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Since their introduction in early 2000, CPA (correlation power analysis), as a cryptographic tool, has been widely used in the
cryptanalysis of cryptographic algorithms (being applicable to both symmetric key ciphers as well as to public key encryption
schemes). An application of the classical CPA method, along with its variants, to cryptographic algorithms that use parallel
implementation of its substitution boxes (S-boxes) commonly requires more power traces to extract the secret key compared to
the case when serial implementation of S-boxes is employed. To reduce the amount of power traces in this scenario, we propose a
modification of the standard CPA approaches and demonstrate practically that our method performs better than the existing ones
in this respect. To verify the efficiency of our improved CPA method, we apply it to the public databases of DPA Contest V2. In
particular, the experimental results show that only 495 power traces are required to recover the secret key of AES. We also compare
the performance of our attack to the relevant methods whose parameters are available at DPA Contest V2. The results show that
compared to the best nonprofiling side-channel attack (SCA) attack, our method reduces the number of power traces required to
recover the secret key by 6,566. Also, our new method performs almost similarly as the best profiling SCA attack of Benoit Gerard
(in terms of the required number of power traces), thus reducing the gap in the performance of profiling and nonprofiling SCA
attacks.

1. Introduction

A cryptographic device running will produce some physical
characteristics, such as execution time [1], power consump-
tion [2], electromagnetic radiation [3], and so on. Essentially,
the size of these physical characteristics are connected to a
particular secret key used in the cryptographic device, thus in
many cases enabling its efficient recovery. Therefore, an
attacker can employ relevant statistical models to analyze
these characteristics generated by the cryptographic devices
and eventually to recover the secret key, which is in general
referred to as the side-channel attack (SCA). Depending on
whether there is a profiling phase in the attack, SCAmethods
can be classified into two classes, namely nonprofiling and
profiling.

(1) Nonprofiling SCA Methods. During the attack, the
adversary collects physical characteristics generated
by the targeted cryptographic device that uses a fixed
secret key k∗. The attacker then uses statistical analy-
sis, serving as a distinguisher, to calculate the correla-
tion between the collected physical traces for the
purpose of identifying the correct secret key k∗ among
a (sub) set of suitable key candidates fkg. Depending
on the distinguisher, the nonprofiling SCA methods
include simple power analysis (SPA) [1], differential
power analysis (DPA) [2], correlation power analysis
(CPA) [4], and mutual information analysis (MIA)
[5] among others.

(2) Profiling SCA Methods. In this case, the attacker has
access to a pair of identical devices, which are com-
monly called the profiling and targeted devices. The
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attack is performed in two steps, known as the pro-
filing and attack phases. During the first phase, the
attacker uses the profiling device to model physical
leakage of the targeted device for all possible guessed
keys k. In the second phase, the attacker collects the
physical characteristics of the targeted device and
retrieves the correct secret key k∗ through the specific
leakage model. This kind of attack includes Tem-
plates Attacks [6], Stochastic Attacks [7], and
Machine Learning-based Attacks [8] among others.
Due to the profiling phase, this kind of attack gener-
ally performs better than the nonprofiling SCAs.

Since their introduction in the early 2000, a lot of efforts
have been put in improving the performance of SCA meth-
ods. When preprocessing of the physical traces is of concern,
different approaches such as linear discriminant analysis
(LDA) [9], elastic alignment [10], principal component anal-
ysis (PCA) [11], singular spectrum analysis (SSA) [12], and
lowpass filtering [13] are often used to improve the signal-to-
noise ratio (SNR). For nonprofiling SCA attacks, the cryp-
tography community has studied the effect of the different
distinguishers [14–16] on their success rate. In addition, an
effective enumeration of the guessed keys [17–19] can be
useful in improving the performance of these nonprofiling
attacks and rank evaluation methods [17, 20, 21] can be used
to enumerate candidate keys in decreasing order of likeli-
hood or estimate rank of the correct key. Moreover, the
application of artificial intelligence and machine learning
in the nonprofiling SCA attacks seems to be under rapid
development recently [22]. For profiling SCA attacks, the
quality of the profiling phase is one of the key factors that
affects its performance. Due to the possibility of accurately
extracting important properties of the available data, the
methods such as deep learning [8] (e.g., deep neural net-
works (DNN) [23]), convolutional neural networks (CNN),
and multilayer perception networks [24] are often used in
the profiling phase. We also mention the efforts of the cryp-
tographic community toward various improvements when a
recovery of the secret key of cryptographic devices with a
protective scheme is considered, refer to [25].

In this article, we propose certain improvements con-
cerning the family of nonprofiling SCA attacks, particularly
CPA, applied to unprotected cryptographic implementa-
tions. A more detailed overview of these improvements is
given in the next subsection.

1.1. Related Work. In CHES 2004, Brier et al. [4] proposed
the use of Pearson correlation coefficients for calculating the
correlation between power traces of the cryptographic algo-
rithm and the data processed by the cryptographic device.
These coefficients are then efficiently used to recover (a por-
tion of) the secret key k∗ and the attack is called CPA [4].
These original ideas have been further developed for the
purpose of improving the performance of the CPA method.
In CHES 2006, Le et al. [26] proposed partitioning power
analysis (PPA) that employs the Hamming distance as a
measure of correlation. In addition, a method of improving
the performance of PPA and CPA by restricting the

normalization factor was also suggested in [26]. The main
benefit of this approach is a reduced number of power traces
required for a successful attack (approximately by half com-
pared to the classical CPA method). In COSADE 2010,
Yongdae et al. [27] demonstrated that the distribution of
power traces can be used in a more sophisticated manner,
which resulted in an attack on AES (implemented in Xilinx
FPGA) that uses (biased) power traces whose amount is eight
times less compared to the classical CPA. In the same year,
Komano et al. [28] proposed another version of CPA, the so-
called built-in determined subkey CPA (BS-CPA), which uses
the knowledge of previously retrieved m subkeys when
recovering the ðmþ 1Þ-th subkey and thereby increasing
the SNR. For the public databases of DPA Contest V1, the
number of power traces required for BS-CPA to recover the
secret key is 65, whereas this number equals 280 for a
classical CPA.

In CARDIS 2012, Oswald and Paar [29] presented an
algorithm for efficient computation of optimal filter coeffi-
cient values, which further improves the performance of
CPA when preprocessing of power traces through a filter is
performed. For the public databases of DPA Contest V2
(containing the power traces for different encryption algo-
rithms and the involved secret keys), a template attack based
on this method can recover the correct guessed key of the
first S-box of AES with 3,000 power traces, whereas the clas-
sical CPA requires about 8,000 power traces. In ICISC 2013,
Kim and Ko [30] used the so-called PCA to further improve
the performance of CPA. The effect of increased correlation
resulted in an even smaller number of power traces (requir-
ing only 1,500) for recovering a portion of the secret key that
affects the first S-box of AES. In SecureComm 2015, Zhang
et al. [31] proposed a novel leakage model (simple-genetic-
algorithm-based CPA) based on the power consumption of
multiple S-boxes to turn the key-searching problem into a
correlation coefficient optimization problem. The experi-
ment shows that this method can reduce the power traces
by 52% for DES and 32% for SM4 than the classical CPA.

