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System on Wafer (SoW) based on chiplets may be implanted with hardware Trojans (HTs) by untrustworthy third-party chiplet
vendors. However, traditional HTs protection techniques cannot guarantee complete protection against HTs, which poses a great
challenge to the hardware security of SoW. In this paper, we propose a computing architecture based on endogenous security
theory—dynamic heterogeneous redundant computing architecture (DHRCA) that can tolerate and detect HTs at runtime. The
security of our approach is analyzed by building a generalized stochastic coloring petri net (GSCPN) model of DHRCA. The
simulation results based on the GSCPN model show that our method can improve the system security probability to 0.8690 and
the system availability probability to 0.9750 in the steady state compared with typical triple-mode redundancy and runtime
monitoring methods. Furthermore, the impact of different attack and defense strategies on system security of different methods
is simulated and analyzed in this paper.

1. Introduction

With the rise of new-generation information technologies
epitomized by artificial intelligence and the explosive growth
of data in modern society, the demand for computational
power within computing systems has reached unprecedented
heights. In the realm of integrated circuits, there are several
methods aimed at enhancing computational capabilities,
including improved process technologies, increased chip
area, and adoption of state-of-the-art packaging techniques.
However, traditional approaches have encountered bottle-
necks due to the physical limits of processes, wafer yield
restrictions, and thermal constraints imposed by packaging.
As a result, more and more researchers have shifted their
focus towards chiplet-based integration systems recently,
exemplified by AMD’s “zen2” processor [1], Intel’s [2] Ponte
Vecchio, and Tesla’s DOJO [3].

The System on Wafer (SoW) is a chiplet-based integra-
tion system characterized by a higher number of integrated
chiplets and a larger system scale. By integrating bare die
directly onto the wafer substrate without packaging, the
SoW can achieve communication bandwidth, energy con-
sumption, and latency that closely resemble those of on-

chip systems [4]. However, to achieve lower costs and faster
iteration speeds, developers of SoW often integrate commer-
cial chiplets from multiple untrusted third-party sources
based on their specific requirements. This practice, unfortu-
nately, gives rise to grave concerns regarding hardware secu-
rity, particularly the prevalence of hardware Trojans (HTs)
issues.

The SoW, a paradigm built upon the foundation of sili-
con, represents a novel information infrastructure. However,
the fundamental challenges about application, system, and
network security within the SoW cannot be adequately
addressed unless the issue of HTs is duly considered. Unfor-
tunately, current research in the field of SoW predominantly
focuses on interconnect network technology, as well as the
assembly and integration of chiplets onto the crystalline sub-
strate, neglecting comprehensive investigations into the prob-
lem of HTs. Existing defense techniques against HTs do not
offer a foolproof solution that ensures complete resilience
against their insidious attacks. What’s more, traditional stud-
ies often assume untrusted entities to be offshore chip man-
ufacturers or third-party IPs integrated within individual
chiplets. However, any entity within the commercial chiplet
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supply chain of the SoW has the potential to introduce mali-
cious HTs during the design or manufacturing process. The
conventional approaches fall short when applied to SoW
incorporating commercial chiplets. Therefore, there is an
urgent need to develop an HTs defense method for SoW.

This article presents a secure computing architecture for
SoW without altering the underlying hardware design. The
proposed architecture enables runtime detection of tampered
outputs and denial-of-service HTs, while also exhibiting
resilience against data leakage HTs. These advancements
enhance the security of SoW. The specific contributions of
this paper are as follows:

(i) In this paper, we conduct an analysis of theHT threats
to SoW in terms of the difficulty of implantation and
defense. In a pioneering effort, we propose a secure
computing architecture for SoW that embraces
dynamic heterogeneous redundancy. This architecture
effectively harnesses the unique characteristics of het-
erogeneous redundant chiplets within SoW, while
leveraging its dynamism. Furthermore, it can enhance
system security without incurring additional hardware
development and integration costs. Furthermore, we
give a comprehensive description of the key security
mechanisms embedded within this proposed comput-
ing architecture.

(ii) We model the behavior of HT attackers in SoW and
the keymechanisms of the proposed secure computing
architecture using generalized stochastic colored petri
net (GSCPN) [5], establishing the dynamic heteroge-
neous redundant computing architecture (DHRCA)
HT attack–defense GSCPN model for SoW.

(iii) We compare our method with the scheme of tri-
mode redundancy (TMR) and runtime monitoring
TPAD [6] on the GreatSPN simulation platform to
verify the security gain of the proposed method and
further analyze the security of SoW with different
defense approaches in different scenarios and their
reasons.

The rest of this paper is organized as follows: Section 2
introduces the relevant background. Section 3 gives the
research motivation of this paper, in which we analyze the
Trojan threat scenarios of SoW and give the threat model of
the research in this paper. Section 4 introduces our approach
and proposes the corresponding GSCPN submodel for the
relevant attack and defense strategies in DHRCA. Section 5
validates the security of the proposed architecture and anal-
yses the implications of the attack and defense strategy on the
security of the system through simulation. Section 6 con-
cludes our work.

2. Background

2.1. HTs and Defense Strategies.HT is a specialized hardware
module that can be exploited by attackers. It consists of
trigger logic and payload logic. The trigger logic monitors
signals within the circuit and activates the payload logic

when certain conditions are met, thereby executing specific
malicious functions to achieve the attacker’s objectives [7].
HTs can be classified according to their malicious payloads,
including tampering function, information leakage, and denial-
of-service Trojans. Since the emergence of HTs, many
researchers have studied how to defend against HT attacks.
Currently, HT’s defense methods can be categorized into HT
detection technologies, trusted design technologies, and run-
time protection technologies.

