Related to FHSC. In this section, we will
describe the commonly known definitions for FHSC scheme,
as well as the completeness, IND-CPA security, and strong
unforgeability.

2.4.1. FHSC. A fully homomorphic signcryption scheme is a
tuple of algorithms consisting of Setup;ð KeyGens;
KeyGenr;Signcrypt;Unsigncrypt;Eval;Process;VerifyÞ
as follows:

(i) prms← Setup 1λ;ð 1L; 1SÞ: Get the λ, maximum
homomorphic depth L, and a data-size bound S.
Then, output the public parameter prms and the
message space M.

(ii) pks;ð sksÞ←KeyGens prmsð Þ: Input the prms and
generate the sender’s key pair pks;ð sksÞ.

(iii) pkr;ð skrÞ←KeyGenr prmsð Þ: Input the prms and
generate the receiver’s key pair pkr;ð skrÞ.

(iv) σ ← Signcrypt prms;ð μ; sks; pkrÞ: Input public
parameter prms, a message μ2M, sender’s private
key sks and receiver’s public key pkr , and output a
signcryption σ.

(v) μ← Unsigncrypt prms;ð σ; pks; skrÞ: Input public
parameter prms, the signcryption σ, sender’s public
key pks and receiver’s private key skr , and output μ
after verifing the integrity of ciphertext.

(vi) σ∗← Eval prms;ð pks; pkr; f ; σ1…; σSÞ: Input σ1…;
σS, and output homomorphic signcryption σ∗.

(vii) Vf ← Process prms;ð f Þ: Input public parameter
prms and function f . Homomorphically computes
a Vf , which is used for verification.

(viii) 0=1← Verify prms;ð pks; σ∗; f Þ: Input the evaluated
signcrtption σ∗, sender’s public key pks, and output
0/1.

2.4.2. Completeness. Given messages μ1;ð μ2;…; μSÞ 2M;
f μ1;ð μ2;…; μSÞ¼ μ∗, prms; pks;ð sksÞ, and pkr;ð skrÞ, we can
obtain the signcryption σi of each message μi and the homo-
morphic operation result σ∗. It satisfies the following prop-
erties with a nonnegligible probability:

1 ¼Verify prms; pks; σ∗; fð Þ
μ∗¼Unsigncrypt prms; σ∗; skrð Þ

(
ð2Þ

2.4.3. IND-CPA Security.We say that an FHSC scheme satis-
fies IND-CPA security if and only if a probabilistic polyno-
mial time (PPT) adversary A has a negligible advantage to
win the following game.

(1) The challenger C first obtain the prms and the key
pair pkr;ð skrÞ from the Setup and KeyGen r . Then,
C sends the pkr;ð sks; prmsÞ to A.

(2) A chooses two plaintexts μ0; μ1, satisfing μ0j j ¼ μ1j j
and then run the KeyGen s to get the pks;ð sksÞ.
Finally, A gives the μ0;ð μ1; pks; sksÞ to C.

(3) C chooses a random bit b← 0;f 1g and sents the σb
to A where σb ← Signcrypt prms;ð μb; sks; pkrÞ.

(4) A outputs a bit b0 ← 0;f 1g. If b0 ¼ b, A wins.

The advertange of the adversary to win the game is:

AdvIND−CPAA ¼ Pr b0 ¼ b½ � − 1=2j j: ð3Þ

IET Information Security 3



2.4.4. Strong Unforgeability. We say that an FHSC scheme
satisfies strong unforgeability under chosen message attack if
there is no PPT forger F can win the following game with a
nonnegligible advantage.

(1) The challengerC first generates the prms and the key
pair pkr;ð pks; skr; sksÞ from the Setup, KeyGens,
and KeyGenr . Then, C sends the pkr;ð pks; prmsÞ
to F.