To increase the efficiency of CPA, in CHES 2019, Timon
[22] proposed a CPA variant called CNN-DDLA, which
employs the deep learning and neural networks in a non-
profiling scenario. The experimental results showed that the
CNN-DDLA method has the ability of recovering the secret
key using 3,000 software desynchronized traces, whereas the
classical CPA would fail in achieving this. Recently, in CHES
2019, Robyns et al. [32] improved the performance of CPA
by encoding the leaked information for the purpose of maxi-
mizing the correlation coefficient for the EM traces. In 2020,
Kwon et al. [33] introduced a novel approach that uses deep
learning techniques in the nonprofiling SCA scenario. For a
software AES implementation on the chip Whisperer-Lite
platform, this approach improves the SNR from 5.18 to
20.49 when deep learning techniques are employed. In
FGCS 2020, Ding et al. [34] pointed out that there are bitwise
linear leakages in the implemenation of the block ciphers
which involve keys with XOR operation and proposed a
genetic-algorithm-based approach to conduct attacks on bit-
wise lineak leakages.
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1.2. Motivation and Contributions. When classical CPA
methods are used in cryptanalysis of cryptographic devices
such as single chip microcomputer, RFID tags, wireless sen-
sors, and only dozens (possibly hundreds) of power traces
are needed for recovering the secret key of the device. How-
ever, applying a classical CPA to devices implemented on
FPGA and ASIC platforms requires thousands of power
traces for the key recovery. The reason for this phenomenon
is that different implementations of the cryptographic algo-
rithm can make the classical leakage model of CPA, based on
a single S-box, more or less accurate.

To be more specific, a serial implementation of the cryp-
tographic algorithm’s S-boxes makes its power consumption
to be consistent with the operation of adding round subkeys,
whereas in the case of a parallel implementation the power
consumption of the device is rather consistent with the sum
of the operations performed on each subkey. In the latter
case, when the attacker uses a classical CPA to calculate
the correlation between available power traces of a crypto-
graphic device and the affected subkey, the power consump-
tion of other subkeys is considered as noise which results in
an increased number of power traces needed for a key recov-
ery. It is worth noting that although there have been a plenty
of works on improving the performance of nonprofiling SCA
attacks, these approaches almost exclusively focus on the
scenarios where S-boxes are implemented serially. Hence,
the problem of reducing the noise and an optimal utilization
of the leakage information (for the purpose of improving the
performance of standard CPA methods) when S-box primi-
tives are implemented in parallel appears to be a challeng-
ing task.

To address the above problem, we propose a subtle mod-
ification of the existing techniques toward their application
to the case when S-box primitives are implemented in paral-
lel. To achieve this, we give a detailed overview of the rele-
vant methods and discuss the suggested modifications, which
are summarized below.

(1) An Overview of Three Related Works. We review
three works on improving the performance of CPA
against block ciphers found in [26–28]. In order to
fairly compare the efficiency of these methods to our
approach, under the assumption that S-boxes are imple-
mented in parallel, we have reimplemented these meth-
ods and applied them to the public databases of DPA
Contest V2. Based on these simulation results, we
deduce the following conclusions:
(i) The methods of Le et al. [26] and Komano et al.

[28] have limited ability to improve the perfor-
mance of CPA in this setting.

(ii) The method of Yongdae et al. [27] requires a
selection of certain specific power traces from a
larger pool of power traces, which essentially does
not reduce their number.

(2) Our Modified CPA Method. We propose another
strategy that improves the performance of CPA crypt-
analysis in the above mentioned setting (having S-
boxes implemented in parallel). The main refinement

of our approach consists of suitable restrictions of the
normalization factor and the use of previously recov-
ered subkeys recursively when recovering the next
subkey. When our method is applied to the public
databases of DPA Contest V2, the simulation results
indicate that it outperforms the other methods in
terms of the required number of traces, see Table 3 and
Figure 5.

1.3. Organization. The rest of this paper is organized as fol-
lows: Section 2 describes the common leakage model and the
standard CPAmethod in more detail. In Section 3, we give an
overview of the methods in [26–28] and describe our novel
CPA approach. The performance of our improved CPA
method is demonstrated experimentally through its applica-
tion to the public databases of DPA Contest V2 in Section 4.
Some concluding remarks are given in Section 5.

2. Preliminaries

We now provide a brief introduction to the relevant concepts
such as the common leakage model and the correlation power
analysis.

2.1. Common Leakage Model. A majority of power analysis
attacks uses Hamming distance or Hamming weight model
as the preferred leakage models. Define a data word β¼
b1b2…bd , where bi 2f0; 1g. The Hamming weight of D is
the number of bits whose logical value is 1, that is,

HW Dð Þ ¼ ∑
m

j¼1
bj: ð1Þ

The Hamming distance between v0 and v1 can be calcu-
lated as follows:

HD v0; v1ð Þ ¼HW v0 ⊕ v1ð Þ: ð2Þ

The main idea behind Hamming distance model is to
calculate a total number of 0-to-1 and 1-to-0 conversions
of digital circuits in a certain period of time. The simulation
of power consumption in the Hamming distance model uses
the following assumptions:

(1) All 0-to-1 conversions use the same amount of power
as 1-to-0 conversions.

(2) All 0-to-0 conversions and 1-to-1 conversions have
the same effect on power consumption.

(3) All omponents have the same effect on power
consumption.

(4) The static power consumption of the components is
neglected.

In this paper, the leakage model W¼ aHðD⊕ RÞþ b is
used to describe the relationship between the power con-
sumption of a cryptographic device (denoted by W) and the
intermediate state of cryptographic algorithm D, where D
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depends both on the input data and the used key. Here, R
represents a reference state (a constant machine code) and a
is a constant that specifies the ratio between Hamming dis-
tance and power consumption W. Finally, b represents the
remaining power consumption which is assumed to be inde-
pendent of other variables.

2.2. Correlation Power Analysis. Correlation power analysis
is the most widely used method when nonprofiling SCA
attacks are considered. The specific steps of CPA are sum-
marized below [4].

(1) Select an Intermediate State. A proper selection of the
most suitable intermediate state (in either encryption
or decryption direction) of a cryptographic algorithm
is of great importance for the CPA. The intermediate
state is usually generated by a function f ðpi; j; k∗j Þ,
where pi; j is part of the plaintext Pi and k∗j is part
of the secret key k∗ corresponding to pi; j. Those
intermediate states that satisfy this condition can leak
some information about the subkey k∗j .

(2) Collect Power Traces. An experimental platform is
built and the encryption/decryption process is per-
formed N times, thus generating plaintext/ciphertext
pairs ðPi;CiÞ, for i¼ 1;…; n (Pi or Ci being uniformly
distributed). For each encryption or decryption, the
power trace is collected with the oscilloscope and
denoted asWðPiÞ orWðCiÞ. Notice that the collected
power traces need to be preprocessed (such as align-
ment operation [10], etc.) to ensure that the power
consumption of different power traces at the same
time refers to the same encryption operation.

(3) Calculate Possible Intermediate States. Enumerate all
possible values kj; l of the subkey k∗j and record them
in the vector ~kj ¼ðkj; 1;…; kj;Nk

Þ, where Nk represents
the number of values that kj; l can take. For each
possible value kj; l of the subkey k∗j , an intermediate
state d¼ f ðPi=Ci; kj; lÞ is calculated using the plain-
text/ciphertext Pi=Ci to form a vector ~dj; l ¼fdj; l; 1;
…; dj; l;Ng.