According to the lifecycle of integrated circuits, HT
detection techniques can be categorized into pre-silicon
and post-silicon detection techniques. Yasaei et al. [8] con-
vert the HDL code of the circuit into a specific data flow
graph in the pre-silicon stage, and then they use a graph
convolutional network (GCN) to classify the nodes in the
graph to determine whether they are infected by HTs,
achieving HT detection and localization. Lyu and Mishra
[9] map the activation problem of HT trigger logic to the
maximum clique cover problem and propose a test vector
generation algorithm based on maximal clique sampling to
increase the probability of activating hidden HTs, thereby
improving the HT detection rate. Yang et al. [10] perform
logic testing on post-silicon hard IPs using test vectors, and
then they cluster the IPs based on the side-channel informa-
tion obtained during the testing process. From each cluster,
one IP is selected for reverse engineering to determine
whether there are HTs in that IP cluster.

Trusted design techniques achieve HT defense from two
perspectives: enhancing detection and preventingHT implan-
tation. Guimarães et al. [11] add current sensors to the origi-
nal circuit to improve the accuracy of signals collected by
side-channel analysis methods, thereby increasing the proba-
bility of Trojan detection. Li et al. [12] propose a layout
padding-based method to prevent HT implantation. By
implanting the A2-RO circuit in blank areas of the original
circuit, it can prevent attackers from implanting HTs in those
areas; once the circuit is removed by attackers, the current
information of chip power supply pins will change, enabling
the detection of HT implantation. Patnaik et al. [13] combine
manufacturing segmentation and layout camouflage to pro-
pose a scheme for dividing and manufacturing 3D ICs hier-
archically. Different layers are manufactured by different
wafer fabrication plants, and the vertical interconnections
between layers are obfuscated to prevent HT implantation.
Safari et al. [14] proposed the use of vertical obfuscation and
horizontal obfuscation with chiplet technology in traditional
ICs to prevent the insertion of manufacturer HTs.

Runtime protection techniques are the last line of defense
against HT attacks, which can be categorized into runtime
monitoring and runtime tolerance techniques. Dong et al.
[15] designed a multilevel architecture to protect third-party
encrypted IP by secure wrapper and controller. The wrapper
checks the input and output signals of the IP, and the con-
troller configures different levels of response measures based
on the results of the wrapper to mitigate the security issues of
the encrypted IP. Zhu et al. [16] propose an architecture
called Jintide, which consists of an IO behavior-tracking
chip, multiple memory behavior-tracking chips, and a
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reconfigurable chip to protect the target CPU. The tracking
chip records the CPU’s IO and memory transactions and
sends the logs to the reconfigurable chip. The reconfigurable
chip replays the logs to determine whether there is an HT
attack. Gunti and Lingasubramanian [17] use the TMR
method to redundantly transform the critical paths in the
circuit and determine the presence of an HT based on the
majority voting results. Cassano et al. [18] propose a software
obfuscation algorithm called DETON to reduce the harm of
HT attacks by generating obfuscated versions of protected
software. Eslami et al. [19] proposed a security checker uti-
lizing assertions; the security checker synthesizes assertions
into circuits to detect rule violations at runtime. Meanwhile,
Wu et al. [6] introduced a TPAD approach employing spe-
cific CED techniques and selective programmability to safe-
guard digital systems from HTs attacks, and this method
achieves a remarkable 99.998% HTs detection rate with a
false positive rate of 0.

2.2. SoW. The SoW, which integrates “super microsystems”
with ultra-high density and heterogeneous chiplets assembly,
has opened up a new path to enhance the performance of chip
systems in the era where Moore’s Law is gradually losing its
effectiveness. As shown in Figure 1, the SoW is equipped with
modules for power management, heat dissipation, I/O, and
testability similar to a single chip. Third-party commercial chi-
plets and self-developed in-house domain-specific chiplets are
integrated at an ultra-high density on the wafer-level substrate
using advanced packaging techniques. Thermal compression
bonding is one of the advanced packaging techniques that
involves applying heat and pressure to bond the components
together, creating a strong and reliable connection for efficient
signal transmission and power distribution. Another advanced
packaging technology, through-silicon vias (TSV), provides a
method of creating vertical interconnects through silicon
wafers; TSV allows for the integration of multilayer circuits
and the stacking of multiple chips or chipsets within a single
package. Utilizing these advanced packaging techniques, SOW
enables high-performance interchiplet communication.

3. Motivation

3.1. Threat Scenario Analysis

3.1.1. Attacker’s Perspective.
(1) Increased Probability of HT Implantation. The supply
chain of SoW based on chiplet integration relies on various
entities spread globally [20]. The supply chain of SoW is
depicted in Figure 2. Designers of SoW determine the chi-
plets to be integrated and their interconnections based on
system requirements. They provide the design files of the
wafer-level substrate to the manufacturing factory and per-
form heterogeneous integration of third-party commercial
chiplets and domain-specific chipelets designed in-house
and fabricated by trusted fabricators on the wafer substrate.

Given the inability to ensure the trustworthiness of third-
party commercial chiplets, in our work, we assume that
third-party commercial chiplets are untrusted, while the
domain-specific chipelets designed in-house and the sub-
strate are trusted. HTs could potentially be implanted during
the design or manufacturing stages of commercial chiplets,
thereby increasing the possibility of Trojan presence in the
system. Assuming the probability of a third-party supplier
implants HTs in the chiplets they provide is denoted as Pi.
When Pi is 0, none of the chiplets provided by supplier i will
have HTs, and when Pi is 1, the supplier is not trustworthy at
all, and the supplier implanted HTs in their chiplets. PSoW is
the probability that SoW has been implanted with HTs, and
the probability that the SoW is not implanted with Trojans is
1− PSoW. The SoW will introduce multiple (set to n in this
paper) suppliers, and then the probability that the SoW does
not implant an HT is determined by n suppliers, i.e.,

1 − PSoW ¼ P A1;A2;A3;…;Anð Þ; ð1Þ

where Ai ði¼ 1; 2;…; nÞ: denotes an incident in which sup-
plies i did not implant an HT in the chiplet it supplied.
Because we assume that there is no collusion between sup-
pliers in this paper, Whether the vendor implanted an HT is
an independent event. Therefore:

I/O, analog, PHY, and fiber-
optical interfaces

Network of SoW

Wafer-level substratePower management,
DFT, etc.

