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Lattice-based encryption schemes are significant cryptographic primitives to defend information security against quantummenace,
and the decryption failure rate is related to both theoretical and realistic security. We quantitatively analyze how the floating-point
arithmetic and neglecting small probabilities impact the precision, and propose a new effective and efficient test of the failure
probability. Therein explicit criteria are given to select the floating-point datatype and to decide which small probabilities should be
abandoned. Furthermore, the outcome is theoretically ensured to meet a given precision. Moreover, by combining the heuristic
estimate and the precise simulation, this test is more efficient than previously neglecting small probabilities in a practical way.

1. Introduction

Due to Shor’s algorithm [1, 2], quantum computing seriously
threatens popular public key cryptosystems, including RSA
[3], encryption and digital signature schemes based on dis-
crete logarithm [4, 5], and elliptic curve cryptography [6–8].
Much research has been carried out to construct robust cryp-
tography in the quantum era, referring to a survey [9]. Par-
ticularly, the National Institute of Standards and Technology
(NIST) began its standardization project on post-quantum
cryptography (PQC) in 2016 [10], selected four algorithms in
July 2022 [11] and then advances further into the fourth
round [12].

Lattice-based cryptography is the most promising and
the most significant in PQC [13]. It occupies 7 seats among
15 in the third round of NIST PQC standardization [14].
Particularly, among the four post-quantum ciphers selected
by NIST [11], three are lattice-based, particularly the unique
key encapsulation mechanism (KEM) CRYSTALS-Kyber
[15].

Dating back to knapsack cryptosystems [16] and success-
ful NTRU [17], lattice-based cryptography has made great
progress since Regev [18] proposed the learning with errors

(LWE) problem. Let q be a positive integer, Zq the residue
ring modulo q, and amod q the unique representative of a in
the range −½ q=2; q=2Þ. Let D be a (discrete) distribution over
Zq. A sample X complies with D if Pr X½ ¼ a� ¼D að Þ for D að Þ
≥ 0, and we denote this by X ← $D. For a set S, without
ambiguity X ← $S means that X is uniformly sampled over
S. The LWE problem is to find the secret s2Zr

q given (suffi-
ciently many) pairs a;ð bÞ, where a← $Zr

q, e← $D, and b¼
aTsþ e. The Lindner–Peikert encryption scheme [19] is
grounded on the assumption that the LWE problem is intrac-
table, and therefrommany lattice-based KEMs have developed
along with other techniques, for example, structured lattices
[20, 21], variants of LWE [22, 23], and compressing public
keys/ciphertexts [21]. Figure 1 below shows a version of the
Lindner–Peikert cryptosystem enciphering a message in Zq.

For the cryptosystem in Figure 1, decryption fails if the size
of eT1 s2 − sT1 e2 þ e3 mod q is not as small as required. Explicitly,
the decryption failure rate (DFR; the condition in Equation (1)
[24] is also interpreted as eT1 s2 −j sT1 e2 þ e3 mod qj>t, for exam-
ple, in D’Anvers et al. [23, 25, 26]. Whether t is counted in does
not exert substantial influence on computing δfail), denoted by
δfail, is the following probability
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Pr eT1 s2 − sT1 e2 þ e3 mod qj j ∉ −t; t½ Þ :

s1 ← $Dr
s1 ;

s2 ← $Dr
s2 ;

e1 ← $Dr
e1 ;

e2 ← $Dr
e2 ;

e3 ← $De3

2
6666664

3
7777775
;

ð1Þ

where the critical positive value t depends on the specific
scheme, for example, involving the modulus q and the num-
ber of bits in the plaintext m.

Decryption failure is closely related to the security of latticed-
based cryptography. On the one hand, the DFR impacts the
tightness of constructing IND-CCA encryption/KEMs in the
(quantum) random oracle model [27–29]. On the other hand,
lattice-based schemes with large DFR are vulnerable to the “fail-
ure boosting” attack [26, 30, 31] and risk a loss of security level.
Therefore, it is meaningful and interesting to efficiently compute
the DFR δfail with confident accuracy.

The key to obtaining δfail is to characterize the distribu-
tion of eT1 s2 − sT1 e2 þ e3 mod q in Equation (1). At present
there are two approaches [24, 25]. One is a heuristic estimate
via the central limit theorem. The other is to compute the
r-fold convolution of distributions via the “double-and-add”
method. Specifically, let r have its binary representation
rn2n þ rn−12n−1 þ⋯þ r0, and denote

Pi the distribution of ∑i
j¼0rn−j2

i−j
h i

⋅ e1s2 − s1e2ð Þ;
0 ≤ i ≤ n;

Pdbl
i the distribution of ∑i−1

j¼0rn−j2
i−j

h i
⋅ e1s2 − s1e2ð Þ;

1 ≤ i ≤ n;

Pfin the distribution of r½ � ⋅ e1s2 − s1e2ð Þ þ e3;

8>>>>>>>><
>>>>>>>>:

ð2Þ

where s1 ← $Ds1 , s2 ← $Ds2 , e1 ← $De1 , e2 ← $De2 , e3 ← $De3 ,
and m½ �⋅ e1s2 −ð s1e2Þ denotes the sum ofm independent ran-
dom variable with the same distribution as e1s2 − s1e2. This is

algorithmically feasible by recursive computation [15, 24, 25]

Pdbl
i ¼ Pi−1 ⊛ Pi−1; 1 ≤ i ≤ n;

Pi ¼ Pdbl
i ⊛ rn−i ⋅ P0; 1 ≤ i ≤ n;

Pfin ¼ Pn ⊛ De3 :

8><
>: ð3Þ

where X ⊛ Y means the convolution of distributions X and
Y . In addition, to optimize time and space cost in computa-
tion, the above “double-and-add” method [15, 24, 25] uses
floating-point arithmetic and deliberately neglect tiny prob-
abilities (e.g., those less than some assigned bound β).

In respect of the above estimation, there remain two
unanswered questions below. In order to obtain δfail with a
required precision,

(i) which floating-point datatype should be chosen?
(ii) which tiny probabilities should be neglected? Specif-

ically, how large should we set β to be?

1.1. Our Results. This correspondence addresses these two
questions above. First, we quantitatively analyze the impact
of floating-point arithmetic and the trimming threshold β on
the precision to approximate δfail. Second, derived from the
analysis, it is specified how to select floating-point datatype
based on cipher parameters. Third, a new test of DFR is
proposed. This test has the following three properties:

(1) Instead of operating the heuristic estimation and the
precise simulation independently, it combines both
together and makes use of their internal relation with
δfail. Specifically, the obtained heuristic approxima-
tion of decryption failure helps to select the trimming
threshold β for the “double-and-add” method.

(2) Its returned estimate is ensured to approximate δfail
with any assigned high precision as long as the
machine precision allows. Particularly, whether its
output is accurate enough can be theoretically
verified.

(3) It selects the trimming bound β in a balanced and
inexpensive way and thereby accelerates the “double-
and-add” method, costing less time than previous
computing [15, 24, 25]. Particularly, for Frodo640
[24] the new test, even including the heuristic esti-
mate in it, takes time only 5:92% of that the previous
method costs.

Fourth, we also analyze how the test of decryption failure
is influenced by algebraic lattices and the rounding compres-
sion and whether the proposed test is feasible for lattice-based
ID-based encryption (IBE) and attribute-based encryp-
tion (ABE).

1.2. Related Work. So far, it has not been analyzed how the
floating-point arithmetic impacts the precision to approxi-
mate δfail, and a clear and explicit criterion to select floating-
point datatype for DFR test has not been given though the
DFR, for example, 2−136 for SABER [23], is possibly much

Key generation

1: A ← $ Zq
r×r

2: s1 ← $ Dr
s1

3: e1 ← $ Dr
e1

4: b = As1 + e1

5: pk = (A, b) 

6: sk = s1

Encryption

1: s2 ← $ D rs2

2: e2 ← $ Dr
e2

3: e3 ← $ De3

4: c1 = ATs2 + e2

5: c2 = bTs2 + e3 + Encode (m)

6: ck = (c1, c2)
Decryption

1: Decode (c2 − c1
Ts1)

pk = public key; sk = secret key; ck = ciphertext; m = plaintext.

FIGURE 1: The Lindner–Peikert encryption scheme [19].
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less than the machine precision of common floating-point
arithmetic. According to available program scripts [14, 15,
24, 25], CRYSTALS-Kyber and SABER use double-precision
floating-point while FrodoKEM employs float128 in the
python numpy package.

To the best of our knowledge, an explicit relation
between the precision of δfail and the trimming threshold β
has not been given and there has not been a reasonable
approach to choosing the trimming threshold β. Intuitively,
the greater β is, the less computation time we need; and the
smaller β is, the preciser our approximation is. At present
practical trimming thresholds are used. According to avail-
able program scripts [14], during computation Equation (3),
CRYSTALS-Kyber and SABER neglect probability not
greater than 2−300 and give log δfail with three significant
digits [15, 25], and FrodoKEM always removes probability
less than 10−200 and gives log δfail with four significant
digits [24].

1.3. Organization. The rest of this paper is organized as
follows. In Section 2, we prepare some definitions and facts
on floating-point arithmetic and discrete distributions.
Section 3 includes the main result and consists of three sub-
sections: Subsection 3.1 analyzes effectiveness of the “double-
and-add” algorithm with floating-point errors and the
trimming technique; Subsection 3.2 shows our method to
select the floating-point datatype; Subsection 3.3 gives a
new algorithm to estimate the DFR whose outcome is con-
firmed to be precise as required; and Subsection 3.5 analyzes
the impact of structured lattices and the rounding compres-
sion on the “double-and-add” test, and also discuss its appli-
cation in IBE/ABE cryptosystems. Finally, Section 4
concludes this paper with a summary.

