
Research Article
MFEMDroid: A Novel Malware Detection Framework Using
Combined Multitype Features and Ensemble Modeling

Wei Gu , Hongyan Xing , and Tianhao Hou

School of Electronics and Information Engineering, Nanjing University of Information Science and Technology,
Nanjing 210044, China

Correspondence should be addressed to Hongyan Xing; xinghy@nuist.edu.cn

Received 21 July 2023; Revised 29 January 2024; Accepted 3 February 2024; Published 17 February 2024

Academic Editor: Leandros Maglaras

Copyright © 2024 Wei Gu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The continuous malicious attacks on Internet of Things devices pose a potential threat to the economic and private information
security of end-users, especially on the dominant Android devices. Combining static analysis methods with deep Learning is a
promising approach to defend against that. This kind of method has two limitations: the first is that the current single-permission
mechanism is not insufficient to regulate interapplication resource acquisition; another problem is that current work on feature
learning is dedicated to modifying a single network structure, which may result in a suboptimal solution. In this study, to solve the
abovementioned problems, we propose a novel malware detection framework MFEMDroid, which combines multitype features
analysis and ensemble modeling. The Provider feature, facilitating information requests between applications (apps) and serving as
an indispensable data storage method, plays a vital role in characterizing app behavior. Hence, we extract permissions and Provider
features to comprehensively characterize app behavior and probe potentially dangerous combinations between or within these
features. To address oversparse datasets and reduce feature learning overhead, we employ an auto-encoder for feature dimension-
ality reduction. Furthermore, we design an ensemble network based on SENet, ResNet, and the evolutionary convolutional neural
network Squeeze Excitation Residual Network (SEResNet) to explore the hidden associations between different types of features
from multiple perspectives. We performed extensive experiments to evaluate its method performance on real-world samples. The
evaluation results demonstrate that the proposed framework can detect malware with an accuracy of 95.38%, which is much better
than state-of-the-art solutions. These promising experimental results show that MFEMDroid is an effective approach to detect
Android malware.

1. Introduction

The diversified functions and services of Internet of Things
(IoT) devices have drastically altered our daily habits [1].
Internet of Everything has also raised IoT security issues,
particularly in themobile market, where attackers are increas-
ingly drawn to the attraction of digital wallets and sensitive
user data [2]. The Android operating system (OS) is rapidly
gaining popularity in IoT devices, such as smartphones, smart
homes, car navigation systems, and smart watches [3, 4].
Android OS has gained 84.1% support from mobile phone
manufacturers and end-users since 2021 [3]. The open source
and sizable market of Android also appeal to the development
of Android malicious software. Android, as the main target
of malicious developers, undertakes approximately 98% of

attacks in the mobile market [5]. Malicious apps, especially
on Android, are the main threat to end-user security [6].
According to statistics, nearly 12,000 new malware are detected
every day [7]. Besides, the third-party app markets without
official trust guarantees allow users to download Android
apps, further complicating the scenario. Hence, the urgency
and importance of Android malware detection is unprecedented.

Previous detection approaches can be divided into dynamic
and static analysis [8]. Dynamic analysis records the interac-
tion with the system and network traffic consumption during
the app’s execution. Due to their reliance on the execution
environment, dynamic methods are time-consuming. With
the current exponential growth in the number of apps, static
analysis is more suitable due to its lower requirements on the
execution environment. Considering our aim is to detect

Hindawi
IET Information Security
Volume 2024, Article ID 2850804, 12 pages
https://doi.org/10.1049/2024/2850804

https://orcid.org/0009-0007-0378-9739
https://orcid.org/0000-0002-3204-3457
https://orcid.org/0000-0003-0223-7039
mailto:xinghy@nuist.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2024/2850804

malware rather than discover hidden taints, our proposed
approach relies on static analysis.

The existing detection methods mainly focus on the
static features extracted from the AndroidManifest.xml file,
especially on permission features, to analyze the capabilities
and behaviors of Android apps [9]. Ganesh et al. [10] studied
permission mode and detected Android malware based on a
convolutional neural network (CNN). The security of an
Android device depends heavily on its permission mecha-
nism. To access sensitive resources (e.g., get a photo album)
or perform system operations (e.g., invoke Bluetooth), the
application must obtain appropriate permissions from the
user. This access mechanism explains why permission-based
detection methods are so widespread. After an in-depth anal-
ysis of permission-based works, we find that existing efforts
fail to manage access to cross-application resource scenarios.
According to the permission mechanism, an App that requires
access to the contact information must declare the following
element: <uses-permission android: name= “android.permis-
sion. READ_CONTACTS”/>. However, unauthorized apps
can access the data if the following conditions are met. One
is that an undeclared app obtains the Provider’s relevant uni-
form resource identifier (URI) information from an authorized
app. The other is that the exported attribute of the correspond-
ing Provider is “True.” Successful unauthorized access under-
mines the permissions mechanism’s effectiveness.

