
Research Article
Kyber, Saber, and SK-MLWR Lattice-Based Key Encapsulation
Mechanisms Model Checking with Maude

Duong Dinh Tran ,1 Kazuhiro Ogata ,1 Santiago Escobar ,2 Sedat Akleylek ,3,4 and
Ayoub Otmani 5

1Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
2VRAIN, Universitat Politècnica de València, Valencia, Spain
3Ondokuz Mayis University, Samsun, Türkiye
4University of Tartu, Tartu, Estonia
5University of Rouen Normandie, Rouen, France

Correspondence should be addressed to Duong Dinh Tran; duongtd@jaist.ac.jp

Received 13 June 2023; Revised 8 September 2023; Accepted 11 September 2023; Published 30 October 2023

Academic Editor: Thomas Haines

Copyright © 2023 Duong Dinh Tran et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Facing the potential threat raised by quantum computing, a great deal of research frommany groups and industrial giants has gone
into building public-key post-quantum cryptographic primitives that are resistant to the quantum attackers. Among them, there is
a large number of post-quantum key encapsulation mechanisms (KEMs), whose purpose is to provide a secure key exchange,
which is a very crucial component in public-key cryptography. This paper presents a formal security analysis of three lattice-based
KEMs including Kyber, Saber, and SK-MLWR. We use Maude, a specification language supporting equational and rewriting logic
and a high-performance tool equipped with many advanced features, such as a reachability analyzer that can be used as a model
checker for invariant properties, to model the three KEMs as state machines. Because they all belong to the class of lattice-based
KEMs, they share many common parts in their designs, such as polynomials, vectors, and message exchange patterns. We first
model these common parts and combine them into a specification, called base specification. After that, for each of the three KEMs,
by extending the base specification, we just need to model some additional parts and the mechanism execution. Once completing
the three specifications, we conduct invariant model checkings with the Maude search command, pointing out a similar man-in-
the-middle attack. The occurrence of this attack is due to the fact that authentication is not part of the KEMs, and therefore an
active attacker can modify all communication between two honest parties.

1. Introduction

Quantum attack threat, of which Shor’s [1] algorithm is known
as the most effective one, is a credible threat affecting most
public-key (or asymmetric) cryptosystems in use today. The
essential reason is that the security of those systems relies on
some specific hard mathematical problems (e.g., the integer
factorization problem) which are intractable for conventional
computers to solve, but can be efficiently solved by a sufficiently
large quantum computer running Shor’s algorithm. Because of
the steady development of quantum computers in recent years
with the participation ofmany giants, such as IBM,Google, and

Microsoft, the quantum attack threat to the public-key crypto-
systems may happen in near future. On the other hand, quan-
tum computers pose less danger to the symmetric primitives.
Although the complexity of breaking symmetric primitives can
bemade simpler usingGrover’s algorithm [2], these attacks can
be effectively avoided by doubling the key size. In particular,
AES-256 would be as hard to break by a quantum computer as
AES-128 is by a classical computer.

Facing that potential quantum attack threat, a great deal of
research has gone into constructing new cryptosystems that are
secure even in the presence of quantum attackers, so-called
post-quantum cryptosystems. In 2017, the Post-Quantum

Hindawi
IET Information Security
Volume 2023, Article ID 9399887, 17 pages
https://doi.org/10.1049/2023/9399887

https://orcid.org/0000-0001-7092-2084
https://orcid.org/0000-0002-4441-3259
https://orcid.org/0000-0002-3550-4781
https://orcid.org/0000-0001-7005-6489
https://orcid.org/0000-0001-8176-8692
mailto:duongtd@jaist.ac.jp
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2023/9399887

Cryptography Project was launched by theNational Institute of
Standards and Technology (NIST), calling for submissions for
post-quantum cryptographic algorithms (https://csrc.nist.gov/
Projects/post-quantum-cryptography/post-quantumcryptogra
phy-standardization/Call-for-Proposals). There were 69 sub-
missions in the first round of this standardization project, among
them, many were post-quantum key encapsulation mechanism
(KEM) proposals, which were dedicated to securely establishing
a shared key between two parties over an insecure network. This
is understandable because the symmetric key establishment is
considered one of themost crucial components in the public-key
cryptography.

Cryptographic protocol analysis can be largely classified
into two complementary approaches [3]: computational anal-
ysis and symbolic analysis. The former treats messages as bit
strings and cryptographic primitives as functions from bit
strings to bit strings. A security proof in the computational
approach can be regarded as a mathematical reduction, where
the only chance to violate the security of the given crypto-
graphic construction is to solve some presumed computation-
ally infeasible problems. The latter treats messages as terms
and cryptographic primitives as functions from terms to
terms. The attacker’s capabilities are modeled by manipulat-
ing terms representing messages exchanged in the network.
Three KEMs considered in this paper were already given
security proofs in the computational approach. Those compu-
tational proofs provide a tight security guarantee because it
takes probability and complexity into account. However, they
are not computer-verified, complicated in general, and diffi-
cult for those who are not cryptography experts to under-
stand. Symbolic analysis, on the other hand, is easier to
understand even for nonexperts, and more importantly, it is
computer-verified and easily automated. The cost for that
benefit is that perfect cryptography assumption is typically
made in symbolic analysis. Our analysis reported in this paper
belongs to the symbolic approach. Note that the analysis can
be applied to not only the three KEMs but also other KEMs
and other kinds of primitives as well.

In this paper, we formally specify and model check three
lattice-based KEMs including Kyber [4] (precisely CRYS-
TALS-Kyber), Saber [5], and SK-MLWR [6] (the KEM by
Akeylek and Seyhan [6] is called SK-MLWR in the present
paper). Kyber bases its security on the presumed hardness of
solving the learning with error (LWE) problem, while the
security of Saber and SK-MLWR relies on the presumed
difficulty of the module learning with rounding (MLWR)
problem. LWE provides security by adding “noise” to the
inner product of a secret vector with a random public vector.
When used for key exchange, the inverse operation tries to
guess the secret vector from the received key. LWR is a
variant of LWE, where one replaces random noise with
deterministic rounding in order to increase efficiency. Kyber
was selected as a candidate to be standardized for public-key
encryption and key exchange in July 2022 by NIST (https://
csrc.nist.gov/Projects/post-quantum-cryptography/selected-
algorithms-2022). It is the unique candidate for public-key
encryption and key exchange. We use Maude [7], a specifi-
cation language supporting both equational and rewriting

logic, to model the three KEMs as state machines. We first
model plenty of common parts in the designs of the three
KEMs, such as polynomials and vectors. Then, the complete
formal specification of each KEM is achieved by modeling
some additional parts that are specific to only that mecha-
nism, followed by modeling its execution. With the attacker
model, we follow the Dolev and Yao [8] model to specify
intruder capabilities. Once the three formal specifications are
completed, we conduct invariant model checkings in Maude
by using the search command, finding a man-in-the-mid-
dle (MITM) attack for each of the three KEMs. Although this
kind of attack is not a novel attack for KEMs, what we
present in this paper illustrates one possible way to symboli-
cally analyze KEMs. To gain a confident security assurance,
the three KEMs must be deeply analyzed due to their relative
newness. Our ultimate goal is to conduct security analysis/
verification of post-quantum cryptographic protocols. Such
protocols use post-quantum cryptographic primitives, such
as the three KEMs considered in this paper. Thus, for proto-
col security analysis, formally specifying such primitives are
necessary. What is reported in this paper is our initial step
toward the goal.

This is an extended version of our previous paper by
Tran et al. [9], where Kyber is the only one mainly described.
Another paper of ours by Tran et al. [10] has also reported a
similar experiment with the Saber mechanism. Our work
presented in this paper benefits from these two previous
studies. We reuse those two independent formal specifica-
tions to first construct a so-called base specification, where
common parts in the designs of the three KEMs are specified.
Then, the complete specification for each KEM is quickly
finalized by extending the base specification. In this way,
we can specify the three lattice-based KEMs with less effort.

1.1. Roadmap. The structure of the remaining of this paper is
as follows: Section 2 gives some preliminaries, such as the
definitions of KEM and state machine. Section 3 briefly
explains the three lattice-based KEMs. Section 4 presents
the base specification used for the three KEMs. Then, Section
5 presents how to complete the Maude specification of Kyber
from the base specification and reports its model checking
experiment. Section 6 briefly describes the complete specifi-
cations of Saber and SK-MLWR. Section 7 notes some
remarks on the experiments we have conducted. Section 8
discusses some related work and finally, Section 9 sum-
marizes the paper.

All of the Maude specifications and checking commands
reported in this paper can be downloaded from the webpage
(https://github.com/duongtd23/lattice-based-kems-mc).

2. Preliminaries

2.1. Key Encapsulation Mechanism (KEM).We start with the
definition of a general KEM.

Definition 1. A key encapsulation mechanism consists of the
following three algorithms:

2 IET Information Security

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantumcryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantumcryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantumcryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantumcryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantumcryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://github.com/duongtd23/lattice-based-kems-mc
https://github.com/duongtd23/lattice-based-kems-mc

(i) KeyGen() À! pk;ð skÞ: a probabilistic key genera-
tion algorithm that outputs a public/secret key pair
pk and sk.

(ii) Encaps(pk)À! c;ð kÞ: a probabilistic encapsulation
algorithm that takes a public key pk as input and
returns a ciphertext (or encapsulation) c and a key k.

(iii) Decaps(c; sk)À! k: a (typically deterministic) dec-
apsulation algorithm that takes a ciphertext c and a
secret key sk as inputs and returns a key k.

We say a KEM is ϵ-correct if for all pk;ð skÞ← KeyGen()
and c;ð kÞ← Encaps(pk), it holds that:

Pr[Decaps c;ð skÞ≠k�≤ ϵ

In this work, all KEMs are assumed to be 0-correct,
meaning that Encaps and Decaps always correctly pro-
duce the same shared key k. In order to do security verifica-
tion in the symbolic model, idealizing presumptions like that
are often required. Because of the really small probability of
Decaps-failure for each KEM, typically almost 0, we are not
overidealizing when omitting such Decaps-failure cases.
For instance, that failure probability of Kyber is below
2−140 [4], namely Kyber is ϵ-correct with ϵ<2−140.