In-house domain-
specific chiplet

Third-party
commercial chiplet

FIGURE 1: SoW schematic.
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1 − PSoW ¼ P A1ð Þ × P A2ð Þ ⋅⋅⋅⋅⋅⋅ P Anð Þ; ð2Þ

PSoW ¼ 1 − ∏
n

i¼1
1 − Pið Þ: ð3Þ

Based on Equations (1) and (2), we can infer that as the
number of untrusted entities in the system linearly increases,
the system’s trustworthiness exhibits an exponential decrease,
and the probability of HT implantation in the system also
shows an exponential increase.

(2) The Concealment of HTs Increases. Chiplet-based
SoW poses new challenges to hardware security, as mentioned
in [21–26], where third-party chiplet suppliers can implant a
single HT’s trigger logic and payload logic into separate chi-
plets. When the trigger logic in one chiplet is activated, it trig-
gers the malicious payload logic located in another chiplet
through the communication channel between chiplets, as
shown in Figure 3. Since the trigger and load logic are not in
the same chiplet, this can result in lower detection rates for
post-silicon side-channel analysis methods. Side-channel anal-
ysis is a technique for detecting HTs by utilizing the effect of
Trojan implantation on the side-channel information of the
parent circuit, and most of them do not rely on the activation
of the Trojan for effective detection [27–29], as compared to
methods such as logic testing. When performing side-channel
analysis on chiplets that only contain the payload logic, the
absence of trigger logic that continuously monitors the circuit
state reduces the impact of HTs on side-channel information.
This, in turn, lowers the probability of Trojan detection and
increases the concealment of HTs.

3.1.2. Defender’s Perspective. SoW designers can adopt exist-
ing Trojan defense methods to resist HT attacks. However,
the current methods are not fully applicable to SoW.

(1) Differences in Trusted Entity Assumptions (TEA).
Table 1 lists the TEA of HT research in SoC and SoW. Cur-
rent researches on HTs defense in SoC mainly focus on two
untrusted supply chain entities: the untrusted manufacturer

and untrusted third-party IP suppliers. They often assume that
the chip designer is trusted. For example, layout fill and split
manufacturing methods assume that overseas manufacturing
factories are untrusted while the chip design is trusted. Salem
and Topham [30] assume that the third-party AXI interconnect
IP supplier is an untrusted entity, and the trusted chip designer
ensures security by adding wrappers tomonitor the interconnect
IP. However, the supply chain of SoW involves various entities
spread globally, and it cannot be assumed that commercial chi-
plet designers are completely trusted. Malicious attackers can
also implant HTs during chiplet design.

(2) Inadequacy of Traditional HT Methods. To ensure
security, the SoW designer/integrator needs to perform secu-
rity verification of untrustworthy commercial chiplets. Exist-
ingmethods can effectively defend against HT threats to some
extent, but there are still some shortcomings. First, traditional
pre-silicon defense techniques (such as pre-silicon inspection)
do not apply to post-silicon “hard” chiplets, as commercial
chiplet suppliers do not share original design files due to
confidentiality. Second, post-silicon methods (such as side-
channel analysis) require a golden model without HTs. When
the commercial chiplet designer itself is not trustworthy, SoW
designers do not have access to the golden model of the com-
mercial chiplet, thus rendering most of the methods relying

3pip

3pip

3pip

3pip

Chiplet
designer

Chiplet
designer

Chiplet
foundry

Chiplet
foundry

Chiplet vendor n

Chiplet from vendor n

Chiplet vendor 1

Chiplet from
vendor 1

In-house chiplet Chiplet
foundry

SoW designer

Interposer
foundry

Interposer die

SoW assembly and
integration

Chiplet
Interposer die

FIGURE 2: SoW supply chain.

P

T: Trigger
P: Payload

FIGURE 3: HT hidden enhancement scenario for SoW.
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on the golden model ineffective. Finally, existing runtime
protection techniques (such as whitelist-based monitoring
techniques) are not effective in defending against unknown
HTs with unknown characteristics, and TMR-based runtime
tolerance mechanisms cannot tolerate scenarios where two or
more redundant units are disabled by an HT attack due to
their static nature. In addition, some of the existing studies
only target a specific type of HT or a certain class of HT, and it
is unable to effectively defend against attack scenarios involv-
ing multiple different types of HTs.

Overall, the challenges faced by SoW designers in secur-
ing chiplets are significant. Traditional pre-silicon and some
existing runtime defense methods may not be directly appli-
cable in such scenarios, emphasizing the need for novel

approaches and techniques specifically tailored to the unique
requirements of SoW.

3.2. Threat Model

3.2.1. Source of HTs. We assume that any of these entities,
from the suppliers of 3pip in commercial chiplets to the man-
ufacturers of commercial chiplets, can implant HTs. SoW
designers, domain-specific chipelets designed in-house,
wafer-level substrate, and their manufacturers are trusted
entities. All of these HTs are chip-level Trojans, which can
be at any level of abstraction, such as gate-level or layout-level.

3.2.2. Trigger Mechanism of HTs. We assume that a malicious
attacker triggers an HT based on rare signals and states in the

TABLE 1: Comparison of TEA for traditional HT defense and SoW.

TEA in different researches References 3pip vendor Chip/third-party chiplet designer Chiplet foundry SoW designer

TEA in traditional defense approaches
[15, 30] X √ √
[12–14] √ √ X

[10] X √ X

TEAs in SoW This paper X X X √
Note: x: untrusted entity √: trusted entity.