(2) F chooses and sends plaintexts μ1;ð μ2;…; μSÞ to C.
(3) C obtains the σi from Signcrypt and sents the σ1;ð

σ2;…; σSÞ, where i2 S½ � to F.
(4) F chooses and sends a function f 2 F, as well as a

value σ0 to C.
(5) F wins if all of the following hold:

f is admissible on the messages μ1; μ2;…; μS;
σf ≠ σ0, where σf ¼ f σ1;ð σ2;…; σSÞ;
Verify σ0;ð Vf Þ accept, where Vf ¼Process prms;ð f Þ.

An FHSC scheme is SU-CMA security if:

Pr ExpSU−CMA
F;FHSC 1λð Þ

h i��� ���<negl λð Þ: ð4Þ

Remark 6. Remark that we do not require either μ0 ¼ f μ1;ð
μ2;…; μSÞ or not. So, if μ0 ¼ f μ1;ð μ2;…; μSÞ, then σ0 is a valid
signcryption to break the strong unforgeability of FHSC
scheme, otherwise a valid signcryption to break the existent
unforgeability.

3. The Proposed FHSC Scheme

In this section, we will represent our FHSC construction,
homomorphic operation, noise analysis, and security.

3.1. Basic Construction. Our scheme will be defined by a
flexible parameter L¼ L λð Þ¼ poly λð Þ which the depth of
homomorphism. We choose parameters: n;m; q; βSIS; βmax;
βinit depending on λ and L. We do so by setting
βmax≜2ω log λð ÞL and βSIS≜2ω log λð ÞLβmax. Then, we let n¼
poly λð Þ and prime q¼ 2poly λð Þ>βSIS be integers as small as
possible to ensure that the SIS n;ð m; q; βSISÞ assumption
holds for all m¼ poly λð Þ. In the end, we denote m∗ ¼
m∗ n;ð qÞ≜O n log qð Þ; βsam ¼O n

ffiffiffiffiffiffiffiffiffiffi
log q

pÀ Á
as the parameters

required by the algorithms TrapGen, as shown in Lemma 4,
and set m¼max m;f nlogqþω log λð Þg¼ poly λð Þ while
βinit≜βsam ¼ poly λð Þ. Note that n;m; logq all depend on
poly(L,λ).

Our leveled FHSC scheme consists of polytime algorithms
ðSetup;KeyGens;K-eyGenr;Signcrypt;Unsigncrypt;Eval;
Process;VerifyÞ with syntax:

(i) prms← Setup 1λ;ð 1L; 1SÞ. Input the security param-
eter λ, homomorphic depth L, and a data-size bound
S. Then, run GSW:prms← PrmsGen 1λ;ð 1LÞ
and GVW:prms← PrmsGen 1λ;ð 1SÞ, where
GSW:prms¼ n1;ð m1; q1; χÞ and GVW:prms¼
V1;ð V2;…;VS; n2;m2; q2Þ. Remark that Vi2 S½ �
consists of N2 matrices, each of which has n rows
and m columns where m¼max m1;f m2g and n¼
max n1;f n2g. Let l¼ ⌈log q⌉;N ¼ nþð 1Þl; q¼
max q1;f q2g, domains M¼Zq, and V¼ZnN×mN

q .
Define the distruibution DU to sample U←
Sample 1mN ;ð 1mN ; qÞ, as shown in Lemma 4, which
satisfies Uk k1 ≤ βinit . Let U¼ Uij 2 Z q

m×m
À Á

i; j2 N½ �.
Finally, output prms¼ V1;ð V2;…;VS; n;m; q; χÞ.

(ii) pks;ð sksÞ←KeyGens prmsð Þ. Run A;ð tdÞ←
GVW:KeyGens prmsð Þ and set pks ¼A2Zn×m

q ;
sks ¼ td 2Zm

q .

(iii) pkr;ð skrÞ←KeyGenr prmsð Þ. Run B;ð sÞ←
GSW:KeyGenr prmsð Þ and set pkr ¼B2Zm× nþ1ð Þ;
skr ¼ s, where s¼ 1;ð − tÞ 2Znþ1

q , B¼ b;ð DÞ 2
Zm× nþ1ð Þ
q and sB¼ e.