2. Preliminaries

2.1. Floating-Point Arithmetic. Let εM (called unit round-off
in Saad [32]) denote the upper bound of relative errors to
represent real numbers by normalized floating-point num-
bers, and let αM be the minimal positive normalized floating-
point number in machine. Both εM and αM highly depend on
machine precision. For example, by IEEE Standard 754 [33],
rounding a real number to its nearest 64 bit normalized
floating-point number yields a relative error at most 2−53

[32], αM ¼ 2−126 for single precision and αM ¼ 2−1; 022 for
double precision.

In the sequel, for any variables (or functions) f and g, let
f ∼ g 1Æ εMð Þm denote

g ⋅ 1 − εMð Þm ≤ f ≤ g ⋅ 1þ εMð Þm: ð4Þ

The relative error of floating-point arithmetic is known
to be bounded.

Lemma 1 (see [32]). Let a1 and a2 be non-negative normal-
ized floating-point numbers, and s (resp. p) the sum (resp.
product) of a1 and a2 in floating-point arithmetic. If no over-
flow occurs, then

s ∼ a1 þ a2ð Þ 1Æ εMð Þ and p ∼ a1 ⋅ a2ð Þ 1Æ εMð Þ: ð5Þ

2.2. Pseudo-Laws. A distribution completely characterizes a
discrete random variable, and we introduce the term
“pseudo-law” to describe part of a distribution.

Definition 1. (Pseudo-law). A function D on a set R is called a
pseudo-law if D að Þ≥ 0 for any a2R and

∑
a2R

D að Þ ≤ 1: ð6Þ

In this paper, we only consider pseudo-laws over R¼Zq.
Let Ca denote the law distributed only at a2Zq, that is,

Ca xð Þ ¼ 1; if x ¼ a;

0; if x ≠ a:

(
ð7Þ

LetD1 andD2 be pseudo-laws. The convolution ofD1 and
D2, denoted by D1 ⊛ D2 is

D1 ⊛ D2 cð Þ ¼ ∑
a; b 2 Zq

aþ b ≡ cmod q

D1 að Þ ⋅ D2 bð Þ; ð8Þ

and the product of D1 and D2, denoted by D1 ⊙ D2, is

D1 ⊙ D2 cð Þ ¼ ∑
a; b 2 Zq

a ⋅ b ≡ cmod q

D1 að Þ ⋅ D2 bð Þ: ð9Þ

Notice that C−1 ⊙ D is a mirror reflection of D over the
Y-axis.

The convolutionD1 ⊛ D2 (partially) describes the sum of
independent random variables complying with pseudo-laws
D1 and D2.

Remark 1. A pseudo-law D can be represented by

χD xð Þ ¼ ∑
a2Zq

D að Þ ⋅ xa ð10Þ

in the quotient ring R x½ �= xq −ð 1Þ of polynomials, where
xq −ð 1Þ denotes the principal ideal generated by xq − 1.
Thereby, the convolution of D1 and D2 is implemented by
χD1

⋅ χD2
and hence techniques for polynomial multiplica-

tion are admissible and helpful. This strategy was essentially
employed by FrodoKEM [24] to accelerate convolutions,
while CRYSTALS-Kyber [15] and SABER [25] used the defi-
nition Equation (8).

The statistical distance measures how far two random
variables differ from each other [34], and it naturally extends
to pseudo-laws.

Definition 2. (Statistical distance). Given two pseudo-laws D1
and D2, the statistical distance of D1 and D2, denoted by
Δ D1;ð D2Þ, is defined to be

IET Information Security 3



Δ D1;D2ð Þ ¼ ∑
a2Zq

D1 að Þ − D2 að Þj j: ð11Þ

Lemmas 2 and 3 straightforwardly follow from Defini-
tion 2.

Lemma 2. Let D1;D2;D3 be pseudo-laws over Zq. Then

Δ D1;D3ð Þ ≤ Δ D1;D2ð Þ þ Δ D2;D3ð Þ: ð12Þ

Lemma 3. Let D1;D2; E1; E2 be pseudo-laws over Zq. Then

Δ D1 ⊛ D2; E1 ⊛ E2ð Þ ≤ Δ D1; E1ð Þ þ Δ D2; E2ð Þ: ð13Þ
Lemma 3 upper-bounds propagation of statistical dis-

tances in the convolution of pseudo-laws, and a brief proof
is included in Appendix A.

Definition 3 describes the procedure imposing zero prob-
ability over a given subspace S, and particularly the operation
which removes positive probability not larger than a thresh-
old β.

Definition 3. (Trim). Let S ⊂ Zq. A trim of a pseudo-law D
by S, denoted by TrimS Dð Þ, is a pseudo-law defined by

TrimS Dð Þ að Þ ¼ D að Þ; a 2 Zq\S;

0; a 2 S:

(
ð14Þ

Without ambiguity, TrimS Dð Þ is written as Trimβ Dð Þ if
S¼ a2f Zq :D að Þ≤ βg.

3. Main Results

3.1. The “Double-and-Add” Algorithm. Algorithm 1 [15, 24, 25]
below implements Equation (3) with trimming β and determin-
istically computes the DFR δfail.

In Algorithm 1, values of pseudo-laws are stored and
operated in floating-point numbers.

Above all, using the “double-and-add”method, Algorithm 1
terminates in polynomial time O q2logrð Þ since a convolution or
a product cost at most O q2ð Þ. As in Remark 1, this complexity
can be further reduced using Fourier transformation.

Theorem 1. Algorithm 1 runs in deterministic polynomial
time O q2 logrð Þ.

Now we analyze effectiveness of Algorithm 1, that is, how
closely it approximates the DFR δfail.

Theorem 2. If β≥ ffiffiffiffiffiffi
αM

p
and each nonzero value of distribu-

tions Ds1 , Ds2 , De1 , De2 , and De3 is not less than
ffiffiffiffiffiffi
αM

p
, then

δalg ≥ 1 − ϵMð Þ1þ4r qþ1ð Þδfail − 2qrβ;

δalg ≤ δfail 1þ ϵMð Þ1þ4r qþ1ð Þ:

(
ð15Þ

Input: the modulus q; the distributions De1 , De2 , Ds1 , Ds2 of
coordinates of e1, e2, s1, s2, respectively; the distribution De3
of e3; the dimension r; the critical value t of decryption
failure; the trimming threshold β.

Output: an approximation of δfail.

1: Compute the distribution D of e1 ⋅ s2 − s1 ⋅ e2, where
s1 ← Ds1 , s2 ← Ds2 , e1 ← De1 , and e2 ← De2 , for example,
D¼ De1 ⊙ Ds2

À Á
⊛ C−1 ⊙ Ds1 ⊙ De2

À Á
.

2: D0 ¼Trimβ Dð Þ.
3: Get the binary representation r¼∑n

i¼0ri2
i, where ri 2

0;f 1g and rn ¼ 1.

4: for i¼ 1 to n do

5: Ddbl
i ¼Trimβ Di−1 ⊛ Di−1ð Þ.

6: if rn−i ¼ 1 then

7: Di ¼Trimβ Ddbl
i ⊛ D0

À Á
.

8: else

9: Di ¼Ddbl
i .

10: end if

11: end for

12: Dfin ¼Trimβ Dn ⊛ De3

À Á
.

13: return δalg ¼∑a2Zq; a∉ −t; t½ Þ Dfin að Þ.

ALGORITHM 1: Estimate DFR with floating-point arithmetic.

Input: the modulus q; the distributions DI
e1 , D

I
e2 , D

I
s1 , D

I
s2 of

coordinates of e1, e2, s1, s2, respectively; the distribution DI
e3

of e3; the dimension r; the critical value t of decryption
failure; a number β for trimming.

Output: an approximation of δfail.

1: Compute the distribution DI of e1 ⋅ s2 − s1 ⋅ e2, where
s1 ← DI

s1 , s2 ← DI
s2 , e1 ← DI

e1 , and e2 ← DI
e2 .

2: DI
0 ¼TrimS0 DIð Þ, where

S0 ¼ a2f Zq :D að Þ≤ βg
and D is given in Line 2 of Algorithm 1.

3: Get the binary representation r¼∑n
i¼0ri2

i, where ri 2
0;f 1g and rn ¼ 1.

4: for i¼ 1 to n do

5: DI-dbl
i ¼TrimSdbli

DI
i−1 ⊛ DI

i−1ð Þ, where
Sdbli ¼ a2f Zq : Di−1 ⊛ Di−1ð Þ að Þ≤ βg

and Di−1 ⊛ Di−1 is given in Line 5 of Algorithm 1.

6: if rn−i ¼ 1 then

7: DI
i ¼TrimSaddi

DI-dbl
i ⊛ DI

0

À Á
, where

Saddi ¼ a2f Zq : Di ⊛ D0ð Þ að Þ≤ βg
and Di ⊛ D0 is given in Line 7 of Algorithm 1.

8: else

9: DI
i ¼DI-dbl

i .

10: end if

11: end for

12: DI
fin ¼TrimSnþ1

DI
n ⊛ DI

e3

À Á
, where

Snþ1 ¼ a2f Zq : Dn ⊛ De3

À Á
að Þ≤ βg

and Dn ⊛ De3 is given in Line 12 of Algorithm 1.

13: return δIalg ¼∑a2Zq; a∉ −t; t½ Þ DI
fin að Þ.

ALGORITHM 2: Estimate DFR with ideal precision.
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Theorem 2 describes and connects the factors that exert
influence on the effectiveness of Algorithm 1.

To prove Theorem 2, we show a variant of Algorithm 1
with ideal precision (Algorithm 2).

Notice that Algorithm 2 differs from Algorithm 1 in two
aspects:

(i) The values of pseudo-laws are stored and processed
as real numbers with ideal precision. To distinguish
these notations, we add a superscript “I” on pseudo-
laws in Algorithm 2.