In the following, we briefly describe some mathematical
notations used in Kyber, Saber, and SK-MLWR. The three
KEMs share some common mathematical backgrounds
because they all belong to the class of lattice-based KEMs.
For instance, they are all relied on the polynomial rings,
vectors, and matrices.

Let B denote the set 0;f …; 255g, i.e., the set of 8-bit
unsigned integers (bytes). Bk and B∗ denote the set of byte
arrays of length k and the set of byte arrays of arbitrary
length, respectively. Given two byte arrays a and b, a bkð Þ
denotes the concatenation of a and b.

Let Zq denote the ring of integers modulo q. R and Rq
denote the polynomial ring Z X½ �= Xnð þ 1Þ and the quotient
polynomial ring Zq X½ �= Xnð þ 1Þ, respectively. Given x2Q,
where Q denotes the rational numbers set, ⌊x⌉ denotes
rounding of x to the closest integer. Rk

q and Rk×l
q denote the

set of vectors and matrices from Rq with dimensions of k and
k× l, respectively. Regular font letters denote elements in R
or Rq (which includes Z and Zq), while bold lowercase letters
denote vectors with coefficients in R or Rq. By default, all
vectors are column vectors. Bold uppercase letters are matri-
ces. Given a vector v (or matrix A), it transpose is denoted by
vT (or AT). v i½ � is i-th entry of the vector (with indexing
starting at zero) and similarly, A i½ � j½ � is the entry of row i
and column j of the matrix.

2.2. State Machine and Maude. We turn to describe in a
nutshell how to specify a state machine in Maude and use
the Maude search command to perform invariant model
checking.

Definition 2. A state machine M is a tuple of 〈S;I;T〉,
where S is a set of states, I⊆S is a set of initial states, and
T⊆S×S is a binary relation over states.

Definition 3. The setR of reachable states with respect toM
is defined as follows:

(i) for each s2I, s2R
(ii) for each s;ð s0Þ 2T , if s2R, then s0 2R

In this paper, to express a state of S, we use a braced
associative-commutative collection (AC-collection) of name-
value pairs. A name-value pair is called an observable com-
ponent. The juxtaposition operator is used as the constructor
of AC-collection. For instance, oc1; oc2; oc3 is the AC-
collection of three observable components oc1, oc2, and
oc3. A state is of the form foc1; oc2; oc3g.

In this paper, state transitions are specified as rewrite rules in
Maude [7], a specification language supporting both equational
and rewriting logic.Moreover,Maude is also a high-performance
tool equipped with several formal analysis functionalities, such as
a reachability analyzer and an LTLmodel checker. A conditional
rewrite rule in Maude is in the following form:

crl [label]:a => b if … /\ ci/\ ….

where label is the label of the rule, a and b are patterns of the
source state and the successor state, respectively. ci is part of
the condition, which may be an equation lci ¼ rci. If the
condition … /\ ci/\ … holds under some substitution σ,
σ að Þ can be replaced with σ bð Þ.

For the reachability analysis, Maude provides the
search command that can find states reachable from a
given state, matching a given pattern, and satisfying a given
condition. A search command is in the following form:

search [n,m] in M : i=> ∗ p such that c.

where M is the name of the Maude module specifying the
state machine. n and m are optional arguments denoting a
bound on the number of desired solutions and the maximum
depth of the search, respectively. i, p, and c denote the given
state, the pattern, and the condition(s), respectively. In prac-
tice, n typically is 1 and i typically represents an initial state
of the state machine.

3. Kyber, Saber, and SK-MLWR

Through this section, we briefly describe the three KEMs.

3.1. Kyber. Figure 1 depicts the triple algorithms (KeyGen,
Encaps, and Decaps) of Kyber KEM [4]. These algorithms
employ three other algorithms (KeyGen, Enc, and Dec) of
Kyber.PKE (stands for public key encryption), which are
depicted in Figure 2. There are two hash functionsH :B∗ À!
B32 and G :B∗ À!B32 ×B32. KDF is the key derivation
function, where KDF :B∗ À!B32. gen is the function dedi-
cated to generating a pseudorandom matrix A2Rk×k

q from a
seed ρ. The communication depicted in Figures 1 and 2 is as
follows. Alice first randomly selects a seed d, hashing it to get the
pair ρ;ð σÞ. From σ, she generates two vector s and e, serving as
the secret key sk and a noise component, respectively. From ρ,
she generates matrix A, and then she computes t from s, e, and
A. Alice sends the public key pk, which is a pair of t and ρ, to

IET Information Security 3

Bob. When receiving pk, Bob performs the step KEM.Enc (i.e.,
Encaps) as depicted in Figure 1. He randomly selects an m0,
hashes it, and passes the outputs to the procedure PKE.Enc
(depicted in Figure 2). The obtained ciphertext c, which is a pair
of c1 and c2, is sent back to Alice. When receiving c, Alice per-
forms the step KEM.Dec (i.e., Decaps). She computes c0 by
employing the procedures PKE.Dec and PKE.Enc. c0 will equal
c with an overwhelming probability, implying thatm0 on Alice’s
side is equal tom on Bob’s side, and they can derive the same key
K . Note that all calculations in the twofigures are computed over
Zq X½ �= Xnð þ 1Þ. Hereinafter, let us call the firstmessage sending
the public key pk from Alice to Bob the public key message,
and the second message sending the ciphertext c from Bob to
Alice the ciphertext message.

Kyber also employs two functions Compress and
Decompress. Let x2Zq and d<⌊ log2q⌉, the two functions
are defined by the following equations:

Compressq x; dð Þ¼ 2d=q
� �

⋅ x
� �

mod 2d ; ð1Þ

Decompressq x; dð Þ¼ q=2d
� �

⋅ x
� �

: ð2Þ

When Compressq and Decompressq are used with x2Rq
or x2Rk

q, they are applied to each coefficient individually.
Note that in the latest submission document to NIST

[11], the definition of Kyber employs two other functions
Encode and Decode to serialize/deserialize polynomials/byte
arrays. Besides, number-theoretic transform (NTT) is used to
efficiently calculate multiplications in Rq. Because implemen-
tation or performance is out of the scope of the present paper,
we omit those concepts for the sake of simplicity.

The procedure gen ρð Þ in Figure 2 to generate the matrix
A is deterministic. That means if two principals share the
same random seed ρ, then they can agreeably derive the same
matrix A. The procedure sampleCBD to sample noise (or
error) components (e.g., e; e1, and e2) takes as input a ran-
dom seed (e.g., ρ and r) and returns as output a polynomial
whose coefficients are close to a centered binomial distribu-
tion (to sample a vector, e.g., r and e1, the procedure is called
multiple times). In other words, the coefficients are mostly
close to 0 and their absolute values are never greater than a
specific small threshold (can be either 5, 4, or 3, depending
on the desired level of security).

3.2. Saber. Figure 3 depicts the triple algorithms (KeyGen,
Encaps, and Decaps) of Saber.KEM, which employ three
algorithms (KeyGen, Enc, and Dec) of Saber. PKE is
depicted in Figure 4. F;G, and H are three hash functions.
βμ denotes a centered binomial distribution. ≪ and ≫ are
bitwise shift operators (when they are used with polynomials
and matrices, the computation is performed on each coeffi-
cient). Different from Kyber where the security is achieved
basically by adding a random noise sampled from an error
distribution to make the public key or the ciphertext, Saber
relies on the rounding functionality of the bitwise shift
operators, which gains good efficiency and significantly
reduces the amount of randomness required. Note that h,
h1, and h2 in the two figures are constants of vectors and
polynomials; while q (¼ 2ϵq), p (¼ 2ϵp), T (¼ 2ϵT), and μ are
integers receiving different values on different security levels.

PKE.KeyGen()
d B32

(ρ, σ) = G(d)
Rq
k×k Э A = gen(ρ)

Rq
k Э s, e

t = As + e
return (pk = (t||ρ), s)

PKE.Dec(c = (c1||c2), s)
u´ = Decompressq(c1, du)
v´ = Decompressq(c2, dv)
m´ = Compressq(v´− sTu´, 1)
return m´

PKE.Enc(pk,m; r)
(t||ρ) = pk
Rq
k×k Э A = gen(ρ)

Rq
k Э r, e1

Rq Э e2 sampleCBD(r)
u = ATr + e1
v = tTr + e2 + Decompressq(m, 1)
c1 = Compressq(u, du)
c2 = Compressq(v, dv)
return c = (c1||c2)

sampleCBD(σ)
sampleCBD(r)

FIGURE 2: Kyber.PKE.

KEM.KeyGen()
(seedA, b, s) = PKE.KeyGen()
pk = (seedA, b)
pkh = F(pk)
z B32

sk = (z, pkh, pk, s)
return (pk, sk) pk

KEM.Dec(c, sk) c

m´ = PKE.Dec(s, c)
(K̂ ´, r´) = G(pkh,m´)
c´ = PKE.Enc(pk,m´; r´)
if c = c´
then return K = H(K̂ ´,c)
else return K = H(z, c)

KEM.Enc(pk)
m B32

(K̂ , r) = G(F(pk),m)
c = PKE.Enc(pk,m; r)
K = H(K̂ , c)
return (c,K)

FIGURE 3: Saber.KEM.

KEM.KeyGen()
z
(pk, s) = PKE.KeyGen()
sk = (s||pk||H(pk)||z)
return (pk, sk)

KEM.Dec(c, sk = (s||pk||H(pk)||z))
m´=PKE.Dec(c, s)
(K ́ , r´) = G(m´||H(pk))
c´ = PKE.Enc (pk, m´; r’)
if c = c´
then return K = KDF(K´, H(c))
else return K = KDF(z, H(c))

KEM.Enc(pk)
pk m0 B32

m = H(m0)
(K, r) = G(m||H(pk))
c = PKE.Enc(pk, m; r)
K = KDF(K,H(c))

c return (c, K)

B32

FIGURE 1: Kyber.KEM.

4 IET Information Security

To see their possible values as well as other detailed infor-
mation about the mechanism, we refer readers to the article
[5] and its latest submission document to NIST [12].