A

CB

D

DAG of app

App info

Assignment of tasks

Correct result
(X) 

: HT not Activated
: HT Activated

: Commercial Chiplet
: In-house domain-
  specific chiplet

Task queue

Scheduler (task mapping)

A B

D C

ðaÞ

A

B

D

C DAG of app

App info

Wrong result
(Y) 

Assignment of tasks

: HT not Activated
: HT Activated

: Commercial Chiplet
: In-house domain-
  specific chiplet

Task queue

Scheduler (task mapping)

A B

D C

ðbÞ
FIGURE 4: Example of a function—tampering HT attack on SoW: HT not activated (a); HT activated (b).
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chiplet, which is probabilistically activated when the chiplet exe-
cutes a user-submitted computational task. The HT is triggered
when the signals or states satisfy the activation conditions.

3.2.3. Payload of HTs. We assume that commercial chiplets
can have both function tampering HTs, information leakage
HTs, and denial-of-service HTs, and function tampering
HTs will alter the normal output of the chiplet, while infor-
mation leakage HTs do not affect the output. For simplicity
of analysis, we assume that individual HTs in this paper have
only one malicious function.

3.2.4. Logic Location of HTs. We assume that the trigger and
load logic for HTs can be located in the same chiplet or
different chiplets from the same vendor.

3.2.5. Others. We assume that there is no collaborative rela-
tionship between different commercial chiplet suppliers and
that they do not have the same HT logic. This is logical
because commercial chiplet suppliers do not share their orig-
inal design files with commercial competitors, nor do they
claim security vulnerabilities in their chiplets and share them
with commercial competitors.

Under the above threat model, based on the architecture
and computing architecture of SoW, an example of an
attacker utilizing an HT that tampers the output of a com-
mercial chiplet to carry out an attack is shown in Figure 4.
Figure 4(a) shows that when the HT is not activated, the
system outputs the correct result X, and when the HT is
activated, the function of the chiplet is modified, the system
outputs the incorrect result Y, as shown in Figure 4(b).

4. Architecture Design and Security Modeling

4.1. DHRCA. In this subsection, we combine mimic defense
theory with endogenous security properties [31–34] to give a

DHRCA for SoW, as shown in Figure 5. The architecture
consists of an input proxy module, an output proxy module,
a negative feedback control module, and a resource pool of
heterogeneous chiplets.

When users submit applications, the input proxy module
will abstract the application information and generate a DAG
for the application; then, it replicates the DAG. The scheduler
maps the application subtasks to the available hardware
resources based on the redundant task graph and known
resource pool information.When an application is completed
by a computing chiplet, the arbiter in the output proxy will
use the built-in arbitration strategy to analyze the computa-
tion result, output the arbitration result, and submit the arbi-
tration log to the negative feedback controller. The negative
feedback controller performs relevant control operations,
such as cleaning the HT-attacked chiplets according to the
arbitration results and updating the resource pool informa-
tion and control parameters.

4.2. Key Security Mechanisms. The task mapping and arbitra-
tion negative feedback mechanisms in DHRCA determine the
security of DHR architecture, and they can effectively increase
the uncertainty presented by the DHR architecture to an
attacker, making it more difficult for an attacker to trigger
an HT and achieve their attack intent. In this subsection, we
briefly discuss the key security mechanisms mentioned above.

4.2.1. Task Mapping Mechanism. The task mapping mecha-
nism can be divided into two subquestions: how to map
suitable chiplets and when to switch chiplets.

The selection of chiplets can increase the threat awareness
of DHRCA and improve system security. In general, chiplets
performing the same subtasks online should have a high
degree of dissimilarity. The lower the dissimilarity is, the
less security the system has. In the extreme case, when the

Negative feedback controller

Output
proxy

Input
proxy

Heterogeneous computing resource pools on wafer

FPGA_1

CPU_1

FPGA_2 FPGA_3 FPGA_i

CPU_2 CPU_ j

GPU_1 GPU_2 GPU_3 GPU_m

XPU_1 XPU_2 XPU_3 XPU_k

… … … …

. . .

. . .

. . .

...

DAG copy

Scheduler

. .
 .…

Hardware resource pool
info

Arbitration
log

Reset,
power-off,
isolation...

CPU_3Applicationp info
Arbiter

Final results

Update
arbitration
parameters

FIGURE 5: DHRCA.
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redundantly executed chiplets are identical, the system is
equivalent to a homogeneous redundant system, which can
only solve the reliability problem due to random failures and
cannot solve the security problem caused by HTs.

The timing of switching chiplets reflects the dynamicity
of the architecture, making it more difficult to attack and
thus increasing system security. Dynamicity can increase
the uncertainty of the system to the outside and disrupt
the attack chain of HTs, especially for sequential logic
HTs. The dynamicity disrupts the timing conditions, pre-
venting HTs from being triggered. The shorter the switching
interval is, the higher the dynamicity is, and the higher attack
capabilities of attackers require triggering the HT within a
shorter time.

4.2.2. Strategic Arbitration and Negative Feedback Mechanisms.
Through the arbitration mechanism, abnormal behavior in the
chiplet that executes computing tasks can be detected, and mali-
cious attacks based on HTs can be promptly blocked through
negative feedback and scheduling mechanisms. The arbitration
mechanism can transform the HT detection problem of a single
chiplet into relative judgment between redundant chiplets. Once
a differential output phenomenon occurs, it can be determined
that an HT has been detected.

Theoretically, the arbitration mechanism can achieve HT
awareness once there is an output or state inconsistency across
the execution chiplet groups. However, due to the differences
between each group of heterogeneous chiplets, their internal
states cannot be completely consistent during normal operation.
Therefore, the design and implementation of the arbitration
mechanism for the DHRCA need to focus on how to normalize
the output to improve the accuracy of arbitration reasonably.

The DHRCA does not change the architecture of SoW. It
deploys mimic proxy modules in the business perception
layer, cognitive decision layer, and resource-aware layer of
SoW to form a mimic bracket. The on-wafer computing
chiplets that perform the application are the mimetic protec-
tion boundary. This architecture can achieve the security
goal of avoiding or mitigating uncertain threats caused by
the untrustworthiness of third-party supply chains or the
inevitability of HTs, ensuring that the SoW can provide
high-security and high-reliability services.

