
Research Article
Bit-Sliced Implementation of SM4 and New
Performance Records

Xin Miao ,1 Lu Li ,1,2 Chun Guo ,1,3,4 Meiqin Wang ,1,2,4 and Weijia Wang 1,2,4

1School of Cyber Science and Technology, Shandong University, Qingdao 266237, Shandong, China
2Quan Cheng Laboratory, Jinan 250103, Shandong, China
3Shandong Research Institute of Industrial Technology, Jinan, Shandong 250102, China
4Key Laboratory of Cryptologic Technology and Information Security of Ministry of Education, Shandong University,
Qingdao 266237, Shandong, China

Correspondence should be addressed to Weijia Wang; wjwang@sdu.edu.cn

Received 31 May 2023; Revised 2 August 2023; Accepted 25 August 2023; Published 27 October 2023

Academic Editor: Tom Chen

Copyright © 2023 Xin Miao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

SM4 is a popular block cipher issued by the Office of State Commercial Cryptography Administration (OSCCA) of China. In this
paper, we use the bit-slicing technique that has been shown as a powerful strategy to achieve very fast software implementations of
SM4. We investigate optimizations on two frontiers. First, we present a more efficient bit-sliced representation for SM4, which
enables running 64 blocks in parallel with 256-bit registers. Second, we describe an optimized algorithm for data form transforma-
tions, also allowing efficient implementations of SM4 under Counter (CTR) mode and Galois/Counter mode. The above optimiza-
tions contribute to a significant performance gain on one core compared with the state-of-the-art results. This work is an extension
of the conference paper at Inscrypt 2022, awarded the best paper award.

1. Introduction

SM4 block cipher is a symmetric-key cryptographic algorithm
issued by the Office of State Commercial Cryptography
Administration (OSCCA) of China and was identified as the
national cryptographic industry-standard inMarch 2012 [1, 2].
It was incorporated into the ISO/IEC 18033-3 international
standard in June 2021 [3]. SM4 is a block cipher with a 128-
bit block size and a 128-bit key size, and it consists of 32 rounds.
Each round uses all four state words and one subkey word as
inputs, replacing a single state word. The length of one state/
subkey word is 32-bit.

As the only OSCCA-approved symmetric encryption
algorithm for use in China, SM4 has been applied to many
industries. Its primary uses include network security for
encrypting data packets and securing communication proto-
cols. It also plays a vital role in electronic payment systems,
ensuring the security and confidentiality of financial transac-
tions. In image processing, SM4 ensures the privacy of visual
data through encryption, digital watermarking, and secure image
sharing. Moreover, SM4’s integration into 5G communication

systems enhances security in data transformation, network func-
tion virtualization (NFV), and edge computing.

An appropriate implementation is a very important
requirement for cryptographic algorithms. In this paper,
we focus on investigating the fast implementation of SM4
on high-end platforms. The natural thought is to use the
instruction set extension. A typical example is the advanced
encryption standard new instructions (AES-NI) [4], which
has been integrated into many processors and has signifi-
cantly improved the speed and security of applications
with AES. However, few processors integrate instructions
specially for SM4, which largely restricts the speed of appli-
cations collocating with it. Based our previous results in
paper by Miao et al. [5], we naturally raise further optimiza-
tions to speed up SM4 block cipher.

1.1. Contributions. In this paper, we describe an improved bit-
sliced implementation of SM4 based on an enhanced single
instruction multiple data (SIMD) instruction set advanced vec-
tor extensions 2 (AVX2), which is an expansion of the AVX
instruction set introduced in Intel’s Haswell microarchitecture

Hindawi
IET Information Security
Volume 2023, Article ID 1821499, 10 pages
https://doi.org/10.1049/2023/1821499

https://orcid.org/0009-0002-8098-4013
https://orcid.org/0000-0003-2432-482X
https://orcid.org/0000-0002-8520-6301
https://orcid.org/0000-0003-1580-6544
https://orcid.org/0000-0001-6982-2537
mailto:wjwang@sdu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2023/1821499


[6, 7] (a.k.a., Haswell new instructions). Our improved imple-
mentation of SM4 runs at a speed of≈2.40 cycles per byte (cpb)
and ≈15.26Gbits per second (Gbps) on one core with disabled
hyper-threading and enabled turbo boost. Even if we take data
form transformations into consideration, the bit-sliced imple-
mentation of SM4 can reach at the speed of ≈7.63Gbps for
throughput and≈3.09 cpb for timing. To the best of our knowl-
edge, they are both new speed records and outperform state-of-
the-art software implementations, and also they operates in
constant time. Indeed, the bit-sliced SM4 can be further
improved using AVX-512 with ultrawide 512-bit vector opera-
tions capabilities to back up higher performance computing in
theory. We still choose to consider AVX2 now since it is much
more widely deployed (than AVX-512). To get a remarkable
performance gain, we investigate optimizations on the follow-
ing frontiers.

(i) First of all, we propose a new bit-sliced representation
(that is the way to pack internal states of multiple
blocks within the YMM registers) allowing to process
64-SM4 blocks efficiently with 256-bit registers.

(ii) Besides, according to the above bit-sliced representa-
tion, we describe an optimized algorithm for data
form transformations and try to carry out transform-
ing work at minimal cost.

Finally, we also provide an optimized algorithm for the
data form transformation, and then give complete imple-
mentations of SM4 under Counter (CTR) mode and
Galois/Counter mode (GCM). This work is an extension of
the conference paper by Miao et al. [5] (awarded the best
paper award). We specifically highlight below the novel
aspects and extensions incorporated into this manuscript:

(1) We present an improved bit-sliced representation of
the SM4 algorithm, which facilitates the optimization
of data form transformations. The optimized data form
transformation is a general algorithm capable of effi-
ciently transforming any 128-bit data block and its
inverse with low-performance overhead. In previous
work by Miao et al. [5], to achieve favorable perfor-
mance outcomes, distinct methods were employed for
forward and backward transformations. Our optimized
data form transformation unifies the approach for both
forward and backward transformations, thereby obvi-
ating the need to differentiate between them. As a con-
sequence, the process of converting data between the

block-wise form and the bit-slicing-compatible form is
significantly simplified.