3.3. SK-MLWR. Figure 5 depicts the triple algorithms (Key-
Gen, Encaps, and Decaps) of SK-MLWR. In this mecha-
nism, p and q are integer constants, while A is the public
matrix known by everyone. Let x2Zp, then the additional
information function HiHo :Zp À! Z2 is defined as follows:

HiHo xð Þ ¼ 4
x
p

� �
mod 2: ð3Þ

The mechanism execution is well-explained in Figure 5,
and thus we skip explaining it in detail. We again refer read-
ers to the article [6] for the information.

3.4. Security Property. The security of Kyber, Saber, and SK-
MLWR [4–6] is defined in terms of a game between a chal-
lenger and an adversary, where the authors gave computa-
tional proofs that no polynomial-time adversary can obtain a
nonnegligible distinguishing a real shared secret key estab-
lished by those KEMs and a random value. The adversary is
said to have a nonnegligible advantage if they can succeed in
that distinguishment challenge with a probability signifi-
cantly greater than ½. Note that those proofs were achieved
manually, but not verified by the computers.

This paper takes into consideration the secrecy property
of shared secret keys, which states that: if Alice in her belief
obtains a shared secret key k with Bob through Kyber, Saber,
or SK-MLWR, then Eve, a third party, is unable to learn k.
Probability is not taken into account in our analysis as it is
not a computational-based approach.

4. A Base Specification

The three lattice-based KEMs share many common parts in
their designs, such as polynomials, vectors, matrices, and
message exchange patterns. Thus, as the first step, we mod-
eled these common parts, combining them into a specifica-
tion, which we called a base specification. Then, from the
base specification, to model each of the three KEMs, we only
need to model some additional parts as well as the mecha-
nism execution. This section presents how to model those
common parts in Maude to construct that base specification.

4.1. Modeling Polynomials, Vectors, and Matrices. We first
define Maude module POLYNOMIAL which is dedicated to
specifying polynomials. The definition of the module
starts with:

fmod POLYNOMIAL is

pr INT .

sort Poly . subsort Int<Poly .

where fmod stands for a functional module, and pr INT
says that the module imports the Maude pre-defined module
INT, which specifies integers. Sort (type) Poly represents
polynomials. The notation subsort Int<Poly says that
any integer is also a polynomial, where Int is the sort of
integers defined in the module INT.

We then declare four operators p+, p∗, p−, and neg,
where the first three ones, respectively, denote the addition,
multiplication, and subtraction between two polynomials,
while the last one denotes the negation of a polynomial.
They are as follows:

op _p+_ : Poly Poly -> Poly [ctor assoc
comm prec 33] .

op _p∗_ : Poly Poly -> Poly [ctor assoc
comm prec 31] .

op _p−_ : Poly Poly -> Poly [prec 33] .

op neg_ : Poly -> Poly [ctor] .

where ctor, assoc, and comm are three equational attri-
butes, saying that p+, p∗, and neg are constructors of the

PKE.KeyGen()
seedA B32

A = gen(seedA) Є Rq
l×l

r
s βμ(Rq

l×1; r)
b = ((ATs + h) mod q) ≫ (ϵq – ϵp) Є Rp

l×1

return (pk = (seedA, b), s)

PKE.Enc(pk = (seedA, b), m; r)
A = gen(seedA) Є Rq

l×l

s´ βμ(Rq
l×1; r)

b´ = ((As´ + h) mod q) ≫ (ϵq − ϵp) Є Rp
l×1

v´ = bT(s´mod p) Є Rp
cm = (v´ + h1 − 2ϵp − 1m mod p) ≫ (ϵp − ϵT) Є RT

return c = (cm, b´)

PKE.Dec(s, c = (cm, b´))
v = b´T(s mod p) Є Rp

m´ = ((v − 2ϵp − ϵT cm + h2) mod p) ≫ (ϵp− 1) Є R2

return m´

B32

FIGURE 4: Saber.PKE.

KeyGen()
s1 Rq

k

x1 = ⌊pqAs1⌉ Є Rq
k

return (pk = x1, sk = s1) pk

Dec(c = (x2,w2), sk = s1) c

k1 = x2s1 mod p
sk1 = ⌊ pq (k1−w2

p
4 + p

8)⌉
mod 2

return K = sk1

Enc(pk = x1)
s2

x2 = ⌊pqAs2⌉ Є Rq
k

k2 = x1s2 mod p
w2 = Hiho(k2)
sk2 = ⌊pq k2⌉mod 2
return (c = (x2,w2),K = sk2)

Rq
k

FIGURE 5: SK-MLWR.

IET Information Security 5

sort Poly; p+ and p∗ are associative and commutative.
prec 33 says that the precedence of p+ and p− is lower
than that of p∗ (the higher number, the less precedence).
Some basic properties of these operators are specified by
means of equations as follows:

— P, Pʹ, and Pʺ are variables of the sort
Poly

vars P Pʹ Pʺ : Poly .

eq P p+0=P .

eq P p∗ 0=0 .

eq P p∗ 1=P .

eq P p∗ (Pʹ p+Pʺ)=(P p∗ Pʹ) p+ (P p∗ Pʺ) .

The first equation states that any polynomial P plus 0 is
P itself. The next two equations can be understood likewise.
The last equation specifies the distributive property over
addition and multiplication. Similarly, some properties of
p− and neg are defined, and we complete definition of
the module POLYNOMIAL:

eq P p- Pʹ=P p+neg(Pʹ) .

eq P p+neg(Pʹ)=0 .

eq neg(neg(P))=P .

eq neg(P p+Pʹ)=neg(P) p+neg(Pʹ) .

endfm

In the same manner, we define module VECTOR with the
sort Vector to specify polynomial vectors. In this module,
tp is defined as a transpose operator (transposes a column
vector by default to a row vector). Two operators v+ and
dot are introduced representing the addition and inner
product of two polynomial vectors. Note that our specifi-
cation considers only two vectors with the same dimen-
sion. Their declarations and some basic properties are as
follows:

sort Vector . subsort Poly < Vector .

op tp : Vector -> Vector .

op _v+_ : Vector Vector -> Vector [assoc
comm prec 33] .

op _dot_ : Vector Vector -> Poly [prec 31] .

vars V Vʹ Vʺ : Vector .

eq tp(tp(V))=V .

eq tp(V v+Vʹ)=tp(V) v+tp(Vʹ) .

eq (V v+Vʹ) dot Vʺ=(V dot Vʺ) p+ (Vʹ dot Vʺ) .

eq Vʺ dot (V v+Vʹ)=(Vʺ dot V) p+ (Vʺ dot Vʹ) .

We continuously define module MATRIX with the sort
Matrix to specify polynomial matrices. In this module, in
addition to the transpose operator tp, we introduce the oper-
ator m∗ denoting the multiplication of a matrix and a vector:

op _m∗ _ : Matrix Vector ->Vector [prec 31] .

vars M : Matrix .

eq tp(tp(M))=M .

eq tp(M m∗ V) dotVʹ=tp(V)dot(tp(M)m∗ Vʹ) .

Note that our specification considers only square matri-
ces and the multiplication is defined between only matrices
and vectors which have proper dimensions. It is unnecessary
to consider the other cases since there is no such an opera-
tion in the three KEMs.

The procedures to generate pseudorandom matrices and
vectors from random seeds used in Kyber and Saber are
specified by the following operators:

— generate a matrix from a random seed

op gen-A : Poly -> Matrix .

— used in Kyber and Saber

op sample-s : Poly -> Vector .

— used in Kyber, initiator side

op sample-e : Poly -> Vector .

— used in Kyber, responder side

op sample-r : Poly -> Vector .

op sample-e1 : Poly -> Vector .

op sample-e2 : Poly -> Poly .

gen-A represents the procedure gen, taking as input a ran-
dom seed (ρ in Kyber or seedA in Saber) and outputting
matrix A. sample-s specifies the procedures generating
the secret vectors s and s0 from a random seed (σ in Kyber
or r in Saber). sample-e represents the procedure produc-
ing the noise vector e, which is used in the initiator side of
Kyber (or precisely, in the step KeyGen). Similarly, sam-
ple-r, sample-e1, sample-e2 produce r, e1, and e2,
respectively, used in Kyber.PKE.Encaps.

Recall that the aforementioned procedures produce vec-
tors and polynomials whose coefficients are small (in com-
parison with p and q). To specify that property, the following
predicate of vectors and polynomials is defined:

op isSmall?: Vector -> Bool .

eq isSmall?(sample-s(P))=true .

eq isSmall?(sample-e(P))=true .

eq isSmall?(sample-r(P))=true .

eq isSmall?(sample-e1(P))=true .

eq isSmall?(sample-e2(P))=true .

eq isSmall?(tp(V))=isSmall?(V) .

ceq isSmall?(V v+Vʹ)=true

if (isSmall?(V) and isSmall?(Vʹ)) .

ceq isSmall?(V dot Vʹ)=true

if (isSmall?(V) and isSmall?(Vʹ)) .

ceq isSmall?(P p+Pʹ)=true

if (isSmall?(P) and isSmall?(Pʹ)) .

ceq isSmall?(neg(P))=true if isSmall?(P) .

isSmall?(P) (or isSmall?(V)) is true if all of its coef-
ficients are small. The first five equations indicate that the

6 IET Information Security

sampling procedures sample-s, sample-e, … all return
vectors or polynomials whose coefficients are small. The last
five equations specify some properties of this predicate. For
instance, if the coefficients of two vectors V and Vʹ are small,
then the coefficients of their addition are also small.

4.2. Modeling Messages Exchanged and Common Observable
Components. We introduce sort Msg with two operators
msg1 and msg2 representing public key and ciphertext
messages, respectively, as follows:

op msg1 : Prin Prin Prin PVPair -> Msg
[ctor] .

op msg2 : Prin Prin Prin PVPair -> Msg
[ctor] .

where Prin is the sort of principals. The first, second, and
third arguments of msg1 and msg2 are the actual creator,
the seeming sender, and the receiver of the corresponding
message. For example, when the first, second, and third argu-
ments are an intruder, Alice, and Bob, respectively, then that
intruder created the message, impersonating Alice to send
the message to Bob. Note that this first argument cannot be
seen by the receiver, but it is meta-information that is only
available to the outside observer.

