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With the deepening of research, how to construct a fully homomorphic signcryption scheme based on standard assumptions is a
problem that we need to solve. For this question, recently, Jin et al. proposed a leveled fully homomorphic signcryption scheme
from standard lattices. However, when verifying, it is supposed to unsigncrypt first as they utilize sign-then-encrypt method. This
leads to users being unable to verify the authenticity of the data first, which resulting in the waste of resources. This raises another
question of how to construct an fully homomorphic signcryption (FHSC) scheme with public verifiability. To solve this problem,
we propose a leveled fully homomorphic signcryption scheme that can be publicly verified and show its completeness, IND-CPA

security, and strong unforgeability.

1. Introduction

With the rapid development of the digital economy, data
have become an extremely important social resource. In
practical applications, we often need to rely on third-party
computing power to help us perform calculations on data. In
this process, how to ensure the privacy and authentication of
data have become a problem that we need to solve.

The groundbreaking development of fully homomorphic
encryption (FHE) by Gentry [1] makes it possible for server
to homomorphically perform arbitrary computations over
the ciphertexts. Inspired by Gentry’s work, many FHE
schemes have emerged subsequently such as in studies by
Brakerskiand Vaikuntanathan [2], Brakerski [3], Brakerski
et al. [4], Gentry et al. [5], and Cheon et al. [6]. FHE helped
us achieve homomorphic operations on ciphertext, but it can-
not provide the verifiability of the data.

In the terms of its duality problem, Gorbunov et al. [7]
proposed the first leveled fully homomorphic signature
(FHS) schemes based on the short integer solution (SIS)
problem in standard lattices and come up with a new

primitive named homomorphic trapdoor function (HTDF)
in 2015. Given a set of messages i, corresponding signatures
G, and a function f, FHS allows third party to obtain the
signature f () of plaintext f (i) through homomorphic com-
putation. In the same year, Wang et al. [8] devised a leveled
identity-based FHS scheme with strong unforgeability. In
their paper, they first extended the notion of HTDF and
obtained the identity-based HTDF, which has better param-
eters and stronger security. Li et al. [9] established an FHS
scheme based on NTRU and provided a new content for this
field in 2022. Unfortunately, FHS only guarantees the
authenticity of the data, while the private data itself remain
exposed.

In many situations, we need to simultaneously realize
privacy and authenticity. In 1997, Zheng [10] proposed a
new cryptographic primitive named digital signcryptation
to balance the privacy and authenticity of data. However,
their scheme does not support homomorphic operations.
In 2017, Rezaeibagha et al. [11] proposed a homomorphic
signcryption (HSC) scheme based on the decisional
Diffie-Hellman assumption which only supported linear
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homomorphic operations. Furthermore, Li et al. [12] con-
structed two leveled fully homomorphic signcryption
(FHSC) schemes under nonstandard assumptions as they
used indistinguishable obfusion, zero knowledge proof, and
multiple input function encryption. Recently, Jin et al. [13]
proposed a leveled FHSC schemes based on lattices. How-
ever, it cannot be publicly verified, as it needs to decrypt the
ciphertext first and then verify, which resulting in the waste
of resources. How to construct an FHSC scheme with public
verifiability is a problem that needs to be addressed. In this
paper, we provide a positive answer.

L.1. Contribution. To solve the problem of how to construct
an FHSC scheme with public verifiability, we propose a pub-
licly verifiable leveled FHSC scheme, which is more practical
than Jin’s scheme. For this purpose, we extend the encrypt-
then-sign method from signcryption setting to FHSC setting
to achieve the function of public verification. Due to the
method, we don’t need to decrypt the ciphertext first before
verifying. In other words, our FHSC supports public verifi-
ability. Furthermore, given a set of encrypted data, our
scheme can achieve fast verification through the homomor-
phism. Additionally, we show the completeness, strong
unforgeability, and IND-CPA security of our scheme.

1.2. Organization. The structure and basic content of this
article are as follows. First, we describe some background
on lattice, related homomorphic schemes, and some defina-
tions related to FHSC in Section 1. Second, we provide our
scheme construction, homomorphic operation, noise analy-
sis, and security in Section 3. Finally, we conclude our paper
in Section 4.