In our study, to strengthen the regulation of interappli-
cation resource access scenarios, we specifically emphasize
Provider features rather than simply analyzing permissions.
The Provider manages data sharing and access across apps,
which is an indispensable data storage method. Further statis-
tical analysis of our dataset shows that the permission named
“android.permission.REQUEST_INSTALL_PACKAGES” and
the Provider feature with the name “android.support.v4.con-
tent.FileProvider” often co-occur in the malicious sample set.
This statistical data further confirms that it is worthwhile to
consider the combined analysis of permission and Provider to
reflect the sample characteristics.

It is vital to analyze the interdependences of the extracted
features, including permission and Provider features, to opti-
mize the classification performance. Feature learning [11]
allows a machine to automatically explore and learn appro-
priate feature transformations from raw data. In recent years,
deep Learning (DL) techniques for feature learning, such as
CNN, have achieved considerable success in object detection
[12, 13] and anomaly detection [14, 15]. Combining CNN
with static analysis hasmade excellent achievements in Android
malware detection tasks [16, 17]. Most earlier research focused
on modifying individual network architecture, such as skip
connection [18] and attention mechanism [19], to enhance
the model’s fitting learning capability. However, a single deep
neural network converges to a local minimum, potentially
yielding a suboptimal solution [20]. The ensemble methods
provide a new perspective to address the challenge. The con-
cept behind ensemble is to train multiple networks, which
is less explored in malware detection. Some works have

demonstrated that using an ensemble of models provides
superior performance compared to a single model [21].

Based on the above observations, we propose a novel net-
work architecture that utilizes an ensemble of deep CNNs to
adaptively explore the intrinsic connection between the multi-
ple features from various perspectives. The base learners in our
ensemble network comprise ResNet, SENet, and the evolu-
tionary CNN algorithm Squeeze Excitation Residual network
(SEResNet). Each base learner has unique capabilities to mine
the intricate connections within the data. Our proposed net-
work combines SENet, ResNet, and SEResNet algorithms into
a fully connected neuron layer for the final classification of the
input data.

Based on the above works, we propose a novel malware
detection framework MFEMDroid. In the raw feature extrac-
tion stage, we first extract two types of features with natural
links (permission and Provider features). The auto-encoder
(AE) is then applied to reduce feature dimensionality, with
the purpose of reducing the overhead of feature learning and
avoiding over-sparse datasets. Finally, the proposed ensem-
ble network is applied to adaptively learn the proposed mul-
titype feature combination (permission and Provider) from
multiple perspectives to improve the malware detection per-
formance. To our knowledge, the existing malware detection
approaches pay less attention to the combination or internal
relationship between the permission and Provider features.
We have conducted extensive experiments to evaluate the
effectiveness of the proposed framework based on the col-
lected real-sample datasets and compared them with similar
frontier work. The promising experimental results verify that
our proposed framework is an effective solution to protect
end-users away from malware attacks. In brief, our paper
makes the following contributions:

(1) We propose a novel malware detection framework,
MFEMDroid. The framework leverages permission
and Provider features with rich semantics and a cus-
tomized ensemble network to enhance the effective-
ness of malware detection.

(2) We propose an ensemble network architecture that
uses multiple base models such as SENet, ResNet, and
evolutionary CNNSEResNet to adaptively explore the
intrinsic connections between multiple features (per-
missions and Providers) from various perspectives.

(3) We collected benign and malicious apps from Google
Play and Virus Share, respectively, to construct a time-
sensitive dataset. We conducted extensive experiments
to evaluate the performance of our proposed model.
The experimental results show that our proposed
model is superior to the state-of-art research.

The remainder of this paper is structured in the following
way: Section 2 introduces the related work in the field of
Android malware detection; Section 3 explains the overall
architecture of the proposed model; Section 4 describes the
experiment’s specific design, results, and evaluation in detail;

2 IET Information Security

and finally, Section 5 summarizes the paper and proposes
possible future studies.