(2) We significantly reduce the overhead of the data
form transformation, mainly by adopting the method
given in https://github.com/kste/skinny_avx for the
bit-sliced implementation of SKINNY block cipher.

(3) We provide new performance records for SM4-CTR,
SM4-CTR+, SM4-GCM, and SM4-GCM+. The effi-
ciency of SM4-CTR and SM4-GCM has shown a sub-
stantial improvement of over 60% and 46%, respectively,
compared to the results presented in the conference
paper. This notable enhancement strongly indicates
the performance advantage of the optimized data form
transformation. These findings carry important implica-
tions and underscore the significance of the optimized
data form transformation for achieving superior effi-
ciency in the bit-sliced implementations.

(4) We compare performances of the bit-sliced imple-
mentations, among other block ciphers.

1.2. Related Works. The fast software implementations of
SM4 have been investigated for several years, due to the
wide applications such as networking software and operating
system modules. Wang et al. [8] proposed an efficient SIMD-
oriented optimization for S-box of SM4, and their fast soft-
ware implementation reached 6.52Gbps with AVX512 and
single thread on an Intel 2.30GHz processor. Zhang et al. [9]
presented a fast software implementation of SM4 by exploiting
bit-slicing technique with AVX2, where 256 blocks are pro-
cessed in parallel. Their bit-sliced SM4 code ran at the through-
put of 2,580Mbps on an Intel 2.80GHz processor. Lang et al.
[10] presented an enhanced software implementation of SM4
with the performance of 1,795Mbps and 2,437Mbps on differ-
ent Intel processors, respectively. Zhang et al. [11] proposed a
bit-sliced software implementation of SM4 and detailed how to
implement efficient transformation from original storage form
to bit-sliced storage form on a 64-bit machine and carry out
parallel encryption of multiple blocks. A brief comparison
between our bit-sliced implementation and state-of-the-art
works on Intel platforms is shown in Table 1 where we have
also marked our cost of transformations, and more details will
be given in Section 5. Last but not least, compared with the
known bit-sliced implementations [8, 9, 11], ours (in addition
to the significantly faster speed) is the first design to run n
blocks in parallel by using 4n-bit registers.

TABLE 1: Comparison results of software implementations on Intel platforms.

Platform Throughput (Gbps) Method

Intel Xeon E5-2620 @2.40GHz [11] 0:054 Bit-slicing
Intel Core i7-5500U @2.40GHz [10] 1:75 Look-up table
Intel Core i7-6700 @3.40GHz [10] 2:38 Look-up table
Intel Core i7-7700HQ @2.80GHz [9] 2:52 Bit-slicing
Intel ore i7-11800H @2.30GHz [8] 6:52 Bit-slicing
Ours (Intel Core i7-8700 @3.20GHz) 7:63 Bit-slicing

2 IET Information Security

https://github.com/kste/skinny_avx
https://github.com/kste/skinny_avx


1.3. Pros and Cons. In this section, we will discuss the pros
and cons of our improved bit-sliced implementation of SM4.
The primary strength lies in its remarkable ability to effi-
ciently process multiple (e.g., 64) SM4 blocks in parallel,
making it a highly suitable choice for applications requiring
the encryption of substantial data volumes using SM4.
Conversely, the bit-sliced approach exhibits certain con-
straints when applied to short message encryption due to its
inherent nature. Encryption tasks involving smaller data sizes
may not be as effectively addressed by this method. However,
the true potential of its parallel processing benefits shines
through in scenarios where larger data sets necessitate encryp-
tion. Nevertheless, we believe that, in the case of encrypting a
relatively large amount of bits, a fast implementation of
encryption is usually significant for the performance of the
application as well. Therefore, the improved bit-sliced SM4 is
an excellent choice for applications, such as 5G, image shar-
ing, and wireless networks, which require encrypting substan-
tial amounts of data.

1.4. Organizations. Below we first present backgrounds in
Section 2. We then present our strategy of bit-slicing SM4
in Section 3. In Section 4, we introduce the optimized data
form transformation and describe the implementations of
modes. The results and comparisons are shown in Section 5.
Finally, Section 6 concludes the whole paper.

2. Backgrounds

2.1. Notations. In the following, we agree on the conventions
used throughout the rest of this paper, mainly focussing on
the block cipher encryption and its modes of operation. All
operations of SM4 are defined over 8-bit, 32-bit, or 128-bit
quantities so that 8-bit values can simply be called bytes,
32-bit values words and 128-bit values blocks. The symbol
⊕ denotes the bitwise exclusive-or operation and ⋘ means
a left circular rotation by bits in a 32-bit word vector which is
different from its specific definitions in Section 3. The block
cipher encryption with the key k is denoted as Enck. The multi-
plication of two elements X;Y 2GF 2128ð Þ is denoted as X ⋅ Y ,
and the field multiplication operation is defined in Section 2.4.
The expression 0; 1f gm denotes the bits string with length m
and 0128 represents a string of 128 zero bits. The concatenation
of two bit strings A and B is represented as A ∥ B.

2.2. The SM4 Block Cipher. SM4 is a block cipher algorithm
whose block size and key length are both 128 bits. It adopts
an unbalanced Feistel structure and iterates its round func-
tion 32 times during the encryption phase, where Xi 2Z32

2 ;
i¼ 0; 1;…; 35 represents a bit string of length 32 bits, respec-
tively. Finally, SM4 applies the reverse transformation to
produce the corresponding output ciphertext. The 32 round
keys are generated in turn by the key expansion algorithm
with the original 128-bit key. The decryption phase has a
similar structure except that the order of round keys needs
to be reversed [2].