2. Preliminaries

2.1. Basic Notion. In this paper, we denote the ring of integers
as Z. We use lowercase bold letters, e.g., x to represent vec-
tors and capital letters, e.g., X to denote matrices. Given a
distribution y, the formula x< y denotes the process that
sample x from y uniformly at random. In addition, we
denote the infinite norm of A as ||A]|.,. Throughout, we
denote the security parameter as 4 and denote negligible
functions as negl(4).

2.2. Background on the Lattices. Let A= (a,,a,,...,a,) for
each a;c(,) € R" be a set of linearly independent basis vectors.
We say that A =L (A)={Az=Y" |z - a;:z;€Z} is a lat-
tice generated by A.

Definition 1 ([14] (short integer solution)). Let n=mn(4),
m=m(1),q=q(A),f=p(A)>0 be integer parameters
defined in terms of the security parameter 4. Given a matrix
A €ZP™ consists of m vectors a; € Z; selected uniformly at
random. In the SIS problem, the adversary wants to find a
small vector t € Z™ satisfying t # 0 and ||t||, </ such that
At=0, and the SIS problems can be reduced to certain
worst-case problems in the standard lattices [15-18].
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Definition 2 ([5] (a-bounded distribution)). A set of distri-
butions {y, },cn supported over the integers is a-bounded if
the distribution satisfies Pr [|e|>a] = Negl(n).

e~Zn

Definition 3 ([19] (learning with error (LWE))). Given posi-
tive integers n, m, g, and y which is a distribution over Zq.
The LWE problem is to find a vector s which satisfies (A, (A,
s) +e) over Z™" x ", where A consists of a;& Z[",i € [n],
e <« y" and s& Zjy. The LWE assumption is that the LWE
problem is infeasible.

Lemma 4. [7, 20-23] There exist a tuple of efficient algorithm
consists of TrapGen, SamplePre, Sample such that the fol-
lowing holds. Given positive integers n>1,q>2, we can
obtain the following relationships about m*(n,q) and
Boam(n,q) for all m>m* and all k= poly(n):

(1) U « Sample(1™, 1%, q): We sample a matrix U €
2% which satisifies || U|| o, < Boam

(2) The following two distribution statistics are indistin-
guishable: A~gA* and (A, Td, U, V)=~g(A, Td, U*,
V*), where

(A, Td) < TrapGen(1",1™, q)

A*&Z(r;xrn

U < Sample(1™, 1%, q)

VEA.U

U* « SamplePre(A, V*, Td)

V*& ank
q -

Moreover, any U* € SamplePre(A, V*, Td) always satisfies
AU* =V* and ||U*|| o, £ Psam- From this, it can be concluded
that the statistical distances are negligible in A.

(3) Received n,m,q as above, there is a deterministic
matrix G € Z;*" and a deterministic algorithm G~'
that can be effectively calculated. For a V € Zy™, we
can obtain V=G (V) where V € {0, 1}™™ and
G-V=V.

Next, we will introduce two homomorphic schemes that
play important roles in our scheme.

2.3. Associated Homomorphic Schemes

2.3.1. GSW-FHE [5]. A GSW-FHE scheme consists of a tuple
of algorithms (Setup, KeyGen, Enc, Dec, Evaluate) as
follows:

(i) GSW.prms « GSW.Setup(14, 11): Input security
parameter A, maximum homomorphic depth L, and
output GSW .prms= (ny,my, q;, N;), where N; =
(n, +1)logg.

(ii) (pk,sk)—KeyGen(GSW .prms): Take the GSW.
prms as input and samples t < Zg!. Then, generate
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a matrix D« Zg™" uniformly and a vector
e < y™.Setb=Dt+eand B= (b, D). Then, we can
obtain the public key pk = B (Remark: Observe that
Bs=e). Output pk=B,sk= (1, —t) € Zy' .

(ili) C « ENnc(GSW .prms, m, pk): Input the public
parameter GSW .prms, a message u € ./, and public
key pk. Then, output C = Flatten(Bitdecomp(RB) +
ply) € Zy*™ where RE{0, 1}Nxm,

(iv) u « Dec(GSW .prms, C, sk): Compute (C,
Powersof 2(s)) = uPowersof2(s) + Re.

(v) C* « Evaluate(GSW .prms, Cy, C,, ..., C,f): Input
(C,C,,...,Cp,f) and output C*.

