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WARP, an efficient lightweight block cipher presented by Banik et al., offers a viable alternative to AES with its 128-bit block and a
128-bit key. It adopts a 32-nibble type-II generalized Feistel network (GFN) structure, incorporating a nibble permutation
optimized for both security and efficiency. Notably, WARP has achieved the lowest hardware implementation among 128-bit block
ciphers. Its bit-serial encryption-only circuit is only 763 gate equivalents (GEs). Consequently, WARP has received significant
attention since its inception. The designers evaluated the number of active Sboxes for linear trails in WARP to establish its security.
To further investigate WARP’s resistance against linear attacks, we employed an automated model to analyze the optimal linear
trails/hulls of WARP. To achieve this, the problem will be transformed into a Boolean satisfiability problem (SAT). The constraints
in conjunctive normal form (CNF) are used to describe the mask propagation of WARP and invoke the SAT solver to find valid
solutions. The results allowed us to obtain the optimal correlation of the initial 21-round linear trails for WARP. Furthermore, by
enumerating the linear trails within a linear hull, the distribution of linear trails is revealed, and the probability of the linear hull is
improved to be more accurate. This work extends the linear distinguisher from 18 to 21 rounds. Additionally, the first independent
analysis of WARP’s linear properties is presented, offering a more precise evaluation of its resistance against linear cryptanalysis.

1. Introduction

1.1. Background. Linear cryptanalysis, as presented by Mat-
sui [1], stands as a prominent method employed in the anal-
ysis of symmetric-key ciphers. By identifying linear trails
with high correlation, it becomes possible to conduct attacks
more efficiently, achieving a lower complexity compared to
brute-force searching. Consequently, resistance to linear
cryptanalysis emerges as a critical aspect to be considered
by both designers and potential attackers.

The development of search methods for differential [2, 3]
and linear trails is closely intertwined. This is because the prop-
agation of difference pairs and linear masks in branching and
XOR operations exhibit a dual nature [4]. Matsui’s branch-and-
bound method, initially introduced at EUROCRYPT 1994 for
searching differential trails with optimal probability, is also
commonly employed for searching linear trails with optimal
correlation. Although this method is powerful, it demands
strong programming skills. In recent years, the automated

models like mixed integer linear programming (MILP) [5, 6],
constraint programming (CP) [7], satisfiability modulo theories
(SMT) [8], and Boolean satisfiability problem (SAT) [9, 10]
have exhibited remarkable performance in discovering vari-
ous distinguishers in cryptanalysis. However, for long trails
or ciphers with 128-bit block, these models still struggle to
return solutions within a reasonable time. By integrating the
strengths of both approaches, researchers have made signif-
icant progress in improving the efficiency of trail search
algorithms, as demonstrated in works such as those by
Sun et al. [10] and Zhang et al. [11].

It is crucial for symmetric-key cryptography to prioritize
resistance against distinguishing attacks as a fundamental
security requirement. WARP with a 128-bit block was specifi-
cally designed for efficient hardware implementation [12]. It
has undergone a preliminary security evaluation, encom-
passing a range of attacks such as the differential, linear,
impossible differential, and integral attacks. Regarding impossible
differentials cryptanalysis, the designers obtained a 21-round
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impossible differential distinguisher using the approach out-
lined in a study by Sasaki and Todo [13]. Independently, other
researchers discovered a 21-round zero-correlation distin-
guisher [14, 15]. For integral attacks, the designers found a
20-round integral distinguisher utilizing theMILPmodel pro-
vided in a study by Xiang et al. [16], and a 24-round general-
ized integral distinguisher was subsequently proposed by
observing the properties of WARP’s construction [14]. Addi-
tionally, an extension of the model led to the discovery of a
23-round boomerang distinguisher [17]. To assess security
against differential and linear attacks, designers employed a
MILP-based automated model [5] to obtain lower bounds for
the number of active Sboxes. In the presence of the clustering
effect, a 20-round differential distinguisher was identified in a
study by Teh and Biryukov [18]. However, until now, no
investigation has been conducted to explore actual linear dis-
tinguisher in WARP. This gap in research leaves room for
further exploration of WARP.

1.2. Contribution. In this paper, the main objective is to iden-
tify distinguishers, which are instrumental in understanding
the structural properties and the security of the underlying
components in WARP. The analysis in this paper has yielded
several important findings and results, which are summarized
as follows:

(1) Using the constructed SAT model, we have success-
fully validated the lower bounds for the number of
active Sboxes required for the initial 19 rounds of
linear trails in WARP, as stated in the design documen-
tation. Furthermore, the lower bound for the number
of active Sboxes in the 20-, 21-, and 22-round linear
trails is determined to be 70, 75, and 79, respectively.

(2) We have successfully identified the first 21-round lin-
ear trails with optimal correlation, which align with
the upper bound estimated using the lower bound for
the number of active Sboxes. Notably, the findings
reveal that the 18-round linear trails in WARP have

the optimal correlation 2−61, indicating that WARP is
not able to withstand the linear trail-based distin-
guishing attack.

(3) Moreover, the 20-round linear trail with optimal
probability 2−140 is obtained. With the help of the
automated model, 186,856 trails are found to con-
tribute to the same 20-round linear hull, and the
probability of the 20-round linear hull is improved
from 2−140 to 2−127:27, which is lower than 2−128,
thereby extending the distinguishers from 18 to 20
rounds. As far as our knowledge goes, these results
represent the current optimal linear distinguishers
for WARP. Table 1 shows a comprehensive overview
of the single-key distinguishers for WARP, and the
bold information is the result obtained in this paper.

1.3. Organization. This paper is structured as follows. We
present the necessary definitions related to linear cryptanal-
ysis and provide a concise overview of WARP in Section 2.
Section 3 outlines the SAT model employed in the search for
linear trails in WARP. The identification of linear trails with
lower bounds for the number of active Sboxes and optimal
correlations is presented in Section 4. Section 5 focuses on
the discovery of optimal linear distinguishers for WARP.
Finally, a summary of this work can be found in Section 6.

2. Preliminaries

Let us begin by introducing the notations that will be utilized
throughout this paper. Subsequently, a concise overview of
the concepts related to linear cryptanalysis will be presented.
Moving forward, we provide a detailed description of the
WARP specification, which is the primary focus of our study.

2.1. Notions. To maintain consistency and clarity, we employ
specific notations to analyze and discuss the linear cryptanal-
ysis of WARP. The meanings of these notations are summa-
rized in Table 2.

TABLE 1: Summary of distinguishers in the single key scenarios for WARP.

Approach Rounds Probability Data References

Linear distinguisher

18 2−122 - [12]
18 2−109:08 - Section 5
19 2−120:01 - Section 5
20 2−127:27 - Section 5

Differential distinguisher

18 2−122 - [19]
18 2−104:62 - [18]
19 2−118:07 - [18]
19 2−116:92 - [20]
20 2−122:71 - [18]

Impossible differential distinguisher 21 - - [12, 21]

Zero-correlation distinguisher 21 - - [14, 15]

Integral distinguisher
20 - 2124 [12]
24 - 2127 [14]

Boomerang distinguisher 23 2120:6 - [22]

Bold values refers to the new results obtained in this article, and explanations have been added in the paper.
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2.2. Linear Cryptanalysis. Linear cryptanalysis is widely rec-
ognized as a powerful technique for analyzing symmetric-
key primitives, especially block ciphers [1]. It has gained
widespread recognition and has been extensively applied in
the field, with several extensions proposed over time. In the
subsequent sections, we introduce a collection of definitions
and notations, which will be consistently employed in this
paper. These definitions and notations aim to facilitate our
discussions and analysis.