(ii) Instead of a fixed trimming threshold β, Algorithm
2 imposes zero value exactly at the same elements of
Zq as Algorithm 1 does. This is feasible since, as
Theorem 1 ensures, it is efficient to simulate
Algorithm 1.

To show how closely δalg approximates δfail, the proof
contains four parts. Part I describes how pseudo-laws in Algo-
rithm 1 approximates their counterparts in Algorithm 2. Part
II quantifies the influence of trimming, and then Part III
derives the fact that DI

fin in Algorithm 2 is close to Pfin. Part
IV integrates the above to complete the proof.

Part I (Lemma 4): Using a power of 1þð εMÞ as multi-
plier, we relate the pseudo-laws in Algorithm 1 to their coun-
terparts in Algorithm 2.

Lemma 4. Let E be any of the pseudo-laws Dfin, Dn ⊛ De3 , D,
Di−1 ⊛ Di−1, and Ddbl

i ⊛ D0 (1≤ i≤ n) in Algorithm 1, and let
EI denote its ideally precise counterpart among DI

fin,
DI
n ⊛ DI

e3 , D
I, DI

i−1 ⊛ DI
i−1, and DI-dbl

i ⊛ DI
0 in Algorithm 2.

Given the condition in Theorem 2, it holds that

E ∼ EI 1Æ εMð Þ1þ4r qþ1ð Þ: ð16Þ

Proof. Since only pseudo-laws are processed and we always
have Equation (6), no overflow occurs in Algorithm 1. Fur-
thermore, the condition in Theorem 2 ensures that all pro-
cessed floating-point numbers are normalized and hence no
underflow occurs.

By Lemma 1, to compute a convolution or a product of
two pseudo-laws, the floating-point arithmetic yields a factor
upper-bounded (resp. lower-bounded) by 1þ εMð Þq (resp.
1 − εMð Þq). Thus, comparing Algorithms 1 and 2, we add
(possible) errors by floating-point representation of Ds1 ,
Ds2 , De1 , De2 , and De3 , and count the number of convolutions,
and then find that the following integers

m0 ¼ 3qþ 4;

mdbl
i ¼ 2mi−1 þ q; 1 ≤ i ≤ n;

mi ¼ 2mi−1 þ qþ rn−i qþm0ð Þ; 1 ≤ i ≤ n;

mfin ¼mn þ qþ 1;

8>>>><
>>>>:

ð17Þ

satisfy

D ∼ DI 1Æ εMð Þm0 ;

Di−1 ⊛ Di−1ð Þ ∼ DI
i−1 ⊛ DI

i−1ð Þ 1Æ εMð Þmdbl
i ; 1 ≤ i ≤ n;

Ddbl
i ⊛ D0

À Á
∼ DI-dbl

i ⊛ DI
0

À Á
1Æ εMð Þmi ; rn−i ¼ 1; 1 ≤ i ≤ n;

Dn ⊛ De3

À Á
∼ DI

n ⊛ DI
e3

À Á
1Æ εMð Þmfin ;

Dfin ∼ DI
fin 1Æ εMð Þmfin :

8>>>>>>><
>>>>>>>:

ð18Þ

Explicitly, these integers are

m0 ¼ 3qþ 4;

mdbl
i ¼ −qþ 4 qþ 1ð Þ ⋅ ∑i−1

j¼0rn−j2
i−j; 1 ≤ i ≤ n;

mi ¼ −qþ 4 qþ 1ð Þ ⋅ ∑i
j¼0rn−j2

i−j; 1 ≤ i ≤ n;

mfin ¼ 1þ 4r qþ 1ð Þ:

8>>>><
>>>>:

ð19Þ

Finally, if 0≤ a<b and f ∼ g 1Æ εMð Þa then
f ∼ g 1Æ εMð Þb. Therefore, the proof of Lemma 4 is com-
pleted since mfin>max m0;f mi;mdbl

i : 1≤ i≤ ng. □

Remark 2. In the proof of Lemma 4, we conservatively choose
m0 ¼ 3qþ 4, where the addend 3q is attributed to two ⊙’s
and one ⊛ in Line 1 of Algorithm 1, and the addend 4 is
attributed to representing Ds1 , Ds2 , De1 , and De2 in floating-
point numbers. Anyhow, practical cryptosystems are likely to
allow smaller m0. On the one hand, their secret and errors
are distributed in a comparatively small interval rather than
the whole ring Zq and hence one ⊙ there contributes a rela-
tive error much tamer than 1Æ εMð Þq. Taking Frodo640 [24]
for example, the relative error of ⊙ is bounded by
1Æ εMð Þ625, far tamer than 1Æ εMð Þ215 . On the other hand,
the input distributions can be exactly represented on a
machine. Actually, in CRYSTALS-Kyber [15], SABER [25],
and FrodoKEM [24], all input distributions are evaluated as
fractions with a power-of-two denominator and are hence
stored as accurate floating-point numbers.

Part II (Lemma 5): The changes of pseudo-laws by trim-
ming in Algorithm 2 are upper-bounded.

Lemma 5. Let E be any of the pseudo-laws DI
n ⊛ DI

e3 , D
I,

DI
i−1 ⊛ DI

i−1, and DI-dbl
i ⊛ DI

0 (1≤ i≤ n) in Algorithm 2, and
let Trim Eð Þ denote its corresponding trim among DI

fin, D
I
0,

DI-dbl
i , and DI

i (1≤ i≤ n) in Algorithm 2. Then

Δ E;Trim Eð Þð Þ ≤ qβ 1 − εMð Þ−1−4r qþ1ð Þ: ð20Þ
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Proof. Notice that for S ⊂ Zq and any pseudo-law F over Zq,

Δ F;TrimS Fð Þð Þ ¼ ∑
a2S

F að Þ
≤ Sj j ⋅ max

a2S
F að Þ ≤ q ⋅ max

a2S
F að Þ;

ð21Þ

where Sj j denotes the cardinality of S. Considering the error
caused by trimming in Line 2 of Algorithm 2, we have

Δ DI
0;D

Ið Þ ¼ Δ TrimS0 DIð Þ;DI
À Á

≤ q ⋅ max
a2S0

DI að Þ ðusing Equation ð21ÞÞ
≤ q ⋅ 1 − εMð Þ−1−4r qþ1ð Þmax

a2S0
D að Þ ðusing Lemma 4Þ

≤ qβ 1 − εMð Þ−1−4r qþ1ð Þ: ðusingAlgorithm 2Þ
ð22Þ

In a similar way, Δ DI
i−1 ⊛ DI

i−1;ð DI-dbl
i Þ, Δ DI-dbl

i ⊛ DI
0;

À
DI
iÞ,

and Δ DI
n ⊛ DI

e3 ;
À

DI
finÞ are also upper-bounded by

qβ 1 − εMð Þ−1−4r qþ1ð Þ and the detailed proof is included in
Appendix B. □

Part III (Lemma 6): Using Part II, we upper-bound the
statistical distance between DI

fin and Pfin.

Lemma 6. Let Pfin be defined in Equation (2) and let DI
finbe as

in Line 12 of Algorithm 2. Then it holds that

Δ Pfin;DI
fin

À Á
≤ 2qrβ 1 − εMð Þ−1−4r qþ1ð Þ: ð23Þ

Proof. Use the notations in Equation (2). Now we get

Δ Pfin;DI
fin

À Á
≤ Δ Pfin;DI

n ⊛ DI
e3

À Áþ Δ DI
n ⊛ DI

e3 ;D
I
fin

À Á ðby Lemma 2Þ
≤ Δ Pn ⊛ DI

e3 ;D
I
n ⊛ DI

e3

À Áþ Δ DI
n ⊛ DI

e3 ;D
I
fin

À Á ðby Equation ð3ÞÞ
≤ Δ Pn;DI

nð Þ þ Δ DI
e3 ;D

I
e3

À Áþ Δ DI
n ⊛ DI

e3 ;D
I
fin

À Á ðby Lemma 3Þ
≤ Δ Pn;DI

nð Þ þ qβ 1 − εMð Þ−1−4r qþ1ð Þ: ðby Lemma 5Þ

ð24Þ

Similarly, we also have

Δ Pi;DI
ið Þ ≤ Δ Pdbl

i ;DI-dbl
i

À Áþ rn−i ⋅ 2qβ 1 − εMð Þ−1−4r qþ1ð Þ;

Δ Pdbl
i ;DI-dbl

i

À Á
≤ 2 ⋅ Δ Pi−1;DI

i−1ð Þ þ qβ 1 − εMð Þ−1−4r qþ1ð Þ:

(

ð25Þ

The detailed proof of Equation (25) is included in
Appendix C.

Using Equations (3), (24), and (25), we derive that

Δ Pfin;DI
fin

À Á
≤ qβ 1 − εMð Þ−1−4r qþ1ð Þ þ qβ 1 − εMð Þ−1−4r qþ1ð Þ ⋅ 2n þ ∑n

i¼12
n−i ⋅ qβ 1 − εMð Þ−1−4r qþ1ð Þ 1þ 2rn−ið Þ

¼ qβ 1 − εMð Þ−1−4r qþ1ð Þ 1þ 2n þ ∑n
i¼12

n−i 1þ 2rn−ið Þð Þ
¼ 2qrβ 1 − εMð Þ−1−4r qþ1ð Þ:

ð26Þ

□

Part IV: Using Part I and III, we characterize how the
output δalg returned by Algorithm 1 approximates the
DFR δfail.

The lemma below for comparing pseudo-laws is
straightforward.