2.3.2. GVW-FHS [7]. A GVW-FHS scheme consists of a
tuple of algorithms (Setup, KeyGen, Sign, Sign-Eval,
Process, Verify) as follows:

(i) GVW .prms « GVW.Setup(1%,1™2): It takes (V7,
V,,.... Vy,) by sample V;& 7 as the input and gen-
erates parameters (n,, m,, g,). We record all gener-
ated parameters as GVW .prms= (Vi, Vy, .o, Vn,»
My, My, qy).

(il) (pk,sk)—KeyGen(GVW prms): It outputs (A, Td)
«TrapGen(1™,1™,q,) and denotes as pk=A,
sk=Td.

(ili) U <« Sign(GVW .prms, u, sk): Input the data x to be
signed, GVW .prms, the secret key sk, and out the
signature U.

(iv) U* « SignEval(f, (i, V1, Uy), (4, Vo, Us), ...,
(ﬂNz’ Vy,» Uy, ), pk): Input (f, (41, Vi, Uy), (42, Vs
Uy). ... (un,. Vy,. Uy,) and output U*.

(V) Vy < Process(GVW .prms,f): Input (f,Vy,V,,
.-» Vi, ). And output V.

(vi) 0/1 « Verify(GVW prms, pk, U*, u*,f): I fix )
(U*)=V*, where y = (f,p1. 3, .... 1y, )> then out-
put 1. Otherwise output 0.

Lemma 5. Based on SIS problem, which is considered difficult,
the GVW-FHS scheme [7] satisfies existential unforgeability.
Furthermore, we can obtain that the GVW-FHS scheme is
strongly-unforgeable adapted from the identity-based FHS
scheme [8].

2.4. Definitions Related to FHSC. In this section, we will
describe the commonly known definitions for FHSC scheme,
as well as the completeness, IND-CPA security, and strong
unforgeability.

2.4.1. FHSC. A fully homomorphic signcryption scheme is a
tuple of algorithms consisting of (Setup,KeyGen,,
KeyGen,, Signcrypt, Unsigncrypt, Eval, Process, Verify)
as follows:

(i) prms < Setup(14,1%,15): Get the 1, maximum
homomorphic depth L, and a data-size bound S.
Then, output the public parameter prms and the
message space /.

(i) (pk,, sk,)<—KeyGen,(prms): Input the prms and
generate the sender’s key pair (pks, sk,).

(iii) (pk,,sk,)<—KeyGen,(prms): Input the prms and
generate the receiver’s key pair (pk,, sk,).

(iv) o « Signcrypt(prms, u, sk, pk,): Input public
parameter prms, a message y € ./, sender’s private
key sk, and receiver’s public key pk,, and output a
signcryption o.

(v) u < Unsigncrypt(prms, o, pks, sk,): Input public
parameter prms, the signcryption o, sender’s public
key pk, and receiver’s private key sk,, and output p
after verifing the integrity of ciphertext.

(vi) ox « Eval(prms, pk,, pk,,f,0,...,05): Input o;...,
o5, and output homomorphic signcryption o.

(vii) V; < Process(prms,f): Input public parameter
prms and function f. Homomorphically computes
a V, which is used for verification.

(viii) 0/1 « Verify(prms, pk,, 6*, f): Input the evaluated
signcrtption ¢, sender’s public key pk, and output
0/1.

2.4.2. Completeness. Given messages (pi1, fa, ..., jis) € M,
fluy, pas ooy pis) = p*, prms, (pks, sk;), and (pk,, sk,), we can
obtain the signcryption o; of each message y; and the homo-
morphic operation result o*. It satisfies the following prop-
erties with a nonnegligible probability:

1 = Verify(prms, pk,. o*. f) @)
u*=Unsigncrypt(prms, c*, sk,)

2.4.3. IND-CPA Security. We say that an FHSC scheme satis-
fies IND-CPA security if and only if a probabilistic polyno-
mial time (PPT) adversary & has a negligible advantage to
win the following game.

(1) The challenger & first obtain the prms and the key
pair (pk,, sk,) from the Setup and KeyGen,. Then,
€ sends the (pk,, sk, prms) to .