Definition 1. Let EKðXÞ denotes an iterative block cipher,
where X represents the input and K denotes the master key.
The round function of the block cipher is recorded as f ðX;KÞ.
For a given pair of linear masks ðΓin;ΓoutÞ, we can express the
linear approximation expression of f ðX;KÞ as Γin ⋅ X⊕Γout ⋅
f ðX;KÞ. Similarly, for the block cipher EKðXÞ, the linear
approximation expression is given by Γin ⋅ X⊕Γout ⋅ EKðXÞ.

Linear cryptanalysis is a well-known method utilized for
analyzing block ciphers. Its primary goal is to distinguish a
block cipher from a random permutation by discovering a
probabilistic linear approximation expression that establishes
a correlation between the plaintext and ciphertext. This tech-
nique serves as the foundation for key recovery attacks.

For block cipher, by analyzing the biases and correlations
of the linear approximation expressions, cryptanalysts can
identify potential distinguishers to exploit the linear trails.
In linear cryptanalysis, let Γin denotes the mask of the input
X and Γout represents the mask of the output f ðXÞ. The
probability of the linear approximation expression Γin ⋅
X⊕Γout ⋅ f ðXÞ¼ 0 is represented as pðΓin;ΓoutÞ¼PrfΓin ⋅
X⊕Γout ⋅ f ðXÞ¼ 0g. The bias of this expression quantifies
the deviation from a balanced distribution and is defined as
the difference between the probability of the expression
holding and the ideal probability 1=2. The linear approxima-
tion bias is given by εðΓin;ΓoutÞ¼ pðΓin;ΓoutÞ− 1=2, and it
ranges from − 1=2 to 1=2. The correlation measures the
strength of the linear relationship between the input and
output masks. It is calculated as follows:

Cor Γin;Γoutð Þ ¼ 2 ⋅ p Γin;Γoutð Þ − 1; ð1Þ

where CorðΓin;ΓoutÞ 2 ½− 1; 1�. Usually, in the distinguish
phase, linear cryptanalysis mainly focuses on linear trails
with optimal correlation.

Definition 2. For a block cipher, a r-round linear trail ðΓ0;Γ1;
…;Γr−1Þ is concatenated linear approximations ðΓi;Γiþ1Þ of
a single round f iðX;KÞ, where 0≤ i≤ r− 1.

Definition 3. (The correlation of the linear trail [23]) Given a
r-round linear trail ðΓ0;Γ1;…;Γr−1Þ, its correlation is com-
puted by taking the product of the individual correlations
along the trail, i.e.:

Cor Γ0;…;Γr−1ð Þ ¼ ∏
r−1

i¼0
Cor Γi;Γiþ1ð Þ: ð2Þ

When constructing a distinguisher, the adversary’s pri-
mary concern is the probability of the linear hull rather than
individual intermediate masks. Consequently, the adversary
aims to gather all trails having the same masks Γin;Γout. By
collecting a larger number of trails, the adversary can obtain
a more accurate estimation of probability associated with the
specific linear hull.

Definition 4. (Linear hull [24]) A linear hull ðΓin;ΓoutÞ is a
construct utilized in linear cryptanalysis that consists of a
collection of linear trails. These trails share identical masks
for both the masks ðΓin;ΓoutÞ. Essentially, a linear hull repre-
sents a specific linear approximation ðΓin;ΓoutÞ for a given
block cipher.

Definition 5. The potential of a linear hull ðΓin;ΓoutÞ is mea-
sured by the average linear probability (ALP) over the key
space K . This measure, denoted as ALPðΓin;ΓoutÞ, is defined
as the average of the squared correlations between the input and
output masks Γin, Γout, considering all possible keys k in K , i.e.:

ALP Γin;Γoutð Þ ¼ 1
Kj j ∑k2K

Cor Γin;Γoutð Þ2: ð3Þ

2.3. Description of WARP. WARP is a lightweight block cipher
with the aim of achieving 128-bit security while keeping the
implementation footprint small [12]. It applies the type-II
generalized Feistel network (GFN) [25] structure, which is a
well-known construction in the field of symmetric-key cryptog-
raphy. It takes a 128-bit plaintext denoted asM and the 128-
bit master key written as K as inputs. Through a series of 41
encryption rounds, WARP transforms the plaintext into a 128-
bit ciphertext represented as C.

2.3.1. Round Function. For WARP, the internal state in the rth
round operates on 32 nibbles denoted as Xr

i ¼Xr
0kXr

1jj…kXr
31

, where 0≤ r≤ 40, and each Xr
i 2f0; 1g4 denotes the ith

nibble. The round key is expressed as 16 nibbles kr ¼
kr0kkr1jj…kkr15, where krj 2f0; 1g4, 0≤ j≤ 15. The round
function of WARP, as shown in Figure 1, employs 4-bit Sbox
operations, nibble XOR operations, and shuffle operations
applied to the 32 nibbles. These operations are performed as
follows.

Sbox: To fulfill the design objectives of WARP, such as a
compact circuit, low path delay, and efficient energy

TABLE 2: Notations.

Symbol Meaning

Γin Input mask
Γout Output mask
a Bitwise NOT of a
akb Binary concatenation of a and b
a⊕b Binary exclusive OR (XOR) of a and b
a ∧ b Bitwise AND of a and b
a ∨ b Bitwise OR of a and b
a ⋅ b The inner product of a and b
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utilization. WARP utilizes the 4-bit Sbox from MIDORI [26].
The Sbox is defined by the values, as shown in Table 3.

Add round key: XOR operation is performed bitwise
between the 16 nibbles Sri−1

2
of the Sbox output, the 16 nibbles

of the even branches Xr
i , and the 16 nibbles round key krj ,

where imod  2¼ 1 and j¼ i−1
2 .

Add round constant: The round constants, represented
by 2 nibbles cr0kcr1, are XOR-ed with the first and third nib-
bles of the intermediate state.

Shuffle operation: WARP employs a 32-branch permuta-
tion that exhibits strong diffusion properties and resistance
against major attacks. The input state, composed of 32 nib-
bles, is represented as Yr ¼Yr

0kYr
1 �jj…kYr

31. The output state
is obtained by applying the permutation π such that Xrþ1

πðiÞ ¼
Yr
i , where 0≤ i≤ 31. The specific permutation π is shown in

Table 4. It is worth mentioning that the permutation opera-
tion π is not performed in the final round.

The paper does not specifically investigate the influence
of adding the round constants on the attack’s validity, and it
does not delve into the discussion of the key schedule. Banik
et al. [12] showed a more comprehensive understanding of
WARP and its specific details.

3. SAT-Based Model to Search Linear
Trail for WARP

As far as cryptanalysis is concerned, many problems such as
the search for linear trails can be reformulated as systems of
equations, and SAT solvers are commonly employed to solve
equation-based problems. In this section, the SAT-based

automated model introduced in a study by Sun et al. [10]
is utilized to assess the resistance of WARP against linear
attacks. This systematic approach allows us to efficiently
identify the optimal linear trails for WARP.