(iv) C;ð UÞ←Signcrypt prms;ð μ; sks; pkrÞ.

(1) For a message μ2M, run C←GSW:Enc μ;ð pkrÞ.
Remark that C¼ Flatten Bitdecomp RBð Þþð μINÞ,
where R $← 0; 1f gN×m. Let

C ¼

C00 C01 … C0N−1

C10 C11 … C1N−1

⋮ ⋮ ⋱ ⋮
CN−10 CN−10 … CN−1N−1

0BBBB@
1CCCCA ð5Þ

be a matrix whose entries consist of {0, 1}
(2) For 8Cij, run Uij ← GVW:Sign prms;ð Cij; sksÞ.

Remark that Vij ¼AUij þCijG. Let

U¼

U00 U01 … U0N−1

U10 U11 … U1N−1

⋮ ⋮ ⋱ ⋮
UN−10 UN−10 … UN−1N−1

0BBBB@
1CCCCA ð6Þ

and
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V ¼

V00 V01 … V0N−1

V10 V11 … V1N−1

⋮ ⋮ ⋱ ⋮
VN−10 VN−10 … VN−1N−1

0BBBB@
1CCCCA

¼

AU00 þ C00G AU01 þ C01G … AU0n þ C0N−1G

AU10 þ C10G AU11 þ C11G … AU1N−1 þ C1N−1G

⋮ ⋮ ⋱ ⋮
AUN−10 þ CN−10G AUN−10 þ CN−10G … AUN−1N−1 þ CN−1N−1G

0BBBB@
1CCCCA

¼ AUþ CG;

ð7Þ

where the matrixes A and G are seen as a number in the
multiplication operation, respectively.

(i) μ← Uncryptsign prms;ð C;U; pks; skrÞ: Input the
public parameter prms and signcryption C;ð UÞ. Run
algorithm 0=1← Verify C;ð UÞ first and then run
algorithm μ←GSW:Dec prms;ð C; skrÞ if 1←
Verify C;ð UÞ.

(ii) C∗;ð U∗Þ←Eval prms;ð f ;C1;C2;…;CS; Þ. Input
prms;ð pks; pkr; f Þ, as well as C1;ð U1Þ; C2;ð U2Þ;…;
CS;ð USÞ, and output the homomorphic signcryp-

tion C∗;ð U∗Þ.
(iii) Vf ← Process prms;ð f Þ: Takes the admissible

function f and prms as inputs. Then, output Vf ←
GVW:Process prms;ð f Þ.

(iv) 0=1← Verify Vf ;
À

pks;Cf ;Uf Þ: Take the Vf , sen-
der’s public key pks, and the signcryption Cf ;

À
Uf Þ

as input. Then output 1 if Vf ¼AUf þCfG, other-
wise output 0.

(v) μf ←GSW:Dec prms;ð skr;Cf Þ: Input public
parameter prms and secret key skr and output the
new message under f if 1← Verify prms;ð pks;Cf ;
Uf ; f Þ:

3.2. Homomorphic Evalution and Noise Analysis. Here, we
describe the additive homomorphism and multiplicative
homomorphism. For