The last argument, namely PVPair, is the sort of tuples
of vectors and polynomials, whose definition is as follows:

op _&&_ : Vector Poly -> PVPair [ctor] .

This argument carries actual data exchanged between
two principals, i.e., public key pk or ciphertext c. For exam-
ple, in Kyber, the public key consists of a vector t and a
random seed ρ, which can be expressed as a term of the
sort PVPair (e.g., t && ρ).

Recall that we model each KEM as a state machine in
Maude, where each state is represented by a braced AC-
collection of observable components (i.e., name-value pairs).
For all the three KEMs, we use some common observable
components as follows:

(i) (prins : prs)—prs are all principals participating in
the mechanisms. In each experiment reported in this
paper with each of the three KEMs, participants
participating are fixed as three, including two honest
ones, namely alice and bob, and an intruder,
namely eve. The intruder is modeled based on
the Dolev and Yao [8] model, which gives them
capabilities of intercepting, modifying, faking mes-
sages, and impersonating other protocol principals.

(ii) (nw : msgs)—msgs is the set of messages exchanged
by all principals in the network.

(iii) (keys[p] : ks)—ks is the set of the shared keys that
principal p has established with others. Each entry
of ks is in the form of either:
(1) Initiator(K, q): the shared key K is estab-

lished with principal q, where p is the initiator
(i.e., who starts the communication), or

(2) Responder(K, q): the shared key K is estab-
lished with principal q, where p is the
responder.

(iv) (glean-keys : gks)—gks is the set of shared keys
learned by the intruder eve.

To complete the base specification, the operator KDF is
declared representing the key derivation function KDF (used
in Kyber), and the operators H and G are introduced repre-
senting the hash functions H and G (used in Kyber and
Saber).

4.3. Intruder Capabilities. For all of the three KEMs, we
suppose the presence of an intruder, namely, eve, who
can control all the network communications. We give the
intruder the following concrete capabilities:

(1) If A sends a public key message to B, eve can inter-
cept that message, fake a new message with a new
public key, and pretend A to send it to B.

(2) eve can randomly generate values to be used as
random seeds d, m0, and so forth.

(3) Once a public key message sent by A to B is inter-
cepted and forged with a new message, eve can
continuously impersonate B, construct by themself
a ciphertext c, send it back to A as a reply, and com-
pute a shared secret key (with A).

(4) When B replies back to A with a ciphertext message
after receiving a public key message apparently sent
from A, eve can intercept that ciphertext message,
and compute a shared secret key (with B) from the
ciphertext received.

5. Model Checking Kyber

This section reports the complete Kyber specification
expanded from the base one, followed by its analysis result.
Saber’s and SK-MLWR’s results will be reported in the next
section.

5.1. Complete Kyber Formal Specification. Extending the base
observable components listed in the last section, we intro-
duce the following new observable components in the formal
specification of Kyber:

(i) (d[p] : d0)—the random seed d (used in Figure 2)
of principal p receives d0 as a value.

(ii) (m[p] :m0)—the random seedm0 (used in Figure 1)
of principal p receives m0 as a value.

(iii) (rd-d : rds)—rds is a list of available values for the
random seed d. Whenever a principal needs to ran-
domly select a value for d, the top entry of rds is
removed and returned to the principal. Thus, the
uniqueness is guaranteed provided that, initially,
entries in rds are different from each other. List
structure is used for rds, but not a set, because it
helps to reduce the size of the state space so that

IET Information Security 7

the time taken for the reachability analysis can be
shortened.

(iv) (rd-m : rms)—rms is a list of available values for the
random seed m0.

(v) (ds : eds)—eds is the set of values for the random
seed d that are available to the intruder (either
learned or randomly selected).

(vi) (ms : ems)—ems is the set of values for the random
seed m0 that are available to the intruder (similarly,
either learned or randomly selected).

Initial states are then represented by a constant init,
which is defined as follows:

eq init=
{(prins: (alice bob eve)) (nw: empty) (rd-
d: (d1, d2))

(d[alice]: 0) (d[bob]: 0) (m[alice]: 0) (m
[bob]: 0)

(rd-m: (m1, m2)) (keys[alice]: empty)
(keys[bob]: empty)

(glean-keys: empty) (ds: empty) (ms:
empty)} .

5.1.1. Modeling Kyber Execution. We specify three rewrite
rules keygen, encaps, and decaps, modeling the corre-
sponding three algorithms of Kyber. In other words, the
three rewrite rules model (1) Alice generates a public key
message, (2) Bob accepted the public key message and gen-
erates a ciphertext message, and (3) Alice accepts the cipher-
text message, respectively. The rewrite rule keygen is
defined as follows:

vars A B C : Prin .

vars PS : PrinSet . — principal sets

vars PoL : ListPoly . — polynomial lists

vars MS : Network . — message sets

vars D M M0 P Rho Mʹ V CV Vʹ Rseed Sig : Poly .

crl [keygen] :

{(prins: (A; B; PS)) (rd-d: (D, PoL))
(d[A]: P)

(nw: MS) OCs}

=> {(prins: (A; B; PS)) (rd-d: PoL) (d
[A]: D)

(nw: (msg1(A, A,B, (gen-A(Rho) m∗
sample-s(Sig) v+

sample-e(Sig)) && Rho); MS)) OCs}

if Rho :=1st(G(D)) /\

Sig :=2nd(G(D)) .

OCs is a variable of observable component collections. Note
that the output of G(D) is a polynomial pair, where 1st and
2nd are the projection operators returning the first and the

second components, respectively. Recall that && is the con-
structor of tuples of vectors and polynomials; gen-A repre-
sents the function gen, generating the pseudorandom matrix
A; sample-e and sample-s produces the vectors e and s,
respectively. The rewrite rule says that when there exists a
polynomial D in rd-d, A selects it as a value for the random
seed d, computes a public/secret key pair exactly following
the algorithm KeyGen of the mechanism, and sends the
public key to B. Together with that, d[A] is updated to D,
and D is removed from rd-d. Note that the operators, such
as m∗, v+, and p+, are implicitly understood to be computed
over Rq, and then we do not explicitly specify the modulo
operation.

The rewrite rule encap is defined as follows:

vars KS : KeySet .

vars T U CU Uʹ : Vector .

vars Kr Kr2 : PolyPair . — polynomial pairs

crl [encaps] :

{(rd-m: (M0, PoL)) (m[B]: P) (keys
[B]: KS)

(nw: (msg1(C, A,B, T && Rho); MS))
OCs}

=> {(rd-m: PoL) (m[B]: M0) (keys[B]:

(KS; responder(KDF(1st(Kr) || H(CU
&& CV)), A)))

(nw: (msg1(C, A,B, T && Rho);

msg2(B, B,A, CU && CV); MS))
OCs}

if M :=H(M0) /\

Kr :=G(M || H(T && Rho)) /\

CU :=enc-u(T, Rho, M, 2nd(Kr)) /\

CV :=enc-v(T, Rho, M, 2nd(Kr)) .

where enc-u and enc-v compute c1 and c2 in PKE.
Enc pk;ð m; rÞ in Figure 2, respectively. They are defined as
follows:

eq enc-u(T, Rho, M, Rseed)=
compr(tp(gen-A(Rho)) m∗ sample-r
(Rseed) v+sample-e1(Rseed), du) .

eq enc-v(T, Rho, M, Rseed)=
compr(tp(T) dot sample-r(Rseed) p
+sample-e2(Rseed) p+
decompr(M, 1), dv) .

compr and decompr denote the functions Compressq and
Decompressq, respectively, while du and dv respectively
denote the constants du and dv.

The rewrite rule encaps says that when B receives a
public key message seemingly sent from A, B first selects a
random M0, from that computes two components CU and CV
of the ciphertext c, and sends the ciphertext back to A.
Together with that, B also computes the shared key with A,
and the state of the message B received is updated to

8 IET Information Security

replied. One delicate point is that the message B received
is in the form of msg1(C, A,B,…), which means that the
creator of the message is actually C, which may or may not be
A. In particular, when C is the intruder (which is unable for B
to recognize), then the message is faked by the intruder but
not sent by A.

The rewrite rule decaps is defined as follows:

crl [decaps] :

{(d[A]: D) (keys[A]: KS)

(nw: (msg1(A, A,B, T && Rho);

msg2(C, B,A, CU && CV); MS))
OCs}

=> {(d[A]: D) (keys[A]:

(KS; initiator(KDF(1st(Kr2) || H
(CU && CV)), B)))

(nw: (msg1(A, A,B, T && Rho);

msg2(C, B,A, CU && CV); MS))
OCs}

if Sig :=2nd(G(D)) /\

Uʹ :=decompr(CU, du) /\

Vʹ :=decompr(CV, dv) /\

Mʹ :=compr(Vʹ p- tp(sample-s(Sig)) dot
Uʹ, 1) /\

Kr2 :=G(Mʹ || H(T && Rho)) /\

CU==enc-u(T, Rho,Mʹ, 2nd(Kr2)) /\

CV==enc-v(T, Rho,Mʹ, 2nd(Kr2)) .

The rewrite rule says that when A has sent a public key
message to B and there exists a message apparently replied
from B with the ciphertext consisting of CU and CV, then A
decompresses CU and CV, from that recovers m (on the Bob
side), and computes the shared key with B. We repeat again
that Kyber is assumed to be 0-correct, that is we only con-
sider the case when Alice successfully recovers m, which
happened with an overwhelming probability. To this end,
the error tolerance gaps made by noise components must
be silent, which is done by the following equation:

ceq compr(P p+decompr(M, 1),1)=M if
isSmall?(P) .