2.2.1. Round Function. Suppose the input to the round func-
tion is X0;ð X1;X2;X3Þ 2 Z32

2ð Þ4, and the round key is rk2
Z32
2 , then the round function F can be expressed as follows:

F X0;X1;X2;X3ð Þ ¼ X1;X2;X3;X0 ⊕T X1 ⊕X2 ⊕X3 ⊕ rkð Þð Þ:
ð1Þ

2.2.2. Mixed Substitution T. Z32
2 À! Z32

2 is an invertible trans-
formation, composed of a nonlinear transformation τ and a
linear transformation L. That is, T ⋅ð Þ¼ L τ ⋅ð Þð Þ.
2.2.3. Nonlinear Transformation τ. τ is composed of 4 S-boxes
in parallel. Suppose A¼ a0;ð a1; a2; a3Þ 2 Z8

2ð Þ4 is the input
to τ and B¼ b0;ð b1; b2; b3Þ 2 Z8

2ð Þ4 is the corresponding
output, then

B ¼ b0; b1; b2; b3ð Þ ¼ τ Að Þ
¼ S-box a0ð Þ; S-box a1ð Þ; S-box a2ð Þ; S-box a3ð Þð Þ: ð2Þ

2.2.4. Linear Transformation L. The 32-bit output from the
nonlinear transformation τ is the input to the linear trans-
formation L. Suppose the input to L is B2Z32

2 , and the
corresponding output is C 2Z32

2 , then

C ¼ L Bð Þ ¼ B⊕ B⋘ 2ð Þ⊕ B⋘ 10ð Þ⊕ B⋘ 18ð Þ⊕ B⋘ 24ð Þ:
ð3Þ

2.3. The CTR Mode. The CTR mode is a confidentiality mode
of operation that features the application of the forward
cipher to a set of input blocks, called counter blocks, to
produce a sequence of output blocks that are exclusive OR
(XOR) with the plaintext to produce the ciphertext, and vice
versa [12]. The “nonce” portion and the “counter” portion
should be concatenated together to constitute counter blocks
(e.g., storing the nonce in the upper 96 bits and the counter
in the lower 32 bits of a 128-bit counter block). The sequence
of counter block values must be different from every other
one of them. This condition is not restricted to a single
message, but all of the counter blocks should be distinct.
Given a range of counter blocks T0;T1;…;Tn−1 and plaintext
P0; P1;…; Pn−1, CTR encryption leaving out padding can be
defined as follows:

(1) Forward cipher Oj ¼Enck Tj

� �
, for j¼ 0; 1;…; n− 1.

(2) Ciphertext Cj ¼ Pj ⊕ Oj, for j¼ 0; 1;…; n− 1.

In CTR encryption, the forward cipher functions can be
performed in parallel. Moreover, the forward cipher func-
tions can be applied to the counter block values prior to the
availability of the plaintext data.

2.4. The GCM. GCM is one of the most widely used authen-
ticated encryption schemes designed by McGrew and Viega
[13]. It is constructed from a block cipher with a block size of
128 bits, such as the AES algorithm. It combines the CTR
mode with a block cipher-based Wegman–Carter message
authentication code (MAC) in an encrypt-then-MAC man-
ner. The MAC employs a universal hash function defined
over a binary Galois field [14]. However, GCM does not

IET Information Security 3



follow generic composition, and the establishment of its
provable security is the outcome of an intricate line of works
[13, 15, 16].

We focus on the (authenticated) encryption function of
GCM. In addition, we mainly focus on the GCM variant
with (fixed length) 96-bit nonces. It is mandated (e.g., RFC
4106 or IPsec [17], RFC 5647 or SSH [18], and RFC 5288 or
SSL [18]) or recommended (e.g., RFC 5084 [19] and 5116 [20])
in many standards to use fixed-length nonces with 96 bits. In
this respect, the encryption function GCM :Enc k N;ð MÞ takes
a nonce N 2 0;f 1g 96 and a message M 2 0;f 1g ∗ as
the inputs. It first encrypts M to C with CTR mode
GCTRk N;ð MÞ, where the initial counter block value is the
concatenation of N and the integer 2. Then, it invokes hash
function GHASHH Cð Þ to have the digest of C, where H : ¼
EncEk 0128ð Þ is the secret hash key generated by encrypting the
zero block.

Write C as multiple 128-bit blocks C¼ C1;ð C2;…;CnÞ.
Then,

GHASHH Cð Þ ¼ ∑
n

j¼1
CjHn−jþ1

¼ C1 ⋅ Hn ⊕ C2 ⋅ Hn−1 ⊕…⊕ Cn ⋅ H;

ð4Þ

where ⋅ stands for multiplications over the field GF 2128ð Þ
constructed by the irreducible polynomial P¼ x128 þ x7 þ
x2 þ xþ 1 [21]. Also in [21], appropriate methods are pro-
vided for us to directly invoke and calculate GHASHH
of GCM.

Alternatively, GHASHH Cð Þ can be computed by repeating

Yi ¼ Ci ⊕ Yi−1ð Þ ⋅ H½ � mod P P ¼ x128 þ x7 þ x2 þ x þ 1ð Þ;
ð5Þ

for i¼ 1;…; n, where Yi; i¼ 1;…; n are outputs of the func-
tion GHASHH , and modular is taken over the aforemen-
tioned field GF 2128ð Þ. Eventually, the authentication tag T
with the length of t bits is derived by truncating Enck N ∥ 1ð Þ
⊕GHASHH Cð Þ to t bits.

2.5. A Nomenclature for AVX2 and More. Haswell is Intel’s
microarchitecture based on the 22-nm process for mobile, desk-
tops, and servers. It introduced a number of new instructions,
such as AVX2, BMI1, BMI2, and MOVBE. AVX2 (Advanced
Vector Extensions 2), also known as Haswell new instructions, is
an expansion of the AVX instruction set. Its prominent features
include the introduction of 256-bit wide YMM registers, enabling
SIMD operations on 256-bit data elements. This enhancement
allows for parallel processing of multiple data elements within a
single instruction, leading to improved computational performance.
AVX2 primarily focuses on integer vectorization, offering a
set of SIMD instructions for integer arithmetic, bitwise
operations, shuffles, and blends. Furthermore, AVX2 finds
extensive application in diverse fields, including image
processing, encryption/decryption, signal processing, among
others, where highly parallel data processing is essential.

AVX-512bit are 512-bit extensions to the 256-bit AVX SIMD
instructions for x86 instruction set architecture (ISA) proposed
by Intel in July 2013. This wider vectorization capability further
boosts data parallelism, allowing simultaneous processing of
even more data elements in a single instruction.