4.3. Security Modeling. Since the Petri Net model was pro-
posed in 1962, it has been widely used for modeling parallel,
distributed, and non-certainty systems due to its ability to
represent complex systems using simple graphical notations.
Compared with attack tree models or attack graph models
[35], which focus on attack behaviors, the Petri Net model
can simultaneously describe the system’s state, attack and
defense behaviors, and dynamic characteristics of the sys-
tem’s state changes caused by the attack and defense beha-
viors. To further improve the expressive efficiency of the
model, the generalized stochastic petri net (GSPN) and its
color extension have been proposed. To better represent the
different types of HTs, the different impacts on the system
state after triggering different types of HTs, and the temporal
relationship between the attack and defense behaviors on the

system state, we use GSCPN to model the security of the
architecture we proposed in this research.

4.3.1. GSCPN-DHRCA Formal Definition. We also assume
that the arrival time of the attack disturbance, the deadline for
chiplet task execution, the duration of the HT’s activation, and
the dynamic scheduling are all memoryless and follow exponen-
tial distributions. Finally, to simplify security analysis, we assume
that there is at most oneHT active in an individual chiplet at any
time, while the others are in a dormant state.

The DHRCA for SoW based on GSCPN can be described
as follows:

GSCPN − DHRCA¼ Σ; P;T; F;C;G; λ;ω;M0f g: ð4Þ

Among them:
Σ is the set of colors in the net model, consisting of basic

and mixed colors, and the color is represented by the <>
symbol and its internal parameters in the diagram of this
paper.

P is the set of places in the net model, represented by a
circle in the diagram.

T is the set of transitions in the net model, T ¼Ttime ∪
Timmediate;Ttime ∩ Timmediate ¼∅, Ttime is the set of time-
delayed transitions, and Timmediate is the set of instantaneous
transitions, they are represented by hollow and solid rectan-
gles respectively in the diagram.

F is the set of directed arcs in the net model, F ⊆ ðP×TÞ
: ∪ ðT × PÞ :, and the arcs can only be directed from the tran-
sition to the place or from the place to the transition, repre-
sented in the diagram by the connecting lines with arrows.

C is the color mapping function, C :P→ 2Σ, 2Σ is a subset
of the color set Σ, denoted as the set of possible colors for the
token in place.

G is the set of guard functions for the transitions in the net
model, G :T → Bool Expression, when the expression condi-
tion is satisfied that the transition may be activated and the
Bool Expression¼ 1 in the absence of special instructions.

λ is the set of average implementation rates of the time-
delayed transitions.

ω is the set of normalized weights for the instantaneous
transitions, satisfying∑M½t>

t2Timmediate
wt ¼ 1, which means that the

sum of the weights of all implementable instantaneous tran-
sitions under the marking M is 1. The instantaneous transi-
tions under a certain identity have the same weight in the
absence of special instructions.

M0 is the initial identification of the GSCPN-DHRCA.
We assume that the execution redundancy of the pro-

posed architecture is 3, and the adjudication strategy is a
large number of adjudication strategies that adopt a random
selection strategy when the output results do not satisfy the
adjudication conditions. The corresponding GSCPN submo-
dels of the proposed architecture include the chiplet HT
attack behavior submodel, the scheduling mechanism sub-
model, the task duration submodel, and the arbitration neg-
ative feedback behavior submodel. The specific expressions
of the guard functions corresponding to the transitions are
shown in Table 2.

IET Information Security 7



4.3.2. Chiplet HT Attack Behavior Submodel. As shown in
Figure 6(a), it is the chiplet HT attack GSCPN submodel. The
token colors for Places P1_nor and P1_att can be <nor>,
<mod>, <lek>, and <dos>, representing the states of the
chiplet being in HT dormant state, function tampering HT
activated state, data leakage HT activated state, and denial-of-
service HT activated state. The token colors for Place P1_out can
be <right>, <wrong>, and <num>, representing correct
output, incorrect output, and no output of the chiplet.
Transition T_HWtri represents the activation event of HT,
with an average implementation rate of λ1. Transition
T_Hwsleep represents the transition of the HT from activation
to a dormant state, with an average implementation rate of λ2.
Immediate transition T_HT_out represents the impact of

different types of HTs triggering on the system’s output. At
the initial moment, there is one <nor> colored token in
P1_nor, and the token color in P1_out is <right>. Figure 6(b)
is the equivalentGSPNmodel unfolded from theGSCPNmodel.
Immediate transitions T1, T2, and T3 represent the activated
HTs with probabilities ω1 for function tampering HT, ω2 for
denial-of-service HT, and ω3 for data leakage HT, respectively.

4.3.3. Scheduling Mechanism Submodel. In the DHRCA, the
system scheduling is governed by dynamic random scheduling
and arbitration negative feedback scheduling control. The
scheduling mechanism of the GSCPN submodel is shown in
Figure 7(a). Transition T_dyn_schedule represents the
nonarbitration triggered dynamic scheduling switch event,

TABLE 2: GSCPN-DHRCA guarding functions.

Functions Bool expression

GðT HTtriÞ: ðx ¼ ¼norÞ : ∧ ðy!¼norÞ:

GðT HTsleepÞ: ðx!¼ norÞ: ∧ ðx!¼ dosÞ: ∧ ðy ¼ ¼norÞ:

GðT HT outÞ: ððx ¼ ¼modÞ ∧ ða¼ ¼ rightÞ ∧ ðb¼ ¼wrongÞÞ: ∨ ððx ¼ ¼ dosÞ ∧ ða!¼ numÞ ∧ ðb¼ ¼ numÞÞ :

GðT ANLS 1Þ: ða¼ ¼wrongÞ: ∧ ðb¼ ¼wrongÞ: ∧ ðc¼ ¼wrongÞ:

GðT ANLS 2Þ: ða¼ ¼numÞ: ∧ ðb¼ ¼wrongÞ: ∧ ðc¼ ¼wrongÞ:

GðT ANLS 3Þ: ða¼ ¼wrongÞ: ∧ ðb¼ ¼ numÞ: ∧ ðc¼ ¼wrongÞ:

GðT ANLS 4Þ: ða¼ ¼wrongÞ: ∧ ðb¼ ¼wrongÞ: ∧ ðc¼ ¼numÞ:

GðT ANLS 5Þ: ðða¼ ¼ numÞ ∧ ðb¼ ¼wrongÞ ∧ ðc¼ ¼ rightÞÞ: ∨ ðða¼ ¼ numÞ ∧ ðb¼ ¼ rightÞ ∧ ðc¼ ¼wrongÞÞ:

GðT ANLS 6Þ: ðða¼ ¼wrongÞ ∧ ðb¼ ¼ numÞ ∧ ðc¼ ¼ rightÞÞ: ∨ ðða¼ ¼ rightÞ ∧ ðb¼ ¼numÞ ∧ ðc¼ ¼wrongÞÞ:

GðT ANLS 7Þ: ðða¼ ¼ rightÞ ∧ ðb¼ ¼wrongÞ ∧ ðc¼ ¼numÞÞ: ∨ ðða¼ ¼wrongÞ ∧ ðb¼ ¼ rightÞ ∧ ðc¼ ¼ numÞÞ:

GðT ANLS 8Þ: ða¼ ¼ rightÞ : ∧ ðb¼ ¼wrongÞ: ∧ ðc¼ ¼wrongÞ :

GðT ANLS 9Þ: ða¼ ¼wrongÞ: ∧ ðb¼ ¼ rightÞ: ∧ ðc¼ ¼wrongÞ :

GðT ANLS 10Þ: ða¼ ¼wrongÞ: ∧ ðb¼ ¼wrongÞ: ∧ ðc¼ ¼ rightÞ :

GðT NF 23Þ: ða¼ ¼ rightÞ : ∧ ðb¼ ¼ rightÞ: ∧ ðc¼ ¼ rightÞ :

GðT NF 24Þ: ða!¼ rightÞ: ∧ ðb¼ ¼ rightÞ: ∧ ðc¼ ¼ rightÞ :

GðT NF 25Þ: ða¼ ¼ rightÞ : ∧ ðb!¼ rightÞ: ∧ ðc¼ ¼ rightÞ :

GðT NF 26Þ: ða¼ ¼ rightÞ : ∧ ðb¼ ¼ rightÞ: ∧ ðc!¼ rightÞ:

GðT NF 27Þ: ða!¼ numÞ: ∧ ðb¼ ¼numÞ : ∧ ðc¼ ¼ numÞ:

GðT NF 28Þ: ða¼ ¼numÞ: ∧ ðb!¼numÞ: ∧ ðc¼ ¼ numÞ:

GðT NF 29Þ: ða¼ ¼numÞ: ∧ ðb¼ ¼ numÞ: ∧ ðc!¼ numÞ:

GðT NF 30Þ: ða¼ ¼numÞ ∧ ðb¼ ¼ numÞ ∧ ðc¼ ¼ numÞ

Class state = {nor, mod, lek, dos}
Class export = {right, wrong, num}

Var x, y: state
Var a, b: export

T_HTsleep

<nor>

P1_nor: state T_HTtri

P1_att: state T_HT_out P1_out: export

<right>
λ2

λ1

<x>

<x>

<y> <y>

<x> <b>
<a>

<x>

ðaÞ
T_HTsleep_2

P1_nor

T_HTtri

T3

W3

W2

W1

T2

T1

P_lek

T_HT_out1 P1_out_right

P1_out_wrong

P1_out_numT_HT_out3

T_HT_out2P_mod

P_dos

P1_att

T_HTsleep_1

λ2

λ1

λ2

ðbÞ
FIGURE 6: Chiplet HT attack GSCPN submodel (a) and equivalent GSPN model (b).
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with an average implementation rate of λ3. Place P1_NF can
contain tokens in <yes> and <no> colors, representing the
negative feedback decision triggered by arbitration, i.e.,
whether to switch the chiplet. Place P1_sche contains tokens
indicating the state of being ready for switching chiplet.
Transition T_schedule represents the scheduling event’s
impact on the chiplet’s output state and HT state. Transition
T_NF_yes and transition T_NF_no are logical judgments and
have no actual meaning.

4.3.4. Task Duration Submodel. The task duration submodel
is independent of the HT state and output state in the chiplet.
So, we use GSPN to model this submodel, as shown in
Figure 7(b). At the initial moment, place P_task_caculate
holds a token, indicating that the chiplet is in the calculation
task state and no arbitration is made. Transition T_task_ca-
culate represents the event of the task calculation time thresh-
old being reached, with an average implementation rate of λ4.
Place P_task_end holds a token indicating that the task exe-
cution is completed. Transition T_task_begin represents the
start of the next calculation task. Place P_vote holds a token
instructing the system to implement the arbitration and neg-
ative feedback policy.

4.3.5. Arbitration Negative Feedback Behavior Submodel. The
GSCPN model shown in Figure 8 is the arbitration negative
feedback behavior submodel. The mixed color classes “Result”
and “Action” represent the output state and the negative
feedback decision of the system. The transition T_outcol
indicates the acceptance of the arbitration instruction and the
collection of the chiplets output. Place P_sysstate contains tokens
with different colors representing the different output states of
the systemwhen arbitrating, which is the input of the arbitration
strategy. Transition T_NF indicates making negative feedback
decisions based on the system output results. Place P_sysact

contains tokens with different colors representing specific
negative feedback decisions, i.e., whether to make a scheduling
switch for part of the chiplets. Transition T_NFdie disseminates
the decision to specific chiplets.

The transition T_NF is expanded, as shown in Figure 9.
Due to space limitations, the model is divided into four parts
in this paper. The transitions T_ANLS_n (n= 1,…, 10) rep-
resent the logic for classifying the system output states.
Places P4–P13 contain tokens with different colors that rep-
resent different system output states after classification. The
transitions T_NF_n (n= 1, 2,…, 38) determine the corre-
sponding negative feedback decisions. The parameters
ω4 −ω9 correspond to the weights of instantaneous transi-
tions, where ω4 represents the probability that the outputs of
two chiplets remain consistent after being tampered with,
satisfying ω4 ≤ 1. In this article, ω4 is set to 0.00001.