C1 ¼
C00 C01 … C0N−1

C10 C11 … C1N−1

⋮ ⋮ ⋱ ⋮
CN−10 CN−10 … CN−1N−1

0BB@
1CCA,

C2 ¼
bC00

bC01 …
bC0N−1bC10

bC11 …
bC1N−1

⋮ ⋮ ⋱ ⋮bCN−10
bCN−10 …

bCN−1N−1

0BB@
1CCA and

U1 ¼
U00 U01 … U0n

U10 U11 … U1n

⋮ ⋮ ⋱ ⋮
UN−10 UN−10 … UN−1n

0BB@
1CCA,

U2 ¼
bU 00

bU 01 …
bU 0nbU 10

bU 11 …
bU 1n

⋮ ⋮ ⋱ ⋮bUN−10
bUN−10 …

bUN−1n

0BB@
1CCA, while

V1 ¼
V00 V01 … V0N−1

V10 V11 … V1N−1

⋮ ⋮ ⋱ ⋮
VN−10 VN−10 … VN−1N−1

0BB@
1CCA,

V2 ¼
bV 00

bV 01 …
bV 0N−1bV 10

bV 11 …
bV 1N−1

⋮ ⋮ ⋱ ⋮bVN−10
bVN−10 …

bVN−1N−1

0BB@
1CCA

Additive Homomorphism. We define that

CAdd ¼ Cij þ bCij

� �
i;j2 N½ �

UAdd ¼ Uij þ bU ij

� �
i;j2 N½ �

VAdd ¼ Vij þ bV ij

� �
i;j2 N½ �

¼ A Uij þ bU ij

� �
þ Cij þ bCij

� �
G

� �
i;j2 N½ �

8>>>>><>>>>>:
ð8Þ

For simplicity, VAdd ¼AUAdd þCAddG, where A and G
should be seen as a number while performing the multipli-
cation operation.

For

C1 ¼ Flatten Bitdecomp R1Bð Þ þ μINð Þ;
C2 ¼ Flatten Bitdecomp R2Bð Þ þ μINð Þ; ð9Þ

We can easily recover the μAdd from the formula:

<CAdd;Power of 2 skrð Þ>¼ R1e1 þ R2e2
þ μ1 þ μ2ð Þ Powers of 2 skrð Þ:

ð10Þ
Next, we analyze the noise variations during the additive

homomorphic processes.
If the upper noise boundary of U1 and U2 is β, then we

can easily obtain that the upper noise boundary ofUAdd is 2β.

IET Information Security 5



If the upper noise boundary of R1e1 and R2e2 is α, then we
can easily obtain that the upper noise boundary of CAdd is 2α.

MultConst Homomorphism. We define that:

CconMult ¼ Flatten aINð ÞC
UMultconst ¼ Flatten aINð ÞU
VMultconst ¼ Flatten aINð ÞAUþ Flatten aINð ÞCG:

8><>:
ð11Þ

From Equation (2), we can learn that:

<CMultconst; Powers of 2 skrð Þ> ¼ aμPower of 2 skrð Þ
þFlatten aINð ÞRe2

UMultconst:ij



 


1 ¼ a Uij



 


1:

ð12Þ

If Re1 is bounded by α, then the upper noise boundary of
CMultconst is Nð þ 1Þα.

If U is bounded by β, then the upper noise boundary of
UMultconst is aβ.

Multiplicative Homomorphism. We define that:

CMult ¼ C2C1 ¼ ∑
N−1

k¼0

bCikCkj

� �
i;j2 N½ �

UMult ¼U2 ⊗U1 ¼ ∑
N−1

k¼0

bUik ∘ Ukj

� �
i;j2 N½ �

 

VMult ¼V2⋄V1 ¼ ∑
N−1

k¼0

bV ikG−1 Vkj

À Á� �
i;j2 N½ �

¼ A ∑
N−1

k¼0

bUik ∘ Ukj

� �
þ ∑

N−1

k¼0

bCikCkj

� �
G

� �
i;j2 N½ �

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

ð13Þ

where, we define the operation ∘ as follows:

bUij ∘ Uij ¼ bCijUij þ bUijG−1 Vij

À Á
: ð14Þ

For simplicity, we take the first element of the above
three matrices to illustrate the correctness of the multiplica-
tive homomorphism:

bV 00G−1 V00ð Þ þ…þ bVN−10G−1 V0N−1ð Þ
¼ AbU 00 þ bC00G
� �

G−1 V00ð Þ þ…

þ AbUN−10 þ bCN−10G
� �

G−1 V0N−1ð Þ
¼ A bC00

� �
U00 þ bU 00G−1 V00ð Þ

�
þ…

þ bC0N−1UN−10 þ bU 0N−1G−1 VN−10ð Þ
� �

þ bC00C00 þ…þ bCN−10C0N−1

� �
G

¼ A bU 00 ∘ U00 þ…þ bUN−10 ∘ U0N−1

� �
þ bC00C00 þ…þ bCN−10C0N−1

� �
G:

ð15Þ

Both A andG should be seen as a number while perform-
ing the multiplication operation described above.