Let x0 ¼Decompressq Compressq x;ð
�

dÞ; dÞ. From Equa-
tions (1) and (2), we have:

x0 − x mod qj j ≤ q

2dþ1

� �
: ð4Þ

Using this inequality, Decompressq Compressq v;ð
�

dvÞ;
dvÞ and Decompressq Compressq u;ð

�
duÞ; duÞ can be rewrit-

ten to vþ ϵ1 and uþ ϵ2, respectively, where all coefficients of
ϵ1 and ϵ2 are small in comparison with those of v and u. In
the specification, we specify ϵ1 as epsilon1 vð Þ, ϵ2 as
epsilon2 uð Þ, and both epsilon1 vð Þ & epsilon2 uð Þ
are “small”. This is done by the following equations:

eq decompr(compr(V, dv),dv)=V p+epsilon1
(V) .

eq decompr(compr(U, du),du)=U v+epsilon2
(U) .

eq isSmall?(epsilon1(V))=true .

eq isSmall?(epsilon2(U))=true .

5.1.2. Checking the Specification. We check that the specifi-
cation we have specified so far allows two principals success-
fully establish a shared key. This must be fulfilled, otherwise,
anything we do after is completely meaningless. To this end,
we define the following Maude search command:

search [1] in KYBER : init=> ∗
{(keys[alice]: initiator(K:Poly, bob))

(keys[bob] : responder(K:Poly, alice))
OCs} .

The command tries to find a state reachable from init
such that both alice and bob obtain the shared key K:
Poly. Maude found a solution for the command, meaning
that two principals can successfully establish a shared key.

5.1.3. Modeling the Intruder. We turn to specify intruder
capabilities. Recall that we assume the presence of an
intruder, i.e., eve, with the capabilities mentioned in Section
4.3. The following rewrite rule specifies its capability (1):

vars PoS : PolySet .

crl [keygen-eve] :

{(ds: (D; PoS))

(nw: (msg1(A, A,B, TA && RhoA); MS))
OCs}

=> {(ds: (D; PoS))

(nw: (msg1(A, A,B, TA && RhoA);

msg1(eve, A,B, (gen-A(Rho) m∗
sample-s(Sig) v+

sample-e(Sig)) && Rho);
MS)) OCs}

if Rho :=1st(G(D)) /\

Sig :=2nd(G(D)) .

From an available value D for the random seed d, eve
computes a new public key and impersonates A to send the
faking message to B (msg1(eve, A,B,…)). The random
value D cannot be collected from the network, but eve can
only construct it by randomly selecting a new value. Simi-
larly, the only way in which eve can construct values for the
random seed m is by randomly selecting a new value. This
has been mentioned as capability (2), which is specified in
Maude as follows:

rl [build-ds] : {(rd-d: (P, PoL)) (ds:
PoS) OCs}

=> {(rd-d: PoL) (ds: (P; PoS)) OCs} .

IET Information Security 9

rl [build-ms] : {(rd-m: (P, PoL)) (ms:
PoS) OCs}

=> {(rd-m: PoL) (ms: (P; PoS)) OCs} .

Intruder capability (3) is specified by the following
rewrite rule:

crl [encaps-eve] :

{(ms: (M0; PoS)) (glean-keys: KS)

(nw: (msg1(A, A,B, TA && RhoA); MS))
OCs}

=> {(ms: (M0; PoS)) (glean-keys:

(responder(KDF(1st(Kr) || H(CU
&& CV)), A); KS))

(nw: (msg1(A, A,B, TA && RhoA);

msg2(eve, B,A, CU && CV); MS))
OCs}

if M :=H(M0) /\

Kr :=G(M || H(TA && RhoA)) /\

CU :=enc-u(TA, RhoA, M, 2nd(Kr)) /\

CV :=enc-v(TA, RhoA, M, 2nd(Kr)) .

The last rewrite rule, namely decaps-eve, specifies
intruder capability (4):

crl [decaps-eve] :

{(ds: (D; PoS)) (glean-keys: KS)

(nw: (msg1(eve, A,B, T && Rho);

msg2(B, B,A, CUB && CVB); MS))
OCs}

=> {(ds: (D; PoS)) (glean-keys:

(initiator(KDF(1st(Kr2) || H(CUB
&& CVB)), B); KS))

(nw: (msg1(eve, A,B, T && Rho);

msg2(B, B,A, CUB && CVB); MS))
OCs}

if Sig :=2nd(G(D)) /\

Uʹ :=decompr(CUB, du) /\

Vʹ :=decompr(CVB, dv) /\

Mʹ :=compr(Vʹ p- tp(sample-s(Sig)) dot
Uʹ, 1) /\

Kr2 :=G(Mʹ || H(T && Rho)) /\

CUB==enc-u(T, Rho,Mʹ, 2nd(Kr2)) /\

CVB==enc-v(T, Rho,Mʹ, 2nd(Kr2)) .

5.2. Model Checking and Man-in-the-Middle Attack. The
formal specification of Kyber in Maude is completed, and
now we are ready to perform analysis to check the property
mentioned in Section 3. To this end, we introduce the fol-
lowing Maude search command:

search [1] in KYBER : init=> ∗
{(keys[alice]: initiator(K:Poly, bob))

(keys[bob] : responder(Kʹ:Poly, alice))

(glean-keys: (responder(K:Poly, alice);

initiator(Kʹ:Poly, bob);
KS)) OCs} .

K and Kʹ may or may not be equal. The search command
tries to find a state reachable from init such that: alice in
her belief obtains the shared key K with bob, bob in his
belief obtains the shared key Kʹ with alice, and eve
learned both K and Kʹ. Maude found a counterexample after
about 7min and 43 s on a computing server that carries
384GB of memory and 16 cores 2.8 GHz microprocessor.
This kind of vulnerability belongs to MITM attacks. Figure 6
depicts how this attack happens on Kyber, which is visual-
ized from the path leading to the counterexample Maude
returned. There are mainly six steps as follows:

Step 1: Alice initializes a key exchange with Bob by per-
forming the procedure KEM.KeyGen. She
obtains a secret key sk, which is kept by her,
and a public key pk, which is sent to Bob.

Step 2: Eve intercepts the public key message sent from
Alice to Bob. She selects a random de to generate
by herself a public/secret pair pke;ð skeÞ following
the procedure KEM.KeyGen. She impersonates
Alice to send pke to Bob.

Step 3: Bob receives the public key message containing
pke, believing it is from Alice. Subsequently, he
selects a random m0 to perform KEM.Enc,
obtaining a ciphertext c and a shared key Kb.
He keeps the key Kb, which he believes that it is
the shared key established by him and Alice. He
sends the ciphertext c back to Alice as a response
to the public key message.

Step 4: Eve once again intercepts the ciphertext message
sent from Bob to Alice. Afterward, she selects a
random me0, performs KEM.Enc on the inputs
pk and me0, and obtains a different ciphertext &
shared key pair, namely ce and Ka. She imperso-
nates Bob to send the ciphertext ce back to Alice
as a reply to the very first public key message.

Step 5: Alice receives the ciphertext message containing
the ciphertext ce, believing it is from Bob. Then,
she performs KEM.Dec on the inputs ce and sk,
obtaining the shared key Ka. She believes that the
shared key Ka is established by her and Bob.

Step 6: Finally, Eve performs KEM. Dec on the inputs c
and ske, obtaining the shared key Kb.

6. Model Checking Saber and SK-MLWR

In the similar way, we model Saber and SK-MLWR inMaude
and then conduct the similar model checking experiments.
The same MITM attacks are found by Maude. In this section,
we mainly focus on presenting how to complete the Maude

10 IET Information Security

formal specifications of the two mechanisms from the base
specification presented in Section 4.

6.1. Complete Saber Formal Specification in Maude. We first
extend the modules POLYNOMIAL and VECTOR in the base
specification, adding the modulo operator and the bitwise
shift (precisely, right shift) operator:

— modulo operator

op _md_ : Poly NzNat -> Poly [prec 31] .

op _md_ : Vector NzNat -> Vector [prec 31] .

— bitwise right shift operator

op shiftR : Poly Int -> Poly .

op shiftR : Vector Int -> Vector .

Note that NzNat is the sort of non-zero natural numbers
(pre-defined in Maude). After that, some basic properties
related to them are defined:

eq (P p+ (Pʹ md K)) md K=(P p+Pʹ) md K .

eq neg(P md K)=neg(P) md K .

The observable components are updated by adding the
following new ones:

(i) (seed[p] : sd)—the value of the random seed
seedA (used in Figure 4) of principal p is sd.

(ii) (r[p] : r0)—the value of the random seed r (used
in Figure 4) of principal p is r0;

(iii) (m[p] : m0)—the value of the random seed m
(used in Figure 3) of principal p is m0;

(iv) (rd-seed : rd1)—rd1 is a list of available values
for the random seed seedA.

(v) (rd-r : rd2)—rd2 is a list of available values for the
random seed r.

(vi) (rd-m : rd3)—rd3 is a list of available values for the
random seed m.

(vii) (seeds : se)—se is the set of values for the random
seed seedA that are available to the intruder (either
learned or randomly selected).

(viii) (rs : re)—re is the set of values for the random
seed r that are available to the intruder.

(ix) (ms : me)—me is the set of values for the random
seed m that are available to the intruder.

We define three rewrite rules keygen, encaps, and dec-
aps to model the mechanism execution; and three rewrite rules
keygen-eve, encaps-eve, and decaps-eve to model

Alice

z B32

(pk, s) = PKE.KeyGen()
sk = (s||pk||H(pk)||z)
return (pk, sk) pk

m´ = PKE.Dec(ce, s) ce
(K´, r´) = G(m´||H(pk))
c´ = PKE.Enc(pk,m´; r´)
if ce = c´ then
return Ka = KDF(K´,H(ce))

Eve

de B32

(ρe, σe) = G(de)
Rq
k×k Э Ae = gen(ρe)

Rq
k Э se, ee sampleCBD(σe)

te = Aese + ee
pke = (te||ρe)
return (pke, ske = se)

pke

me0 B32 c

me = H(me0)
(Ke, re) = G(me||H(pk))
ce = PKE.Enc(pk,me; re)
Ka = KDF(Ke, H(ce))
return (ce,Ka)

m b́ = PKE.Dec(c, se)
(K b́, rb́) = G(mb́||H(pke))
cb́ = PKE.Enc(pke,mé; r é)
if c = cb́ then
return Kb = KDF(K b́, H(c))

Bob

m0 B32

m = H(m0)
(K, r) = G(m||H(pke))
c = PKE.Enc(pke,m; r)
Kb = KDF(K, H(c))
return (c,Kb)

FIGURE 6: A visualization of the counterexample.