(4) Map Intermediate States to Power Consumption.
Select an appropriate leakage model. Usually, the
Hamming weight model performs better in software
implementations, whereas the Hamming distance
model is more suitable for hardware implementa-
tions. For each possible value kj; l of the subkey k∗j ,
the power consumption corresponding to all inter-

mediate states in ~dj; l ¼fdj; l; 1;…; dj; l;Ng is calculated
and these values form the vector ~Hj; l ¼fhj; l; 1;…;
hj; l;Ng.

(5) Calculate and Compare the Correlation Coefficients.
For each possible value kj; l of the subkey k∗j , the
correlation coefficient rj; l is calculated using the
power traces WðPiÞ/WðCiÞ and the intermediate
state vector ~Hj; l ¼fhj; l; 1;…; hj; l;Ng. The value of
kj; l that corresponds to the maximum correlation

coefficient is regarded as a correct guess for the sub-
key k∗j . The correlation coefficient rj; l in the encryp-
tion direction is given by Equation (3).

rj;l

¼ N∑N
i¼1W Pið Þhj;l;i − ∑N

i¼1W Pið Þ∑N
i¼1hj;l;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N∑N
i¼1W Pið Þ2 − ∑N

i¼1W Pið Þð Þ2
p

⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N∑N

i¼1h
2
j;l;i − ∑N

i¼1hj;l;i
À Á

2
q :

ð3Þ

3. Related Works and the Description of
Our Attack

In this section, we first review the three relevant works on
improving the performance of CPA, considered by Le et al.
[26] at CHES 2006, the method of Komano et al. [28], and
the Yongdae et al. [27] approach. Then, we present the detailed
steps of our improved CPAmethod. Later, in Section 4, we will
estimate the performance of these threemethods when applied
to certain block ciphers whose S-boxes are implemented in
parallel and give a comparison to our method.

3.1. An Overview of the Relevant Works

(1) Le et al. [26] Method.

The so-called PPA was originally proposed in [26]. PPA is a
general concept that includes the mono-bit DPA (differential
power analysis), the multibit DPA and CPA based on the
Hamming distance. We now describe the PPA attack in more
detail when it is applied during the encryption process of the
considered block cipher. During the attack, we first need to
determine the targeted d-bit set β¼ b1…bd and the number
of guessed keys Nk ¼ 2d . Then, for each guessed subkey kj; l
(as a d-bit portion of the secret key), one computes the
Hamming distance m¼HDðWðPiÞ;R;D; kj; lÞ with each
trace WðPiÞ and subsequently divides N power traces
WðPiÞ into ðdþ 1Þ classes Gj; l; 0;…;Gj; l; d , where Gj; l;m ¼
fWðPiÞ; i2 ½1;N�jm¼HDðWðPiÞ;R;D; kj; lÞg. Finally, one
can calculate the correlation coefficient rj; l of the guessed key
kj; l with respect to WðPiÞ using the following equation:

rj;l ¼
∑d

m¼0 αj;l;m
∑Gj;l;m

W Pið Þ
Nj;l;m

� �
σWσH

;
ð4Þ

where Nj; l;m ¼ #ðGj; l;mÞ refers to the number of power traces
in Gj; l;m, and σW represents the standard deviation of N
power traces and can be computed as σW ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N ∑

N
i¼1WðPiÞ2 − 1

N2 ð∑N
i¼1WðPiÞÞ2

q
. On the other hand, σH

stands for the standard deviation of the Hamming distance
of a guessed key kj; l when using N power traces. It can be

computed using σH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N ∑

N
i¼1h

2
j; l; i −

1
N2 ð∑N

i¼1hj; l; iÞ2
q

, where
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αj; l;m denotes a specific weight of each class Gj; l;m, and it can

be determined using αj; l;m ¼ Nj; l;m

N ðm−∑d
n¼0

Nj; l;m

N ⋅ nÞ. How-
ever, if the targeted d-bit set β¼ b1…bd follows a uniform
distribution, then αj; l;m is given by:

αj;l;m ¼ Cm
d

2d
m − ∑d

n¼0
Cn
d

2d
⋅ n

� �
; ð5Þ

where Cm
d ¼ d!

m!ðd−mÞ! (similarly for Cn
d ). The main difference

between DPA and CPA is essentially the value σWσH which
equals to 1 for the DPA, whereas for CPA, σWσH is a product
of the standard deviation of N power traces σW and the
standard deviation σH of the Hamming distance of a guessed
key kj; l with N power traces.

In [26], it was shown that the normalization of σWσH neg-
atively affects the SNR, which becomes low and can render the
PPA attack impossible. In order to improve the performance of
PPA, the normalization effect of σWσH was reduced by adding
to σW a positive constant ε [35]. The correlation coefficient rj; l is
then computed as follows:

rj;l ¼
∑d

m¼0 αj;l;m
∑Gj;l;m

W Pið Þ
Nj;l;m

� �
σW þ εð ÞσH

:
ð6Þ

Note that there are two aspects that need to be taken into
account when applying PPA-like cryptanalytic techniques.
The first one is that usually the plaintext blocks correspond-
ing to power traces are random. In a chosen plaintext sce-
nario, there is a possibility of reducing the noise of power
traces which leads to a better SNR. The second aspect is that
the value of a positive constant ε should be chosen carefully in
which case the SNR can be improved without modifying any
parameter of significance.

(2) Komano et al. [28] Approach.

The classical CPA method recovers the targeted d-bit of
the secret key of the cryptographic algorithm individually.
Such an approach is appropriate when cryptographic S-
boxes are implemented serially since in this case the power
consumption refers to a single targeted S-box. However,
when the encryption algorithms use FPGA or ASIC as its
implementation platform, then S-boxes are commonly
implemented in parallel for the sake of performance. For
this kind of cryptographic devices, power traces collected
by the attacker correspond to all S-boxes used in a single
encryption round (these S-boxes process the secret key k∗

as a part of its input data). In this case, the attacker recovers a
d-bit subkey k∗j of the secret key k

∗ by calculating the corre-
lation between a guessed subkey kj; l and the power consump-
tion which refers to all S-boxes implemented in parallel. This
means that the power consumption of the targeted S-box is
only a suitable portion of the measured power trace, which is
not consistent with the main ideas of classical CPA.

To remedy this issue, Komano et al. [28] proposed a
more general power analysis, known as built-in determined
subkey CPA (BS-CPA). Its main strategy is to use previously
recovered subkeys recursively when computing the correla-
tion between a guessed key kj; l and measured power traces,
in the process of recovering a new subkey. The main advan-
tage of BS-CPA over classical CPA is that a larger number of
successfully recovered subkeys implies a greater correlation
for the remaining subkeys and in general the number of
power traces required is smaller compared to the CPA. A
pseudocode below, describes the main steps of BS-CPA.

In the above algorithm, nk∗ denotes the number of sub-
keys of the secret key k∗, whereas I0 ¼fjg specifies indices of
nonrecovered subkeys (initialized by I0 ¼f1;…; nk∗g). The
set of ordered pairs I1 ¼fðj; k∗j Þg collects the information
about recovered subkeys, where j refers to the indices of
recovered subkeys and k∗j refers to the value of j-th recovered
subkey. Maxj represents the threshold value of the j-th sub-
key. The correlation coefficients r0j; l are computed using
Equation (7),

r0j;l ¼
N∑N

i¼1W Pið Þ ∑p
k¼1h

∗
k;i þ hj;l;i

� �
− ∑N

i¼1W Pið Þ∑N
i¼1 ∑p

k¼1h
∗
k;i þ hj;l;i

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N∑N

i¼1W Pið Þ2 − ∑N
i¼1W Pið Þð Þ2

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N∑N

i¼1 ∑p
k¼1h

∗
k;i þ hj;l;i

� �
2
− ∑N

i¼1 ∑p
k¼1h

∗
k;i þ hj;l;i

� �� �
2

r ; ð7Þ

where p represents the number of recovered subkeys, h∗k; i ¼
HDðWðPiÞ;R;D; k∗kÞ is the Hamming distance of the k-th
recovered subkey k∗k from the power trace WðPiÞ, with k2
½1; p�. The remaining symbols have the same meaning as in
Equation (3).