3.1. Boolean Satisfiability Problem. The algebraic normal
form (ANF) is a commonly employed representation in
cryptography for describing symmetric ciphers. By convert-
ing ANF equations with Boolean variables into the conjunc-
tive normal form (CNF), SAT solvers can be effectively
employed since CNF serves as their standard input format.
This transformation enables the utilization of SAT solvers to
analyze and solve cryptographic problems based on equations.
In CNF, the Boolean function is represented as a conjunction of

clauses ⋀
n

i¼0
⋁
mi

j¼0
Cij, where each clause ⋁

mi

j¼0
Cij consists of a disjunc-

tion of literals. This form is equivalent to the product-of-sum
representation of Boolean functions, where the function is
expressed as a conjunction of terms, and each term is a disjunc-
tion of literals. Russell andNorvig [27] postulated amore detailed
information on CNF and its relation to Boolean functions.

Cook [28] established that the SAT is a computationally
challenging problem that has been proven to be nondeter-
ministic polynomial (NP) complete. This means that finding
a satisfying assignment for a given set of Boolean clauses is
computationally challenging. However, despite its theoretical
complexity, modern SAT solvers have made significant
advancements and can effectively handle problems with mil-
lions of variables. The solver, Cryptominisat5 [29], is an
example of a universal and efficient SAT solver. It is specifi-
cally designed to handle large-scale SAT instances and offers
support for XOR and Gaussian elimination techniques. This
solver employs advanced algorithms and heuristics to
improve performance and optimize the search for satisfying
assignments. With the capabilities of SAT solvers like Cryp-
tominisat5, it is possible to tackle complex cryptanalysis pro-
blems by formulating them as SAT instances and utilizing
the solver’s efficient solving techniques.

Xr
i

Xr + 1
i

kr
j

S

0

0 1 2 3 4 5

π

0 S 1 S 2 S 15

3130

3130

1cr
m

0 1 2 3 4 5

FIGURE 1: Round function of WARP.

TABLE 3: 4-bit Sbox.

x 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf
SðxÞ 0xc 0xa 0xd 0x3 0xe 0xb 0xf 0x7 0x8 0x9 0x1 0x5 0x0 0x2 0x4 0x6

TABLE 4: The shuffle operation.

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
πðxÞ 31 6 29 14 1 12 21 8 27 2 3 0 25 4 23 10
x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
πðxÞ 15 22 13 30 17 28 5 24 11 18 19 16 9 20 7 26
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3.2. SAT Models for the Linear Approximation of WARP.
When utilizing SAT solvers to search for linear trails, it is
necessary to translate this problem into a set of clauses that
capture the linear propagation properties within WARP. By
the findings in a study by Sun et al. [4], the linear propaga-
tion of the XOR operation is equivalent to the differences
propagation for the XOR operation. Next, we will present a
concise overview of the SAT models employed for some
fundamental operations used in WARP. However, for a
more comprehensive understanding, we recommend refer-
ring to [9, 10, 30] for detailed information.

3.2.1. Three-Fork Branching. Consider the XOR operation,
where Γ0 represents the input mask and Γ1 and Γ2 denote
the two output masks. The nontrivial propagation is valid if
and only if the masks Γ0, Γ1, and Γ2 satisfy all the conditions
outlined as follows:

Γ1 ∨ Γ2 ∨ Γ0 ¼1;

Γ1 ∨ Γ2 ∨ Γ0 ¼1;

Γ1 ∨ Γ2 ∨ Γ0 ¼1;

Γ1 ∨ Γ2 ∨ Γ0 ¼1:

8>>>><
>>>>:

ð4Þ

3.2.2. XOR. The propagation of the two input masks Γ0 and
Γ1, along with the output mask Γ2, should fulfill all the
conditions described as follows:

Γ2 ∨ Γ0 ¼1;

Γ2 ∨ Γ0 ¼1;

Γ2 ∨ Γ1 ¼1;

Γ2 ∨ Γ1 ¼1:

8>>>><
>>>>:

ð5Þ

3.2.3. Sbox. The linear propagation of Sbox is often charac-
terized using a linear approximation table (LAT). The input
mask of the Sbox is denoted as Γin ¼Γ0kΓ1jjΓ2kΓ3 and the
output mask is written as Γout ¼Γ4kΓ5jjΓ6kΓ7, then, Table 5
shows LAT of Sbox, which includes values of 0;Æ2;Æ4; 8. The
corresponding absolute correlations of the linear approximation
fall within the range f0; 2−2; 2−1; 1g. Two Boolean variables c0
and c1 are used to encode the correlation of the linear propagation
for the Sbox. To describe the correlation for valid linear propaga-
tion,CorðΓin;ΓoutÞ and c0kc1 follow the following rule as follows:

c0 c1k ¼
01; if Cor Γin;Γoutð Þ ¼ 2−1;

11; if Cor Γin;Γoutð Þ ¼ 2−2;

00; if Cor Γin;Γoutð Þ ¼ 1:

8><
>: ð6Þ

Note that c0 þ c1 represents the opposite number of the
binary logarithm of CorðΓin;ΓoutÞ, i.e., − log2ðjCorðΓin;
ΓoutÞjÞ ¼ c0 þ c1. To capture the valid linear propagation
with correlation 2−ðc0þc1Þ, we define a 10-bit Boolean function
gðΓinkΓoutjjc0kc1Þ as follows:

g Γin Γoutk kc0 c1kð Þ

¼
1; if Γin → Γout is a valid propagationwith

−log2 Cor Γin;Γoutð Þj jð Þ ¼ c0 þ c1;

0; otherwise:

8><
>:

ð7Þ

Following that, the constraint conditions are reduced using
Logic Friday (https://web.archive.org/web/20131022021257/
http:/www.sontrak.com/), and the results showed that the
nontrivial linear mask propagations with correlation for
WARP’s Sbox can be described by 53 clauses, as shown in
Table 6. Similarly, a Boolean variable w is utilized to indicate

TABLE 5: Linear approximation table (LAT) of WARP Sbox.

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xa 0xb 0xc 0xd 0xe 0xf

0x0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0x1 0 2 4 2 −2 0 2 0 −2 0 2 0 4 −2 0 −2
0x2 0 4 0 0 4 0 0 0 −4 0 0 0 0 4 0 0
0x3 0 2 0 2 −2 0 2 4 2 −4 −2 0 0 2 0 2
0x4 0 −2 4 −2 2 0 −2 0 −2 −4 −2 0 0 −2 0 2
0x5 0 0 0 0 0 0 0 0 0 0 −4 −4 0 0 4 −4
0x6 0 2 0 2 −2 0 2 −4 −2 0 −2 0 −4 −2 0 2
0x7 0 0 0 4 0 0 −4 0 0 0 0 −4 0 0 −4 0
0x8 0 −2 −4 2 −2 0 −2 0 −4 −2 0 2 2 0 2 0
0x9 0 0 0 −4 −4 0 0 0 −2 2 −2 −2 2 2 −2 2
0xa 0 2 0 −2 −2 −4 −2 0 0 −2 4 −2 −2 0 2 0
0xb 0 0 0 0 0 −4 0 −4 2 −2 −2 2 2 2 −2 −2
0xc 0 4 0 0 0 0 −4 0 2 2 −2 2 2 −2 2 2
0xd 0 −2 4 2 −2 0 −2 0 0 2 0 2 −2 4 2 0
0xe 0 0 0 0 0 4 0 −4 2 −2 2 −2 2 2 2 2
0xf 0 −2 0 2 2 −4 2 0 0 2 0 −2 2 0 2 4

Each entry represents LATðΓin;ΓoutÞ¼ #fx2F4
2jx∙Γin ¼ SðxÞ∙Γout − 8g.
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the activeness of the Sbox. If the input and output masks of
Sbox are nonzero, it is called an active Sbox, then w¼ 1. Con-
versely, whenw¼ 0, it denotes an inactive Sbox. As a result, 40
clauses, as shown in Table 7, are used to describe the valid
linear mask propagations of the WARP’s Sbox. These clauses
capture the conditions under which the linear propagation
holds for the Sbox.