(2) o chooses two plaintexts p, p1, satisfing |po| = |u;]
and then run the KeyGen; to get the (pk,,sk,).
Finally, o gives the (ug, y1, pks, sk,) to 6.

(3) € chooses a random bit b < {0, 1} and sents the o,
to of where o, < Signerypt(prms, uy, sk, pk,).

(4) o outputs a bit ¥’ < {0,1}. If b’ = b, of wins.

The advertange of the adversary to win the game is:

AdvINP-CPA — | pr[b = b] - 1/2]. 3)



2.4.4. Strong Unforgeability. We say that an FHSC scheme
satisfies strong unforgeability under chosen message attack if
there is no PPT forger & can win the following game with a
nonnegligible advantage.

(1) The challenger € first generates the prms and the key
pair (pk,, pk,, sk,,sk,) from the Setup, KeyGen,,
and KeyGen,. Then, € sends the (pk,, pk,, prms)
to &.

(2) & chooses and sends plaintexts (u1, iy, ..., 4g) to 6.

(3) € obtains the o; from Signcrypt and sents the (o,
63, ...,05), where i € [§] to F.

(4) F chooses and sends a function f € F, as well as a
value ¢’ to €.

(5) F wins if all of the following hold:

f is admissible on the messages p1, s, ..., fis;
or # o', where of =f(01.0,,...,0%);
Verify(o’, Vy) accept, where V; = Process(prms, f).

An FHSC scheme is SU-CMA security if:

[Pr[ExptVei (17)] | <negl(4), (4)

Remark 6. Remark that we do not require either y/ =f(u,,
Has ooy fhs) Or 0Ot S0, if ff' = (p1, pa, ..., jis), then o’ is a valid
signcryption to break the strong unforgeability of FHSC
scheme, otherwise a valid signcryption to break the existent
unforgeability.

3. The Proposed FHSC Scheme

In this section, we will represent our FHSC construction,
homomorphic operation, noise analysis, and security.

3.1. Basic Construction. Our scheme will be defined by a
flexible parameter L=L(4)=poly(4) which the depth of
homomorphism. We choose parameters: n, m, q, fsrs, Prmaxs
Pinir depending on 1 and L. We do so by setting
Poax2220dAL and pge220leg g Then, we let n=
poly(4) and prime g =2/ > B¢ be integers as small as
possible to ensure that the SIS(n,m,q,fss) assumption
holds for all m=poly(1). In the end, we denote m*=
m*(n,q)20(nlog q), Psum = O(n+/log q) as the parameters
required by the algorithms TrapGen, as shown in Lemma 4,
and set m=max{m,nlogq+ w(logl)} =poly(4) while
Binit=Bsam = poly(4). Note that n,m,logq all depend on
poly(L,A).
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Our leveled FHSC scheme consists of polytime algorithms
(Setup, KeyGen,, K-eyGen,, Signcrypt, Unsigncrypt, Eval,
Process, Verify) with syntax:

(i) prms < Setup(1#, 1£, 15). Input the security param-
eter 4, homomorphic depth L, and a data-size bound
S. Then, run GSW.prms < PrmsGen(14,1%)
and  GVW.prms < PrmsGen(1*,15),  where
GSW prms=(n;,my,q,,y) and GVW.prms=
(71,7 50 V's.ny, My, q5). Remark that 7
consists of N? matrices, each of which has n rows
and m columns where m =max{m, m,} and n=
max{n;,n,}. Let I=[logq],N=(n+1)l,gq=
max{q;,q,}, domains A =7Z,, and 7" =Z;N*"N.
Define the distruibution Dy to sample % «
Sample(1™N,1™N g), as shown in Lemma 4, which
satisfies ||%|| ., < Pinir- Let % = (Uij € qux’”)LjE[N}.
Finally, output prmms= (7", 7 5, ..., ¥'s, n,m, q, ).
(ii) (pk,. sk,)<—KeyGen,(prms). Run (A td)«
GVW.KeyGen,(prms) and set pk,=A€Zp",
sk,=td € Zi.
(iii) (pk,,sk,)<—KeyGen,(prms). Run (B,s)«
GSW.KeyGen, (prms) and set pk, = B € Z"™"+1),
sk,=s, where s=(1, -t)€Z;*', B=(b,D)¢c

Z;’N"H) and sB=e.