Lemma 7. If pseudo-laws D1;D2; E1; E2 satisfy D1 ≤ E1 and
D2 ≤ E2, then

D1 ⊛ D2 ≤ E1 ⊛ E2: ð27Þ
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Proof of Theorem 2. Since TrimS Eð Þ≤ E for any pseudo-law
E, the pseudo-laws in Algorithm 2 satisfy

DI
0 ≤ DI ¼ P0;

DI-dbl
i ≤ DI

i−1 ⊛ DI
i−1; 1 ≤ i ≤ n;

DI
i ≤ DI-dbl

i ⊛ rn−i ⋅ DI
0ð Þ; 1 ≤ i ≤ n;

DI
fin ≤ DI

n ⊛ De3 :

8>>>><
>>>>:

ð28Þ

Comparing Equations (3) and (28), from Lemma 7 we
derive that

DI
fin ≤ Pfin: ð29Þ

Since eT1 s2 − sT1 e2 mod q is the sum of r independent random
variables with the same distribution P0, it holds that

δfail ¼ ∑a2Zq;a∉ −t;t½ ÞPfin að Þ: ð30Þ

Recall that

δIalg ¼ ∑a2Zq;a∉ −t;t½ ÞDI
fin að Þ: ð31Þ

Therefore, it follows from Equation (29) and Lemma 6 that

0 ≤ δfail − δIalg ≤ Δ Pfin;DI
fin

À Á
≤ 2qrβ 1 − εMð Þ−1−4r qþ1ð Þ:

ð32Þ

In addition, it follows from Lemma 4 that

δIalg 1 − εMð Þ1þ4r qþ1ð Þ ≤ δalg ≤ δIalg 1þ εMð Þ1þ4r qþ1ð Þ:

ð33Þ

Finally, the proof concludes by combining Equations
(32) and (33). □

Remark 3. In Algorithm 1 the trimming in Lines 2 and 12 are
optional. Whether the two trimmings are skipped or not will
affect the lower-bound in Equation (15), but the impact is
not significant as implied by the proof of Theorem 2.

In the sequel, we always assume that each nonzero value
of input distributions Ds1 , Ds2 , De1 , De2 , and De3 is not less
than

ffiffiffiffiffiffi
αM

p
since this condition is almost trivial for nowadays

LWE-based encryption schemes.

Conventionally, the failure probabilities are expressed as
powers of two, and their exponents are concerned and com-
pared [15, 23, 24]. Therefore, we take log2δfail as the final
result we expect, and aim to control the absolute/relative
error of log2δalg.

Corollary 1. Let εabs>0 and εrel>0. The statements below
hold. (i) If εM ≤ 1− 2−εabs= 1þ4r qþ1ð Þð Þ and

ffiffiffiffiffiffi
αM

p ≤ β ≤
δfail
2qr

⋅ 1 − εMð Þ1þ4r qþ1ð Þ
− 2−εabs

À Á
; ð34Þ

then

log2δalg − log2δfail
�� �� ≤ εabs: ð35Þ

(ii) If εM ≤ 1− δεrel= 1þ4r qþ1ð Þð Þ
fail and

ffiffiffiffiffiffi
αM

p ≤ β ≤
δfail
2qr

⋅ 1 − εMð Þ1þ4r qþ1ð Þ
− δεrelfail

À Á
; ð36Þ

then

log2δalg=log2δfail − 1
�� �� ≤ εrel: ð37Þ

Corollary 1 is straightforward from Theorem 2, and its
proof is included in Appendix D.

Corollary 2. Let εabs>0 and εrel>0. If

εM ≤ 1 − 2−εabs= 1þ4r qþ1ð Þð Þ ð38Þ

and

ffiffiffiffiffiffi
αM

p ≤ β ≤
δalg ⋅ 1 − εMð Þ1þ4r qþ1ð Þ

− 2−εabs
À Á
2qr 1þ εMð Þ1þ4r qþ1ð Þ ; ð39Þ

then Equation (35) holds. If

εM ≤ 1 − 1 − εMð Þ−εrel δalg þ 2qrβ
À Á

εrel= 1þ4r qþ1ð Þð Þ ð40Þ

and

ffiffiffiffiffiffi
αM

p ≤ β ≤
δalg
2qr

⋅
1 − εM
1þ εM

� �
1þ4r qþ1ð Þ

⋅ 1 −
δalg þ 2qrβ
À Á

εrel

1 − εMð Þ 1þ4r qþ1ð Þð Þ 1þεrelð Þ

 !
; ð41Þ

then Equation (37) holds.

Combining Corollary 1 and the inequality Equation (15)
derives Corollary 2, and it gives a sufficient condition to

verify whether Algorithm 1 returns an approximation with
required precision.
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Experiment 1. We use Corollary 2 to verify whether δalg’s in
CRYSTALS-Kyber [15], SABER [25], and FrodoKEM [24]
satisfy Equation (35) with εabs ¼ 5× 10−3 and Equation (37)
with εrel ¼ 5× 10−6. CRYSTALS-Kyber and SABER use
double-precision floating-point arithmetic while FrodoKEM
uses float128 [15, 24, 25]. Here αM ¼ 2−16;382 and εM ¼ 2−64

[35] for FrodoKEM though the datatype numpy.float128
varies depending on machines and operating systems [36].

As shown in Table 1 (as shown in Subsection 3.5, the DFR
of CRYSTALS-Kyber is interpreted other than Equation (1),
and hence the corresponding upper-bounds in Equations
(38)–(41) are adapted. The tedious details are omitted here),
for all these cipher, Equations (38)–(41) hold. Therefore,
it is ensured by Corollary 2 that their failure probabilities
[15, 24, 25] have met the required precision, and this is labeled
as “Y” in the last column of Table 1. Because

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2−1; 022

p
>

10−200 ≈ 2−664, Corollary 2 does not convince the precision of
δfail for FrodoKEM if Algorithm 1 utilizes double-precision
floating-point arithmetic and sets β¼ 10−200.

However, Corollaries 1 and 2 do not directly inform us
how to determine β in practice because neither δfail nor δalg is
known before a test. To ensure desired absolute (and relative)
error for log2δfail, later we use Theorem 2 and Corollary 1 to
select floating-point datatype and the trimming threshold β.

3.2. Select Floating-Point Datatype. A floating-point datatype
is determined by its precision and range, respectively related
to εM and αM . Corollary 1 is helpful for selecting floating-
point datatype in Algorithm 1.

If

εM ≤ 1 − 2−εabs= 1þ4r qþ1ð Þð Þ resp:εM ≤ 1 − δεrel= 1þ4r qþ1ð Þð Þ
fail

� �
;

ð42Þ
and

αM ≤
δfail
2qr

� �
2
⋅ 1 − εMð Þ1þ4r qþ1ð Þ

− 2−εabs
À Á

2

resp: αM ≤
δfail
2qr

� �
2
⋅ 1 − εMð Þ1þ4r qþ1ð Þ

− δεrelfail

À Á
2

� �
;

ð43Þ

then Algorithm 1 with proper trimming returns δalg satisfy-
ing Equation (35) (resp. Equation (37)).

For most nowadays lattice-based encryption schemes
and KEMs, their parameters satisfy q≤ 216 and r≤ 214, and
their DFRs are usually located in the range 2−256<δfail<2−80.
Hence, the required absolute (resp. relative) error εabs ¼ 5×
10−3 (resp. εrel ¼ 5× 10−6) suffices. Under such conditions,
εM ≤ 2−43:82 and αM ≤ 2−623:94 satisfy Equations (42) and
(43). Therefore, the double precision (64 bit) floating-point
is sufficient to run Algorithm 1 on ciphers with such
parameters.

We have to remind that (i) the above datatype selection is
based on the practical range of δfail, while Algorithm 3 in the
next subsection selects datatype only dependent on cipher
parameters; (ii) lattice-based cryptosystems in other scenarios,
for example, fully homomorphic encryption, may use other
parameters and hence require distinct machine precision.

Experiment 2. In Table 2, we set εabs ¼ 5× 10−3, εrel ¼ 5×
10−6, and list the parameters of FrodoKEM [24] and their
corresponding εM estimated in Equation (42) (here conserva-
tively using log2δfail ≤ − 1). Neither Equations (42) nor (43) is
satisfied for single precision floating-point numbers. Running
Algorithm 1 in 32 bit floating-point arithmetic fails to approx-
imate δfail. Anyhow, it suffices to use double precision (64 bit)
floating-point instead of float128 in the python numpy pack-
age to find the DFR δfail of FrodoKEM, and this is effective as
confirmed by Experiment 3. This experiment suggests that
Equation (42) is effective for selecting floating-point datatype.

3.3. A Hybrid Test of DFR with Progressive Trimming. Now
we propose a new test (Algorithm 3) of DFR.

Algorithm 3 calls Algorithm 1 as its inner core subpro-
cedure, and it selects the trimming threshold β in a progres-
sive way. Specifically, the heuristic estimate δclt through a
continuous normal distribution helps to decide β for a ten-
tative test, denoted by βabstnt for the absolute error εabs (resp.
by βreltnt for the relative error εrel), and then an expected

TABLE 2: Estimate machine precision for testing DFR of FrodoKEM.

q r εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Frodo640 215 640 εM ≤ 2−34:50 εM ≤ 2−44:47

Frodo976 216 976 εM ≤ 2−36:11 εM ≤ 2−46:07

Frodo1344 216 1; 344 εM ≤ 2−36:57 εM ≤ 2−46:53

TABLE 1: Verify the precision of δalg in Schwabe [15], Alkim et al. [24], and D’Anvers et al. [25].

Cipher εM r.h.s. Equation (38) r.h.s. Equation (40) β r.h.s. Equation (39) r.h.s. Equation (41) Y/N

Kyber512 2−53 2−31:20 2−33:96 2−300 2−176:82 2−179:59 Y
Kyber768 2−53 2−31:78 2−34:31 2−300 2−203:47 2−206:00 Y
Kyber1024 2−53 2−32:20 2−34:64 2−300 2−213:84 2−216:29 Y
LightSaber 2−53 2−32:17 2−35:13 2−300 2−213:84 2−162:50 Y
Saber 2−53 2−32:76 2−35:55 2−300 2−175:93 2−178:73 Y
FireSaber 2−53 2−33:17 2−35:70 2−300 2−205:45 2−207:97 Y
Frodo640 2−64 2−34:49 2−35:58 10−200 2−502:79 2−503:88 Y
Frodo976 2−64 2−36:10 2−37:66 10−200 2−374:65 2−376:21 Y
Frodo1344 2−64 2−36:56 2−38:51 10−200 2−294:17 2−296:12 Y
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better approximation δabstnt (resp. δreltnt) obtained by the
tentative test determines β for a confirmatory test, denoted
by βabscnf for the absolute error εabs (resp. by βrelcnf for the
relative error εrel). The final output δabscnf (resp. δrelcnf ) of the
confirmatory test is ensured to satisfy the required precision.