IET Information Security 11

the intruder capabilities. We show here the definition of the
rewrite rule keygen. For the others, readers can find their
definitions on the webpage mentioned in Section 1. The defini-
tion is as follows:

var MA : Matrix .

vars S VB : Vector .

var SD : Poly .

var PoL2 : ListPoly .

crl [keygen] :

{(prins: (A; B; PS)) (r[A]: Pʹ) (rd-r:
(R, PoL2))

(seed[A]: P) (rd-seed: (SD, PoL))

(nw: MS) OCs}

=> {(prins: (A; B; PS)) (r[A]: R) (rd-r:
PoL2)

(seed[A]: SD) (rd-seed: PoL)

(nw: (MS; msg1(A, A,B, VB && SD)))
OCs}

if MA :=gen-A(SD) /\

S :=sample-s(R) /\

VB :=shiftR((tp(MA) m∗ S v+h) md q,
esq - esp) .

Note that esp and esq, respectively, denote the integers
ϵp and ϵq. The rewrite rule says that the random seeds SD in
rd-seed and R in rd-r are selected by principal A as the
values for the random seed seedA and r, respectively, from
those A computes matrix MA (i.e., A) and secret vector S (i.e.,
s). A then computes the vector VB (i.e., b). Concatenation of
the vector and the random seed SD forms the public key,
which is then sent to B through a public key message.

6.2. Complete SK-MLWR Formal Specification in Maude.
With the SK-MLWR case study, we define an additional
module, namely FRACTION, that is dedicated to model frac-
tions. In this module, a fraction is specified by the infix
operator _/_, whose two input arguments are the sort of
integers. Similar to the Saber case study, the modulo opera-
tion is added into the modules POLYNOMIAL and VECTOR.
With the module VECTOR, we also define two operators:
round denoting the rounding operation (⌊ ⋅ ⌉), and v∗

denoting the multiplication between a fraction and a vector.
With the former, we assume that the rounding of a vector is
the vector itself, which is specified by the following equation:
eq round(V:Vector)=V:Vector .

The observable components are extending from the base
ones by adding the following:

(i) (s[p] : sp)—the value of s1 or s2 (used in Figure 5)
of principal p is sp.

(ii) (rd-s : rs)—rs is a list of available values for s1 and
s2.

(iii) (ss : ss)—ss is the set of values for s1 and s2 that are
available to the intruder.

The following is the definition of the rewrite rule key-
gen (for the others, we again refer readers to the webpage
mentioned in Section 1):

var VL : ListVector . — vector lists

crl [keygen] :

{(prins: (A; B; PS)) (s[A]: V) (rd-s:
(S, VL))

(nw: MS) OCs}

=> {(prins: (A; B; PS)) (s[A]: S) (rd-s:
VL)

(nw: (MS; msg1(A, A,B, X1:Vector)))
OCs}

if X1:Vector :=round((p / q) v∗ ((mA m∗ S)
md q)) .

Note that mA denotes the public polynomial matrix A.
The rewrite rule says that the random vector S in rd-s is
selected by principal A as a secret key, and fromS, A computes
the public keyX1 to send it to B through a public keymessage.

6.2.1. Model Checking with the Two KEMs. Once complete
the formal specifications, we can straightforwardly conduct
model-checking experiments similar to what has been
reported in Section 5.2. The same results, i.e., MITM attacks,
are found. From a high-level point of view, all of the attacks
found for the three KEMs can be graphically visualized as in
Figure 7. According to the figure, Alice generates a public/

Alice

Step 1.
(pk, sk) = KeyGen() pk

Step 5. ce
Ka = Decaps(ce, sk)

Eve

Step 2.
(pke, ske) = KeyGen() pke

Step 4. c

(ce,Ka) = Encaps(pk)

Step 6.
Kb = Decaps(c, ske)

Bob

Step 3.
(c,Kb) = Encaps(pke)

FIGURE 7: High-level representation of attacks.

12 IET Information Security

secret key pair pk and sk, trying to send pk to Bob. The
public key message is intercepted by Eve. She generates by
herself another public/secret key pair pke and ske (which are
completely irrelevant to pk and sk), acting as Alice to send
pke to Bob. Upon receiving that public key message, Bob
executes Encaps on the public key received, getting a
ciphertext c and a shared key Kb. Thinking that the public
key message came from Alice, he sends back to Alice the
ciphertext and keeps Kb as the shared key with Alice. Eve
once again intercepts the ciphertext message sent from Bob.
She replaces the original ciphertext with a new one, i.e., ce
(which is completely irrelevant to c), impersonating Bob to
send it back to Alice. Upon receiving the faking ciphertext,
Alice executes Decaps, obtaining the shared key Ka, which
is also in Eve’s possession. In last, from the ciphertext c got
from Bob, Eve calculates the shared key Kb.

7. Remark

We leave some remarks on the model-checking experiments
that have been conducted.

7.1. Finite Reachable State Space. The first remark is that the
reachable state space of each model checking experiment is
finite. Indeed, this claim can be proved, for example with the
Kyber case study, by the following command:

search in KYBER : init=> ∗ {OCs} .

Because there is no constraint on the state pattern we are
searching for, the command above tries to find all states
reachable from init. Running this command, 2,685 solu-
tions (or states) are returned after about 21min and 37 s. If
we want to prove an invariant property, this finite reachable
state space property must be fulfilled, otherwise, the reach-
ability analysis will never terminate. For example, let us con-
sider the following property: whenever Alice and Bob both
agreeably established a shared key, the intruder cannot learn
that key. To check this property, we introduce the following
two search commands:

search [1] in KYBER : init=> ∗
{(keys[alice]: initiator(K:Poly, bob))

(keys[bob] : responder(K:Poly, alice))

(glean-keys : (initiator(K:Poly, X:
Prin); KS)) OCs} .

search [1] in KYBER : init=> ∗
{(keys[alice]: initiator(K:Poly, bob))

(keys[bob] : responder(K:Poly, alice))

(glean-keys : (responder(K:Poly, X:
Prin); KS)) OCs} .

The two commands try to find a state in which Alice and
Bob both agreeably established the shared key K and Eve
already learned that key (note that X:Prin denotes arbi-
trary principal since we do not mind about this parameter).
The key point is that because Maude returns no solution for
either of the two commands, it must have already

exhaustedly traveled all reachable states. In other words, if
the state space is infinite, the search will never terminate.

In the following, we give an explanation of why the state
space is finite in the Kyber case study (the two other ones can
be explained similarly). Recall that each state is denoted as a
braced AC-collection of the ten observable components as
shown in Sections 4 and 5. The key point is that the number
of possible values that each observable component (i.e., a
name-value pair) can receive is finite. Indeed, it is true that:

(i) prs in (prins : prs) is always (alice bob eve)
because no rewrite rule produces or consumes
principals.

(ii) rds and rms in (rd-d : rds) and (rd-m : rms) never
consist of more than (d1, d2) and (m1, m2),
respectively, because no rewrite rule produces new
entries into these lists.

(iii) d0 in (d[p] : d0) can only be either 0, d1, or d2.
Similarly, m0 in (m[p] : m0) can only be either 0,
m1, or m2.

(iv) eds in (ds : eds) must be a subset of {d1, d2}, and
then the numbers of possible values is finite. Simi-
larly, the number of possible values of ems in (ms :
ems) is finite.

(v) The number of possible values of msgs in (nw :
msgs) is finite because:
(1) The two rewrite rules keygen and encaps

each produces a new message into the network
while also consuming one element from rds and
rms. Because rds and rms never consist of more
than (d1, d2) and (m1, m2) as explained
above, the two rewrite rules can only be applied
finitely many times.

(2) The rewrite rule keygen-eve produces a new
public key message into the network, which can
be applied infinite times to put the samemessage
into the network again and again. However,
because the network is modeled as a set of mes-
sages, putting a message that is already existing
in the network into the network is meaningless,
the network will remain unchanged.

(3) Similarly, the rewrite rule encaps-eve can-
not produce an infinite ciphertext messages into
the network.

(4) The other rewrite rules do not update the network.
(vi) Similarly, the number of possible values of gks in

(glean-keys : gks) is finite because gks is a set,
and so even if the two rewrite rules encaps-eve
and decaps-eve apply infinite times with the
same source state, gks cannot be infinite.

(vii) Similarly, the number of possible values of ks in
(keys[p] : ks) is finite because: (1) the rewrite
rule encaps consumes an element from rms; and
(2) although the rewrite rule decaps can be
applied infinite times with the same source state,
ks remains finite because it is a set.

IET Information Security 13

From what has been explained, it follows that the state
space in this case is finite. Consequently, with any invariant
model checking experiment, Maude will eventually return
either some solution(s) or no solution after a finite time.
Because the Maude execution process is fully automated,
which is an advantage of the analysis approach, we can easily
check other desired properties. Given a formal specification
of the protocol under analysis, once we complete specifying
the desired property, the analysis can be done automatically
by Maude.

7.2. The Attack Found Is Not Novel. The attacks found in the
three case studies can be said that are not novel attacks since
the three KEMs are not equipped with any feature for dealing
with authentication. That is the reason why an active
attacker, who has the ability to control the network, can
modify all messages exchanged between two parties, leading
to an MITM attack. However, in this paper, we illustrate a
symbolic approach for reasoning about KEMs rather than
focusing on reporting about this kind of attack. Because
those three KEMs are relatively new, they need to be deeply
analyzed to gain a confident security guarantee. Our ultimate
goal is to conduct security analysis/verification of post-quantum
cryptographic protocols, such as the post-quantum transport
layer security (TLS) protocol [13]. Such protocols use post-
quantum cryptographic primitives, such as KEMs analyzed in
this paper, and then formally specifying such primitives is nec-
essary to analyze the protocol security later on. What has been
reported in this paper can be regarded as the first step toward
the goal.