3.3. Modeling the Objective Function. When analyzing pri-
mitives that rely on Sboxes as fundamental components,
automated searches for linear trails aim to achieve the fol-
lowing two kinds of objectives:

(1) The first kind of objective is to minimize the number
of active Sboxes in the trails. To achieve this, auxil-
iary variables wði; jÞ are introduced for each Sbox in
each round, where 0≤ i≤ r− 1 and 0≤ j≤ 31. The

number of active Sboxes is limited at most ξ, where
ξ is a positive integer; the objective function is
defined as follows:

∑
r−1

i¼0
∑
31

j¼0
w i;jð Þ ≤ ξ: ð8Þ

(2) The second kind of objective is to discover linear
trails with optimal correlation. To achieve this, aux-
iliary variables cði; jÞ0 and cði; jÞ1 are introduced for each
Sbox in each round, where 0≤ i≤ r− 1 and 0≤ j≤
31. The objective is to find linear trails with correla-
tion no more than 2−τ , i.e., 2−τ ≤ 2−ðc

ði; jÞ
0 þcði; jÞ1 Þ, where τ

is a positive integer. The objective function indicates
the opposite number of the binary logarithm of the
correlation, that is:

TABLE 6: The constraints used to describe the nontrivial mask propagations with correlation for Sbox.

No. Clause No. Clause No. Clause

1 y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 19 x3 ∨ x2 ∨ x0 ∨ c1 ¼ 1 37 y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1
2 x3 ∨ x2 ∨ x0 ∨ c1 ¼ 1 20 x3 ∨ x2 ∨ x0 ∨ y3 ∨ c1 ¼ 1 38 x3 ∨ x2 ∨ x0 ∨ y3 ∨ c1 ¼ 1
3 x3 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 21 x3 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 39 x2 ∨ x0 ∨ y2 ∨ y0 ∨ c1 ¼ 1
4 x2 ∨ x0 ∨ y2 ∨ y0 ∨ c1 ¼ 1 22 y3 ∨ c0 ¼ 1 40 x2 ∨ y3 ∨ y1 ∨ y0 ∨ c1 ¼ 1
5 y2 ∨ c0 ¼ 1 23 x3 ∨ x1 ∨ y3 ∨ y1 ∨ c1 ∨ c0 ¼ 1 41 x1 ∨ x0 ∨ y2 ∨ y1 ∨ c1 ¼ 1
6 x2 ∨ x1 ∨ y1 ∨ y0 ∨ c1 ¼ 1 24 x2 ∨ x1 ∨ y2 ∨ y0 ∨ c1 ¼ 1 42 x2 ∨ x0 ∨ y3 ∨ y1 ∨ c1 ¼ 1
7 x1 ∨ x0 ∨ y3 ∨ y1 ∨ c1 ¼ 1 25 x2 ∨ x0 ∨ y2 ∨ y1 ∨ c1 ¼ 1 43 x3 ∨ x1 ∨ y3 ∨ y1 ∨ c1 ¼ 1
8 x3 ∨ x1 ∨ y2 ∨ y0 ∨ c1 ¼ 1 26 x3 ∨ x1 ∨ y2 ∨ y0 ∨ c1 ¼ 1 44 x1 ∨ x0 ∨ y2 ∨ y1 ∨ c1 ¼ 1
9 y0 ∨ c0 ¼ 1 27 x2 ∨ x1 ∨ x0 ∨ y0 ∨ c1 ¼ 1 45 x0 ∨ y2 ∨ y1 ∨ y0 ∨ c1 ¼ 1
10 x2 ∨ x1 ∨ y3 ∨ y1 ∨ y0 ∨ c1 ¼ 1 28 x3 ∨ x2 ∨ x1 ∨ y1 ∨ y0 ∨ c1 ¼ 1 46 x3 ∨ x0 ∨ y3 ∨ y0 ∨ c1 ¼ 1
11 x3 ∨ x1 ∨ x0 ∨ y2 ∨ y1 ∨ c1 ¼ 1 29 x3 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 47 x1 ∨ y3 ∨ y2 ∨ y0 ¼ 1
12 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 30 x3 ∨ x2 ∨ x0 ∨ y1 ¼ 1 48 x3 ∨ x2 ∨ x0 ∨ y1 ¼ 1
13 x3 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 31 x1 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 49 x3 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1
14 x3 ∨ x2 ∨ x0 ∨ y2 ∨ y0 ∨ c1 ¼ 1 32 x0 ∨ y3 ∨ y2 ∨ y1 ∨ c1 ¼ 1 50 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y3 ¼ 1
15 x1 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ c1 ¼ 1 33 x3 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 51 x3 ∨ x0 ∨ y2 ∨ y1 ∨ y0 ∨ c1 ¼ 1
16 x3 ∨ x1 ∨ y2 ∨ y1 ∨ y0 ∨ c1 ∨ c0 ¼ 1 34 x3 ∨ x2 ∨ x0 ∨ y1 ∨ y0 ∨ c1 ¼ 1 52 x2 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1
17 x2 ∨ x1 ∨ x0 ∨ y3 ∨ y0 ∨ c1 ¼ 1 35 x2 ∨ x0 ∨ y2 ∨ y0 ∨ c1 ¼ 1 53 x2 ∨ x0 ∨ y2 ∨ y0 ∨ c1 ¼ 1
18 x2 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ∨ c1 ¼ 1 36 y1 ∨ c0 ¼ 1

TABLE 7: The constraints used to describe the nontrivial mask propagations for the activeness of Sbox.

No. Clause No. Clause No. Clause

1 x3 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 15 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y3 ¼ 1 28 x3 ∨ x2 ∨ x0 ∨ y1 ¼ 1
2 x1 ∨ y3 ∨ y2 ∨ y0 ¼ 1 16 x3 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 29 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ¼ 1
3 x3 ∨ x2 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 17 x3 ∨ x2 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 30 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ¼ 1
4 x1 ∨ y3 ∨ y2 ∨ y0 ¼ 1 18 x3 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 31 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y3 ∨ y0 ¼ 1
5 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y3 ∨ y0 ¼ 1 19 x3 ∨ x2 ∨ x0 ∨ y1 ¼ 1 32 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y2 ∨ y0 ¼ 1
6 x2 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 20 x2 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1 33 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y2 ∨ y1 ∨ y0 ¼ 1
7 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ¼ 1 21 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ¼ 1 34 x2 ∨ x0 ∨ y2 ∨ y1 ∨ y0 ¼ 1
8 x2 ∨ x1 ∨ x0 ∨ y2 ∨ y0 ¼ 1 22 x3 ∨ x2 ∨ x1 ∨ x0 ∨ y2 ∨ y1 ∨ y0 ¼ 1 35 x2 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ∨ y0 ¼ 1
9 y0 ∨ w¼ 1 23 y2 ∨ w¼ 1 36 y3 ∨ w¼ 1
10 y3 ∨ y2 ∨ y1 ∨ y0 ∨ w¼ 1 24 x0 ∨ w¼ 1 37 x3 ∨ x2 ∨ x1 ∨ x0 ∨ w¼ 1
11 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y1 ∨ y0 ¼ 1 25 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ¼ 1 38 x3 ∨ w¼ 1
12 x2 ∨ w¼ 1 26 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y1 ∨ y0 ¼ 1 39 x3 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ¼ 1
13 x3 ∨ x2 ∨ x1 ∨ y3 ∨ y2 ∨ y0 ¼ 1 27 x3 ∨ x2 ∨ x0 ∨ y3 ∨ y2 ∨ y1 ¼ 1 40 x3 ∨ x1 ∨ x0 ∨ y3 ∨ y2 ∨ y0 ¼ 1
14 x3 ∨ x2 ∨ x1 ∨ y3 ∨ y2 ∨ y0 ¼ 1