Theorem 3. If δfail ≤ 1=2, then

log2δabscnf − log2δfailj j ≤ εabs;

log2δrelcnf=log2δfail − 1j j ≤ εrel:

(
ð44Þ

Proof. Above all, the conditions Equation (42) in Corollary 1
follows from δfail ≤ 1=2, and the range of floating-point num-
bers in Equations (34) and (36) are ensured in Lines 6 and 11
of Algorithm 3.

Moreover, by Theorem 2, the tentative test ensures to
bound δfail as below

δfail ≤ δreltnt þ 2qrβreltntð Þ 1 − εMð Þ−1−4r qþ1ð Þ;

δfail ≥ δ ⋅ 1þ εMð Þ−1−4r qþ1ð Þ; δ 2 δabstnt; δreltntf g:

(
ð45Þ

Hence, the trimming threshold βabscnf (resp. βrelcnf ) of
Algorithm 3 is upper-bounded by the right hand of Equation
(34) (resp. Equation (36)).

If βabscnf <βabstnt (resp. βrelcnf <βreltnt), then Algorithm 3
operates Line 12 and it follows from Corollary 1 that
log2δabscnf (resp. log2δrelcnf ) approximates log2δfail with
absolute (resp. relative) error not greater than εabs (resp. εrel).

If βabscnf ≥ βabstnt (resp. βrelcnf ≥ βreltnt), then βabstnt (resp.
βreltnt) is also upper-bounded by the right hand of Equation
(34) (resp. Equation (36)), implying that δabstnt (resp. δreltnt)
has already met the desired precision. □

Remark 4. Line 2 of Algorithm 4 can be computed as
below

δclt ¼
1
2

∑
x2Zq

De3 xð Þ ⋅ erfc
t − r ⋅ mD − xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r ⋅ σ2D
p

 !
þ erfc

t þ 1þ r ⋅ mD þ xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r ⋅ σ2D

p
 ! !

; ð46Þ

Input: the modulus q; the distributions De1 , De2 , Ds1 , Ds2 of coordinates of e1, e2, s1, s2, respectively; the distribution De3 of e3; the
dimension r; the critical value t of decryption failure and εabs>0 (resp. εrel>0).

Output: estimate the DFR δfail.

1: Always select the floating-point datatype satisfying εM ≤ 1− 2−εabs= 1þ4r qþ1ð Þð Þ (resp. εM ≤ 1− 2−εrel= 1þ4r qþ1ð Þð Þ).
2: Compute the distribution D of e1 ⋅ s2 − s1 ⋅ e2, where s1 ← Ds1 , s2 ← Ds2 , e1 ← De1 , and e2 ← De2 . {This step is the same as Line 1 of
Algorithm 1, and all the three tests below share D as an input.}

3: [A heuristic test] Use the central limit theorem to approximate the DFR, for example, by Algorithm 4. Denote its returned value
by δclt.

4: [A tentative test] includes Lines 5–7.

5: Set

βabstnt ¼ δclt
2qr ⋅ 1 − εMð Þ1þ4r qþ1ð Þ

−
À

2−εabsÞ

resp: βreltnt ¼ð δclt
2qr ⋅ 1 − εMð Þ1þ4r qþ1ð Þ

− δclt
εrel

À ÁÞ:
6: Select the floating-point datatype such that αM ≤ β2abstnt (resp. β

2
reltnt).

7: Run Algorithm 1 with β¼ βabstnt (resp. β¼ βreltnt). Denote its returned value by δabstnt (resp. δreltnt). {Skip Line 1 of Algorithm 1 as D
is already available.}

8: [A confirmatory test] includes Lines 9–15.

9: Set

βabscnf ¼ δabstnt⋅ 1−εMð Þ1þ4r qþ1ð Þ
−2−εabsð Þ

2qr 1þεMð Þ1þ4r qþ1ð Þ

resp. βrelcnf 12qr
1–εM
1+εM

εrel1+4r(q+1)δreltnt (δreltnt +2qrβreltnt)
(1–εM) (1+εrel)(1+4r(q+1))

10: if βabscnf <βabstnt (resp. βrelcnf <βreltnt) then

11: Select the floating-point datatype such that αM ≤ β2abscnf (resp. β
2
relcnf ).

12: Run Algorithm 1 with β¼ βabscnf (resp. β¼ βrelcnf ). Denote its returned value by δabscnf (resp. δrelcnf ). {Skip Line 1 of Algorithm 1
as D is already available.}

13: else

14: Set δabscnf ¼ δabstnt (resp. δrelcnf ¼ δreltnt).

15: end if

16: return δabscnf (resp. δrelcnf ).

ALGORITHM 3: A Hybrid test of DFR.
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where erfc denotes the complementary error function. How-
ever, it is not unique to implement the heuristic test.
For example, distinct from Algorithm 4, FrodoKEM [24]
computes

δclt ≈ Pr
x←$N r⋅mDþmDe3

;r⋅σ2Dþσ2De3

� � xj j ≥ t½ �; ð47Þ

where mDe3
and σ2De3

denote the mean and the variance of
De3 , respectively. Generally speaking, Algorithm 4 costs more
time than Equation (47) and yet gives a tighter approxima-
tion if De3 is far from a normal distribution. For example,
SABER [23] has a uniform distribution De3 and its DFR
2−136:16, and Algorithm 4 yields an approximation 2−139:07

while Equation (47) derives a rough estimate 2−73:85. There-
fore, Algorithm 4 is preferred to Equation (47) if the tentative
test is expected to approximate the DFR with a high
precision.

Remark 5. The confirmatory test in Algorithm 3 is not indis-
pensable for specific applications. On the one hand, the
inequalities Equation (15) are conservative and δalg is likely
to be much closer to δfail. On the other hand, via the central
limit theorem, the heuristic test possibly returns a value very
near δfail. Hence, it is probable that the tentative test already
obtains the DFR with a desirable precision. Experiment 3
below shows that the tentative test is sufficient for
CRYSTALS-Kyber [15], SABER [25], and FrodoKEM [24].
Therefore, the confirmatory test of Algorithm 3 is optional in
scenarios where strict proof of the DFR is not compulsory.

3.4. An Experiment of DFR Test. Through the following
experiment we compare Algorithm 3 with the previous
DFR testing method in respect of their effectiveness and
efficiency.

Experiment 3. For parameter sets of CRYSTALS-Kyber [15],
SABER [25], and FrodoKEM [24], we run Algorithm 1 without
trimming (β¼ 0), Algorithm 1 with previous practical trimming
[15, 24, 25] and also Algorithm 3. The absolute (resp. relative) error
for log2δfail in Algorithm 3 is set εabs ¼ 5× 10−3 (resp. εrel ¼ 5×
10−6). For a fair comparison, all tests employ the convolution
speedup from FrodoKEM [24] (as in Remark 1). Pseudo-laws are
memorized and processed in double precision (64 bit) floating-point
numbers. The computation is programmed in Python, compiled by
Visual Studio Community 16.11.17, and operated on Intel(R)
Core(TM) i5-8350U CPU 1.70GHz with memory 8GB. The
results (including all trimming thresholds, DFR estimates, and
time costs) are detailed in Tables 4–12 of Appendix E.

On the one hand, the data of Experiment 3 show that
Algorithm 3, grounded on its theoretical proof (Theorem 3),
ensures high accuracy to approximate δfail though its con-
volutions neglect more tiny probabilities than previous prac-
tical methods. In Table 3, the second column lists the
trimming thresholds in previous tests, and the fourth and
fifth columns list the trimming thresholds used in Algorithm
3; the third column lists the previously given DFRs in the
submissions to NIST [14], and the last column lists the DFRs
outputted by Algorithm 3.

On the other hand, Algorithm 3 outperforms previous
practical DFR tests in efficiency for all parameter sets of
CRYSTALS-Kyber, SABER, and FrodoKEM. The experi-
ment data show that

(i) All the parameter sets dissatisfy the condition in Line
10 of Algorithm 3 and the confirmatory test is there-
fore almost free.

(ii) As in Figure 2, among all nine parameter sets, s
achieves its minimum 5:92% for Frodo640 and its
maximum 85:84% for Kyber768, where s denotes
the ratio of time running Algorithm 3 for the

Input: the distributions D and De3 ; the dimension r; the
critical value t of decryption failure.

Output: a heuristic estimate of the DFR δfail.

1: Compute the mean mD and the variance σ2D of D, that is,

mD ¼∑x2Zq
x ⋅ D xð Þ and σ2D ¼ −m2

D þ∑x2Zq
x2 ⋅ D xð Þ:

2: return δclt ¼Prx←$N r⋅mD ; r⋅σ2Dð Þ; y←$De3
xþ½ y ∉ −t;½ tÞ�;

where N r ⋅ mD;ð r ⋅ σ2DÞ denotes the normal distribution
with mean r ⋅ mD and variance r ⋅ σ2D.

ALGORITHM 4: A heuristic test of DFR.

TABLE 3: Trimming thresholds and DFR estimates.