2. Related Work

Researchers have proposed various static and dynamic tools
to detect malware and designed many data-driven malware
detectionmethods based onDL. Among those existing efforts,
a few of them are reviewed below. The summary of our pro-
posed models with the related works is shown in Table 1.

2.1. Dynamic and Static Analysis Methods. Dynamic analysis
methods monitor and capture the runtime behavior of apps
to identify malicious patterns. For instance, Kim [22] pre-
sented an ML-based model to analyze the native API system
calls for malware detection. Bhat et al. [23] proposed a dynamic
analysis approach using an ensemble of multi-ML approaches
to identify malicious attacks. Li et al. [24] presented a novel
dynamic malware detection mechanism that extracts API
sequence intrinsic features as the input of CNN and Bi-LSTM.
Due to the widespread use of malicious samples with obfus-
cation techniques, dynamic analysis methods require more
expensive hardware resource matching. Besides, the number
of apps in the market is growing exponentially, which further
expands the requirements of dynamic detection approaches
for the execution environment. We aim to identify malware
accurately rather than tracking specific malicious behaviors.
Thus, the dynamic analysis method does not meet our
requirements of quickly identifying malware.

Unlike dynamic feature analysis, static analysis requires
less execution environment. Mainstream static analysis work
cannot be separated from permissions. For example, Ganesh
et al. [10] were dedicated to studying permission patterns
and utilized CNN to detect Android malware. Arslan et al.
[25] designed a permission-based malware detection mecha-
nism combining classical ML algorithms such as decision
tree (DT), logistic regression, and random forest (RF). The
existing static detection work is limited to a single feature

(mainly permission), which poses the reflected one-sided char-
acteristics of malicious samples andmakes it hard tomatch the
update iteration speed of malicious samples. Therefore, some
scholars began to pay attention to the hidden patterns among
multiple types of features and have achieved some achieve-
ments. For instance, Alazab et al. [26] designed a novel mal-
ware detection framework, which combined the characteristics
of permission and API. The experiment results of the F1-score
on 27,891 real apps reached 94.3%. Khariwal et al. [27] ana-
lyzed the combination of static features permission and intent
based on classical ML methods such as SVM and RF.

As far as we know, it is still not found some scholars have
combined or analyzed permission and Provider. Considering
that both are related to controlling access to resources, we
filled out the mixed features of permission and Provider for
joint analysis. In addition, our proposed malware detection
method has good scalability and can be used to mine more
types of feature combinations in the future.

2.2. DL-Based Malware Detection. In recent years, DL tech-
nology combined with static or dynamic analysis has made
excellent achievements in malware detection. For example,
Ganesh et al. [10] proposed a malware detection model based
on classical LeNet and evaluated the model performance on
2,500 collected real Android apps (including 2,000 malicious
samples and 500 ones), with an accuracy of 93%. Wang et al.
[28] proposed a new CNN-based malware detection frame-
work. The static features are extracted and converted into a
2D matrix, which is then used as input for the CNN to detect
malware. Wu et al. [29] proposed an interpretable malware
detection method. The extracted permissions and API calls
are fed into the attention layer and multilayer perceptron for
malware detection. Zhu et al. [30] employed a customed
CNN multihead squeeze-and-excitation residual network
to learn the intrinsic correlation between multitype static
features. These efforts utilizing an individual network have
made significant strides in identifying and preventing

TABLE 1: Summary of proposed approaches with the relevant works.

Paper Year
Input data Classifier/algorithm

D S-S M-S I-ML I-DL E-ML E-DL

Kim et al. [22] 2018 √ √
Bhat et al. [23] 2023 √ √
Li et al. [24] 2022 √ √
Ganesh et al. [10] 2017 √ √
Alslan et al. [25] 2019 √ √
Alazab et al. [26] 2020 √ √
Khariwal et al. [27] 2020 √ √
Wang et al. [28] 2019 √ √
Wu et al. [29] 2021 √ √
Zhu et al. [30] 2023 √ √
Bakhshinejad et al. [31] 2020 √ √
Ficco et al. [32] 2021 √ √
This paper √ √
Note: D: dynamic features; S-S: single static feature; M-S: multitypes of static features; I-ML: individual machine learning classifier; I-DL: individual deep
learning algorithm; E-ML: the ensemble of multiple machine learning classifiers; E-DL: the ensemble of multiple deep learning algorithms.