5. Model Simulation and Analysis

Our approach belongs to runtime protection, which can be
mainly categorized into runtime monitoring as well as run-
time tolerance techniques, as described in Section 2. In this
section, we compare our approach with the TPAD runtime
monitoring technique as well as the redundancy-based toler-
ance technique, i.e., the TMR technique. The pre-silicon
defense techniques and trusted design techniques, such as
Split-Fabric, do not belong to the same category as our
approach, and we did not include them in our comparison
experiments.

It should be noted that in previous studies, using TMR
methods in a single chip introduces a large number of redun-
dant logic circuits and voting circuits, which is inappropriate
due to the maximum area of a single chip as well as the cost
constraints, so HTs defense methods on TMR are few and
have not been well appreciated. However, in the research

Class state = {nor, mod, lek, dos}
Class export = {right, wrong, num}

Class schedule = {yes, no}
Var x: state

Var a: export

λ3

T_dyn_schedule

T_schedule

P1_sche

T_NF_yes <nor>

<x>

P1: state

P1_NF: schedule

T_NF_no P1_out: export

<no>

<yes
>

<right>

<right>

<a>

<a>

ðaÞ

λ4

P_task_calculate T_task_calculate P_task_end

T_task_begin

P_vote

ðbÞ
FIGURE 7: Dynamic scheduling submodel (a) and task duration submodel (b).
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Class export = {right, wrong, num};
Class schedule = {yes, no};

Domain result = export × export × export;
Domain action = schedule × schedule × schedule;

Var a, b, c: export;
Var m, n, k: schedule;

P1_out: export

P2_out: export

P3_out: export P_vote

<a> T_outcol

P_sysstate: result

<a, b, c><b>

<c
> <k>

<n>

<m
>

<a, b, c> <m, n, k>

T_NF

P_sysact: action

P1_NF: schedule

P2_NF: schedule

P3_NF: schedule

<m, n, k>

FIGURE 8: Arbitration negative feedback behavior submodel.

Class export = {right, wrong, num};
Class schedule = {y, n};

Domain result = export × export  × export;
Domain action = schedule × schedule × schedule;

Var a, b, c: export;
Var m, n, k: schedule;

ω4 = 0.00001;
ω5 = ω4 × ω4;

ω6 = ω4 × (1– ω4);
ω7 = 1/3 × (1 – ω4) × (1 – 2 × ω4);

ω8 = 0.5 × (1– ω4);
ω9 = 1/3 × (1– ω4);
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FIGURE 9: GSPCN submodel after transition T_NF expansion.
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context of this paper, hundreds or thousands of chiplets are
integrated into SoW, and redundancy and heterogeneity are
natural attributes of the system. The TMR approach does not
bring additional cost overheads, and the drawbacks of tradi-
tional TMR techniques are not obvious by utilizing the chi-
plets of unperformed tasks; therefore, this paper uses it as
one of the control groups.

GreatSPN is an open-source tool that uses GSPN and its
color extensions to model, validate, and analyze the perfor-
mance as well as security of the systems. In our research, we
use GreatSPN as our simulation platform for system security
analysis. GreatSPN is used to simulate models of systems
with different runtime protection methods to obtain quanti-
tative results of system security gains. Also, we analyze the
impact of HT attack intensity, HT duration, and individual
task execution time on the security of SoW with those meth-
ods. The security evaluation metrics are as follows:

System security probability (SSP): The probability that all
the HTs in chiplets performing computational tasks are dor-
mant, expressed as follows:

SSP¼ P all ht sleepð Þ: ð5Þ

System availability probability (SAP): The probability
that the SoW can provide normal service to the users, i.e.,
output the correct result., which can be expressed as follows:

SAP¼ P
count exportnum þ exportwrong

À Á
n

<0:5

 !
; ð6Þ

where n is the implementation redundancy of the different
methods, set to 3 for TMR and DHRCA, and 1 for TPAD
technique.

The values and meanings of the parameters in the
GSCPN model for this experiment are shown in Table 3.

5.1. System Security Comparison. In experiment 1, themethod
of this paper is compared with the TMR technique and TPAD
technique for security; the experimental parameters are set as

ðλ1; λ2; λ3; λ4Þ : ¼ð0:1; 10; 0:01; 1Þ :; k¼ 0:99998, and the exper-
imental results are shown in Figure 10.

As the results show, the TPAD method has the highest
SSP and lowest SAP at the initial stage of system operation,
because TMR and our methods add redundant runtime
units. As the system keeps running, the SSP and SAP of
the TPAD and TMR methods gradually decrease and finally
converge to 0. In contrast, our method has high security in
the steady state of the system, with SSP and SAP of 0.8690
and 0.9750, respectively. It is worth noting that the SSP of the
TMRmethod is always lower than that of the TPADmethod,
and the SAP also gradually decreases with the system run-
ning lower than that of the TPAD method, which is because
when more than half of the attacked cores in TMR, the
system cannot provide normal service.

5.2. HTs Attack Intensity Impact on Security. In experiment
2, we compare the security of the systems with different
approaches under different HT attack intensities. the param-
eters are set as k¼ 0:99998;  ðλ2; λ3; λ4Þ : ¼ð10; 0:01; 1Þ :; λ1 ¼
0:01; 10, the experimental results are shown in Figure 11.

Based on the simulation results, the security of the SoW
for all three methods reaches the steady state in a shorter
period of time as λ1 increases from 0.01 to 10. The SSP and
SAP of the TMR and TPAD methods all decrease to 0, while
the SSP of our method decreases to 0.0382, and the SAP
decreases to 0.1115. From this, we can see that the proposed
method in this paper exhibits a certain level of security in
strong attack scenarios, but the safety metrics are relatively
low; it is necessary to enhance the security by modifying rele-
vant defense strategies, such as reducing decision intervals.