6 IET Information Security



∑
r−1

i¼0
∑
31

j¼0
c i; jð Þ
0 þ c i; jð Þ

1

� �
≤ τ: ð9Þ

Indeed, the objective functionsmentioned in Equations (8)
and (9) can be expressed as cardinality constraints of the form
∑n−1

i¼0 xi ≤ η, where η is a nonnegative integer. The sequential
encoding method proposed in a study by Sinz [31] can be
employed to convert these constraints into Boolean expres-
sions [9, 10, 30, 32]. When η¼ 0, the constraint is simply
xi ¼ 1 for 0≤ i≤ n− 1, which is trivial. However, for η>0,
additional Boolean variables μi; j are introduced to construct
the following clauses, where 0≤ i≤ n− 2 and 0≤ j≤ η− 1.

x0 ∨ μ0;0 ¼ 1; ;

μ0;j ¼ 1; if 1 ≤ j ≤ η − 1;

xi ∨ μi;0 ¼ 1; if 1 ≤ i ≤ n − 2;

μi−1;0 ∨ μi;0 ¼ 1; if 1 ≤ i ≤ n − 2;

xi ∨ μi−1;j−1 ∨ μi;j ¼ 1; if 1 ≤ j ≤ η − 1; 1 ≤ i ≤ n − 2;

μi−1;j ∨ μi;j ¼ 1; if 1 ≤ j ≤ η − 1; 1 ≤ i ≤ n − 2;

xi ∨ μi−1;η−1 ¼ 1; if 1 ≤ i ≤ n − 2;

xn−1 ∨ μn−2;η−1 ¼ 1:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð10Þ

Algorithm 1 explains the process of searching for the r-
round linear trails. The search model mainly consists of two
steps: constructing the linear mask propagations of the r-
round function for WARP and setting the corresponding
objective function based on the threshold. The objective
function of linear analysis is generally in these two forms,
as shown in Equation (8) or Equation (9). Invoke the solver
to solve the search model. If the model has a solution, it
indicates that the model has a feasible solution. For example,
when searching for the r-round linear trails with the optimal
correlation 2−τ, if the objective function in Equation (9) is set
to τ− 1 and the model has no solution, and the objective
function in Equation (9) is set to τ and the model has a
solution, it is considered that the solver has found a r-round
linear trail with the optimal correlation of 2−τ .

3.4. Modeling the Conditions for Branch-and-Bound Method
with Sequential Encoding Method. The branch-and-bound
method is a popular approach that finds applications in solv-
ing integer programming problems. It is an effective method
for systematically exploring the solution space and identify-
ing the optimal solutions. In the context of cryptanalysis, the
branch-and-bound method has been successfully utilized to
search for optimal solutions, such as differential trails with
optimal probabilities [33]. The core concept behind the
branch-and-bound method is to break down the solution
space into smaller subsets by employing branching techniques.

Input: r-round, predefined threshold of the correlation 2−τ (the number of active Sboxes ϵ),

Flag¼ 0 (Flag¼ 1).

Output: If Flag¼ 0 (Flag¼ 1), return a linear trail with optimal correlation (lower bound for the number of active Sboxes).

1: / ∗Step 1: Construct the SAT model. ∗/

2: For t¼ 0 to r do

3: For i¼ 0 to 32 do

4: Add the constraints in Equation (4) to describe the mask propagations of three-fork branching.

5: If imod  2¼ 0:

6: If flag¼ 0:

7: Add the constraints in Table 6 to describe the mask propagations of Sbox with correlations.

8: If flag¼ 1:

9: Add the constraints in Table 7 to describe the mask propagations of the activeness of Sbox.

10: Add the constaints in Equation (5) to describe the mask propagations of XOR operation and π operation.

11: / ∗ Step 2: Find a linear trail. ∗/

12: If Flag¼ 0 then

13: m¼ τ, set the objective function to Equation (9).

14: If Flag¼ 1 then

15: m¼ ϵ, set the objective function to Equation (8).

16: For v¼ 0 to m do

17: Add the constraints to describe the objective function.

18: Invoke the solver to solve the model.

19: If solver finds a solution then

20: Return the r-round linear trail.

21: Else

22: vþ þ .

ALGORITHM 1: The SAT model for searching the linear trails with optimal correlation/lower bound for the number of active Sboxes of WARP

IET Information Security 7



By iteratively branching and calculating bounds, the algorithm
progressively narrows down the search space until an optimal
solution is found.

In the context of cryptanalysis, let’s consider a scenario
where we have an initial correlation estimate CoriniðRÞ for R-
round trails. The information about the optimal correlation
CoroptðiÞ of the i-round linear trails is known, where 1≤ i≤
R− 1. Assuming that the linear trails ðΓ0;Γ1;…;ΓrÞ of the
first r rounds have been obtained, the correlation of each
round is expressed as CorðΓi;Γiþ1Þ, where 1≤ r≤R and
0≤ i≤ r. The question is whether this partial trail has the
potential to extend and become a better R-round trail. We
can determine this by checking this equation as follows:

∏
r−1

i¼0
Cor Γi;Γiþ1ð Þ ⋅ Coropt R − rð Þ ⩾ Corini Rð Þ: ð11Þ

This condition serves as a criterion for pruning. If a
partial trail does not meet this condition, it is unnecessary
to explore it further as it cannot lead to a better solution. By
pruning such partial trails, the search space is pruned, reduc-
ing the computational effort required. The branch-and-
bound method, combined with the pruning condition, allows
for an efficient search for optimal linear trails in cryptanalysis.

The following equations are utilized to describe the bound-
ing conditions in the branch-and-bound method:

∑
e2

γ¼e1
xγ ≤m; e1 ⩾ 0; e2 ≤ n − 1;m ≤ η; ð12Þ

where n is the total number of Boolean variables represented
as xγ . Referring to the method described in a study by Sun
et al. [10], the Equation (12) can be encoded into three cases
according to the values of e1 and e2. These cases are as
follows:

xγ ∨ μγ−1;m−1 ¼ 1; 1 ≤ γ ≤ e2; if e1 ¼ 0; e2 ≤ n − 1;

μe1−1;γ ∨ μe2;γþm ¼ 1; 0 ≤ γ ≤ η −m − 1; if e1>0; e2 ≤ n − 1;

μe1−1;γ ∨ μn−2;γþm ¼ 1; 0 ≤ γ ≤ η −m − 1

μe1−1;γ ∨ xn−1 ∨ μn−2;γþm−1 ; 0 ≤ γ ≤ η −m

)
; if e1>0; e2 ¼ n − 1:

8>>>><
>>>>:

ð13Þ

The number of clauses in the three cases is as follows: e2
clauses for the first case, η−m clauses for the second case,
and 2ðη−mÞþ 1 clauses for the third case. By encoding the
conditions in these cases into clauses, the branch-and-bound
method can be applied effectively in cryptanalysis to explore
and prune partial trails.