IET Information Security 3

malware. However, it is important to note that a single deep
neural network may converge to a local minimum, resulting
in suboptimal results.

Ensemble modeling using multiparallel networks has
proven to be an effective way to solve the above issues. Bakh-
shinejad and Hamzeh [31] employed a new parallel architec-
ture of two CNNs to automatically extract and learn n-gram
patterns. Ficco [32] proposed an ensemble detector to exploit
multitype features from multiple dimensions. Naeem et al.
[33] developed an ensemble of neural networks using stacked
generalization to learn basic local and global image features
for malware detection. Naeem et al. [34] employed a deep-
stacked ensemble network to learn the fuzed handcrafted
features for malware detection. Inspired by the above work,
we propose an ensemble model using multiple parallel CNNs
to adaptively mine the potential associations of multitype
features. Multiple parallel CNNs involve an evolutionary
CNN SEResNet and classical SENet and ResNet.

3. Proposed Model

Our proposed malware detection model mainly conducts
three parts, as shown in Figure 1. We will describe each
part in detail in the following sections.

3.1. Raw Feature Extraction. The quality of the extracted
features directly affects the performance of the malware
detection model. Therefore, in the feature extraction stage,
we are committed to mining the static features with strong
associations to provide high-quality input data for the train-
ing model. Static feature analysis work is inextricably linked
to AndroidManifest.xml, which is an indispensable configu-
ration file for each app, consisting of permissions, Providers,

and other features. To obtain the required static features, such
as permission and Provider, the open-source tool Androguard
[35] is selected to decompile AndroidManifest.xml and extract
in batches. The process of feature extraction and vector gener-
ation method is shown in Algorithm 1.

3.1.1. Permission Feature. There are countless outstanding
works on permission [8, 16], which is due to the inseparable
relationship between permission and Android security. The
permission mechanism serves as the primary protective bar-
rier for Android security, manages apps to access sensitive
resources (such as SMS), and performs system-level opera-
tions (such as camera) [36]. After Android 6.0 [37], permis-
sion features can be subdivided into normal, dangerous, and
signature levels based on protection level. The protection
level of permission is normal by default. It is automatically
authorized during app installation without any execution
operation instructions from the user. Signature-level permis-
sion will be automatically granted to access the specified
resource merely when it matches the app’s signature that
claims this permission. Permissions at the level of dangerous
are closely related to the user’s private information, which
requires attracting sufficient attention from end-users.
Dangerous-level permissions, such as READ-CONTACTS
and READ-SMS, respectively, manage the operations of
reading user contact and SMS messages, which involve per-
sonal privacy. During the development process, developers
need to uniformly define the fields starting with <uses-per-
mission> for all applied permissions in advance in the
AndroidManifest.xml file. For the irreplaceable position of
permission in Android security, we select the unique iden-
tifier tag “name” in <uses-permission> for analysis and

ACCESS_NETWORK_STATE

Permission

0
Auto-encoder

Encoder

SEResNet SENetResNet

Concatenate

Fully connected layer

Feature maps

Decoder

0

0

1
x

0

0

1

Fe
at

ur
e v

ec
to

r g
en

er
at

io
n

Fe
at

ur
e p

ru
ni

ng

Re
sh

ap
e

Accuracy

Malware detection results

Provider

F1-score

Mcc

…

…

…

0

0

0

1

0

0

1
…

…

…

…

…

…

… ………

x

1 0

0 0 0

0 0

0 1

0

00

10

0 0

…

READ_PHONE_STATE

REQUEST_INSTALL_PACKAGES

android.support.v4.content.FilepProvider

com.mobile.indiapp.ipc.ConfgProvider

com.ndtv.core.provider.NewsProvider ˆ

FIGURE 1: The overall framework of MFEMDroid.

4 IET Information Security

generate a permission feature set based on Google’s official
documents for subsequent analysis.