Authenticated key exchange (AKE) refers to the class of
key exchange protocols in which authentication to partici-
pants is included in order to avoid MITM attacks. AKE has
been extensively studied over the years, resulting in many
protocols have been proposed, such as NAXOS [14]. The
authentication solution in those protocols typically bases
on a pair of ephemeral (like public key pk outputting by
the algorithm KeyGen) and static (or long-term) keys.
The static key provides authentication, while the ephemeral
key provide (forward) secrecy. There also exist plenty of
proposals for post-quantum AKE, such as by Zhou and Lv
[15] and Ding et al. [16], which base their security on LWE.

8. Related Work

To the best of our knowledge, Jacomme et al. [17] andHülsing
et al. [18] are the only two case studies on analyzing post-
quantum cryptographic protocols in the symbolic model. The
former has presented a formal analysis of the EDHOC
(Ephemeral Diffie Hellman Over COSE) protocol [19], a var-
iant of the DH protocol designed by IETF’s Lightweight AKE
Working Group to be used in IoT devices. The original pro-
tocol uses the DH key exchange, which is not post-quantum
secure because the discrete logarithm problem will be no
longer hard with large-scale quantum computers. The proto-
col then was made post-quantum secure by replacing the DH
with a post-quantum KEM. This KEM based version is also
covered in their analysis. An interesting point in this work is
that they used SAPICþ [20] protocol verification platform so

that their formal specification written in pi-calculus can be
exported into some other security analyzer tools including
ProVerif [21] and Tamarin [22]. As we mentioned before,
security analysis/verification of post-quantum cryptographic
protocols is also our plan for the next step.

WireGuard [23] is a VPN protocol focusing on simplicity,
fast speed, and high performance. Facing with the quantum
attack threat, its quantum-resistant version has been proposed,
namely post-quantum WireGuard (PQ-WireGuard) [18]. In
that work, the authors have verified that PQ-WireGuard enjoys
some desired security properties with the presence of large-
scale quantum computers by usingTamarin [22], a well-known
formal method tool for the symbolic analysis of cryptographic
protocols. To do so, the security properties are formalized as
Tamarin lemmas, and some auxiliary lemmas are introduced,
where lemma conjecture is known as a creative and intellectual
task in the formal verification. Additionally, the paper has also
presented a computational security proof, which gave stronger
security guarantees than the symbolic proof since probability
and complexity are taken into account and fewer idealizing
assumptions are made. However, more security properties
are verified in the symbolic verification, and more importantly,
the symbolic verification is computer-verified.

The most well-known symbolic cryptographic protocol
analysis tools can be mentioned are ProVerif [21], Maude-
NPA [24], Tamarin [22], and Scyther [25]. Based on the
applied pi-calculus [26], ProVerif [21] can automatically ver-
ify security properties of a given cryptographic protocol. The
verification can be achieved with the presence of a Dolev and
Yao [8] intruder under an unbounded number of protocol
executions. Using the applied pi-calculus, human users are
supposed to model the cryptographic protocol, and then
ProVerif translates it to a set of Horn clauses. This Horn
clause representation makes some abstractions, which is
the cost for the support of an unbounded number of sessions.
Given a security property that we want to prove, the tool
reduces the problem of finding an attack against the property
to the derivability of a fact on the Horn clauses representing
the protocol execution. If the fact is not derivable from the
clauses, the property is proved. On the other hand, if the fact
is derivable from the clauses, there may be an attack violating
the property under analysis, but it may also be a “false
attack,” i.e., the found derivation actually does not corre-
spond to a real attack.

Maude-NPA [24] is a powerful formal verification tool
for analyzing the cryptographic protocols implemented in
Maude. The strand space model [27] is used to model the
protocol execution and the capabilities of the Dolev and Yao
[8] intruder. For the analysis, the tool uses a backward nar-
rowing reachability analysis modulo an equational theory,
where narrowing is a generalization of term rewriting.
Human users are supposed to specify the security property
under verification as a Maude-NPA attack pattern (state)
violating the property. Then, Maude-NPA performs the
backward reachability analysis from that insecure pattern
to check whether it can be reachable from an initial state.
If that is the case, the attack is possible, namely, the property
is violated; otherwise, the property is proven. The key feature

14 IET Information Security

of Maude-NPA is that it supports many equational theories.
But it may lead to the case a bigger state space is generated,
making a long time for the backward reachability analysis to
terminate, and so it requires some techniques to prune the
search space. A key technique to do so is by generating
formal grammars representing terms (states information)
unreachable from initial states [28].

Tamarin [22], a successor of Scyther [25], is a crypto-
graphic protocol analysis based on multiset rewriting [29]. A
Tamarin specification consists of a set of rules, defining how
states change from one to the next, modeling how a protocol
is to be executed, how trustworthy parties are to behave, and
what the Dolev and Yao [8] intruder is capable of. Each state
is represented by an AC-collection of facts, and so a Tamarin
specification can be regarded as a state machine. Roughly
speaking, facts and rules correspond to observable compo-
nents and Maude rewrite rules, respectively, as we described
in this paper. A security property is modeled as a trace prop-
erty, and then constraint solving is used to perform an
exhaustive and symbolic search for executions with the trace
until a satisfying one is found or no more rewrite rules can be
applied. In addition to the automated mode, the tool also
provides the interactive mode. When the tool does not ter-
minate in the automated mode, human users are allowed to
provide some additional lemmas to complete the proof. In
the field of formal verification, conjecturing suitable lemmas
as we all know is an intellectual task.

In the case study by Yadav et al. [30], the authors explored
NTRU key exchange [31], a lattice-based public key exchange
protocol, and found that it is exposed to anMITM attack. This
MITM attack is similar to the attack reported in this paper,
namely the attack caused by the lack of authentication. How-
ever, not like us, they used neither any tool nor formal speci-
fication language as we do.

The computational approach is widely used by cryptogra-
phers to prove the security of cryptosystems. An attacking
game is typically used to define the security of a cryptographic
primitive or protocol. The participants include an adversary
(attacker) and a benign entity, a so-called where the adversary
is an arbitrary probabilistic polynomial-time Turing machine.
machine. The security proof can then be seen as amathematical
reduction that ensures the adversary is unable to gain an advan-
tage over the challenger unless the adversary can solve some
presumed computationally hard problem. When a proof
becomes too complicated, the sequence of games technique
may be employed. It is possible to mechanize security proofs
in the computational approach to some extent with some sup-
porting tools, such as CryptoVerif [32] and EasyCrypt [33, 34].
With the employment of CryptoVerif, Blanchet [35] have veri-
fied the security of the password-based key exchange protocol
OEKE [36], a variant of the encrypted key exchange (EKE)
protocol [37]. The mechanization technique in general is still
not mature to apply to a wide range of protocols.

9. Conclusion and Future Work

We have presented the formal specifications and model
checkings of the three lattice-based KEMs in Maude. We

have first made a base specification where the common parts
in the designs of the three KEMs are modeled. Then, the
specification of each KEM has been completed by extending
that base specification to model the mechanism execution,
and thus, it makes less our effort in doing formal specifica-
tion of the three KEMs. Afterward, we conducted invariant
model checkings in Maude by using the search command,
finding an MITM attack for each of the three KEMs. The
attack occurs basically because a KEM alone is not equipped
with any authentication solution, making it possible for an
active attacker in the middle of connections with the network
control ability to modify all communication between two
honest parties.

Quantum-resistant versions of some cryptographic pro-
tocols have been proposed, such as post-quantum SSH [38]
and post-quantum TLS protocol [13]. They share the same
key idea, that is a classical key exchange algorithm (e.g., DH
and Elliptic Curve DH) is either concurrently used with or
completely replaced with another post-quantum KEM (e.g.,
Kyber and Saber). In the former case, the reason why a post-
quantum KEM is required is clear, but why a classical key
exchange algorithm is still needed. One reason is that such
the KEM is not received enough confidence from the security
point of view because it may not be studied/analyzed deeply.
Therefore, deep security analysis of KEMs, other post-quantum
primitives and protocols is an important challenge to guarantee
their reliability. As a piece of our future work, we are going
to conduct formal verification of the above-mentioned post-
quantum protocols, i.e., post-quantum SSH and post-quantum
TLS. As another piece of our future work, we are also interested
in analyzing some AKE protocols, the AKE protocols, by using
Maude or some other formal method tools.

Data Availability

All of the Maude specifications and checking commands
reported in the paper are available at https://github.com/
duongtd23/lattice-based-kems-mc.

Disclosure

A part of this study was accepted as a work-in-progress paper
by the 14th International Workshop on Rewriting Logic and
its Applications (WRLA 2022), however, that paper was not
published in the workshop’s proceedings.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Tran and Ogata have been supported by JST SICORP (Grant
Number JPMJSC20C2), Japan. Escobar has been partially
supported by the grant PID2021-122830OB-C42 funded by
MCIN/AEI/10.13039/501100011033 and ERDF A way of
making Europe, by the grant CIPROM/2022/6 funded by
Generalitat Valenciana, and by the grant PCI2020-120708-
2 funded by MICIN/AEI/10.13039/501100011033 and by the

IET Information Security 15

European Union NextGenerationEU/PRTR. Akleylek has
been partially supported by TUBITAK under grant number
121R006. Otmani has been supported by the FAVPQC proj-
ect funded by CNRS and by the grant ANR-22-PETQ-0008
PQ-TLS funded by Agence Nationale de la Recherche (ANR)
within France 2030 program.

References

[1] P. W. Shor, “Algorithms for quantum computation: discrete
logarithms and factoring,” in Proceedings 35th Annual
Symposium on Foundations of Computer Science, pp. 124–
134, IEEE, Santa Fe, NM, USA, November 1994.

[2] L. K. Grover, “A fast quantum mechanical algorithm for
database search,” in STOC ’96: Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Computing,
pp. 212–219, Association for Computing Machinery, New
York, NY, USA, July 1996.

[3] B. Blanchet, “Security protocol verification: symbolic and
computational models,” in Principles of Security and Trust.
POST 2012. Lecture Notes in Computer Science, vol. 7215,
pp. 3–29, Springer, Berlin, Heidelberg, 2012.