5.3. HTs Duration Impact on Security. In experiment 3, we
compare the security of systems with different approaches
under different HTs durations. the parameters are set as k¼
0:99998; ðλ1; λ3; λ4Þ : ¼ð0:1; 0:01; 1Þ:; λ2 ¼ 0:01; 10, and the
experimental results are shown in Figure 12.

As the results show, the SSP of all three methods shows
improvement while SAP decreases, with the increase of λ2
before the system reaches the steady state. This is because a
decrease in duration reduces the amount of time the Trojan

TABLE 3: Experimental parameters and meanings.

Parameter Value Meaning

ω1 0.33 Probability that the triggered HT in the chiplet is a function tampering HT
ω2 0.22 Probability that the triggered HT in the chiplet is an information leakage HT
ω3 0.45 Probability that the triggered HT in the chiplet is a denial-of-service HT
ω4 1:0× 10−4 Probability that the outputs of two chiplets remain consistent after being tampered with
λ1 0:01; 0:1; 10 The average attack time of HTs is 100, 10 hr, and 6min, simulating weak, medium, and strong attack scenarios
λ2 0:01; 10 The average time the HTs was active is 100 hr and 6min, simulating the long and short duration of the HTs

λ3 0:01
The average time for nonarbitration triggered dynamic switching chiplets is 100 hr, simulating the dynamicity
of DHRCA

λ4 0:01; 1; 10
The average time for the chiplet to perform a task is 100, 1 hr and 6min, simulating long time, medium time,
and short time task

K 0:99998 Probability that TPAD runtime monitoring technology detects HTs when HTs are activated

Note: The parameter settings are based on the HT benchmarks and their distribution provided by the Trust-Hub [36] website. We have analyzed the chip-level
HT benchmarks from Trust-Hub (100 in total) and categorized them based on their impact. Out of these benchmarks, there are 33 Trojans that tamper
function, 22 HTs that leak information, and 45 HTs that cause denial-of-service.
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is active in the chiplet, thus increasing SSP, while a decrease
in HTs duration increases the probability of subsequent
denial of service and function tampering HTs attacks, thus
reducing SAP. Furthermore, the decrease in HTs duration
has a significant impact on the SSP of the proposed method
but a relatively minor impact on TMR and TPAD methods,
with SAP exhibiting the opposite trend. From Figure 13(b), it
can be observed that when the system has not yet reached a
steady state, the SAP of our method experiences a temporary
decrease followed by an increase. This is because the initial
operating state of the system may trigger function tampering
and denial-of-service HTs, leading to a temporary reduction
in availability probability.

5.4. Task Execution Time Impact on Security. In experiment
4, we compare the security of the systems with different
approaches under different task execution times; the param-
eters are set as k¼ 0:99998;  ðλ1; λ2; λ3Þ : ¼ð0:1; 10; 0:01Þ:;
λ4 ¼ 0:01; 10, and the experimental results are shown in
Figure 13.

As the results show, the smaller λ4 is, i.e., the longer the
execution time of the task, the lower the SSP and SAP of our
method, the SSP of the method of TMR and TPAD are
basically unaffected, and there will be a small decrease in
SAP, but the decrease will be lower than that of our method.
When the task duration is equal to 100 hr, the long judgment
time increases the possibility of the chiplet being attacked by
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FIGURE 10: Comparison of security of different runtime protection methods. (a) Comparison of SSP and (b) comparison of SAP.
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FIGURE 11: Impact of different HTs attack intensity on system security. (a) Impact of different HTs attack intensity on SSP and (b) impact of
different HTs attack intensity on SAP.
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HTs during a single task execution. As a result, both the SSP
and SAP of our method in this paper are below 0.2 in steady
state.

From all the experiments mentioned above, we can con-
clude that the intensity of the HTs attack, HTs duration, and
task execution time all have a significant impact on the SSP
of the system implementing our proposed method, which
may lead to our method being less secure than the TPAD
method in the preoperational period of the system. However,
in a steady state, the SSP and SAP of our method are not
zero, while both TMR and TPAD methods are zero, i.e., our
method has significant security gain in a steady state. The
security gain can be adjusted in real-time at runtime, e.g., by

assigning the tasks with short execution time to the chiplets
with low security or by increasing the checkpoints to adjudi-
cate on the intermediate outputs instead of the final results
(equivalent to increasing λ4).

6. Conclusion

Currently, heterogeneous integration has become the focus
in the field of semiconductors. We analyze the serious HT
problems faced by the SoW with the basic starting point that
the security of the whole supply chain of commercial chiplets
cannot be guaranteed. To analyze the security advantages of
this paper’s approach, we model the architecture using the
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FIGURE 12: Impact of different HTs duration on system security. (a) Impact of different HTs duration on SSP and (b) impact of different HTs
duration on SAP.

0.0795

0.9754

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

SS
P

t (hr)

DHRCA (10)

TMR (10)
TPAD (10)

DHRCA (0.01)

TMR (0.01)
TPAD (0.01)

ðaÞ

DHRCA (10)

TMR (10)
TPAD (10)

DHRCA (0.01)

TMR (0.01)
TPAD (0.01)

0.1378

0.9997

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

SA
P

t (hr)

ðbÞ
FIGURE 13: Impact of different task execution times on system security. (a) Impact of different task execution times on SSP and (b) impact of
different task execution times on SAP.
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GSCPN model and verify our approach has more security
advantages than TMR and runtime monitoring approaches
through experimental simulations. Further, we analyze the
security of the system under different scenarios. In future
work, we will analyze the trend of system security with the
change of attack and defense strategies to guide the develop-
ment of low-cost defense schemes to improve security under
different attack environments. We will also build a wafer-
level system simulator and consider the performance factors
in the actual deployment to design a task mapping mecha-
nism and adjudication mechanism applicable to the DHR
computing architecture with SoW.
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