It is important to notice the following when applying the BS-
CPA. First, for the calculation of correlation coefficients of a
guessed key k1; l (thus retrieving thefirst subkey), in Equation (7),
∑p

k¼1h
∗
k; i ¼ 0. Also, the BS-CPA method is suitable for the sce-

narios where the cryptographic algorithm uses a parallel imple-
mentation of S-boxes, and it performs better than the higher level

of parallelization is. Finally, the correctness of already recov-
ered subkeys greatly affects the number of power traces
required for a successful recovery of the subsequent subkeys.

(3) Yongdae et al. [27] Approach.

The power traces collected by the attacker always contain
a noise component, which can increase a required number of
power traces. Apparently, the lower the noise level the smal-
ler is the number of power traces. The noise in a crypto-
graphic device can be divided into two classes, namely
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electronic and switching noise. Electronic noise is the power
consumption generated by electronic components of the
cryptographic device such as, e.g., transistors, and this noise
is affected by the measurement setup. Switching noise is
the power consumption generated by frequent switches of
the logic gets in the cryptographic device, and its level
depends on the level of parallelization. In order to reduce
the impact of the electronic noise on the side-channel
attack, cryptanalysts usually employ some preprocessing
techniques in order to increase the SNR such as PCA
[11], SSA [12], and so on.

Yongdae et al. [27] proposed an efficient preprocessing
technique of selecting (biased) power traces for the purpose
of increasing the SNR and therefore achieving a better per-
formance of CPA attacks. For convenience, this method is
referred to as BIAS-CPA in this paper. The BIAS-CPA
method can be efficiently applied when power traces follow
the normal distribution, in which case the power traces with
large variance or standard deviation are selected in an SCA
attack. The detailed steps of the attack process are given as
follows:

(i) N1 power traces are used to determine which sam-
pling instance has the strongest correlation with the
selected intermediate state, and this instance is
denoted by tct .

(ii) These N1 power traces are then used to calculate the
mean μtct and the variance σ2tct corresponding to tct .

(iii) Then, the probability density value of the sampling
instance tct is calculated for each power trace, using
the probability density function which is determined
from μtct and σ2tct .

(iv) According to the probability density value in (3)
above, the N1 power traces are grouped in descend-
ing order.

(v) Select the first N2 power traces out of N1, to conduct
an SCA attack on the targeted cipher.

Notice that the BIAS-CPA method is similar to a chosen-
plaintext side-channel attack. The difference between them is
that the attacker selects specific power traces when mounting
a BIAS-CPA attack, whereas in the latter case specific plain-
text blocks are chosen for which power traces are measured.

3.2. Our New Improved CPA Method. Before we describe our
method, we briefly discuss the main properties of the above
mentioned methods and the reasons behind they do not
behave optimally when parallel implementation of S-boxes
is the underlying setting. In Section 4, we will provide exper-
imental results that indicate a significant reduction in the
required number of power traces for our improved strategy,
compared to the three methods described in the previous
section. A performance comparison given in Table 3 in
Section 4, leads to the following main conclusions:

(1) For classical CPA, 12, 688 power traces are sufficient
to recover the secret key k∗ of the public databases of

the DPA Contest V2, while 500 power traces can
recover the key of the single chip microcomputer
[36]. That is to say, the number of power traces
required by classical CPA for recovering the secret
key of the cryptographic devices is substantially
larger when S-boxes are implemented in parallel.

(2) PPA can significantly reduce the number of power
traces needed for each subkey recovery but its num-
ber, being typically around 3, 650 (as shown in
Table 3), is still quite large.

(3) For many subkeys (but not all), BS-CPA can reduce
the number of power traces required for their recov-
ery by more than 2,000, see also Table 3. However,
BS-CPA cannot reduce the number of power traces
required for a recovery of the first subkey.

(4) BIAS-CPA is a quite powerful approach, but it
requires a large pool of power traces and the selection
of those that possess certain special properties, which
cannot always be efficiently applied (the required
amount of power traces being not available). There-
fore, a more effective attack method is needed for
handling the case of parallel implementation of S-
boxes in cryptographic algorithms.

It is worth noting that both PPA and BS-CPA aim at
improving the SNR (compared to the classical methods),
but the nature of these improvements differs quite substan-
tially. Hence, there is a possibility of combining these two
methods for the purpose of maximizing the SNR, especially
when parallel implementation of S-boxes is considered. This
leads to a significant reduction of the number of power traces
needed for a secret key recovery. We notice that both PPA

1: Initialization: I0 ¼f1;…; nk∗g, I1 ¼;;
2: while (I0 ≠ ;) do
3: for j2 I0 do

4: Set flag¼ 0;

5: for each guessed key kj; l do

6: Compute the correlation coefficient rj; l ;

7: if rj; l ¼ ¼Maxj then

8: Delete j from I0;

9: Add ðj; kj; lÞ to I1;

10: Set flag¼ 1;

11: end if

12: if flag¼ ¼ 1 then

13: break;

14: end if

15: end for

16: end for

17: end while

Output: I1 ¼fðj; k∗j Þg

ALGORITHM 1: BS-CPA.
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and BIAS-CPA improve the performance of CPA by increas-
ing the variance of power traces. However, this is done in a
different way and whereas PPA adds a suitable constant ε to
the variance of the power traces, BIAS-CPA simply selects
the power traces with larger variance. The simulation results
in Section 4.2, performed assuming that power traces follow
a normal distribution, justify the addition of an appropriate
constant ε that essentially also reduces the number of power
traces used by PPA.

3.2.1. Description of CT-CPA. Our new improved CPA
method, named CT-CPA in this paper (where CT stands
for combined techniques), assumes that the power traces of
the cryptographic device follow a normal distribution. It
combines the ideas of BS-CPA and PPA with the appropriate
constant ε which is selected in accordance to the standard
deviation of the power traces of the cryptographic device.

When mounting CT-CPA attack on a block cipher, we
consider d-bit set β¼ b1;…; bd as the attack target (any sub-
key being of length d bits), and divide the secret key k∗ into
nk∗ subkeys. Then, we use the BS-CPA method to recover
each subkey one by one. When attacking the ðpþ 1Þ-th sub-
key, the calculated hypothetical intermeidate value is the sum
of the hypothetical intermediate values (∑p

k¼1h
∗
k; i þ hj; l; i)

corresponding to p recovered correct subkeys and the
guessed subkey kj; l (corresponding to the ðpþ 1Þ-th subkey),
rather than the one hj; l; i corresponding to the guessed key
kj; l . Thus, the power consumption generated by the p recov-
ered correct subkeys cannot be treated as noise, improving
the SNR during the attack process.