[4] J. Bos, L. Ducas, E. Kiltz et al., “CRYSTALS - kyber: a CCA-
secure module-lattice-based KEM,” in 2018 IEEE European
Symposium on Security and Privacy (EuroS&P), pp. 353–367,
IEEE, London, UK, April 2018.

[5] J. P. D.’Anvers, A. Karmakar, S. Sinha Roy, and
F. Vercauteren, “Saber: Module-LWR based key exchange,
CPA-secure encryption and CCA-secure KEM,” in Progress in
Cryptology - AFRICACRYPT. 2018 - International Conference
on Cryptology in Africa, Marrakesh, A. Joux, A. Nitaj, and
T. Rachidi, Eds., pp. 282–305, vol. 10831 of Lecture Notes in
Computer Science, Springer, Cham, Morocco, May 2018.

[6] S. Akleylek and K. Seyhan, “Module learning with rounding
based key agreement scheme with modified reconciliation,”
Computer Standards & Interfaces, vol. 79, Article ID 103549,
2022.

[7] F. Durán, S. Eker, S. Escobar et al., “Programming and
symbolic computation in maude,” Journal of Logical and
Algebraic Methods in Programming, vol. 110, Article ID
100497, 2020.

[8] D. Dolev and A. Yao, “On the security of public key protocols,”
IEEE Transactions on Information Theory, vol. 29, no. 2,
pp. 198–208, 1983.

[9] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, and A. Otmani,
“Formal specification and model checking of lattice-based key
encapsulation mechanisms in maude,” in Proceedings of the
International Workshop on Formal Analysis and Verification
of Post-Quantum Cryptographic Protocols co-located with the
23rd International Conference on Formal Engineering Methods
(ICFEM 2022), S. Akleylek, S. Escobar, K. Ogata, and
A. Otmani, Eds., pp. 16–32, vol. 3280 of CEUR Workshop
Proceedings, Madrid, Spain, October 2022.

[10] D. D. Tran, K. Ogata, S. Escobar, S. Akleylek, and A. Otmani,
“Formal specification and model checking of saber lattice-
based key encapsulation mechanism in maude,” in The 34th
International Conference on Software Engineering and
Knowledge Engineering, SEKE 2022, KSIR Virtual Conference
Center, USA, pp. 382–387, KSI Research Inc, July 2022.

[11] R. Avanzi, J. Bos, L. Ducas et al., “CRYSTALS-Kyber:
algorithm specifications and supporting documentation
(version 3.02),” 2021, https://pq-crystals.org/kyber/data/kybe
r-specification-round3-20210804.pdf.

[12] A. Basso, J. M. B. Mera, J.-P. D’Anvers et al., “SABER: Mod-
LWR based KEM (round 3 submission),” 2017, https://www.
esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.
pdf.

[13] M. Campagna and E. Crockett, “Hybrid post-quantum key
encapsulation methods (PQ KEM) for transport layer security
1.2 (TLS),” 2021, RFC Editor https://datatracker.ietf.org/doc/
html/draft-campagna-tls-bike-sike-hybrid.

[14] B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security
of authenticated key exchange,” in Provable Security,
International Conference on Provable Security, ProvSec 2007,
W. Susilo, J. K. Liu, and Y. Mu, Eds., vol. 4784 of Lecture Notes
in Computer Science, pp. 1–16, Springer, Berlin, Heidelberg,
Wollongong, Australia, 2007.

[15] L. Zhou and F. Lv, “A simple provably secure AKE from the
LWE problem,” Mathematical Problems in Engineering,
vol. 2017, Article ID 1740572, 16 pages, 2017.

[16] J. Ding, P. Branco, and K. Schmitt, “Key exchange and
authenticated key exchange with reusable keys based on
RLWE assumption,” Cryptology ePrint Archive, Article ID
665, 2019.

[17] C. Jacomme, E. Klein, S. Kremer, and M. Racouchot, “A
comprehensive, formal and automated analysis of the EDHOC
protocol,” in 32nd USENIX Security Symposium (USENIX
Security 23, pp. 5881–5898, USENIX Association, Anaheim,
CA, 2023.

[18] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, and
P. R. Zimmermann, “Post-quantum WireGuard,” in 2021
IEEE Symposium on Security and Privacy (SP), pp. 304–321,
IEEE, San Francisco, CA, USA, May 2021.

[19] G. Selander, J. P. Mattsson, and F. Palombini, “Ephemeral
Diffie–Hellman over COSE (EDHOC),” 2022, Internet
Engineering Task Force. draft-ietf-lake-edhoc-17. work in
Progress, https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/
17/.

[20] V. Cheval, C. Jacomme, S. Kremer, and R. Künnemann,
“SAPIC+: protocol verifiers of the world, unite!” in 31st
USENIX Security Symposium (USENIX Security 22, pp. 3935–
3952, USENIX Association, Boston, MA, USA, 2022.

[21] B. Blanchet, V. Cheval, and V. Cortier, “ProVerif with lemmas,
induction, fast subsumption, and much more,” in 2022 IEEE
Symposium on Security and Privacy (SP), pp. 69–86, IEEE, San
Francisco, CA, USA, May 2022.

[22] D. Basin, C. Cremers, J. Dreier, and R. Sasse, “Symbolically
analyzing security protocols using tamarin,” ACM SIGLOG
News, vol. 4, no. 4, pp. 19–30, 2017.

[23] J. A. Donenfeld, “WireGuard: next generation kernel network
tunnel,” in Proceedings of the Network and Distributed System
Security Symposium, NDSS 2017, San Diego, CA, USA, 2017.

[24] S. Escobar, C. Meadows, and J. Meseguer, “Maude-NPA:
cryptographic protocol analysis modulo equational proper-
ties,” in Foundations of Security Analysis and Design V,
A. Aldini, G. Barthe, and R. Gorrieri, Eds., pp. 1–50, Springer,
Berlin, Heidelberg, Berlin, Heidelberg, 2009.

[25] C. J. F. Cremers, Scyther - semantics and verification of
security protocols, Eindhoven University of Technology, Ph.D.
thesis, 2006.

[26] B. Blanchet, “Modeling and verifying security protocols with
the applied pi calculus and ProVerif,” Foundations and
Trends® in Privacy and Security, vol. 1, no. 1-2, pp. 1–135,
2016.

[27] F. J. T. Thayer, J. C. Herzog, and J. D. Guttman, “Strand
spaces: why is a security protocol correct?” in Proceedings.
1998 IEEE Symposium on Security and Privacy (Cat.

16 IET Information Security

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/17/
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/17/
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/17/
https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/17/

No.98CB36186), pp. 160–171, IEEE, Oakland, CA, USA, May
1998.

[28] S. Escobar, C. Meadows, J. Meseguer, and S. Santiago, “State
space reduction in the Maude-NRL protocol analyzer,”
Information and Computation, vol. 238, pp. 157–186, 2014.

[29] J. C. Mitchell, “Multiset rewriting and security protocol
analysis,” in Rewriting Techniques and Applications, S. Tison,
Ed., vol. 2378, pp. 19–22, Springer, Berlin, Heidelberg,
Copenhagen, Denmark, 2002.

[30] V. K. Yadav, S. Venkatesan, and S. Verma, “Man in the middle
attack on NTRU key exchange,” in Communication, Networks
and Computing, S. Verma, R. S. Tomar, B. K. Chaurasia,
V. Singh, and J. Abawajy, Eds., pp. 251–261, Springer
Singapore, Singapore, 2019.

[31] X. Lei and X. Liao, “NTRU-KE: a lattice-based public key
exchange protocol,” Cryptology ePrint Archive, 2013, http://
eprint.iacr.org/2013/718, Article ID 718.

[32] B. Blanchet, “Mechanizing game-based proofs of security
protocols,” in Software Safety and Security - Tools for Analysis
and Verification. vol. 33 of NATO Science for Peace and
Security Series - D: Information and Communication Security,
T. Nipkow, O. Grumberg, and B. Hauptmann, Eds., pp. 1–25,
IOS Press, 2012.

[33] G. Barthe, B. Grégoire, S. Heraud, and S. Z. Béguelin,
“Computer-aided security proofs for the working cryptogra-
pher,” in Advances in Cryptology – CRYPTO 2011, P. Rogaway,
Ed., vol. 6841, pp. 71–90, Springer, Berlin, Heidelberg, Santa
Barbara, CA, USA, 2011.

[34] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt,
and P. Strub, “Easycrypt: a tutorial,” in Foundations of Security
Analysis and Design VII, A. Aldini, J. López, and F. Martinelli,
Eds., vol. 8604, pp. 146–166, Springer, Cham, 2013.

[35] B. Blanchet, “Automatically verified mechanized proof of one-
encryption key exchange,” in 2012 IEEE 25th Computer
Security Foundations Symposium, pp. 325–339, IEEE, Cam-
bridge, MA, USA, June 2012.

[36] E. Bresson, O. Chevassut, and D. Pointcheval, “Security proofs
for an efficient password-based key exchange,” in CCS ’03:
Proceedings of the 10th ACM Conference on Computer and
Communications Security, pp. 241–250, Association for
Computing Machinery, New York, NY, USA, October 2003.

[37] S. M. Bellovin and M. Merritt, “Encrypted key exchange:
password-based protocols secure against dictionary attacks,”
in Proceedings of the IEEE Symposium on Research in Security
and Privacy, pp. 72–84, IEEE, Oakland, CA, USA, May 1992.

[38] P. Kampanakis, D. Stebila, and T. Hansen, “Post-quantum
hybrid key exchange in SSH,” 2023, Internet Engineering Task
Force, draft-kampanakis-curdle-ssh-pq-ke-01. work in Prog-
ress, https://datatracker.ietf.org/doc/draft-kampanakis-curdle-
ssh-pq-ke/01/.

IET Information Security 17

http://eprint.iacr.org/2013/718
http://eprint.iacr.org/2013/718
http://eprint.iacr.org/2013/718
http://eprint.iacr.org/2013/718
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/01/
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/01/
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/01/
https://datatracker.ietf.org/doc/draft-kampanakis-curdle-ssh-pq-ke/01/