Cipher β δalg βabstnt βreltnt δabscnf (δrelcnf )

Kyber512 2−300 2−139 2−185:49 2−188:18 2−138:94

Kyber768 2−300 2−164 2−211:30 2−213:76 2−165:01

Kyber1024 2−300 2−174 2−220:20 2−222:60 2−174:96

LightSaber 2−300 2−120 2−162:98 2−165:90 2−120:35

Saber 2−300 2−136 2−178:83 2−181:60 2−136:16

FireSaber 2−300 2−165 2−208:50 2−211:00 2−165:26

Frodo640 10−200 2−138:7 2−188:37 2−191:06 2−138:76

Frodo976 10−200 2−199:6 2−254:40 2−256:59 2−199:60

Frodo1344 10−200 2−252:5 2−310:07 2−311:93 2−252:60

Ratio of time cost: Alogorithm 3/Algorithm 1
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FIGURE 2: Ratio of time cost of Algorithm 3 to that of Algorithm 1.
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absolute error εabs ¼ 0:005 over time running
Algorithm 1 with assigned β in [15, 24, 25].

3.5. Use the Test for Practical Encryption Schemes. In the
above, we only discussed the DFR determined by the distri-
bution of eT1 s2 − sT1 e2 þ e3 mod q, setting other forms aside.
When the plaintext is longer and enciphered in more than
one elements of Zq, where c2 in Figure 1 is parallelized as
a matrix over Zq, incorporating the union bound into
Algorithm 3 will estimate the DFR of the encryption scheme.
Anyhow, a practical lattice-base encryption scheme probably
integrates other techniques and computes its DFR in other
ways. In the rest of this subsection, we analyze the influence
of algebraic lattices and the rounding compression on
decryption failure, and also consider using the test for
lattice-based IBE/ABE schemes.

3.5.1. The Impact of Using Structured Lattices. Lyubashevsky
et al. [20] proposed the LWE over rings and also an algebraic
version of the Lindner–Peikert cryptosystem (Figure 3).
Despite variants of structured lattices in cryptography [37],
here we consider the following algebraic lattice utilized in
most practical schemes.

Let K be a number field of degree r,R an order of K , and
b0; b1;…; br−1 a basis ofR. Denote the quotient ringR=qR
by Rq.

In Figure 3, u← $DrB means each coefficient of u
with respect to the basis b0;f b1;…; br−1g is sampled from D.
Denote em ¼∑r−1

k¼0e
kð Þ
m bk form2 1;f 2; 3g and sm ¼∑r−1

k¼0s
kð Þ
m bk

for m2 1;f 2g.
Similar to Equation (1), decryption fails in this encryp-

tion scheme if

e1s2 − s1e2 þ e3 mod qk k1 ∉ −t; t½ Þ; ð48Þ

where e1s2 − s1e2 þ e3 mod qk k1 denotes the greatest abso-
lute value of the coefficients of e1s2 − s1e2 þ e3 mod q with
respect to the basis b0;f b2;…; br−1g. Let bi ⋅ bj ¼

∑r−1
k¼0c

i; jð Þ
k bk, 0≤ i; j≤ r− 1. Then the coefficient of bk in

e1s2 − s1e2 þ e3 mod q is

∑
0≤i;j≤r−1

c i;jð Þ
k e ið Þ

1 s jð Þ
2 − e ið Þ

2 s jð Þ
1

� �
þ e kð Þ

3  mod  q: ð49Þ

Let D¼ De1 ⊙ Ds2

À Á
⊛ C−1 ⊙ Ds1 ⊙ De2

À Á
as in Line 2 of

Algorithm 3. Then the distribution of Equation (49) is com-
puted by

⊛0≤i;j< r C
c i;jð Þ
k

⊙ D
� �� �

⊛ De3 : ð50Þ

Therefore, we conclude that testing DFR depends on the
algebraic rings and their chosen basis, and the “double-
and-add” method is not universally effective.

Fortunately, rings in the present practical encryption
schemes cause not much trouble. The power-of-two cyclotomic
ring R¼Z x½ �= xr þð 1Þ is the most popular in structured lat-
tices [38], includingNewHope [39], CRYSTALS-Kyber [21], and
SABER [23]. As the conventional basis is bk ¼ xk, 0≤ k≤ r− 1,
we have

c i;jð Þ
k ¼

1; 0 ≤ iþ j¼ k<r;

−1; r ≤ iþ j¼ r þ k;

0; otherwise:

8><
>: ð51Þ

In this specific case, the distribution of Equation (49) is
computed by

D kþ1½ � ⊛ C−1 ⊙ Dð Þ r−1−k½ � ⊛ De3 ; ð52Þ

where D m½ � denotes the m-fold convolution of D.
We call a pseudo-law D to be symmetric if D að Þ¼D −ð aÞ

for any a2Zq. The following lemma is straightforwardly
derived from definitions.

Lemma 8. Let D1;D2 be pseudo-laws. If D1 is symmetric, then
D1 ⊙ D2 is symmetric. If D1 and D2 are symmetric, then D1 ⊛
D2 is symmetric.

In practical schemes, most secrets and errors comply
with symmetric laws, for example, the centered binomial
distribution and the discrete approximate Gaussian in Fro-
doKEM [24]. By Lemma 8, due to symmetry of D in such
schemes, Equation (52) is exactly D r½ � ⊛ De3 and it is there-
fore feasible to compute δfail by Algorithms 1 and 3.

Recall that Algorithm 3 proceeds decryption failure of one
coordinate of the algebraic number. If the encryption scheme
based on structured lattices employs no error correcting
codes, then taking the r coordinates of e1s2 − s1e2 þ e3 as
independent random variables is appropriate [40]; on the
contrast, using the independence assumption in such crypto-
systems with error correcting codes possibly results in over-
estimation of the DFR and a method has been proposed to
calculate the DFR for those schemes [40].

Key generation

1: a ← $ ℛq

2: s1 ← $ Dr
s1

B

3: e1 ← $ Dr
e1

B

4: b = as1 + e1

5: pk = (a, b)

6: sk = s1

Encryption

1: s2 ← $ Dr
s2

B

2: e2 ← $ Dr
e2

B

3: e3 ←$ Dr
e3

B

4: c1 = as2 + e2

5: c2 = bs2 + e3 + Encode (m)

6: ck = (c1, c2)

Decryption

1: Decode (c2– c1s1)

pk = public key; sk = secret key; ck = ciphertext; m = plaintext.

FIGURE 3: The Lindner–Peikert encryption scheme using lattices
over rings [20].
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In addition, the above test of DFR can naturally extend to
cryptosystems based on module-LWE [21, 41, 42] or
module-LWR [23].

3.5.2. The Impact of Compressing Public Key/Ciphertexts. Let
p be a positive integer less than q. The rounding function
maps x2Zq to xp=qb c, the integer nearest to xp=q, and this
operation naturally extends on vectors in Zr

q and algebraic
numbers inRq. This technique is used to reduce bandwidth.

Conventionally, the truncated information is also taken
as errors [21, 23]. Let Dp1 , Dp2 , and Dp3 , respectively, denote
the distributions by compressing the public key b (or b) and
ciphertexts c1; c2 (or c1; c2) in Figure 1 (or Figure 3). Accord-
ing to [21, Theorem 1], the DFR is computed the same as
above except for that in Line 2 of Algorithm 3 and in Line 1
of Algorithm 1

D¼ De1 ⊛ Dp1

À Á
⊙ Ds2

À Á
⊛ C−1 ⊙ De1 ⊛ Dp2

À Á
⊙ Ds1

À Á
:

ð53Þ

The distributions from rounding are not necessarily sym-
metric. Fortunately, by Lemma 8, the encryption schemes
with symmetric secret distributions have symmetric D.
Therefore, Algorithms 1 and 3 are able to test their DFR,
with slight adaption as in Equation (53).

Furthermore, the same as in Remark 2, changes in com-
puting D lead to distinct m0’s in the proof of Lemma 4. The
involved results following from it should be adjusted and this
is straightforward. For example, CRYSTALS-Kyber [15] in
the third round of NIST PQC program [14], different from
its previous version, compresses only ciphertexts, that is,
Dp1 ¼C0. Note that the operation ⊙ with C−1 results in no
loss of precision. Counting in two ⊙’s, two ⊛’s and relative
errors in floating-point representation of Dp2 and Dp3 , it
yields m0 ¼ 4qþ 2.

3.5.3. Test DFR in Lattice-Based IBE/ABE Schemes. In typical
constructions of lattice-based IBE [43, 44] and ABE [45–47],
instead of using the original Regev encryption scheme [18],
its dual version is used as a primitive, in which the key
generation and encryption procedures are essentially
swapped. Specifically, in the dual system with unstructured
lattices (Figure 4), the secret key is a short vector s1, and the
corresponding public key is its syndrome b¼ATs1 2Zr

q.
The encryption algorithm chooses a pseudorandom LWE
vector c1 ¼As2 þ e2 mod q, and uses the syndrome b to
generate one more LWE instance as a “pad” to hide the
message, i.e., c2 ¼ bTs2 þ e3 þEncode mð Þ. The decryption
algorithm proceeds similarly as in Regev [18] and Lindner
and Peikert [19].

Then the key to obtaining δfail is to compute

C−1 ⊙ Ds1 ⊙ De2

À Á
w½ �À Á

⊛ De3 ; ð54Þ

which characterizes the distribution of − sT1 e2 þ e3 mod q.
Therefore, the results above in this paper also work for the
dual Regev cryptosystem with slightly adaption.

In respect of lattice-based ABE, the above method allows
to efficiently and precisely estimate the DFR for primitive
components, and deciding its DFR of the whole ABE scheme
highly depends on specific access structures. For example,
δfail of the threshold ABE [45] can be determined by com-
puting⊛i Di ⊙ D0

ið Þ w½ �, where Di and D0
i are pseudo-laws, and

Algorithms 1 and 3 with slight modification are effective for
such computation.