4. Linear Trails of WARP

In this section, with a primary focus on identifying optimal linear
trails, the findings from applying the SAT model to WARP are
presented. The goal is to uncover trails that either have the
minimum number of active Sboxes or optimal correlations.

4.1. Linear Trail with Minimum Number of Active Sboxes.
Through the utilization of the SAT model, we have made
significant progress in identifying the optimal linear trail in
WARP that requires the minimum number of active Sboxes. It
is worth noting that the designer of WARP initially provided
the minimum number of active Sboxes for linear trails up to
19 rounds [12]. However, this approach has enabled us to
extend this analysis and determine the minimum number of
active Sboxes for linear trails up to 22 rounds.

Table 8 shows the comprehensive summary of the mini-
mum number of active Sboxes for the linear trails of round-
reduced WARP. These findings confirm the results presented
in the referenced work. Specifically, the results marked with

bold information indicate that theminimumnumber of active
Sboxes of the 20-round, 21-round, and 22-round linear trails
are 70, 75, and 79, respectively. Additionally, the 18-round
linear trail with 61 active Sboxes is shown in Table 9. This
further contributes to the understanding of the cryptographic
and analysis of WARP.

4.2. Linear Trail with Optimal Correlation for WARP. To
derive the constraints for the linear approximation of
WARP, we begin by setting the objective function to describe
the optimal correlation for the r-round linear trails. Through
analysis, the optimal correlations of the linear trails up to the
first 21 rounds are successfully determined. The results show
that the optimal correlation of linear trails can reach the
upper bound of the active Sbox estimation. More specifically,
for r-round linear trail, if the lower bound of the active Sbox
is m, the trails with correlation 2−m can be discovered, where
0≤ r≤ 20 and 0≤m≤ 75.

Generally, there is a focus on finding linear trails with
input and output masks characterized by lower hamming
weight. This preference stems from their potential advan-
tages in terms of key recovery, such as involving fewer keys
or extending to more rounds. However, it has been observed
that linear trails, without additional constraints, may exhibit
high hamming weights according to research findings [9, 20].
To address this, the cardinality constraints introduced are
used to limit their hamming weights and obtain trails with

TABLE 8: The minimum number of active linear Sboxes.

Round 1 2 3 4 5 6 7 8 9 10 11

#Sbox 0 1 2 3 4 6 8 11 14 17 22
Round 12 13 14 15 16 17 18 19 20 21 22
#Sbox 28 34 40 47 52 57 61 66 70 75 79

Bold values refers to the new results obtained in this paper, and explanations
have been added in the paper.
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the lowest hamming weight. Due to the fact that the WARP is
nibble based, the main focus here is on nibble-oriented activ-
ity. The process resembles the search for optimal trails and
involves a series of steps as follows:

(1) Within the framework of the model for discovering
trails with optimal correlation, we incorporate addi-
tional constraints that describe the activeness of the
input and output masks for trails. The activeness of a
nibble is represented by constraints with Boolean
variables. For a nibble mask written as Γ0kΓ1jj
Γ2kΓ3, introduce a Boolean variable to indicate its
activeness. When the nibble mask is nonzero, i.e.,
Γ0kΓ1jjΓ2kΓ3≠0, then the nibble is called an active
nibble, represented by a¼ 1, and in other cases, it is
called an inactive nibble, denoted as a¼ 0. The con-
straints can be formulated as follows:

Γ0 ∨ a ¼1;

Γ1 ∨ a ¼1;

Γ2 ∨ a ¼1;

Γ3 ∨ a ¼1;

Γ0 ∨ Γ1 ∨ Γ2 ∨ Γ3 ∨ a ¼1:

8>>>>>>><
>>>>>>>:

ð14Þ

(2) Add an objective function to limit the active nibbles
for the input and output masks of trails.

(3) Start by setting an initial number of the input and
output mask nibbles of the obtained optimal trials.

(4) Query whether there is a solution that satisfies this
target value.

(5) Reduce the number of the input and output mask
nibbles for linear trails, iterating the process until
no solution is obtained.

By employing this approach, the linear trails with the
optimal correlation and the fewest active input and output
mask nibbles can be identified.

The minimum active input and output masks of linear
trails with optimal correlation are denoted as Nr

c , and that of
differential trails are denoted as Nr

d . The analysis of the
results reveals an observation: Nr

c ¼Nr
d . This equivalence

holds for the first 20 rounds of both differential and linear
trails, i.e., Nr

c ¼Nr
d for 1≤ r≤ 20. Detailed results are shown

in Table 3 in a study by Shi et al. [20]. For instance, the
optimal correlations of the 18-, 19-, and 20-round linear
trails are 2−61, 2−66, and 2−70, respectively. The specific details
of these trails are shown in Tables 10–12, respectively.

5. Improved Linear Distinguishers of WARP

Modern block ciphers are specifically designed to provide
resistance against linear cryptanalysis, and their security is
often supported by provable limitations on the correlation of
linear trails. While many automated tools focus on searching
for linear trails, the exploration of linear hulls is equally
important. This is due to the intentional design of modern
block ciphers to mitigate the presence of dominant trails,
thereby enhancing their resistance against linear cryptanaly-
sis. However, by employing advanced automated tools capa-
ble of searching for linear hulls, we can analyze multiple trails
within a single linear hull. By identifying these trails contrib-
uted to a hull, the optimal linear hulls for WARP are success-
fully discovered.

TABLE 9: The 18-round linear trial with 61 active Sboxes for WARP.

Round Mask #Sboxes

0 0x0000 0081 0000 0000 1018 0000 2800 2000 0
1 0x0000 0000 1200 0001 0080 0000 0000 0080 3
2 0x0020 0008 0010 0800 0000 000c 0000 0000 5
3 0x0001 8800 8000 0000 0000 0800 c100 0200 8
4 0x0000 0000 0801 8010 0410 2000 0008 8400 13
5 0x1084 0000 0000 0108 8202 4041 0802 0000 18
6 0x0000 1000 0082 0140 2481 0024 1200 0021 26
7 0x2100 1400 0000 0000 0020 0044 4410 0010 33
8 0x0800 0011 0000 4200 0041 0000 4000 0000 37
9 0x0000 2080 1004 0000 0000 0000 0000 0014 41
10 0x4202 0000 0000 0000 0000 0800 0041 0000 43
11 0x0000 0020 0000 0020 1400 0000 0000 8800 47
12 0x0000 0000 0000 0000 0000 8242 0000 0000 49
13 0x0000 0000 0000 0000 0000 0000 2000 2000 51
14 0x0000 0000 0202 0000 0000 0000 0000 0000 51
15 0x2028 0000 0000 0000 0000 0000 0008 0000 53
16 0x0000 0000 0000 0080 8002 0000 0000 0002 55
17 0x0000 0008 0000 0808 0000 0008 0020 0020 57
18 0x0000 8202 8080 0000 0002 0202 8200 0000 61

TABLE 10: 18-round linear trial with optimal correlation 2−61.