To compute the correlation between each possible
guessed subkey kj; l with the p recovered correct subkey k∗k
(k2 ½1; p�) and N power traces, we adopt the PPA method
based on the Hamming distance. Specifically, we divide N
power traces WðPiÞ into ðdþ 1Þ partitions classes Gj; l; 0, …,
Gj; l; d (where Gj; l;m ¼fWðPiÞ; i2 ½1;N�jm¼HDðWðPiÞ;R;
D; kj; lÞg) with the guessed subkey kj; l (corresponding to the
ðpþ 1Þ-th subkey), and G∗

k; 0, …, G∗
k; d (there are a total of p

similar power trace sets) (where G∗
k;m ¼fWðPiÞ; i2 ½1;

N�jm¼HDðWðPiÞ;R;D; k∗kÞg and k2 ½1; p�) with each cor-
rect subkey k∗k . Then, we use the decision signal Equation (8)
to calculate the correlation coefficient ~r j; new. The detailed
derivation of Equation (8) is shown in Appendix. Note that
Equation (8) is a combiantion of the Equations (6) and (7).
Here, we combine PPA and BS-CPA. On the one hand, we
use BS-CPA to improve the SNR of the correlation coeffi-
cient ~r j; new. On the other hand, we use PPA to enhance each
subbyte’s attack capability, which can compensate for the
shortcomings of BS-CPA.

During calculating correlation ~r j; new using Equation (8),
we need to determine the specific value of the positive con-
stant ε. The specific value of the positive constant ε would
affect the improved attack ability. According to the reimple-
mentation of BIAS-CPA, we found that when the power
traces belongs to the union of ð−1; μtct − 2σtct Þ and
ðμtct þ 2σtct ; þ1Þ, the improved attack ability is better.
Thus, we set the positive constant ε to an appropriate
constant, so that σW þ ε in the correlation coefficient ~r j; new

(i.e., Equation (8)) immediacy approaches the union of
ð−1; μtct − 2σtct Þ and ðμtct þ 2σtct ; þ1Þ. Specially, we use
SPA to determine the sampling point tct , which has the
strongest correlation with the selected intermediate state,
with the available power traces. Then, we calculate the mean
value μtct and standard deviation σtct of the sampling point tct
with these available power traces. Finally, we set the positive
constant ε to ensure σW þ ε is in the union of ð−1; μtct −
2σtct Þ and ðμtct þ 2σtct ; þ1Þ. Note that the method of deter-
mining the specific value of the positive constant ε in this
article is beneficial for improving the attack capability of the
improved CPA, but it may not necessarily be the most effec-
tive. This forms a CPA improvement method suitable for
S-boxes parallel computing scenarios.

In short, we use BS-CPA to improve SNR of the attack
process, and use PPA to calculate the correlation more accu-
rately, especially the correlation for the first subkey. In addi-
tion, we set the specific value of the positive constant ε based
on the core idea of BIAS-CPA, in order to further enhance
the attack capability of the improved CPA. The detailed steps
of CT-CPA are given as follows:

(1) Select the sampling point which gives the largest corre-
lation for the available power traces and denote it as tct :

(2) Calculate the mean value μtct and standard deviation
σtct at the sampling point tct of the power traces using a
relatively small number of traces (according to simula-
tions in Figure 3 it is sufficient to use 150 power traces
to estimate the mean value and standard deviation).

(3) Initialize I0 ¼f1;…; nk∗g, I1 ¼fð0; 0; 0Þg and set ε to
an appropriate constant value according to the mean
μtct and standard deviation σtct for the given power
traces.

(4) Set N ¼ 0. For j2 I0, the following attack is per-
formed as the number of power traces N increases:
(i) For each guessed subkey kj; l , the Hamming dis-

tance m¼HDðWðPiÞ;R;D; kj; lÞ is calculated
using N power traces.

(ii) Divide N power traces WðPiÞ into ðdþ 1Þ clas-
ses Gj; l; 0;…;Gj; l; d , where Gj; l;m ¼fWðPiÞ; i2
f1;…;Ngjm¼HDðWðPiÞ;R;D; kj; lÞg.

(iii) Calculate the correlation coefficient rj; l; new for
the guessed key kj; l according to the Equation (8),
for j¼ 1;…; 2d , thus forming a correlation vector
~rj; new ¼frj; 1; new;…; rj; 2d ; newg.

(iv) Sort the correlation vector ~r j; new in descending
order and record the guessed key kj; l corre-
sponding to the first element in ~r j; new.

(v) Delete j from the set I0 and add ðj; kj; l;NjÞ to the
set I1 whenever the correlation coefficient of the
guessed key kj; l appears at the first position in
the correlation vector ~rj; new at least Tj times,
where Tj is a threshold value indicating that the
guessed subkey value always appears at the first
position in the correlation vector with further
increase of power traces N .
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(5) Check whether I0 is empty. If I0 is empty, terminate
the attack. Otherwise, return to Step 4.

rj;l;new ¼
∑p

k¼1 ∑d
m¼0 α∗k;m

∑G∗
k;m

W Pið Þ
N∗
k;m

� �� �
þ ∑d

m¼0 αj;l;m
∑Gj;l;m

W Pið Þ
Nj;l;m

� �� �
σW þ εð Þ ⋅ σ0H

:

ð8Þ

Remark 1. The purpose of Steps 1, 2, and 3 is to determine an
appropriate value of the positive constant ε, which is derived
from BIAS-CPA. The Step 4 is a combination of PPA and
BS-CPA. In Equation (8), used to compute the correlation
coefficients rj; l; new, the set I1 ¼fðj; k∗j ;NjÞg specifies the
information about recovered subkeys. More precisely, j is the
index of the recovered subkey k∗j and Nj refers to the number
of power traces required to recover the j-th subkey. More-
over, m¼HDðWðPiÞ;R;D; kj; lÞ represents the Hamming
distance between the guessed key kj; l and the power trace
WðPiÞ, where j2 ½1; nk∗ � and l2 ½1; 2d�. Also,G∗

k;m ¼fWðPiÞ;
i2f1;…;Ngjm¼HDðWðPiÞ;R;D; k∗kÞg represents the
class of power traces WðPiÞ related to the k-th recovered
subkey k∗k , whose is N∗

k;m ¼ #ðG∗
k;mÞ. Furthermore, α∗k;m

represents the specific weight of the class G∗
k;m. The specific

formula for its calculation is: α∗k;m ¼ N∗
k;m

N ðm−∑d
n¼0

N∗
k;m

N ⋅ nÞ.
Finally, σ0H represents the standard deviation of the Ham-
ming distance between the guessed key kj; l and N power
traces taking into account p recovered subkeys. The parame-
ter σ0H can be calculated as follows:

σ0H  ¼  

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N

i¼1 ∑p
k¼1h

∗
k;i þ  hj;l;i

� �
2
  −  

1
N2 ∑N

i¼1 ∑p
k¼1h

∗
k;i þ  hj;l;i

� �� �
2

r
;

ð9Þ
where h∗k; i ¼HDðWðPiÞ;R;D; k∗kÞ represents the Hamming
distance between the k-th recovered subkey k∗k and the power
trace WðPiÞ. Here, hj; l; i ¼HDðWðPiÞ;R;D; kj; lÞ denotes the
Hamming distance of the guessed subkey kj; l and the power
traceWðPiÞ. The remaining symbols have the same meaning
as in the Equations (3) and (4). Note that we have deter-
mined the constant ε using the mean and standard deviation
of those power traces used to recover the secret key in BIAS-
CPA. However, we believe that there are other methods for
specifying the constant ε, which deserve further analysis. In
addition, if the available power traces are insufficient to
ensure the sampling point tct which has the strongest corre-
lation, we can perform the CT-CPA on each samping point
to recover the key of the cryptographic algorithm. This
would result in a longer time required for CT-CPA.