4. Conclusion and Future Work

In this article, we bound the output δalg of the “double-and-
add” method with cipher parameters, the floating-point
machine error εM and the trimming threshold β, and we
also propose an algorithm to determine the DFR of the
LWE-based encryption schemes. The main outcomes are
as below.

First, an explicit way is given to select the proper floating-
point datatype enabling to output of the DFR with assigned
accuracy. Particularly, according to theoretical analysis and
experimental verification, the IEEE standardized double pre-
cision float-pointing, which is supported by a variety of com-
puting devices and operating systems, suffices for common
nowadays lattice-based encryption while single precision
(32 bit) floating-point arithmetic does not guarantee a pre-
cise approximation.

Second, inequalities in Corollary 2 enables to quantita-
tively confirm whether the “double-and-add” algorithm
returns an estimate satisfying the precision. Particularly,
therefrom it immediately follows that log2δfail’s obtained
in CRYSTALS-Kyber [15], SABER [25], and ForoKEM
[24] are theoretically proved to be precise in respect of a
given absolute (resp. relative) error εabs ¼ 5× 10−3 (resp.
εrel ¼ 5× 10−6).

Third, the proposed new test of DFR includes an explicit
criterion to select the trimming threshold β and is theoreti-
cally ensured to achieve an assigned precision. Moreover,
realistic processing shows that this test accelerates previous
“double-and-add” computation with practical trimming. For
example, computing δfail of Frodo640 in double-precision
floating-point allows trimming probability less than 2−191:06

Key generation

1: A ← $ ℤq
w×r

    // w > r 

2: s1 ← $ Dw
s1

3: b = AT   ·s1

4: pk = (A, b) 

5: sk = s1

Encryption

1: s2 ← $ Dr
s2

2: e2 ← $ Dw
e2

3: e3 ← $ De3

4: c1 = As2 + e2

5: c2 = bT·s2 + e3 + Encode (m)

6: ck = (c1, c2)Decryption

1: Decode (c2– sT
1c1)

pk = public key; sk = secret key; ck = ciphertext; m = plaintext.

FIGURE 4: The dual Regev encryption scheme [43].
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instead of previous 10−200 ≈ 2−664, and thereby the new test
neglects more distribution data and hence runs faster.

Finally, we analyze the impact of algebraic lattices and
the rounding compression, and also consider applying the
results in lattice-based IBE/ABE. The “double-and-add” phi-
losophy is effective if the cryptosystem samples symmetric
secrets and errors and utilizes the power-of-two cyclotomic
ring together with its natural power basis.

We hope that this work can serve as an inspiration to
effectively and efficiently test (or search) parameters of
lattice-based cryptosystems. For instance, it is interesting to

apply the techniques and methods in this paper, adapted if
necessary, to estimate the failure probability of LWE-based
fully homomorphic encryption schemes.

Appendix

A. Proof of Lemma 3

Proof of Lemma 3. The proof is by straightforward
computation:

Δ D1 ⊛ D2; E1 ⊛ E2ð Þ
¼ ∑

k2Zq

D1 ⊛ D2 kð Þ − E1 ⊛ E2 kð Þj j

¼ ∑
k2Zq

∑
a; b 2 Zq;

aþ b ≡ kmod q

D1 að Þ ⋅ D2 bð Þ − ∑
c; d 2 Zq;

cþ d ≡ kmod q

E1 cð Þ ⋅ E2 dð Þ

�������
�������

¼ ∑
k2Zq

∑
a; b 2 Zq;

aþ b ≡ kmod q

D1 að Þ ⋅ D2 bð Þ − E1 að Þ ⋅ E2 bð Þð Þ

�������
�������

¼ ∑
k2Zq

∑
a; b 2 Zq;

aþ b ≡ kmod q

D1 að Þ − E1 að Þð Þ ⋅ D2 bð Þ þ E1 að Þ ⋅ D2 bð Þ − E2 bð Þð Þ

�������
�������

≤ ∑
k2Zq

∑
a; b 2 Zq;

aþ b ≡ kmod q

ð D1 að Þ − E1 að Þj j ⋅ D2 bð Þ þ E1 að Þ ⋅ D2 bð Þ − E2 bð Þj j Þ

¼ ∑
k2Zq

∑
a; b 2 Zq;

aþ b ≡ kmod q

D1 að Þ − E1 að Þj j ⋅ D2 bð Þ þ ∑
l2Zq

∑
c; d 2 Zq;

cþ d ≡ lmod q

E1 cð Þ ⋅ D2 dð Þ − E2 dð Þj j

¼ ∑
a;b2Zq

D1 að Þ − E1 að Þj j ⋅ D2 bð Þ þ ∑
c;d2Zq

E1 cð Þ ⋅ D2 dð Þ − E2 dð Þj j

¼ ∑
a2Zq

D1 að Þ − E1 að Þj j ⋅ ∑
b2Zq

D2 bð Þ
 !

þ ∑
a2Zq

E1 að Þ
 !

⋅ ∑
b2Zq

D2 bð Þ − E2 bð Þj j

≤ Δ D1; E1ð Þ þ Δ D2; E2ð Þ:

ðA:1Þ

□
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B. Part of the proof of Lemma 5

The trimming error from Line 5 is estimated as

Δ DI
i−1 ⊛ DI

i−1;D
I-dbl
i

À Á
¼ Δ DI

i−1 ⊛ DI
i−1;TrimSdbli

DI
i−1 ⊛ DI

i−1ð Þ
� �

≤ q ⋅ max
a2Sdbli

DI
i−1 ⊛ DI

i−1ð Þ að Þ using Equation ð21Þ

≤ q ⋅ 1 − εMð Þq−4r qþ1ð Þ max
a2Sdbli

Di−1 ⊛ Di−1ð Þ að Þ using Lemma 4

≤ qβ 1 − εMð Þ−1−4r qþ1ð Þ: usingAlgorithm 2

ðB:1Þ

The trimming errors from Line 7 (under the condition
rn−i ¼ 1) is estimated as

Δ DI-dbl
i ⊛ DI

0;D
I
i

À Á
¼ Δ DI-dbl

i ⊛ DI
0;TrimSaddi

DI-dbl
i ⊛ rn−i ⋅ DI

0

À Á� �
≤ q ⋅ max

a2Saddi

DI-dbl
i ⊛ DI

0

À Á
að Þ using Equation ð21Þ

≤ q ⋅ 1 − εMð Þ−1−4r qþ1ð Þ max
a2Saddi

Ddbl
i ⊛ D0

À Á
að Þ using Lemma 4

≤ qβ 1 − εMð Þ−1−4r qþ1ð Þ: usingAlgorithm 2

ðB:2Þ

The trimming error from Line 12 is estimated as

Δ DI
n ⊛ DI

e3 ;D
I
fin

À Á
¼ Δ DI

n ⊛ DI
e3 ;TrimSnþ1

DI
n ⊛ De3

À ÁÀ Á
≤ q ⋅ max

a2Snþ1

DI
n ⊛ DI

e3

À Á
að Þ using Equation ð21Þ

≤ q ⋅ 1 − εMð Þ−1−4r qþ1ð Þ max
a2Snþ1

Dn ⊛ De3

À Á
að Þ using Lemma 4

≤ qβ 1 − εMð Þ−1−4r qþ1ð Þ: using Algorithm 2

ðB:3Þ

C. Part of the proof of Lemma 6

Below is the proof of Equation (25). It holds that

Δ Pi;DI
ið Þ

≤ Δ Pi;DI-dbl
i ⊛ DI

0

À Áþ Δ DI-dbl
i ⊛ DI

0;D
I
i

À Á
by Lemma 2

≤ Δ Pdbl
i ⊛ P0;DI-dbl

i ⊛ DI
0

À Áþ Δ DI-dbl
i ⊛ DI

0;D
I
i

À Á
by Equation ð3Þ

≤ Δ Pdbl
i ;DI-dbl

i

À Áþ Δ P0;DI
0ð Þ þ Δ DI-dbl

i ⊛ DI
0;D

I
i

À Á
by Lemma 3

≤ Δ Pdbl
i ;DI-dbl

i

À Áþ Δ DI;DI
0ð Þ þ Δ DI-dbl

i ⊛ DI
0;D

I
i

À Á
by P0 ¼ DI

≤ Δ Pdbl
i ;DI-dbl

i

À Áþ 2qβ 1 − εMð Þ−1−4r qþ1ð Þ by Lemma 5

ðC:1Þ
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and

Δ Pdbl
i ;DI-dbl

i

À Á
≤ Δ Pdbl

i ;DI
i−1 ⊛ DI

i−1

À Áþ Δ DI
i−1 ⊛ DI

i−1;D
I-dbl
i

À Á
by Lemma 2

≤ Δ Pi−1 ⊛ Pi−1;DI
i−1 ⊛ DI

i−1ð Þ þ Δ DI
i−1 ⊛ DI

i−1;D
I-dbl
i

À Á
by Equation ð3Þ

≤ 2 ⋅ Δ Pi−1;DI
i−1ð Þ þ Δ DI

i−1 ⊛ DI
i−1;D

I-dbl
i

À Á
by Lemma 3

≤ 2 ⋅ Δ Pi−1;DI
i−1ð Þ þ qβ 1 − εMð Þ−1−4r qþ1ð Þ: by Lemma 5

ðC:2Þ

D. Proof of Corollary 1

Proof of Corollary 1. The inequality Equation (34) implies

2−εabsδfail ≤ δfail 1 − εMð Þ1þ4r qþ1ð Þ
− 2qrβ: ðD:1Þ

Taking logarithm log2 on both sides implies

−εabs≤ log2 δfail 1 − εMð Þ1þ4r qþ1ð Þ
− 2qrβ

À Á
− log2δfail

≤ log2δalg − log2δfail: using Equation ð15Þ ðD:2Þ

Furthermore, εM ≤ 1− 2−εabs= 1þ4r qþ1ð Þð Þ derives that the right
hand of Equation (34) is non-negative, and is hence coherent
with the fact that β≥ 0 in Algorithm 1.