(iv) (C, U)<Signcrypt(prms, u, sk, pk,).

(1) For a message y € M, run C «— GSW.Enc(u, pk,).
Remark that C= Flatten(Bitdecomp(RB) + uly),
where RE-{0, 1}V, Let

Coo Co1 Con-1
C C .  Cin

C— '10 .11 . 11.\1 1 (5)
Cn-10 Cn-10 Cn-1N-1

be a matrix whose entries consist of {0, 1}
(2) For VCj, run Uy, < GVW.Sign(prms, Cy, sk;).
Remark that Vi; = AU;; + C;;G. Let

Uno Un - Uon-1
U U Un-

9 — .10 11 H.\I 1 (6)
Un-10 Un-10 -+ Un-ina

and
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Voo Vo Von-1
V. V. Vin-
o ‘10 11 11‘\1 1
V-0 Vn-10 VN-1n-1
AUy + CopoG AUy + CpG AU, + Con-1G (7)
B AUy + GG AU, + GG AUin-1 + CinaiG
AUy_19 + Cno10G AUy + Cyo10G AUyn_in-1 + Cyoin-1G
=A% + CG,

where the matrixes A and G are seen as a number in the
multiplication operation, respectively.

(i) u < Uncryptsign(prms, C, %, pk, sk,). Input the
public parameter prms and signcryption(C, %). Run
algorithm 0/1 « Verify(C, %) first and then run

algorithm p < GSW.Dec(prms, C,sk,) if 1+«
Verify(C, %).
(ii) (C*,%*)«Eval(prms,f,C,,C,,...,Cs, ). Input

(prms, pk, pk,.f), as well as (C\, %), (Cy, %,), ...,
(Cs, Us), and output the homomorphic signcryp-
tion (C*, %*).

(iii) 7’y « Process(prms,f). Takes the admissible
function f and prms as inputs. Then, output 7y <
GVW.Process(prms, f).

(iv) 0/1 « Verify (7. pk,. C;. %;). Take the 7, sen-
der’s public key pk,, and the signcryption(Cf, Us)
as input. Then output 1 if 7p = A% + GG, other-
wise output 0.

(V) uf < GSW.Dec(prms, sk,, C;).  Input  public
parameter prms and secret key sk, and output the
new message under f if 1 « Verify(prms, pk,, C;,

Us.f).

3.2. Homomorphic Evalution and Noise Analysis. Here, we
describe the additive homomorphism and multiplicative
homomorphism. For

Coo Ca Con-1
C C ... Cin_

C=|° 10 ‘ 11 0 IN-1 i
Cn-10 Cn-10 Cn-1n-1
900 901 90N—1

C,= .C1o ?11 Cina and
6N—10 6N-10 aN—lN—l
UOO Uol RNy UOn

U, = F]w F]u {Jln i
Un-10 Un-10 UN-1n

Yoo Ua Uon
U= | Yo Un Yin | while
Un-10 Un-io Un-1n
Voo Vo Von-1
1% 1% Vin-
7, = 10 Vi IN-1 )
Voo Vv-o - Vivoinar
Voo Vo Vonoi
7, = YIO Yu YlN—l
Voo Vin-io Vnoin-t

Additive Homomorphism. We define that

7 e = (Vij + Vij) ije[N) - <A<U’j + Uij) + (Cij + Cij) G) ije[N)

(8)

For simplicity, 7 'sqq =A% aqqa + CaadG> where A and G
should be seen as a number while performing the multipli-
cation operation.

For

C, = Flatten(Bitdecomp(R,B) + uly),
C, = Flatten(Bitdecomp(R,B) + puly),

We can easily recover the 4,4y from the formula:

<Cpqq, Powerof 2(sk,)>= Rje; + Rye,
+(p1 + uy) Powers of 2(sk, ).
(10)
Next, we analyze the noise variations during the additive
homomorphic processes.