YMM registers are 256-bit wide vector registers intro-
duced with AVX2, enabling simultaneous processing of mul-
tiple data elements within a single instruction. On the other
hand, ZMM registers are introduced with AVX-512. With
double the width of YMM registers, ZMM registers further
extend the data parallelism capabilities. Both YMM registers
and ZMM registers are essential components of the SIMD
architecture, facilitating efficient vectorized processing and
significantly accelerating computations involving large data-
sets. We still choose to consider AVX2 in this work since it is
much more widely deployed than AVX-512.

3. Bit-Slicing SM4

The concept of bit-sliced implementation is to convert the
algorithm into a series of logical bit operations (e.g., XOR
and AND gates) and process multiple encryption blocks in
parallel. In order to enhance the software performance of
SM4 when implemented in a bit-sliced style on 256-bit plat-
forms, we consider a modified bit-sliced representation for
SM4 on the basis of bit-sliced scheme in paper by Miao et al.
[5], and then describe changes in the applications to multiple
bit-sliced blocks.

3.1. A Modified Bit-Sliced Representation of SM4. By Miao
et al. [5], the bit-sliced representation of SM4 is introduced,
based on the unbalanced Feistel structure of SM4 and consid-
ering both general-purpose registers and memory accesses.
The construction of bit-sliced representation involves sepa-
rating the bits of the same row and packing the bits of the
same column. Moreover, multiple blocks are arranged at reg-
ular intervals rather than directly in tandem, as depicted in
Figure 1. The bit-sliced representation is extended to encom-
pass 64 blocks, with the data organized in 256-bit registers, as
illustrated in Figure 2. The 256-bit registers are denoted as
slice n (n¼ 0; 1;…), and b0; b1;…; b63 represent the 64
blocks, where bj

i denotes the i-th bit of the j-th block.
Our modified bit-sliced representation of SM4 here con-

tinues the line of design in paper by Miao et al. [5]. In order
to facilitate the optimized data form transformation algo-
rithm described later in Section 4, we would like to group
all 64 blocks into even eight parts, where we term every part
as “bundle” (32-bit) and each bundle is comprised of eight
blocks, more specifics as illustrated in Figure 3.

Slice 0 (256-bit) stores the least significant bit of column
0 from all 64 input blocks, and it will get loaded into one
register when necessary. Labels of the different blocks in the
bit-sliced representation or this kind of grouping are related
to the arrangement of those initial blocks, but there would be
no effect on the encryption process.

We are able to use this representation because most
AVX2 instructions are strict with the operations crossing
lanes freely but can manipulate quadword (64-bit) or double-
word (32-bit) values as individual processing units. The

4 IET Information Security



Slice 0

Slice 1

Slice 7

b0
0

b1
0

b7
0

b1
1

b7
1

b0
1 b0

63 b8
0

b9
0

b8
1

b9
1

b8
63

b9
63b1

63

b7
63

b0
16

b0
17

b0
23 b1

23

b1
16

b1
17

b0
24

b0
25

b0
31 b1

31

b1
24

b1
25

b63
16

b63
17

b63
23 b63

31b63
15

b63
24

b63
25

b0
15 b1

15

FIGURE 2: The bit-sliced representation of 64 SM4 blocks in 256-bit registers.

0 32 64 96

104

112

120

72

80

88

40

48

56

8

16

24

0 32 64 96

0 32 64 96

0 32 64 96

104

112

120

72

80

88

40

48

56

8

1048 40 72104728 40

16 112804816

11280481624

88 1205624

120885624

 + 

FIGURE 1: The bit-sliced representation of two SM4 blocks.

Bundle 0

Row 0

b0
0 b2

0 b4
0 b0

8 b2
8 b4

8 b0
16 b2

16 b4
16 b0

24 b2
24 b4

24

Row 1 Row 2 Row 3

Column 0

Bundle 0

Bundle 1 Bundle 2 Bundle 3 Bundle 4 Bundle 5 Bundle 6 Bundle 7

255 0

Row 0 Row 1 Row 2 Row 3

Column 0

Bundle 1

Slice 0

Row 0 Row 1 Row 2 Row 3

Column 0

Bundle 6

Row 0 Row 1 Row 2 Row 3

Column 0

Bundle 7

b0
14

b0
16

b0
33

b0
49 b0

51 b0
53 b0

63 b8
49 b8

51 b8
53 b8

63

b0
35 b0

37 b0
47 b8

33 b8
35 b8

37 b8
47

b0
18 b0

20 b0
30 b8

16 b8
18 b8

20 b8
30

b8
14 b14

16

b16
16 b18

16

b33
16

b49
16 b51

16 b53
16 b63

16 b49
24 b51

24 b53
24 b63

24

b35
16 b37

16 b47
16 b33

24 b35
24 b37

24 b47
24

b20
16 b30

16 b16
24 b18

24 b20
24 b30

24

b14
24

FIGURE 3: The bit-sliced representation of 64 SM4 blocks for 256-bit platforms, where we take the 256-bit slice 0 to process 64 blocks b0; b1;…;
b63 in parallel for example and b j

i refers to the i-th bit of the j-th block.

IET Information Security 5



arrangement of one bundle is similar to the barrel shifter design
[22] enabling efficient circular rotations with SHUFFLE
instruction instead of SHIFT instruction.

3.2. The Applications to Multiple SM4 Blocks. Then, accord-
ing to the above modified bit-sliced representation, we
explain the application of the round function with the pre-
computed (and stored in the memory) round keys. The
round encryption function F comprises XOR operations
and mixed substitution T made up of a nonlinear layer τ
(4 S-boxes in parallel) and a linear transformation L. Never-
theless, only the linear transformation L in a bit-sliced style
after S-box is different from any of previous left circular
rotations. Calculations of the other operations could totally
follow the directions and details in paper by Miao et al. [5],
and the implementation of S-box is no exception. On the
256-bit platform which can process 64 blocks or eight bun-
dles in parallel, the operations of L are described in Figure 4.