4. Experiments and Performance Evaluation

In this section, we first discuss DPA Contest V2. Then, we
give the detailed parameters of the reimplementation of PPA,
BS-CPA, BIAS-CPA, and CT-CPA. Finally, we give a

performance comparison that clearly illustrates the benefits
of using CT-CPA.

4.1. DPA Contest V2. The DPA contests specifies a series of
challenges aiming at comparing the different attack methods
in an objective manner [37]. Among them, the target of DPA
Contest V2 is the unprotected parallel implementation of
AES on FPGA. The power traces of DPA Contest V2 are
collected on a SASEBO-GII board, which is a standard eval-
uation board for side-channel attacks. The SASEBO-GII
board runs at 24Mhz, whereas for the measurement of
power traces the oscilloscope’s sampling rate is 5Gsample/s.

The DPA Contest V2 contains two public databases. The
first database has 1,000,000 power traces, where each power trace
is the power consumption of AES with a random plaintext and a
random secret key. Hence, one can obtain the plaintext, secret
key and ciphertext for each power trace with the name of the
power trace file. This database is used for profiling SCA attacks.
The second database has 640,000 power traces and uses only 32
random secret keys to generate 20,000 power traces for each key.
Similarly, one can also obtain the plaintext, secret key and
ciphertext for each power trace in this database.

The target of our attack is the second database.
Figure 1 shows the power traces of of DPA Contest V2 for
AES on the SASEBO-GII board. One round of AES encryp-
tion is completed within one clock cycle on the SASEBO-GII
board. From Figure 1, we can see that the number of sample
points for a single power trace is 3,253. Therefore, there are
approximately 208 samples per clock and each power trace
has a duration of 15.6 clocks, which is more than 10 rounds
of AES.

4.2. Simulation Results. During the implementation of PPA,
BS-CPA, BIAS-CPA, and CT-CPA, we have set sixteen 8-bit
registers corresponding to the 10th encryption round of AES
as the attack target. We choose the Hamming distance model
as the leakage model, which is the power consumption that
reflects transitions of the registers from 9th round to 10th
round. In [27], three methods for determining the sample
point with the greatest correlation were proposed. In this arti-
cle, we use SPA to determine the 2,394-th sample point as a

Po
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Time (ns)
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FIGURE 1: Power traces of AES on the SASEBO-GII board for DPA
Contests V2. The horizontal axis represents the time samples pro-
portional to clock cycles. The vertical axis represents the relative
voltage values.
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sample point with the greatest correlation, hence tct ¼ 2; 394.
The attack range is between 2,350 and 2,450. The parameters
for each improved CPA method are given below.

(1) The PPA Method of Le et al. [26].

In this case, one needs to determine the specific weights
αj; l;m and the constant ε. As the number of power traces is
large and the bits of β are uniformly distributed, the coeffi-
cients αj; l;m are calculated using Equation (5). The specific
values of the coefficients αj; l;m are shown in Table 1. The
value of positive constant ε is chosen to be 33, which is 10%
of the standard deviation of the power traces σW (following
the same reasoning as in [26]).

(2) The BS-CPA Method of Komano et al. [28].

Komano et al. [28] introduced the parameter Maxi to
denote the maximum correlation coefficient of all guessed
subkeys kj; l , when a recovery of the j-th subkey is considered.
Instead of specifying Maxi, in order to estimate the perfor-
mance of BS-CPA, we have reimplemented this method
assuming the knowledge of a certain portion of the subkeys.
To this end, suppose we have correctly recovered p subkeys.
When recovering the ðpþ 1Þ subkey, we use Equation (7) to
calculate the correlation r0j; l for each guessed subkey kj; l using
the values of p correct subkeys. The decision strategy for
determining the number of power traces required to recover
each subkey is that the correctly guessed subkey preserves the
maximum correlation value as the number of power traces
increases.

(3) The BIAS-CPA Method of Yongdae et al. [27].

The main assumption of BIAS-CPA is that the power
traces follow a normal distribution. Therefore, we first verify
whether the power traces of DPA Contest V2 satisfy this
assumption. With N ¼ 20; 000 power traces, generated using
the same random secret key, the mean and standard devia-
tion of the 2,394-th sample point of the power traces
are 3314.73 and 329.36, respectively. The black curve in
Figure 2 represents the probability density value of the
normal distribution N(3314.73,329.362), whereas the blue
points in Figure 2 approximate the frequency of the
2,394-th sample point for N ¼ 20; 000 power traces. Notice
that the frequency of each value at the 2,394-th sample point
is obtained by dividing the number of its occurrence by the
number of total power traces N . From Figure 2, we draw the
conclusion that the 2,394-th sample point of N ¼ 20; 000
power traces of DPA Contest V2 indeed follows the normal
distribution N(3314.73,329.362), thus applying the BIAS-
CPA method to the public databases of DPA Contest V2
is therefore justified.

(4) Our New Improved CPA Method (CT-CPA).

First, CT-CPA also requires that the power traces follow
a normal distribution, which has already been verified. Sec-
ond, we need to calculate the mean μtct and standard devia-
tion σtct of the 2,394-th sampling point of DPA Contest V2
when using only a relatively small number of power traces.
The variation of the mean μtct and standard deviation σtct of
the 2,394-th sampling point, as the number of power traces
increases, is shown in Figure 3(a). Figure 3(b) is a close-up
look at Figure 3(a), focusing on the first 250 power traces.
According to the diagrams in Figure 3, after the number of
power traces has increased to 150 the mean μtct and standard
deviation σtct will remain constant. This means that we can
assume that the power traces follow a normal distribution
even though their number is relatively small.

The next step is to set ε to an appropriate constant value.
In accordance to the reimplementation results of BIAS-CPA,
the power traces used to recover the secret key of the public
databases of DPA Contest V2 belong to the union of ð−1;
μtct − 2σtct Þ and ðμtct þ 2σtct ; þ1Þ. With respect to the fact
that the standard deviation μtct of the 2,394-th sample point
is 329.36 (for the power traces of DPA Contest V2), we have
set the constant ε to be 500. In this way, when the number of
power traces used to attack DPA Contest V2 exceeds 150
then ðσW þ εÞ approximately approaches the standard devi-
ation 818.05 of the union of ð−1; μtct − 2σtct Þ and ðμtct þ
2σtct ; þ1Þ. The number of power traces for PPA with the
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FIGURE 2: Probability density value/frequency of the 2,394-th sample
point of the power traces. The horizontal axis represents the value of
the 2,394-th sample point for each power trace. The vertical axis
represents the probability density value/frequency of each value of
the 2,394-th sample point of the power traces.

TABLE 1: The specific value of the coefficients αj; l;m.

αj; l; 0 αj; l; 1 αj; l; 2 αj; l; 3 αj; l; 4 αj; l; 5 αj; l; 6 αj; l; 7 αj; l; 8
− 1=64 − 3=32 − 7=32 − 7=32 0 7=32 7=32 3=32 1=64
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constant ε¼ 500 is shown in Table 2. According to Table 2,
setting the constant ε to be 500 implies that the number of
power traces required for a recovery of AES’ subkeys is
reduced compared to PPA with the constant ε¼ 33. In par-
ticular, the number of power traces required to recover the
0th, 3th, 4th, 5th, 7th, 8th, 9th, 11th, 12th, and 13th is less
than 610. To summarize, the constant ε is chosen so that
ðσW þ εÞ approximates the standard deviation of the union
of ð−1; μtct − 2σtct Þ and ðμtct þ 2σtct ; þ1Þ of the normal
distribution Nðμtct ; σ2tct Þ, which can improve the performance
of both PPA and CT-CPA.