If the upper noise boundary of U; and U, is f3, then we
can easily obtain that the upper noise boundary of U, 44 is 2/3.
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If the upper noise boundary of R, e; and R,e, is @, then we Both A and G should be seen as a number while perform-
can easily obtain that the upper noise boundary of Cy4q is 2a.  ing the multiplication operation described above.
MultConst Homomorphism. We define that: Next, we do the analyzation to the corresponding noise
boundary in the process of multiplicative homomorphism.
Ceonmure = Flatten(aly)C From Equations (13) and (14), we have that:

%Multconst = Flatten (aI N ) U

Cuuis P £2(sk,)> =y, P £2(sk,) + s, Rye, + CoR
7 Multconst = Flatten(aly)A% + Flatten(aly)CG. <Civay, Powers of 2(sk;) > ”;]”_21 koero (ske) +iBoes + GRye,
Ui = Ui o Uy
) sl = | (O Us)
N-1

CuUy + UG L (Vy,
IEO( « Ukj e @))

i,je[N] .

From Equation (2), we can learn that: <

ijeN] || o

< Chaltconst» Powers of 2(sk,) > = ap Power of 2(sk,) N=1 /(| ~ .
+Flatten(aly)Re, = ,EO (HCikUijoc + HU”‘G I(ka)Hoc>‘
||CZlMultczonst.inoo :aHUZJHoo (16)

(12)

If Rye; and R,e, are bounded by a, then the upper noise
If Re, is bounded by a, then the upper noise boundary of ~ boundary of Cyyy is (N + 1)a.

Chultconst 18 (N + 1)a. If U, and U, are bounded by f, then the upper noise
If U is bounded by S, then the upper noise boundary of ~ boundary of %y is N(m+1)p.

U naltconst 18 apP- Faster Homomorphic Multiplication. Given fresh sign-
Multiplicative Homomorphism. We define that: cryptions  (Cy, %), ..., (Cs, %s), we can calculate that

the upper noise boundary of Cypps=CsCs_;...C;=

- N—la . (Cs(...(C5(C,C))...)) is (S=1)(N + 1)an.
Mult = =21 = kzo ik~ ) ] The upper noise boundary of %y s=%s® Us_; ®
! ..;@%1:(%5@)(...(%®(%2®%1))...)) is
N-1__ NS-1-1
Uniai = U> ® Uy = ( S Uy o Ukj) v N(m+1)p.
k=0 ijE€[N] (13)
N-1__ Proof 7. From Equation (16), we have that:
Vvt =707 = (kZ VG (ij)>
=0 ijelN
N-1 N-1 o lemurll = I#1Roes + CRi€ || = (N + 1)a,
=(A( X U4oU; ) + CuCu |G N=L /|~ ~
< (kgo * k’) <k§0 * k]> )i,je[N] [ < kéo( il + H UsG I(ka')‘ oo)
where, we define the operation o as follows: =N(m+1)p.
~ ~ ~ (17)
Ujo Uy =CyUy + U;GH(Vy). (14)
For simplicity, we take the first element of the above And we can get that:
three matrices to illustrate the correctness of the multiplica-
tive h hism:
fve homomorphism llemutts [l = [lenua (43 + Raes)||o
\700G_1(V00) + ..+ \7N—10G_1(V0N—1) :||||M36Mum|+ IET;QMHM”OO I (18)
=~ ~ = |IH#3eMultz |l oo 3€3€Mult2 |0
— -1
= (AUOO + COOG)G (Voo) + .- <2(N+ 1a.
+ (A Un-10 + CN—lOG) G (Von-1)
— A ( ( 600) Uno + UgoG™ (Vo) + .. ‘ Acct())rdnzlg to recfurs%on, we can obéaln t}f cC01gesp0nCduE;r
N R (15) noise boundary of signcryption Cypuys = CsCs-y--Cr =
+ (CON—I UN—]O + UON_IG_l(VN_10)> (CS((C3(C2C1)))) 18 (S - 1)(N+ l)a
R R Similarly, the upper noise boundary of %y, =
+(Coocoo+--~ +CN—10C0N—1)G (Us® (. (Us ® (U, ®Uy))...)) s NFIN(m+1)p. O
- A<UOO > Voo o+ Unro © UON_1> Faster Homomorphic Verification. Due to the homomor-
+ (aoocoo +o4 6N—10C0N—1>G~ phism of signcryption, we can verify the sum of all compo-

nents in % to achieve public verification.
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Verify (€, %) = Verify (Z Cip X Uij> i,j € [N] (19)
ij ij

Completeness. In addition to the noise boundary analyzed
above, we can also set appropriate parameters to ensure the
correctness of homomorphic evaluation, thus ensuring the
completeness of the proposed FHSC scheme. As shownin a
study by Gentry et al. [5], we can evaluate a depth-S circuit of
NANDs over a-bounded ciphertexts to obtain a ¢g/8-
bounded ciphertext if g/a>8(N + 1)5. The ciphertext can
be correctly publicly verified if the noise boundary
%N (m+1)B<p max- Therefore, the allowed evaluation
depth S for our scheme is the minimum of above.