4. Implementations of SM4-CTR, SM4-
GCM, and More

The bit-slicing technique can benefit modes that support the
parallel implementation of block ciphers such as CTR mode
and GCM, moreover, this bit-sliced implementation needs a
nonstandard data form. Hence, additional transformations
of the data between the block-wise form and the bit-slicing-
compatible form are required and considered to be expensive
[23], which we call the optimized data form transformation
in the rest of this paper, to distinguish it from the data form
transformation in paper [5]. We term the block-wise data
into the bit-sliced representations as forward transformation
and its inverse as backward transformation. In addition, con-
sidering that the overheads of even optimized data form trans-
formations are nonnegligible, we have been in use the variants
of CTR and GCM that do not require the backward transfor-
mation, named CTR+ mode and CTR+ mode, respectively.

Considering the significant performance overhead of the
data form transformation, we have opted to use the shortcut
data form transformation for the forward transformation in
[5]. However, the shortcut data form transformation is not a
general algorithm to transform the data between the block-
wise form and the bit-slicing-compatible form. It utilizes the
pattern of the fixed nonce and incremented counters in the
forward transformation, for example, the common setting

under CTR mode is that the 96-bit “nonce” portions of
128-bit counter block values are fixed and the 32-bit “counter”
portions are incremented (block-by-block) from 0 to 1. How-
ever, the input of the backward transformation does not have
the pattern that the shortcut data form transformation
required. Therefore, the backward transformation adopted
the data form transformation by Miao et al. [5]. It is one of
the main motivations that we propose the optimized data
form transformation to unify the data transformation
approach used in both forward and backward transforma-
tions. Moreover, the optimized data form transformation
has the advantage of low-performance overhead.

4.1. The Optimized Data Form Transformation Algorithm. In
this respect, we learn from the data form transformation
algorithm for SKINNY [24] to present the optimized data
form transformation algorithm for SM4. Before introducing
the optimized data form transformation algorithm, we first
present the initial data form of block-wise (with 128-bit
blocks) data consisting of 4× 4 bytes in total and how they
are stored on 256-bit platforms as shown in Figure 5. For any
128-bit block, array of bytes can be represented as S [0]∥ S
[1]∥ S[2]∥…∥ S [13] and they are loaded column-wise rather
than in the row-wise. Then, each 256-bit register are large
enough to cover two contiguous 128-bit blocks. Also, based
on this arrangement, the first half of a 256-bit register is
occupied by the first 128-bit block, and the second half is
occupied by the second consecutive 128-bit block. As a
result, for all 64 blocks b0; b1;…; b63, blocks whose labels
are even numbers (b0; b2;…; b60; b62) will be put into the
former four 32-bit bundles, and the latter four 32-bit
bundles are naturally used to hold odd numbers (b1; b3;…;
b61; b63).

Specifically, the optimized data form transformations
include the forward transformation and the backward trans-
formation. Taking the forward transformation algorithm
that transforms any block-wise (with 128-bit blocks) data
into the bit-sliced representations as detailed in Section 3
for example, we give a concrete description about this trans-
formation. The entire transformation process is achieved
mainly by the SWAPMOVE routine which is defined below
and responsible for swapping the bits masked by M in B with
the bits masked by M≪ Num in A. According to the defini-
tion in the Listing, the early bit permutations can be simply
implemented by means of bit swaps between the bytes, where
we can constantly readjust the values of mask (“M” in the
Listing) to locate different bits and use SHIFT instruction
(“≪”) for efficient circular rotations. When setting the values
of mask different from each individual doubleword value in
order to realize the bit swaps between the bundles, we change
to use SHUFFLE instruction to cross individual lanes (32-bit
or 64-bit) and compute rotations.

Listing 1.1. C code for the SWAPMOVE routine.
Temp=(B ^ (A << Num)) & M;

B=B ^ Temp;

A=A ^ (Temp >> Num);

R’7 = R7 ⊕ R5 ⊕ (R5 ⋘ 8) ⊕ (R5 ⋘ 16) ⊕ (R7 ⋘ 24)
R’6 = R6 ⊕ R4 ⊕ (R4 ⋘ 8) ⊕ (R4 ⋘ 16) ⊕ (R6 ⋘ 24)
R’5 = R5 ⊕ R3 ⊕ (R3 ⋘ 8) ⊕ (R3 ⋘ 16) ⊕ (R5 ⋘ 24)
R’4 = R4 ⊕ R2 ⊕ (R2 ⋘ 8) ⊕ (R2 ⋘ 16) ⊕ (R4 ⋘ 24)
R’3 = R3 ⊕ R1 ⊕ (R1 ⋘ 8) ⊕ (R1 ⋘ 16) ⊕ (R3 ⋘ 24)

R’1 = R1 ⊕ (R7 ⋘ 8) ⊕ (R7 ⋘ 16) ⊕ (R7 ⋘ 24) ⊕ (R1 ⋘ 24)
R’0 = R0 ⊕ (R6 ⋘ 8) ⊕ (R6 ⋘ 16) ⊕ (R6 ⋘ 24) ⊕ (R0 ⋘ 24)

R’2 = R2 ⊕ R0 ⊕ (R0 ⋘ 8) ⊕ (R0 ⋘ 16) ⊕ (R2 ⋘ 24)

FIGURE 4: The calculation of L for 64 SM4 blocks, where Ri ⋘ j
refers to a circular rotation of j bits to the left within a 32-bit bundle
instead of within a 256-bit slice, updated to Ri

0, and i represents the
i-th bit of each byte.

6 IET Information Security



Noting that, the backward transformation is important as
well. For example, in CTR mode, the bit-sliced representa-
tions that have been encrypted should transform back into
the initial data form of 128-bit blocks and then perform XOR
operations with the plaintext to generate the final ciphertext.
Therefore, the optimized data form transformation algo-
rithm need to be called twice. Obviously the backward trans-
formation is the reverse of the forward one. That is to say, in
fact, the only difference between the two directions of transfor-
mation is just to reverse the order of multiple SWAPMOVE
routines (different from the values of mask).