Round Mask CorðΓ18
in ;Γ

18
outÞ

0 0xa05a 0000 a500 5000 0000 00aa 0000 0000 1
1 0x0050 0000 0000 00a0 0000 0000 a500 000a 2−3

2 0x0000 0005 0000 0000 0050 000a 00a0 0500 2−5

3 0x0000 0a00 5f00 0500 000a 5e00 a000 0000 2−8

4 0x0af0 5000 000a a500 0000 0000 0a0a e0a0 2−13

5 0xa50a 50aa 0e0a 0000 a0aa 0000 0000 0f0a 2−18

6 0xa5e5 005a a500 00aa 0000 f000 00a5 0aa0 2−26

7 0x0050 005a a5a0 0050 5f00 af00 0000 0000 2−33

8 0x005a 0000 a000 0000 0500 00f5 0000 f500 2−37

9 0x0000 0000 0000 00aa 0000 5050 500a 0000 2−41

10 0x0000 0500 00a5 0000 a505 0000 0000 0000 2−43

11 0x5e00 0000 0000 5b00 0000 0050 0000 0050 2−47

12 0x0000 b5e5 0000 0000 0000 0000 0000 0000 2−49

13 0x0000 0000 5000 5000 0000 0000 0000 0000 2−51

14 0x0000 0000 0000 0000 0000 0000 0505 0000 2−51

15 0x0000 0000 000b 0000 505e 0000 0000 0000 2−53

16 0xb007 0000 0000 0005 0000 0000 0000 00e0 2−55

17 0x0000 000e 0050 0070 0000 000a 0000 060b 2−57

18 0x0005 0a05 ec00 0000 0000 6507 a0b0 0000 2−61
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The estimation of probability for linear hulls ðΓin;ΓoutÞ
often relies on the dominant linear trails. However, the research
findings in a study by Teh and Biryukov [18] and Shi et al. [20]
indicate a notable distinction between the probabilities of differ-
ential trails and differentials in WARP. This phenomenon arises

due to the multiple trails being present in a differential and
similarly, the linear hull may also contain multiple linear trails.
Consequently, further investigation into the linear analysis of
WARP is required to enhance the estimation of linear hull’s
probabilityALPðΓin;ΓoutÞ. The approach involves enumeration
of the linear trails to improve the accuracy of the probability
estimation.

The Cryptominisat5 solver [29] is employed to achieve
the automated search of linear hulls. This solver is specifi-
cally designed to handle XOR operations and solve XOR
equation systems using Gaussian elimination. The process
involves finding multiple solutions while keeping the input
and output masks fixed. However, directly outputting all
solutions using the solver may lead to duplicate solutions.
To ensure correctness and efficiency, we follow the approach
outlined in a study by Kölbl et al. [8] and Liu et al. [9], which
involves enumerating multiple solutions step by step.

(1) Step 1: Incorporate the SAT-based model used for
searching linear trails.

(2) Step 2: Introduce constraints that fix the input and
output masks Γin and Γout .

(3) Step 3: Execute the Cryptominisat5 solver to find a
solution representing trail t belonging to the linear
hull ðΓin;ΓoutÞ.

(4) Step 4: Add a new clause describing the obtained
solution to the current CNF model to exclude the
trail t.

(5) Step 5: Reiterate the process by asking the solver to
find a new solution. Repeat steps 3 and 4 until the
solver returns unsatisfiable, indicating that all pos-
sible solutions within the linear hull have been
enumerated.

As shown in Table 13 we present the linear hulls with
a clustering effect for the first 20 rounds of WARP. The
“CorðΓin;ΓoutÞ” column represents the optimal correlation of
the dominant trails within each linear hull. The “#Trails”
column indicates the number of trails searched for within
the linear hull. Then, the averaged linear probability of the
linear hull is calculated by utilizing these trails. Upon ana-
lyzing the findings, as shown in Table 13, it is evident that the
linear hulls of the first 9 rounds have only one dominant
differential trail, indicating a limited clustering effect. The
number of active Sboxes for short trails is relatively small.
However, starting from the 10th round, multiple trails appear
within the linear hulls. The number of trails within the 13-
round linear hulls increases significantly, with the longest-
round linear hulls exhibiting the most prominent clustering
effect. For instance, the 28,527, 149,447, and 186,856 trails
improve the ALP of the 18-round, 19-round, and 20-round
linear hulls from 2−122, 2−132, and 2−140 to 2−109:08, 2−120:01,
and 2−127:27, respectively. We further analyze the distribution
of the trails within the linear hulls from 10 to 20 rounds, as
shown in Table 14. For example, considering the 13-round
linear hull with the given input and output masks as follows:

TABLE 11: 19-round linear trial with optimal correlation 2−66.

Round Mask CorðΓ19
in ;Γ

19
outÞ

0 0xa000 005a 00f0 00aa 0000 0000 5000 005f 1
1 0x000f 0000 a0a5 0000 0000 0000 00f0 00a 2−3

2 0x5000 0005 0000 00f0 000f 0000 00aa 0500 2−6

3 0x0000 0000 5f00 0500 a000 5a0f 0000 00f5 2−10

4 0x00f0 5500 0000 000a 0000 0000 ff50 a000 2−15

5 0x0f00 0000 0aa0 5000 00f5 000a 0000 0f00 2−18

6 0x00aa 0af0 0f00 0000 0000 f000 a505 005f 2−23

7 0x05f0 0000 0000 a0a0 5f5a 0f00 00f5 0000 2−29

8 0x0000 0050 0000 0f0a 5f00 00fa 0a00 ffaa 2−34

9 0x0000 f500 00aa 0000 00a0 f5f5 a5a0 0000 2−41

10 0xa500 0000 0000 5a00 005a 0000 5000 5000 2−46

11 0x0000 a050 0505 0000 0000 0000 0000 00a5 2−49

12 0x5a5f 0000 0000 0000 0000 0500 005f 0000 2−52

13 0x0000 00a0 0000 00f0 ff00 0000 0000 5a00 2−56

14 0x0000 0000 0000 0000 0000 aaff 0000 0000 2−58

15 0x0000 0000 0000 0000 0000 0000 f000 a000 2−60

16 0x0000 0000 0a0f 0000 0000 0000 0000 0000 2−60

17 0xf0a5 0000 0000 0000 0000 0000 000a 0000 2−62

18 0x0000 0000 0000 0050 a00a 0000 0000 000f 2−64

19 0x0000 0005 0000 0a0a 0000 0005 00f0 00a0 2−66

TABLE 12: 20-round linear trial with optimal correlation 2−70.