In addition, we have

εM ≤ 1 − 2−εabs= 1þ4r qþ1ð Þð Þ ≤ 2εabs= 1þ4r qþ1ð Þð Þ
− 1; ðD:3Þ

implying that

εabs≥ 1þ 4r qþ 1ð Þð Þlog2 1þ εMð Þ
¼ log2 δfail 1þ εMð Þ1þ4r qþ1ð ÞÀ Á

− log2δfail
≥ log2δalg − log2δfail: using Equation ð15Þ

ðD:4Þ

Then Equation (35) holds.
The proof of Equation (37) is similar and omitted here. □

E. Data of Experiment 3

This section includes the data of Experiment 3. Specifically,
each of Tables 4–12 shows the data for one of the parameter
sets of CRYSTALS-Kyber Schwabe [15], FrodoKEM Alkim
et al. [24], and SABERD’Anvers et al. [25]. In the tables below,

the second row gives time cost of computing D0 (Line 2 of
Algorithm 3), and the third, the fourth, and the fifth row give
the data of the heuristic test, the tentative test, and the confir-
matory test, respectively. The second column shows data for
Algorithm 1 without trimming (β= 0), the third column
shows data for Algorithm 1 with trimming [15, 24, 25] (β in
the second column of Table 3), and the fourth and the fifth
column show data of Algorithm 3 for absolute error
εabs= 0.005 and for relative error εrel= 5 × 10−6, respectively.
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TABLE 4: Algorithms 1 and 3 on Kyber512 [15].

Algorithm 1 Algorithm 1 [15]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:19ms

Heuristic test
n n δclt ¼ 2−147:61

Time¼ 0:81ms

Tentative test
β¼ 0 β¼ 2−300 βabstnt ¼ 2−185:49 βreltnt ¼ 2−188:18

δalg ¼ 2−138:94 δalg ¼ 2−138:94 δabstnt ¼ 2−138:94 δreltnt ¼ 2−138:94

Time¼ 39:18ms Time¼ 14:27ms Time¼ 9:66ms Time¼ 10:91ms

Confirmatory test
n n βabscnf ¼ 2−176:82 βrelcnf ¼ 2−179:59

δabscnf ¼ 2−138:94 δrelcnf ¼ 2−138:94

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 39:37ms Time¼ 14:46ms Time¼ 10:66ms Time¼ 11:91ms

TABLE 5: Algorithms 1 and 3 on Kyber768 [15].

Algorithm 1 Algorithm 1 [15]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:14ms

Heuristic test
n n δclt ¼ 2−172:83

Time¼ 0:78ms

Tentative test
β¼ 0 β¼ 2−300 βabstnt ¼ 2−211:30 βreltnt ¼ 2−213:76

δalg ¼ 2−165:01 δalg ¼ 2−165:01 δabstnt ¼ 2−165:01 δreltnt ¼ 2−165:01

Time¼ 37:89ms Time¼ 13:14ms Time¼ 10:48ms Time¼ 10:53ms

Confirmatory test
n n βabscnf ¼ 2−203:47 βrelcnf ¼ 2−206:00

δabscnf ¼ 2−165:01 δrelcnf ¼ 2−165:01

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 38:03ms Time¼ 13:28ms Time¼ 11:40ms Time¼ 11:45ms

TABLE 6: Algorithms 1 and 3 on Kyber1024 [15].

Algorithm 1 Algorithm 1 [15]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:14ms

Heuristic test
n n δclt ¼ 2−181:32

Time¼ 0:49ms

Tentative test
β¼ 0 β¼ 2−300 βabstnt ¼ 2−220:20 βreltnt ¼ 2−222:60

δalg ¼ 2−174:96 δalg ¼ 2−174:96 δabstnt ¼ 2−174:96 δreltnt ¼ 2−174:96

Time¼ 35:84ms Time¼ 13:44ms Time¼ 10:43ms Time¼ 10:60ms

Confirmatory test
n n βabscnf ¼ 2−213:84 βrelcnf ¼ 2−216:29

δabscnf ¼ 2−174:96 δrelcnf ¼ 2−174:96

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 35:98ms Time¼ 13:58ms Time¼ 11:06ms Time¼ 11:23ms
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TABLE 7: Algorithms 1 and 3 on Frodo640 [24].

Algorithm 1 Algorithm 1 [24]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 1:22ms

Heuristic test
n n δclt ¼ 2−148:87

Time¼ 0:24ms

Tentative test
β¼ 0 β¼ 10−200 βabstnt ¼ 2−188:37 βreltnt ¼ 2−191:06

δalg ¼ 2−138:76 δalg ¼ 2−138:76 δabstnt ¼ 2−138:76 δreltnt ¼ 2−138:76

Time¼ 4; 058:44ms Time¼ 1; 057:97ms Time¼ 61:26ms Time¼ 64:56ms

Confirmatory test
n n βabscnf ¼ 2−178:26 βrelcnf ¼ 2−181:04

δabscnf ¼ 2−138:76 δrelcnf ¼ 2−138:76

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 4; 059:66ms Time¼ 1; 059:19ms Time¼ 62:72ms Time¼ 66:02ms

TABLE 8: Algorithms 1 and 3 on Frodo976 [24].

Algorithm 1 Algorithm 1 [24]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 1:10ms

Heuristic test
n n δclt ¼ 2−213:29

Time¼ 0:18ms

Tentative test
β¼ 0 β¼ 10−200 βabstnt ¼ 2−254:40 βreltnt ¼ 2−256:59

δalg ¼ 2−199:60 δalg ¼ 2−199:60 δabstnt ¼ 2−199:60 δreltnt ¼ 2−199:60

Time¼ 1; 803:06ms Time¼ 431:80ms Time¼ 63:34ms Time¼ 64:01ms

Confirmatory test
n n βabscnf ¼ 2−240:71 βrelcnf ¼ 2−242:99

δabscnf ¼ 2−199:60 δrelcnf ¼ 2−199:60

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 1; 804:16ms Time¼ 432:90ms Time¼ 64:62ms Time¼ 65:29ms

TABLE 9: Algorithms 1 and 3 on Frodo1344 [24].

Algorithm 1 Algorithm 1 [24]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:37ms

Heuristic test
n n δclt ¼ 2−268:49

Time¼ 0:06ms

Tentative test
β¼ 0 β¼ 10−200 βabstnt ¼ 2−310:07 βreltnt ¼ 2−311:93

δalg ¼ 2−252:60 δalg ¼ 2−252:60 δabstnt ¼ 2−252:60 δreltnt ¼ 2−252:60

Time¼ 148:71ms Time¼ 56:08ms Time¼ 24:04ms Time¼ 24:10ms

Confirmatory test
n n βabscnf ¼ 2−294:17 βrelcnf ¼ 2−296:12

δabscnf ¼ 2−252:60 δrelcnf ¼ 2−252:60

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 149:08ms Time¼ 56:45ms Time¼ 24:47ms Time¼ 24:53ms
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TABLE 10: Algorithms 1 and 3 on LightSaber [25].

Algorithm 1 Algorithm 1 [25]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:37ms

Heuristic test
n n δclt ¼ 2−123:80

Time¼ 1:52ms

Tentative test
β¼ 0 β¼ 2−300 βabstnt ¼ 2−162:98 βreltnt ¼ 2−165:90

δalg ¼ 2−120:35 δalg ¼ 2−120:35 δabstnt ¼ 2−120:35 δreltnt ¼ 2−120:35

Time¼ 127:90ms Time¼ 32:07ms Time¼ 22:75ms Time¼ 23:87ms

Confirmatory test
n n βabscnf ¼ 2−159:54 βrelcnf ¼ 2−162:50

δabscnf ¼ 2−120:35 δrelcnf ¼ 2−120:35

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 128:27ms Time¼ 32:44ms Time¼ 24:64ms Time¼ 25:76ms

TABLE 11: Algorithms 1 and 3 on Saber [25].

Algorithm 1 Algorithm 1 [25]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:12ms

Heuristic test
n n δclt ¼ 2−139:07

Time¼ 0:73ms

Tentative test
β¼ 0 β¼ 2−300 βabstnt ¼ 2−178:83 βreltnt ¼ 2−181:60

δalg ¼ 2−136:16 δalg ¼ 2−136:16 δabstnt ¼ 2−136:16 δreltnt ¼ 2−136:16

Time¼ 137:41ms Time¼ 32:10ms Time¼ 24:25ms Time¼ 23:49ms

Confirmatory test
n n βabscnf ¼ 2−175:93 βrelcnf ¼ 2−178:73

δabscnf ¼ 2−136:16 δrelcnf ¼ 2−136:16

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 137:53ms Time¼ 32:22ms Time¼ 25:10ms Time¼ 24:34ms

TABLE 12: Algorithms 1 and 3 on FireSaber [25].

Algorithm 1 Algorithm 1 [25]
Algorithm 3

εabs ¼ 5× 10−3 εrel ¼ 5× 10−6

Compute D0 Time¼ 0:12ms

Heuristic test
n n δclt ¼ 2−168:32

Time¼ 0:18ms

Tentative test
β¼ 0 β¼ 2−300 βabstnt ¼ 2−208:50 βreltnt ¼ 2−211:00

δalg ¼ 2−165:26 δalg ¼ 2−165:26 δabstnt ¼ 2−165:26 δreltnt ¼ 2−165:26

Time¼ 132:54ms Time¼ 31:24ms Time¼ 25:69ms Time¼ 24:71ms

Confirmatory test
n n βabscnf ¼ 2−205:45 βrelcnf ¼ 2−207:97

δabscnf ¼ 2−165:26 δrelcnf ¼ 2−165:26

Time¼ 0:00ms Time¼ 0:00ms

Total time Time¼ 132:66ms Time¼ 31:36ms Time¼ 25:99ms Time¼ 25:01ms
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