3.1.2. Provider Feature. As one of the significant components
[36] of Android apps, the Provider is an indispensable data
storage method for sharing information between different
apps. Provider features are often applied to manage informa-
tion transmission between multi-apps, such as sharing con-
tact between different apps. Specifically, the Content Provider
serves a public URI as a unique mark to tag resources, and
then other apps access or even delete information through the
entrance. The default value of “android: exported” for Con-
tent Providers is set to “True” when the API Level is below 17.
This default configuration inadvertently provides a hidden
entry point for malicious attackers, putting end-users at risk
of arbitrary data access, SQL injection, and directory traversal
attacks. The Provider acts a fine complementary role in
resource control, especially in cross-application resource
access. Man-in-the-middle attack (MITM) refers to the inter-
ception or evenmalicious tampering of normal network com-
munication data without the awareness of both parties.
MITM is closely related to the Provider that manages the
communication between apps. Therefore, we extract and ana-
lyze Provider features. We draw support from statistical
methods to further estimate the rationality and effectiveness
of extracting Provider. We counted the Provider with the top
10 occurrence frequencies on our all-malicious apps. The
results show that half of the Providers were prefixed with

“com.mobile.Indiapp.” This prefix points to a resourceful
third-party app store, named 9apps, which has an average
daily circulation of more than 26 million. The 9apps is not
a malicious site. However, the website VirusTotal [38] was
applied to ergodic the domain of the store, and huge viruses
were found in the domain. Besides, malicious developers [39]
prefer to name components with similar confusing names to
trick end-users into installing or avoiding detection. For
instance, the high-frequency Provider named “com.qihoo.
util.CommonProvider” in our dataset misleads end-users
through the tag of “Qihoo” disguised as Qihoo 360′ apps.
This instance further indicates that it is beneficial to identify
malware by analyzing Providers.

3.2. Feature Filtering and Selection. Given the huge number
of features extracted and the sparse dataset, we perform a
dimensionality reduction operation via AE to eliminate
redundant features and reduce the load on subsequent fea-
ture learning. As shown in Figure 2, AE consists of an
encoder and a decoder. The encoder is responsible for map-
ping the input data x into a hidden layer h. The decoder
maps the representation of the latent space back to the space
of the original data, reconstructing the input data as much as
possible. For the input x, the encoding and decoding process
is shown in Equations (1) and (2).

h xð Þ ¼ f Wx þ bð Þ; ð1Þ

Input:

X: Both malware and benign samples

Output:

PE: Permission feature set

PR: Provider feature set

FV: Feature vector

Function:

1. For each apk file2X do

2. Decompile to obtain the AndroidManifest file;

3. PR←collect all Providers from the tag <Provider> line by line;

4. PE←collect all permissions from the tag <uses-permission> line by line;

5. End for

6. FV←∅;
7. BF←PE∪PR;

8. For each apk2X do

9. index← 0; Fi← [0|0|…|0]

10. For 8F 2BF do

11. If f 2 apk do

12. Fi½index� : ← 1;

13. index← indexþ 1;

14. End for

15. FV← FV∪Fi;
16. End for

17. Return FV

ALGORITHM 1: Feature extraction and vector generation method.

IET Information Security 5

bx ¼ f 0 W0h xð Þ þ b0ð Þ; ð2Þ

where f and f 0 are sigmoid function, W and W0 denote the
weight of the encoder and decoder, respectively, b and b0
represent the bias of the encoder and decoder, respectively.
The loss function of the AE is shown in Equation (3).

L¼ −
1
M

∑
M

i¼1
∑
N

j¼1
xj;ilogbxj;i þ 1 − xj;i

À Á
log 1 − bxj;i

À ÁÂ Ã
; ð3Þ

where M denotes the total number of samples input into the
AE method, and N means the feature dimension of each
sample. xj;i means the jth component of the ith observation.

After the AE method, we reserve 147 permissions and
253 Providers. There is a unified naming rule for permission
features. Therefore, after the AE operation, we retained all
147 extracted permission features for further study. Due to
the lack of official naming rules, the dimensionality of the
Provider was reduced by more than 90%. Compared with the
Provider features before filtering, the filtered features based
on multiple evaluation indicators still have advantages.

To adapt the extracted features to the input of our ensem-
ble network, an adaptive vector dimension transformation
mechanism is designed. Specifically, the input dimension
ðX;Y ; 1Þ: is converted into ðX; ffiffiffiffi

Y
p

;
ffiffiffiffi
Y

p Þ :, where X represents
the number of samples, and Y is the number of features cor-
responding to each sample. To ensure that

ffiffiffiffi
Y

p
is an integer, a

common operation is to fill 0 columns at the end or reduce the
number of columns. Reducing the number of columns will
cause the loss and defect of the relationship of the original
features. Therefore, we adapt the dimensions by adding 0
columns.