Round Mask CorðΓ20
in ;Γ

20
outÞ

0 0x5000 00aa 0050 00b5 0000 0000 f000 00a5 1
1 0x0005 0000 a05f 0000 0000 0000 0050 0005 2−3

2 0xf000 000f 0000 0050 0005 0000 005a 0f00 2−6

3 0x0000 0000 ff00 0f00 a000 f505 0000 005f 2−10

4 0x00f0 fa00 0000 000a 0000 0000 5ff0 5000 2−15

5 0x0500 0000 05a0 a000 00ff 0005 0000 0f00 2−18

6 0x005a 0f50 0f00 0000 0000 f000 5a0a 00ff 2−23

7 0x05f0 0000 0000 f0a0 afaa 0500 00f5 0000 2−29

8 0x0000 0050 0000 0f05 5f00 00fa 0f00 5faa 2−34

9 0x0000 f500 005f 0000 00f0 f5ff a5a0 0000 2−41

10 0xf500 0000 0000 5f00 005a 0000 f000 5000 2−46

11 0x0000 f050 050f 0000 0000 0000 0000 00a5 2−49

12 0xff55 0000 0000 0000 0000 0500 005a 0000 2−52

13 0x0000 00f0 0000 0050 aa00 0000 0000 5f00 2−56

14 0x0000 0000 0000 0000 0000 ffa5 0000 0000 2−58

15 0x0000 0000 0000 0000 0000 0000 5000 f000 2−60

16 0x0000 0000 0f05 0000 0000 0000 0000 0000 2−60

17 0x50ff 0000 0000 0000 0000 0000 0005 0000 2−62

18 0x0000 0000 0000 00f0 500a 0000 0000 0005 2−64

19 0x0000 000a 0000 0a05 0000 000f 0050 00a0 2−66

20 0x0000 a50a a050 0000 0005 0a0a fa00 0000 2−70
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Γ13
in ¼ 0x24a8 0000 00c1 0088 0000 0820 8024 0000;

Γ13
out¼ 0x0010 4209 0200 0802 0200 1000 020c 0080:

(
ð15Þ

It is found that one trail with correlation 2−34 and 664 trails
with correlation 2−42. A total of 1800 trails are found to improve
the ALP of this 13-round linear hull. The symbols “∗” in

Table 14 indicates not all linear trails with fixed correlation
within the linear hull have been found. For example, for the
20-round linear hull with the given input and output masks:

Γ20
in ¼ 0x5000 00aa 0050 00b5 0000 0000 f000 00a5;

Γ20
out ¼ 0x0000 a50a a050 0000 0005 0a0a fa00 0000:

(
ð16Þ

TABLE 13: The probability of the linear distinguishers with clustering effect for WARP.

Round Mask CorðΓr
in;Γ

r
outÞ #Trails ALP

1
Γ1
in ¼ 0x0000 8000 0000 0000 0000 0000 0000 0000

Γ1
out ¼ 0x0800 0000 0000 0000 0000 0000 0000 0000

2−0 1 2−0

2
Γ2
in ¼ 0x0000 0000 0000 0000 0000 0000 0000 0028

Γ2
out ¼ 0x0000 0000 0000 0000 0008 0000 0000 0000

2−1 1 2−2

3
Γ3
in ¼ 0x0000 0000 0000 0000 0000 0000 0000 0020

Γ3
out ¼ 0x0000 0000 0000 0000 0200 0000 0002 1000

2−2 1 2−4

4
Γ4
in ¼ 0x0000 1000 0012 0000 0000 0000 0000 0000

Γ4
out ¼ 0x0000 0000 0000 0000 0200 0000 0000 1000

2−3 1 2−6

5
Γ5
in ¼ 0x0000 0000 0000 0000 0000 0000 8240 0000

Γ5
out ¼ 0x0000 0000 0000 0000 0100 0000 0004 2000

2−4 1 2−8

6
Γ6
in ¼ 0x8800 0000 0000 0000 0000 0000 0000 0080

Γ6
out ¼ 0x0000 4002 0080 0000 0000 0002 0900 0000

2−6 1 2−12

7
Γ7
in ¼ 0x0076 0000 0000 0000 0000 c000 00c6 0000

Γ7
out ¼ 0x0000 000c 0200 0000 0000 100c 0060 0000

2−8 1 2−16

8
Γ8
in ¼ 0x0000 0000 0000 2000 0000 0024 0000 0088

Γ8
out ¼ 0x0020 0800 0020 0408 0000 0004 0001 0020

2−11 1 2−22

9
Γ9
in ¼ 0x0088 4200 0000 0000 8080 0028 0000 0000

Γ9
out ¼ 0x0101 0100 0000 2000 8008 0000 c000 0800

2−14 1 2−28

10
Γ10
in ¼ 0x8010 0000 0000 0012 0088 8200 0000 1000

Γ10
out ¼ 0x0010 0200 1000 0000 0202 0200 400c 0000

2−17 7 2−33:54

11
Γ11
in ¼ 0x4080 0000 0000 0028 0039 2800 0000 8000

Γ11
out ¼ 0x0200 0000 0002 d802 8c08 0040 0002 1280

2−7 7 2−43:54

12
Γ12
in ¼ 0x4000 3900 4210 8200 0039 0040 3982 0000

Γ12
out ¼ 0x4902 0040 0009 3940 0900 0000 0009 3202

2−28 3 2−55:83

13
Γ13
in ¼ 0x24a8 0000 00c1 0088 0000 0820 8024 0000

Γ13
out ¼ 0x0010 4209 0200 0802 0200 1000 020c 0080

2−34 1,800 2−65:74

14
Γ14
in ¼ 0x0082 2080 1008 1021 0800 0000 2000 0000

Γ14
out ¼ 0x0020 8808 0800 0802 0400 8000 0808 0080

2−40 8,782 2−75:81

15
Γ15
in ¼ 0xf 000 505f 5000 a000 5fa5 aa00 5aa0 5f 00

Γ15
out ¼ 0x0500 a000 0a0a 00a0 00a0 a505 0a00 0a05

2−47 18,700 2−85:12

16
Γ16
in ¼ 0xaa00 aa00 a5a0 5000 0000 5000 0000 005b

Γ16
out ¼ 0x0005 0a0a aa00 0000 0000 aa0a a0a0 0000

2−52 16,111 2−94:38

17
Γ17
in ¼ 0xf 0f 5 0000 ff 00 a000 0000 00f 5 0000 0000

Γ17
out ¼ 0x0000 000f 00f 0 00f 0 0000 0005 0000 050f

2−57 31,460 2−101:85

18
Γ18
in ¼ 0xa05a 0000 a500 5000 0000 00aa 0000 0000

Γ18
out ¼ 0x0005 0a05 ec00 0000 0000 6507 a0b0 0000

2−61 28,527 2−109:08

19
Γ19
in ¼ 0xa000 005a 00f 0 00aa 0000 0000 5000 005f

Γ19
out ¼ 0x0000 0005 0000 0a0a 0000 0005 00f 0 00a0

2−66 149,447 2−120:01

20
Γ20
in ¼ 0x5000 00aa 0050 00b5 0000 0000 f 000 00a5

Γ20
out ¼ 0x0000 a50a a050 0000 0005 0a0a fa00 0000

2−70 186,856 2−127:27
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The results show that there are at least 64,242 trails within
the linear hull with a fixed correlation 2−72. These findings
provide insights into the clustering effect and distribution of
trails within linear hulls for different rounds of WARP.

6. Conclusion

This paper presents a comprehensive investigation into the linear
cryptanalysis of WARP. The analysis covers a thorough examina-
tion of the cipher’s behavior for the first 19 rounds, along with a
validation of the lower bound on the number of active Sboxes as
stated in the design documentation. Notably, the complexity of
finding linear trails escalates as the number of rounds increased,
especially considering its 128-bit block size. We leverage the
power of the SAT model to efficiently identify optimal linear
trails. It was discovered that the correlation of the 18-round linear
trails was 2−61. Additionally, recognizing that a linear hull can
consist of multiple trails, the researchers found that the probabil-
ity of the 20-round linear hull improved from 2−140 to 2−127:27.
This is the current optimal linear distinguisher for WARP. These
findings contribute to the understanding of the vulnerabilities and
resistance of WARP against linear cryptanalysis. The next step of
the research will further explore the cryptographic properties of
WARP or use other attackmethods such as differential attacks and
meet-in-the-middle attacks to improve the attack results ofWARP
that provide amore comprehensive security evaluation forWARP.
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