4.2. Bit-slicing-Friendly Variants of CTR Mode and GCM. As
for the parellel modes of operation, the 128-bit counter block
values are first transformed (by the forward transformation)
to fully comply with the bit-sliced encryption and then trans-
formed back (by the backward transformation). GCM with
the bit-sliced encryption is similar. With a view to the opti-
mized data form transformation can not be omitted in com-
putation cost, we propose a variant of CTR mode that flushes

out the data form transformation at the outputs of parallel
block ciphers, namely the backward transformation. The
outputs of the parallel block ciphers, whether the bit-sliced
representation or the block-wise representation, are uni-
formly distributed. Therefore, the security of the variant
should be the same as the original CTR mode. We adopt
the same strategy to GCM, resulting in a variant called
GCM+, for which we elaborate more formal details and its
security proof in the appendix from paper by Miao et al. [5].
In the case of the implementation of GHASH step in GCM,
namely the polynomial operations of GCM, we mainly refer
to the code samples given by Gueron and Kounavis [21]
which have already detailed the computation of Galois Hash.

5. Implementation Results and Comparisons

When considering an architecture for implementing bit-
sliced SM4, Intel architecture emerges as a favorable choice.
Intel’s optimized instruction sets, particularly AVX2 and
AVX-512, are specifically tailored for SIMD operations,

TABLE 2: Our results of different modes for software implementations.

Mode Timing (cpb) Data form transformation

This work

SM4 3:09 Forward trans.: optimized DFT

Backward trans.: optimized DFT

SM4 þ 2:40 Forward trans.: optimized DFT

Backward trans.: none
SM4-CTR 3:24 Forward trans.: optimized DFT

Backward trans.: optimized DFT

SM4-CTR þ 2:90 Forward trans.: optimized DFT

Backward trans.: none
SM4-GCM 5:54 Forward trans.: optimized DFT

Backward trans.: optimized DFT

SM4-GCM þ 5:22 Forward trans.: optimized DFT

Backward trans.: none

[5]

SM4-CTR 8:14 Forward trans.: shortcut DFT

Backward trans.: DFT
SM4-CTR þ 2:70 Forward trans.: shortcut DFT

Backward trans.: none
SM4-GCM 10:35 Forward trans.: shortcut DFT

Backward trans.: DFT
SM4-GCM þ 5:10 Forward trans.: shortcut DFT

Backward trans.: none

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]1]

S[12]

S[13]

S[14]

S[15]

S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9] S[10] S[11] S[12] S[13] S[14] S[15] S[0] S[1] S[2] S[3] S[4] S[5] S[6] S[7] S[8] S[9] S[10] S[11]1]S[12] S[13] S[14] S[15]

0255

S[0]

S[1]

S[2]

S[3]

S[4]

S[5]

S[6]

S[7]

S[8]

S[9]

S[10]

S[11]

S[12]

S[13]

S[14]

S[15]

Register

Block 0 Block 1

Block 0 Block 1

FIGURE 5: The initial 128-bit blocks and the storage behavior.

IET Information Security 7



making them highly suitable for the parallel-intensive nature
of SM4 bit-slicing. This architectural alignment, coupled
with Intel’s widespread market support and mature develop-
ment toolchain, facilitates efficient code optimization and
maintainability. Consequently, opting for Intel architecture
for bit-sliced SM4 implementations is a well-grounded deci-
sion, promising enhanced performance, and broad applicabil-
ity. Given the broader deployment of AVX2 compared to
AVX-512, we have decided to prioritize AVX2 for our con-
sideration in implementing bit-sliced SM4. In this section, we
will present the results of our improved bit-sliced SM4 imple-
mentation and compare them with some reference results.

5.1. The Software Performances of SM4. Evaluations are con-
ducted separately for different modes as shown in Table 2.
The criterion of these performances is clock cpb, i.e., the
number of cycles required per byte of ciphertext, as this is
the common metric used in the literature for software imple-
mentations [25]. Our bit-sliced SM4 enabled running in con-
stant time and processing 64 blocks (1 KB) in parallel reaches
2.40 cpb for timing without considering any data form trans-
formations. Additionally, our software performances are
obtained when we disable the hyper-threading but enable
the turbo boost. Moreover, DFT and shortcut DFT is an
abbreviation for the data form transformation and the short-
cut data form transformation, respectively. They are the two
algorithms adopted by Miao et al. [5] to transform the data
between the block-wise form and bit-sliced-compatible form.
Optimized DFT represents the optimized data form trans-
formation proposed in this work.

We can see that the performances of SM4+, SM4-CTR+,
and SM4-GCM+ without full data form transformations are
significantly faster than those of SM4, SM4-CTR, and SM4-
GCM with both forward and backward transformation in
this work. Moreover, according to the conclusions by Beierle
et al. [26], the input counter block values have the pattern of
the fixed nonce and incremented counters, which can be
known in advance and provided in correct bit-sliced repre-
sentations to save the costs for data form transformation. As
a consequence, the performances of CTR and GCM could be
better in practice.

Upon comparing the performance of this work by Miao
et al. [5], the efficiency of SM4-CTR and SM4-GCM has
significantly improved by more than 60% and 46%, respec-
tively. Moreover, the performance of SM4-CTR+ and SM4-
GCM+ in this work is comparable to that by Miao et al. [5].
In pursuit of achieving better efficiency, Miao et al. [5]
employed a custom data transformation method, i.e., the
shortcut data form transformation, leveraging the specific
pattern of input data in the forward transformation. In con-
trast, the optimized data transformation proposed in this
work is a more general approach, which can be applied to
any block-wise data (with 128-bit block) into the bit-sliced
representation without requiring it to have a specific format.
Therefore, considering both the performance and generali-
zation of the optimized data transformation algorithm, this
work is interesting. This advancement not only enhances the
overall efficiency of SM4 but also contributes to a more

cohesive and streamlined approach to data transformation
in the realm of bit-sliced representations.

5.2. The Comparison of Block Ciphers. In this section, we try
to find out how the block ciphers can be implemented in
software and create a relatively level field for our results and
other remarkable results of the different block ciphers. More
precisely, we mainly consider the latest Intel processors using
SIMD instruction sets to perform efficient parallel computa-
tions of input blocks and refer to the performance figures for
bit-sliced implementations of these block ciphers in particu-
lar [26].

In Table 3, we present the performances of SKINNY
[26], SIMON [27], and AES [4] in cycles per byte, alongside
SM4. The bit-sliced implementation of AES exhibits the fast-
est efficiency. It is worth noting that AES’s performance is
optimized by utilizing the AES-NI instructions, which were
specifically designed by Intel and AMD and integrated into
the x86 instruction set using dedicated hardware circuits.
Consequently, comparing the performance of other block
ciphers with AES may not be entirely equitable due to the
influence of the AES-NI instruction set. In the subsequent
discussion, our primary focus will be on the comparison
between SKINNY, SIMON, and SM4.