Next, we do the analyzation to the corresponding noise
boundary in the process of multiplicative homomorphism.
From Equations (13) and (14), we have that:

<CMult; Powers of 2 skrð Þ> ¼ μ1μ2 Power of 2 skrð Þ þ μ1R2e2 þ C2R1e1

UMult:ij



 


1 ¼ ∑

N−1

k¼0

bU ik ∘ Ukj

� �
i;j2 N½ �





 




1

≤ ∑
N−1

k¼0

bCikUkj þ bU ikG−1 Vkj

À Á� �
i;j2 N½ �





 




1

≤ ∑
N−1

k¼0

bCikUkj




 



1
þ bU ikG−1 Vkj

À Á


 



1

� �
:

ð16Þ

If R1e1 and R2e2 are bounded by α, then the upper noise
boundary of CMult is Nð þ 1Þα.

If U1 and U2 are bounded by β, then the upper noise
boundary of UMult is N mð þ 1Þβ.

Faster Homomorphic Multiplication. Given fresh sign-
cryptions C1;ð U1Þ;…; CS;ð USÞ, we can calculate that
the upper noise boundary of CMultS ¼CSCS−1…C1 ¼
CS … C3 C2C1ð Þð Þ…ð Þð Þ is S−ð 1Þ Nð þ 1Þα.

The upper noise boundary of UMultS ¼US ⊗US−1 ⊗
…⊗U1 ¼ US ⊗ … U3 ⊗ U2 ⊗U1ð Þð Þ…ð Þð Þ is
NS−1

−1
N−1 N mð þ 1Þβ.

Proof 7. From Equation (16), we have that:

eMult2k k1 ¼ μ1R2e2 þ C2R1e1k k1 ¼ N þ 1ð Þα;
UMult:ij



 


1 ≤ ∑

N−1

k¼0

bCikUkj




 



1
þ bU ikG−1 Vkj

À Á


 



1

� �
¼N mþ 1ð Þ β:

ð17Þ

And we can get that:

eMult3k k1 ¼ eMult2 μ3 þ R3e3ð Þk k1
¼ μ3eMult2 þ R3e3eMult2k k1
≤ μ3eMult2k k1 þ R3e3eMult2k k1
≤ 2 N þ 1ð Þα:

ð18Þ

According to recursion, we can obtain the corresponding
noise boundary of signcryption CMultS ¼CSCS−1…C1 ¼
CS … C3 C2C1ð Þð Þ…ð Þð Þ is S−ð 1Þ Nð þ 1Þα.

Similarly, the upper noise boundary of UMult ¼
US ⊗ … U3 ⊗ U2 ⊗U1ð Þð Þ…ð Þð Þ is NS−1

−1
N−1 N mð þ 1Þβ. □

Faster Homomorphic Verification. Due to the homomor-
phism of signcryption, we can verify the sum of all compo-
nents in U to achieve public verification.
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Verify C;Uð Þ ¼ Verify ∑
ij
Cij;∑

ij
Uij

 !
 i; j 2 N½ � ð19Þ

Completeness. In addition to the noise boundary analyzed
above, we can also set appropriate parameters to ensure the
correctness of homomorphic evaluation, thus ensuring the
completeness of the proposed FHSC scheme. As shownin a
study by Gentry et al. [5], we can evaluate a depth-S circuit of
NANDs over α-bounded ciphertexts to obtain a q=8-
bounded ciphertext if q=α>8 N þ 1ð ÞS. The ciphertext can
be correctly publicly verified if the noise boundary
NS−1

−1
N−1 N mð þ 1Þβ<βmax. Therefore, the allowed evaluation
depth S for our scheme is the minimum of above.