3.3. Security Analysis

Theorem 8 (IND-CPA security). The proposed FHSC scheme
satisfies IND-CPA security, if the GSW-FHE scheme satisfies
IND-CPA security.

Proof 9. We assume that there is a adversary &/* can break
the IND-CPA security of FHSC scheme with a nonnegligible
advantage in the security game. Then, the adversary & can
break the IND-CPA security of the GSW-FHE scheme with a
nonnegligible advantage utilizing the ability of &/*. Actually,
the advantage for & to break the IND-CPA security of the
GSW-FHE scheme is negligible. Therefore, our FHSC
scheme satisfies IND-CPA security.

In the game, the challenger € runs GSW.Keygen and
generates a pair of key (B,s) as GSW-FHE key and sends
them to of. Then, & chooses a pair of sender’s key (A, td)
and sends (B, A, td) to o/*. Next, o/* chooses two messages
uo and p1y, where |ug| = |p1 |, and sends (ug, 1) to . Imme-
diately, &/ sends pg,p; to €. Subsequently, € randomly
selects b€ {0, 1}, generates C,, and sends C, to /. Then
o generates %, for C, and sends (Cy, %,,) to &/*. The adver-
sary &/* is supposed to return b’ from the signcryption (C,,
%,) and sends b’ to &f. Both of and &/* win if ¥’ = b. Under
our assumption, &/* can break the IND-CPA security of
FHSC scheme with a nonnegligible advantage. Furthermore,
g can break the security of GSW-FHE scheme. Attributed to
the security of the GSW-FHE scheme, the adversary &/ could
not output b’ = b with a nonnegligible advantage. Therefore,
we can get that our FHSC scheme satisfies IND-CPA
security. O

Theorem 10 (Strong unforgeability). If the forger F* can
break the strong unforgeability of FHSC scheme with a non-
negligible advantage, then the forger & can break the strong
unforgeability of GVW-FHS scheme utilizing the ability of
F

Proof 11. Assuming that the forger * can break the FHSC
scheme with a nonnegligible advantage in the security game
with a nonnegligible advantage. Then, & can break the
strong unforgeability of FHSC scheme with a nonnegligible
advantage utilizing the ability of *. Actually, the advantage
for # to break the strong unforgeability of GVW-FHS

scheme is negligible. Therefore, our FHSC scheme satisfies
IND-CPA security.

In the game, the challenger € could run GVW.Setup to
generate a pair of sender’s key (A, td) as GVW-FHS key and
sends A to F. Then, & chooses a pair of receiver’s key (B, s)
as GSW-FHE key and sends (A, B) to %*. Following that,
F* chooses plaintexts (u;, s, ..., 4s) and sends to F. Given
plaintexts, & generates corresponding ciphertexts (Ci, ...,
Cs) and sends them to & for signature queries. After signa-
ture queries, # could obtain (%, ..., %s) and sends (C,, %,)
yeues (Cs, Us) to F* as the result of signeryption queries for
F*. Under our assumption, &* can construct a valid sign-
cryption (C*, %*) with a nonnegligible advantage, where
U #f(U,, ..., Us) for C*=f(Cy,...,Cs). Furthermore, F
can construct a valid signature %* with a nonnegligible
advantage to break the strong unforgeability of GVW-FHS
scheme. Attributed to the security of the GVW scheme, we
can get that the forger cannot forge a new signature %* with
a nonnegligible advantage. Thereby, we can get that our
FHSC scheme satisfies strong unforgeability. O

4. Conclusion and Open Problems

In this paper, we propose a leveled FHSC scheme with public
verifiability and show its IND-CPA security and strong
unforgeability under the standard assumption. Although
we can utilize faster homomorphic verification to reduce
the number of verifications, our scheme is still not practical
enough. It’s interesting to construct more efficient schemes.
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