They all with preexpanded subkeys prior to encrypting
blocks and targeting the same instruction set AVX2, except
SIMON-128-128, the bit-sliced implementations take both
the costs of the data form transformations and the costs of
the actual encryptions into account. Hence, in comparison,
SIMON does not include the cost of packing or unpacking
the initial data, which prevents the meaningful comparison
with the other two block ciphers having the same level of
security. Compared to SKINNY, our bit-sliced implementa-
tion of SM4 demonstrates a performance advantage. Never-
theless, this rough comparison comes to conclusions that it
still makes sense to optimize block ciphers for the specific
platforms, rather, we can not deny that tackling the root of
the problem is simplifying the algorithm to perform better
just like SIMONwith a compact enough design. These desired
results declare that efficient bit-sliced implementations are
possible and worthwhile in many situations, but it seems
wise to be acutely aware of their drawbacks such as relatively
expensive overheads of data form transformations [28].

6. Conclusions and Future Works

In this paper, we push the software implementation of SM4
to its limits with AVX2 instructions by investigating optimi-
zations on multiple frontiers. First, we present a modified

TABLE 3: Comparisons of bit-sliced implementations for some famil-
iar block ciphers.

Block cipher Timing (cpb) Parallelization (block)

SM4 3:09 64
SKINNY-128-128 [26] 3:43 64
SIMON-128-128 [27] 2:21 64
AES-128-128 [4] 1:28 64

8 IET Information Security



bit-sliced representation for SM4 that enables running 64
blocks in parallel with 256-bit registers efficiently. Second,
we introduce an optimized data form transformation which
can sharply reduce its overhead in bit-sliced implementa-
tions. Thanks to those optimizations, we can report our
new bit-sliced SM4 to reach at the speed of ≈3.09 cpb for
timing (with precomputed round keys and data form trans-
formations), becoming the performance record of SM4 ever
made on the Intel platforms. These significant improvements
also demonstrate that the bit-slicing technique is actually
promising on platforms with the enhanced SIMD architec-
ture from practical points of view.

We also employ the optimized data form transformation
algorithm for complete and efficient bit-sliced implementa-
tions of SM4, keeping full compatibility with existing parellel
modes of operation, for example, the CTR mode and GCM.
Furthermore, the expensive overhead on transforming data
between the bit-slicing-compatible form and the block-wise
form motivates us to adjust CTR mode and GCM to the bit-
sliced implementation, resulting in bit-slicing-friendly var-
iants of these two modes with an essential security proof.

While our work only concentrates on the platform with
AVX2 instructions, we believe our optimizations for SM4
could bring about improvements on other architectures as
well. Specifically, our method is applicable to various plat-
forms, provided that the target architecture’s register length
is a multiple of 4 bits. This adaptability ensures the feasibility
of employing our approach for bit-sliced SM4 implementa-
tion, offering potential advancements in performance and
efficiency across a broader spectrum of the computing envir-
onments. Also, the number of general-purpose registers is
limited (16 general-purpose registers available on our target
platform), and thus numerous memory accesses dominate
the entire SM4 processing. In this respect, we deem optimiz-
ing the number of memory accesses or register arrangement
for the bit-sliced implementation as a valuable future study.
We are also fired up about the implementation of SM4 on
different platforms such as ARMv8/v9 for wider applicability
of these techniques, and we will incorporate this throughout
our following works. Another interesting topic might be the
power analysis of our implementation, i.e., investigating the
impact of the bit-sliced structure to the known attacking
methods such as the chosen plaintext differential power anal-
ysis [29].

Data Availability

The source code used to support the findings of this study are
available from the corresponding author upon request.

Disclosure

This work is an extension of the conference paper [5].

Conflicts of Interest

The authors have no conflicts of interest with regard to
this work.

Authors’ Contributions

Xin Miao and Lu Li contributed equally to this work. Xin
Miao, Lu Li, Chun Guo, and Weijia Wang contributed in the
investigation. Xin Miao and Lu Li contributed in the soft-
ware. Weijia Wang, Xin Miao, and Lu Li contributed in the
writing and methodology. Lu Li, Meiqin Wang, and Weijia
Wang contributed in the validation. Chun Guo, Meiqin
Wang, and Weijia Wang contributed in the resources and
funding. Weijia Wang contributed in the conceptualization.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (Nos. 2021YFA1000600 and
2018YFA0704702), the National Natural Science Foundation
of China (Grant Nos. 62002202, 62002204, and 62032014), the
Program of Qilu Young Scholars (Grant Nos. 61580089963177
and 61580082063088) of Shandong University, the Program of
Taishan Young Scholars of the Shandong Province, the Major
Basic Research Project of Natural Science Foundation of Shan-
dong Province, China (Grant No. ZR202010220025) andQuan
Cheng Laboratory (Grant No. QCLZD202306).

References

[1] GM/T 0002-2012: SM4 Block Cipher Algorithm, “State
cryptography administration of the People’s Republic of
China,” March 2012.

[2] R. H. Tse, W. K. Wong, and M.-J. O. Saarinen, “The SM4
blockcipher algorithm and its modes of operations,” April
2018, Internet Engineering Task Force (IETF) https://datatra
cker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10.

[3] ISO/IEC 18033-3: 2010/AMD1:2021, “Information technology-
security techniques-encryption algorithms-part3: block ciphers-
amendment1: SM4,” June 2021, https://www.iso.org/standard/
81564.html.

[4] S. Gueron, “Intel advanced encryption standard (AES) new
instructions set,” Intel White Paper, Rev, 3:1-81, May 2010.

[5] X. Miao, C. Guo, M. Wang, and W. Wang, “How fast can SM4
be in software,” in Information Security and Cryptology,
Yi Deng and M. Yung, Eds., vol. 13837 of Lecture Notes in
Computer Science, pp. 3–22, Springer Nature Switzerland,
Cham, 2023.