3.3. Security Analysis
Theorem 8 (IND-CPA security). The proposed FHSC scheme
satisfies IND-CPA security, if the GSW-FHE scheme satisfies
IND-CPA security.

Proof 9. We assume that there is a adversary A∗ can break
the IND-CPA security of FHSC scheme with a nonnegligible
advantage in the security game. Then, the adversary A can
break the IND-CPA security of the GSW-FHE scheme with a
nonnegligible advantage utilizing the ability of A∗. Actually,
the advantage for A to break the IND-CPA security of the
GSW-FHE scheme is negligible. Therefore, our FHSC
scheme satisfies IND-CPA security.

In the game, the challenger C runs GSW:Keygen and
generates a pair of key B;ð sÞ as GSW-FHE key and sends
them to A. Then, A chooses a pair of sender’s key A;ð tdÞ
and sends B;ð A; tdÞ to A∗. Next, A∗ chooses two messages
μ0 and μ1, where μ0j j ¼ μ1j j, and sends (μ0; μ1) to A. Imme-
diately, A sends μ0; μ1 to C. Subsequently, C randomly
selects b2 0;f 1g, generates Cb, and sends Cb to A. Then
A generatesUb for Cb and sends Cb;ð UbÞ toA∗. The adver-
sary A∗ is supposed to return b0 from the signcryption Cb;ð
UbÞ and sends b0 to A. Both A and A∗ win if b0 ¼ b. Under
our assumption, A∗ can break the IND-CPA security of
FHSC scheme with a nonnegligible advantage. Furthermore,
A can break the security of GSW-FHE scheme. Attributed to
the security of the GSW-FHE scheme, the adversaryA could
not output b0 ¼ b with a nonnegligible advantage. Therefore,
we can get that our FHSC scheme satisfies IND-CPA
security. □

Theorem 10 (Strong unforgeability). If the forger F∗ can
break the strong unforgeability of FHSC scheme with a non-
negligible advantage, then the forger F can break the strong
unforgeability of GVW-FHS scheme utilizing the ability of
F∗.

Proof 11. Assuming that the forger F∗ can break the FHSC
scheme with a nonnegligible advantage in the security game
with a nonnegligible advantage. Then, F can break the
strong unforgeability of FHSC scheme with a nonnegligible
advantage utilizing the ability ofF∗. Actually, the advantage
for F to break the strong unforgeability of GVW-FHS

scheme is negligible. Therefore, our FHSC scheme satisfies
IND-CPA security.

In the game, the challenger C could run GVW:Setup to
generate a pair of sender’s key A;ð tdÞ as GVW-FHS key and
sends A toF. Then,F chooses a pair of receiver’s key B;ð sÞ
as GSW-FHE key and sends A;ð BÞ to F∗. Following that,
F∗ chooses plaintexts μ1;ð μ2;…; μSÞ and sends to F. Given
plaintexts, F generates corresponding ciphertexts C1;ð …;
CSÞ and sends them to C for signature queries. After signa-
ture queries,F could obtain U1;ð …;USÞ and sends C1;ð U1Þ
;…; CS;ð USÞ to F∗ as the result of signcryption queries for
F∗. Under our assumption, F∗ can construct a valid sign-
cryption C∗;ð U∗Þ with a nonnegligible advantage, where
U∗ ≠ f U1;ð …;USÞ for C∗ ¼ f C1;ð …;CSÞ. Furthermore, F
can construct a valid signature U∗ with a nonnegligible
advantage to break the strong unforgeability of GVW-FHS
scheme. Attributed to the security of the GVW scheme, we
can get that the forger cannot forge a new signature U∗ with
a nonnegligible advantage. Thereby, we can get that our
FHSC scheme satisfies strong unforgeability. □

4. Conclusion and Open Problems

In this paper, we propose a leveled FHSC scheme with public
verifiability and show its IND-CPA security and strong
unforgeability under the standard assumption. Although
we can utilize faster homomorphic verification to reduce
the number of verifications, our scheme is still not practical
enough. It’s interesting to construct more efficient schemes.
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