3.3. Ensemble Multi-CNN Modeling and Classification. As
a feature extractor or classifier, CNN has made excellent
achievements in object detection [12, 13] and anomaly detec-
tion [14, 15]. Many excellent CNNs have been introduced
into malware detection models, including ResNet [40] and
SENet [41]. ResNet tackles deteriorated learning perfor-
mance by leveraging residual connectivity, enabling the net-
work to learn identity mappings. SENet is a milestone in the
field of CNN, which won the championship of the ILSVRC
classification competition in 2017. The Squeeze and Extraction
(SE) block in the SENet enables the network to have the
capability to adaptively calibrate features, that is, selectively
identify features with strong identifications and suppress

features with weak discriminations. Recent CNN-based
methods relied on improving the internal architecture of
the network to efficiently detect malware. A single network
poses the potential risk of achieving suboptimal results.
Ensemble modeling, which uses multiple networks to learn
the hidden patterns from the raw input features, provides a
new solution to solve this issue. In this paper, inspired by the
success of ensemble modeling and CNN, we propose an
ensemble network utilizing multiple base models, including
SENet, ResNet, and evolutionary CNN SEResNet, to enhance
the overall accuracy rate. The structure of the ensemble
network is shown in Figure 3.

ResNet, as part of our ensemble network, has a residual
structure at its core. The residual structure ensures that the
performance of the deep network is not inferior to a rela-
tively shallow network, as shown in Equation (4).

H Xð Þ ¼ F x; Wif gð Þ þ x; ð4Þ

where Fðx; fWigÞ : is residual mapping, F¼W2σðW1xÞ : and
σ is ReLU, while W1 and W2 represent two weight layers,
respectively.

SENet is another important part of our ensemble network.
The SE block is an important part of SENet and consists of
two parts: Squeeze and Exception. As shown in Figure 3, the
Ftr is responsible for transforming the input feature map X to
a squeezed feature vector Uc following Equation (5). The
Squeeze block, depicted in Figure 3, transforms the input
feature using Convolution, Batch Normalization, and ReLU,
as described in Equation (6). The Squeeze block mainly uti-
lizes Global Average Pooling to generate channel-wise statis-
tics, capturing important information from each channel.
Another important component, the Excitation operation,
denoted in Equation (7), aims to further capture channel
correlation. By combining the Squeeze block and the Excita-
tion operation, the SE block in SENet adaptively calibrates
features and enhances discrimination. The final output result
is shown in Equation (8).

Uc¼ VC∗X ¼ ∑
c0

s¼1
VS
C∗Xs; ð5Þ

Zc¼ Fsq ucð Þ ¼ 1
H

∑
H

i¼1
uc ið Þ; ð6Þ

S¼ Fex z;Wð Þ ¼ σ g z;Wð Þð Þ ¼ σ W2δ W1zð Þð Þ; ð7Þ

eXc¼ Fscale uc; scð Þ ¼ scuc: ð8Þ

In Equation (5), “∗” represents convolution, “VC” denotes
the parameters of the cth filter, and VS

C is a 1D convolutional
kernel. In Equation (7), δ is ReLU, W1 and W2 represent the
weights of two fully connected layers. The Fscale in Equation (8)
represents channel-wise multiplication.

By integrating the SE module and the residual connec-
tions, we design SEResNet, which aims to improve the detec-
tion of Android malware by effectively calibrating features

Encoder

Decoder

W W´x1

x2

h1

h2

hs

x3

xm

+1 +1b b´
xmˆ

ˆ

x2ˆ

x1ˆ

… … x3

…

FIGURE 2: The architecture of an auto-encoder.

6 IET Information Security

and leveraging the learning performance of ResNet. We learn
permission and Provider features latent associations jointly
by three parallel base models (SENet, ResNet, and SEResNet)
and feed the learning results into a fully connected neuron
layer for final classification.

4. Experiment Evaluation

To estimate the effectiveness of MFEMDroid, we conduct
multigroup experiments on real-world samples. The effec-
tiveness of the AE module is verified in the first group exper-
iment using two types of features (namely, the raw Provider
and the filtered Provider). The second group experiment
evaluates the performance to characterize the malware with
semantically rich multitype features using three categories of
characteristics (i.e., Provider, permission, and combination
features). The final set of experiments verifies the perfor-
mance of the proposed network and compares it with the
traditional single network, confirming that our ensemble net-
work can fully exploit the potential associations among fea-
tures. The dataset utilized in these experiments is described in
Section 4.1.