Finally, we empirically set the threshold value Tj, intro-
duced in Section 3.2.1, to be 100 due to the following. For

N ¼ 20; 000 power traces generated using a random secret
key in DPA Contest V2, the correct value of the 15-th subkey
is 0xE1. However, by increasing the number of power traces
from 246 to 339, the correlation of incorrect subkey value
0x2F remains maximum, which implies that this key byte is
incorrectly recovered.

In the worst case, the number of power traces for which
the correlation of a wrongly guessed subkey may be maximal
equals 94, which justifies the use of Tj ¼ 100 for identifying
the correct subkey values. Figure 4 shows the worst case
scenario, when the correlation of an incorrectly guessed sub-
key calculated by CT-CPA achieves the maximum as a func-
tion of the number power traces.
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FIGURE 3: The variation of mean and standard deviation of 2,394-th sample point are represented by the red line and the black line,
respectively. (a) Variation of mean/standard deviation with 20,000 power traces and (b) a close-up look at Figure 1(a). The horizontal
axis represents the number of power traces. The vertical axis represents the value of mean and standard variation.

TABLE 2: The number of power traces for PPA with the constant ε¼ 500.

Byte 0 1 2 3 4 5 6 7
Traces 399 1,096 1,078 408 603 604 1,352 188

Byte 8 9 10 11 12 13 14 15
Traces 537 65 1,327 597 562 568 1,598 1,946
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FIGURE 4: The maximum correlation for the 15-th subkey of CT-CPA for the public databases of DPA Contest V2. The horizontal axis
represents the number of the power traces. The vertical axis represents the guessed key with maximum correlation.

10 IET Information Security



Note that the value of α∗k;m and αj; l;m in Equation (8) are
shown in Table 1.

4.3. Performance Evaluation. In this section, we analyze the
performance of the mentioned attack methods in terms of
the required number of power traces and discrimination
which refers to the ratio between the correlation coefficient
of the correct key candidate and of the wrongly guessed key
whose correlation coefficient is maximal among the wrong
guessed keys (see below for more details).

(1) Required Number of Power Traces.

This parameter refers to the minimum number of power
traces required to successfully recover a subkey. Figure 5 shows

the correlation variations for all guessed values for the 15-th
subkey as the number of power traces increases, for different
attack methods. According to Figure 5, to recover the 15-th
subkey, CPA, PPA (with ε¼ 33), BS-CPA, and BIAS-CPA
require 8,353, 3,771, 5,573, and 1,228 power traces, respec-
tively. On the other hand, our CT-CPA method only needs
428 power traces for the same purpose, which is a substantial
improvement over the other methods.

In addition, Table 3 shows a required number of power
traces for recovering all the subkeys for these attack methods.
According to Table 3, classical CPA, PPA (with ε¼ 33), BS-
CPA, and BIAS-CPA require 12,688, 3,771, 10,808, and 3,472
power traces, respectively. There is a huge improvement of
CT-CPA over the other methods since it only requires 495
power traces for recovering all the subkeys.
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FIGURE 5: Variations of the correlations between guessed subkeys and the correct 15-th subkey for differentmethods. (a) CPA, (b) PPA (ε=33), (c) BS-
CPA, (d) BIAS-CPA, and (e) CT-CPA. The red and black lines represent the correlation to a correctly and wrongly guessed subkey, respectively.
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Table 4 shows the results of attacking the public data-
bases of DPA Contest V2 submitted by participants, which
can be obtained from [38]. As evident from Table 4, the
number of power traces needed for the best nonprofiling
SCA attack is 7,061. However, our CT-CPA only requires
495 power traces to recover AES’s secret key for the public
database of DPA Contest V2, which is a huge improvement
compared to 7061. In addition, for the profiling SCA attacks,
Benoit Gerard’s method (mentioned in [38]) performs best
and needs only 439 power traces. Since in general profiling
SCA attacks perform better than that nonprofiling SCA var-
iants, Tables 3 and 4 show that CT-CPA can significantly
reduce the gap in the performance of these two classes of
side-channel attacks.

(2) Discrimination.

For the purpose of evaluating the performance of differ-
ent CPA methods, we introduce a new concept called dis-
crimination. In brief, the discrimination describes the ratio
between the correlation coefficient of the correct subkey can-
didate and of the maximum correlation value among incor-
rect subkey values. The following easy conclusions can be
immediately deduced given this ratio:

(i) If discrimination is greater than 1, then the correct
subkey value attains the maximum correlation, which
implies that the considered subkey is successfully
recovered.

(ii) If discrimination is less than 1, there exists an incor-
rectly guessed subkey having themaximum correlation,
thus implying a failure in the process of this subkey
recovery.

(iii) In general, a larger discrimination value implies a
larger distance between the correlation of a correctly
guessed subkey and of a wrong one, which gives a
better resolution when distinguishing correct and
wrong subkey values.

One can also consider the dependency of discrimination
on the increased number of power traces. Especially, with
respect to the recovery of the 15-th subkey we provide (in
this context) a performance comparison of different attack
methods in Figure 6 with the following conclusions:

(i) Discrimination of CT-CPA and PPA are greater than
that of BS-CPA, CPA, and BIAS-CPA. It shows that
CT-CPA and PPA are more successful in distinguish-
ing the correct subkey than the other methods.

TABLE 3: The number of power traces required for recovering different subkeys for CPA [4], PPA (ε¼ 33) [26], BS-CPA [28], BIAS-CPA [27],
and CT-CPA.

Bytes
CPA PPA (ε¼ 33) BS-CPA BIAS-CPA CT-CPA

Traces Traces Order Traces Traces Order Traces

0 7,157 1,129 9 8,524 359 6 197
1 5,667 1,265 4 3,244 970 3 120
2 12,688 1,091 14 10,631 2,748 12 104
3 2,394 734 0 2,394 328 1 59
4 10,869 663 15 10,808 3,472 15 495
5 3,423 3,414 5 3,433 333 13 315
6 6,934 2,819 6 3,380 2,296 7 310
7 9,223 2,024 12 7,367 140 2 77
8 6,410 1,596 2 2,174 423 4 215
9 3,676 1,980 3 3,183 34 0 65
10 9,697 1,570 13 8,009 415 8 295
11 4,560 1,649 1 2,356 720 5 234
12 4,699 3,650 8 5,583 647 10 405
13 10,946 1,083 10 4,930 319 11 411
14 5,540 2,894 7 4,577 601 9 361
15 8,353 3,771 11 5,573 1,228 14 428

TABLE 4: The number of power traces to recover the public databases
of DPA Contest V2 submitted by the participants [38].

Participant/team
Number of

traces

Nonprofiling SCA attacks
Matthieu Walle 7,061
Victor Lomne 10,666
Mael Berthier,Yves Bocktaels 10,796
Autoine Wrucker 13,474
Mael Berthier 15,943
Alexis Bonnecaze 18,458
CT-CPA 495

Profiling SCA attacks
Benoit Gerard, Nicolas Veyrat-Charvillon 439
Yang Li, Daisuke Nakatsu, Kazuo Sakiyama 2,256
Annelie Heuser, Michael Kasper, Werner 3,589
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(ii) Discrimination of CT-CPA and PPA remains roughly
invariant when the number of power traces increases,
assuming that the previous subkey has been success-
fully recovered. Therefore, CT-CPA and PPA perform
similarly in terms of discrimination (resolution) but
our approach requires much less power traces com-
pared to PPA.