[6] Software.Intel.Com, “Haswell new instruction descriptions,”
http://software.intel.com/en-us/blogs/2011/06/13/haswell-ne
w-instruction-descriptions-now-available/.

[7] Intel Corporation, “Intel C++ compiler classic developer
guide and reference,” https://www.intel.com/content/www/us/
en/docs/intrinsics-guide/index.html.

[8] L. Wang, Z. Gong, Z. Liu, J. Chen, and H. Fu, “Fast software
implementation of SM4 based on tower field,” Journal of
Cryptologic Research, vol. 9, no. 6, pp. 1081–1098, 2022.

[9] X. Zhang, H. Guo, X. Zhang, C. Wang, and J. Liu, “Fast
software implementation of SM4,” Journal of Cryptologic
Research, vol. 7, no. 6, pp. 799–811, 2020.

[10] H. Lang, L. Zhang, andW.Wu, “Fast software implementation
of SM4,” Journal of University of Chinese Academy of Sciences,
vol. 35, no. 2, pp. 180–187, 2018.

[11] J. Zhang, M. Ma, and P. Wang, “Fast implementation for SM4
cipher algorithm based on bit-slice technology,” in Smart
Computing and Communication. SmartCom 2018, M. Qiu,

IET Information Security 9

https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://datatracker.ietf.org/doc/html/draft-ribose-cfrg-sm4-10
https://www.iso.org/standard/81564.html
https://www.iso.org/standard/81564.html
https://www.iso.org/standard/81564.html
https://www.iso.org/standard/81564.html
https://www.iso.org/standard/81564.html
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
http://software.intel.com/en-us/blogs/2011/06/13/haswell-new-instruction-descriptions-now-available/
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html


Ed., vol. 11344 of Lecture Notes in Computer Science, pp. 104–
113, Springer, Cham, 2018.

[12] M. Dworkin, “Recommendation for block cipher modes of
operation: methods and techniques,” National Institute of
Standards and Technology, December 2001.

[13] D. A.McGrew and J. Viega, “The security and performance of the
Galois/counter mode (GCM) of operation,” in Progress in
Cryptology-INDOCRYPT 2004, A. Canteaut and K. Viswanathan,
Eds., vol. 3348 of Lecture Notes in Computer Science, pp. 343–355,
Springer, Berlin, Heidelberg, 2004.

[14] M. Dworkin, “Recommendation for block cipher modes of
operation: galois/counter mode (GCM) and GMAC,”National
Institute of Standards and Technology, November 2007.

[15] T. Iwata, K. Ohashi, and K. Minematsu, “Breaking and repairing
GCM security proofs,” in Advances in Cryptology–CRYPTO 2012,
R. Safavi-Naini and R. Canetti, Eds., vol. 7417 of Lecture Notes in
Computer Science, pp. 31–49, Springer, Heidelberg, 2012.

[16] Y. Niwa, K. Ohashi, K. Minematsu, and T. Iwata, “GCM
security bounds reconsidered,” in Fast Software Encryption.
FSE 2015, G. Leander, Ed., vol. 9054 of Lecture Notes in
Computer Science, pp. 385–407, Springer, Heidelberg, 2015.

[17] J. Viega and D. McGrew, “The use of galois/counter mode
(GCM) in ipsec encapsulating security payload (ESP),”
Technical report, RFC 4106, June, 2005.

[18] K. Igoe and J. Solinas, “AES galois counter mode for the secure
shell transport layer protocol,” IETF Request for Comments,
5647, 2009.

[19] R. Housley, “Using AES-CCM and AES-GCM authenticated
encryption in the cryptographic message syntax (CMS),”
Technical report, RFC 5084, November, 2007.

[20] D. McGrew, “An interface and algorithms for authenticated
encryption,” Technical report, RFC 5116, January, 2008.

[21] S. Gueron and M. E. Kounavis, “Intel carry-less multiplication
instruction and its usage for computing the GCMMode,” Intel
Corporation, May 2010.

[22] A. Adomnicai and T. Peyrin, “Fixslicing AES-like ciphers: new
bitsliced AES speed records on arm-cortex M and RISC-V,”
IACR Transactions on Cryptographic Hardware and Embed-
ded Systems, vol. 1, pp. 402–425, 2021.

[23] M. Matsui and J. Nakajima, “On the power of bitslice
implementation on intel core2 processor,” in Cryptographic
Hardware and Embedded Systems-CHES 2007, P. Paillier and
I. Verbauwhede, Eds., vol. 4727 of Lecture Notes in Computer
Science, pp. 121–134, Springer, Berlin, Heidelberg, 2007.

[24] S. Kölbl and T. Peyrin, “SKINNY family of block ciphers,”
November 2017, https://sites.google.com/site/skinnycipher/.

[25] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B.Weeks, and
L. Wingers, “The SIMON and SPECK families of lightweight
block ciphers,” Cryptology ePrint Archive, 2013, page 404,
https://eprint.iacr.org/2013/404.

[26] C. Beierle, J. Jean, S. Kölbl et al., “The SKINNY family of block
ciphers and its low-latency variant MANTIS,” in Advances in
Cryptology-CRYPTO. 2016, M. Robshaw and J. Katz, Eds., vol.
9815 of Lecture Notes in Computer Science, pp. 123–153,
Springer, Berlin, Heidelberg, 2016.

[27] L.Wingers, “Software for SUPERCOP benchmarking of SIMON
and SPECK,” 2015, https://github.com/lrwinge/simon_speck_
supercop.

[28] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks,
and L. Wingers, “The SIMON and SPECK lightweight block
ciphers,” in 2015 52nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, San Francisco, CA, USA,
2015.

[29] S. Wang, D. Gu, J. Liu, Z. Guo, W.Wang, and S. Bao, “A power
analysis on SMS4 using the chosen plaintext method,” in 2013
Ninth International Conference on Computational Intelligence
and Security, pp. 748–752, IEEE, Emeishan, China, 2013.

10 IET Information Security

https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/
https://sites.google.com/site/skinnycipher/
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://eprint.iacr.org/2013/404
https://github.com/lrwinge/simon_speck_supercop
https://github.com/lrwinge/simon_speck_supercop
https://github.com/lrwinge/simon_speck_supercop