(iii) Discrimination for BS-CPA is always approximately 1
as the number of power traces increases, indicating that
there always exist certain subkey values whose

correlation remain the same as that of the correct
one. This means that when the SNR of the power traces
is relatively low then the BS-CPA method can perform
quite badly, which then indicates that CT-CPA has a
better discrimination ability than BS-CPA.

(3) Guessing Entropy.

During attacking each subkey of AES in DPA Contest
V2, we sort all guessed keys in descending order based on
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FIGURE 6: Variations in the discrimination of the 15-th subkey as a function of power traces for different methods.
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their correlation with N power traces. The guessing entropy,
refers to as GE, indicates that the ranking of the correct
guessed key among all guessed keys. The range of GE is
from 0 to 255, where 0 represents this subkey is successfully
recovered. We used CT-CPA to attack 6.4-million power
traces of 32 keys (20,000 power traces for a key), and obtain
the guessing entropy for each subkey byte, as shown inFigure 7.
From Figure 7, we can see that when the number of power
traces increases to about 495, the guessing entropy of the cor-
rect guessed key for all subkey bytes is less than 5. That is to
say, when the number of power traces increases to 495, we can
reduce the space complexity of guessed keys from 2128 to 237.
In this case, we can obtain the correct key of AES through
exhaustive search.

(4) Success Rate.

This parameter indicates the success probability of recov-
ering a subkey or all keys of a cryptographic algorithm.
Figure 8 shows that the success rate of recovering each sub-
key using our CT-CPA as the power traces increase from 0 to
2,000. From Figure 8, we can find that when the power traces
increases to 495, the success rate of subkey bytes 0;…; 9, 11,
and 15 can reach 80% (as shown in Figure 8(a)), and the
success rate of the ramaining subkey bytes can reach 60%. In
addition, we can discover that when the power traces
increase to 800, the success rate of all subkeys ranges from
60% to 80% (as shown in Figure 8(b)).

5. Conclusions

In this paper, we have given an overview of the improved
CPA methods and simulated their performance using the

public databases of DPA Contest V2. To further improve
the performance of CPA attacks, we have introduced a new
CPA method (abbreviated as CT-CPA) which is suitable in
the scenarios when cryptographic algorithm use parallel
implementation of S-boxes. With respect to the public data-
bases of DPA Contest V2, the experimental results show that
CT-CPA only requires 495 power traces for recovering the
secret key of AES which is a huge improvement over the
other CPA techniques.

Appendix

In this section, we give a detailed derivation of Equation (8).
It is worth noting that the symbols appearing below have the
same meaning in the appendix as in the text. Equation (3)
shows that the equation for calculating the correlation coef-
ficient of the guessed subkey kj; l by CPA is,

rj;l ¼
N∑N

i¼1W Pið Þhj;l;i − ∑N
i¼1W Pið Þ∑N

i¼1hj;l;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N∑N

i¼1W Pið Þ2 − ∑N
i¼1W Pið Þð Þ2

p
⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N∑N

i¼1h
2
j;l;i − ∑N

i¼1hj;l;i
À Á

2
q :

ðA:1Þ

Suppose that CT-CPA is used to estimate the subkey
value kj; l, assuming that p correct subkey values have been
recovered. Considering the impact of the p correct subkey
values on calculating the correlation coefficient of the candi-
date subkey kj; l (for the j-th subkey), the correlation coeffi-
cient r0j; l is expressed as follows:
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FIGURE 8: Success rate for all subkey bytes: (a) 0, …, 9, 11, 15 and (b) 6, 8, 10, 12, 13, 14 of AES using CT-CPA.
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We denote the nominator A : ¼N∑N
i¼1WðPiÞð∑p
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∗
k; i þ

hj; l; iÞ−∑N
i¼1WðPiÞ∑N

i¼1ð∑p
k¼1h

∗
k; i þ hj; l; iÞ of the correlation

coefficient r0j; l with p× ðdþ 1Þ classes G∗
1; 0;…;G∗

1; d;…;G∗
p; 0;

…;G∗
p; d and ðdþ 1Þ classesGj; l; 0;…;Gj; l; d . Then, A becomes:

A ¼N ∑
N

i¼1
W Pið Þ ∑

p

k¼1
h∗k;i þ hj;l;i

� �
− ∑

N

i¼1
W Pið Þ∑

N

i¼1
∑
p

k¼1
h∗k;i þ hj;l;i

� �

¼ N ∑
N

i¼1
W Pið Þ ∑

p

k¼1
h∗k;i

� �
− ∑

N

i¼1
W Pið Þ∑

N

i¼1
∑
p

k¼1
h∗k;i

� �� �
þ N ∑

N

i¼1
W Pið Þhj;l;i
À Á

− ∑
N

i¼1
W Pið Þ∑

N

i¼1
hj;l;i

� �

¼ ∑
p

k¼1
N ∑

N

i¼1
W Pið Þh∗k;i
� �

− ∑
N

i¼1
W Pið Þ∑

N

i¼1
h∗k;i

� �
þ N ∑

N

i¼1
W Pið Þhj;l;i
À Á

− ∑
N

i¼1
W Pið Þ∑

N

i¼1
hj;l;i

� �

¼ ∑
p

k¼1
N ∑

d

m¼0
∑
G∗

k;m

W Pið Þ ⋅ mð Þ − ∑
d

m¼0
∑
G∗

k;m

W Pið Þ
 !

∑
d

n¼0
∑
G∗

k;n

n

 !" #

þ N ∑
d

m¼0
∑

Gj;l;m

W Pið Þ ⋅ mð Þ − ∑
d

m¼0
∑

Gj;l;m

W Pið Þ
 !

∑
d

n¼0
∑
Gj;l;n

n

 !" #

¼ ∑
p

k¼1
∑
d

m¼0
N ⋅ m ∑

G∗
k;m

W Pið Þ
 !

− ∑
d

m¼0
∑
G∗

k;m

W Pið Þ
 !

∑
d

n¼0
N∗
k;n ⋅ n

� �� �" #

þ ∑
d

m¼0
N ⋅ m ∑

Gj;l;m

W Pið Þ
 !

− ∑
d

m¼0
∑

Gj;l;m

W Pið Þ
 !

∑
d

n¼0
Nj;l;n ⋅ n
À Á� �" #

¼ ∑
p

k¼1
∑
d

m¼0
N ⋅ m − ∑

d

n¼0
N∗
k;n ⋅ n

� �� �
∑
G∗

k;m

W Pið Þ
" #

þ ∑
d

m¼0
N ⋅ m − ∑

d

n¼0
Nj;l;n ⋅ n
À Á� �

∑
Gj;l;m

W Pið Þ
" #

:

ðA:3Þ

Let us denote α∗k;m ¼ N∗
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The correlation coefficient r0j; l becomes:
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The correlation coefficient r0j; l can be written as follows:
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Since CT-CPA improves the performance of CPA by
adding a constant ε to the standard deviation of the power
traces σW, the correlation coefficient of CT-CPA rj; l; new is
expressed as follows:
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