4.1. Dataset Collection. To discover the hidden patterns of
malware [42], we analyze the behavior of malicious and
benign Android apps in the real world. Self-collection of
samples rather than obtaining samples from current main-
stream datasets (such as Drebin [43], DCL [44], etc.) mainly
takes into account the following common issues: first, the
raw sample is not published, which leads to the study scope
focusing only on the existing published features, and main-
stream dataset samples are generally outmoded. Therefore,

we obtained real-world apps from the official market Google
Play Store and the authoritative malicious sample-sharing
website VirusShare to form a preliminary sample set. Com-
pared with the third-party app market with uneven quality,
Google Play Store provides strict security verification for all
uploaded APKs [41]. Therefore, we merely consider samples
from the official market Google Play Store. For the samples
obtained from the Google Play Store, we selected VirusTool
(a detection website integrating more than 70 antivirus scan-
ners) [38] to traverse one by one, and finally, 8,981 samples
passed the detection successfully. Owing to some apps down-
loaded from VirusShare failing to decompile, our dataset
eventually consisted of 7,896 malicious samples and 8,981
benign ones. It is worth noting that the corresponding label
of malicious apps is “1”, and the value of ”0” represents the
benign samples.

4.2. Evaluation Criteria. In this section, we systematically intro-
duce the evaluation criteria used in comprehensive experiments
to evaluate the performance of the proposed Android malware
detection model. The common evaluation criteria, including
Accuracy, Precision, Recall, F1-score (F1), and Matthews cor-
relation coefficient (Mcc), are shown as follows:

Accuracy ¼ TPþ TN
TPþ TNþ FNþ FP

; ð9Þ

Precision¼ TP
TPþ FP

; ð10Þ

Recall¼ TP
TPþ TN

; ð11Þ

Concatenate

Global pooling

BN

Scale
FC

FC
Sigmoid

Scale

+

+

+

Scale

Xc

ReLU

ReLU

ReLU ReLU

ResNet

Stack blocks:

3, Conv, 64

3, Conv, 64

3, Conv, 128

3, Conv, 128

×2

×2

Fscale

Fscale

Fex

Ftr Ftr

Fsq
Fsq

Global pooling
FC

U

FC
Sigmoid

ReLU SEFex

Fscale

U U

BN

ReLU

Dropout

~

3, Conv, 64/128

3, Conv, 64/128

BN

BN

ReLU

Dropout

3, Conv, 64/128

X

3, Conv, 64/128 SEResNet SENet

BN

SE

BN

ReLU

Dropout

3, Conv, 64/128

3, Conv, 64/128

FIGURE 3: The structure of our ensemble network.

IET Information Security 7

F1-score¼ 2 ×
Precision × Recall
Precisionþ Recall

; ð12Þ

Mcc¼ TP × TN − FP × FNffi
TPþ FNð Þ × TNþ FPð Þ × TPþ FPð Þ × TNþ FNð Þp ;

ð13Þ

where TP is the number of malicious samples properly pre-
dicted, FP represents the number of benign apps incorrectly
predicted, TN represents the number of benign apps cor-
rectly predicted, and FN is the number of malicious samples
incorrectly predicted.

F1-score is determined by both Accuracy and Recall;
hence, it can judge the performance of the model more sci-
entifically. Mcc comprehensively considers TP, TN, FN, and
FP, which are also relatively balanced indicators. To compre-
hensively evaluate the experimental results, the Auc is also
introduced, which represents the area under the ROC curve.

4.3. Performance Evaluation. In this section, we conducted
several groups of experiments under the same parameter
settings to evaluate the effectiveness of the malware detection
framework MFEMDroid. The relevant hyperparameters are
set as follows: Adam Optimizer uses the default, the activa-
tion function is ReLU, batch_size is 200, and the number of
iterations is 100. Our ensemble network uses Dropout to
prevent over-fitting, setting a value of 0.1. We strictly follow
the protocol of fivefold cross-validation in all experiments to
obtain stable and convincing experimental results.

The aim of the first group of experiments is to evaluate the
effectiveness of AE utilizing two different features (i.e., the raw
Provider and the filtered Provider). Through the AE mecha-
nism, 3,978 Providers are filtered into 253 features. We gen-
erate a feature set named Provider(AE) based on the reserved
features. Our proposed network was selected to conduct fea-
ture learning on Provider and Provider(AE), respectively, and
the relevant experimental results are presented in Table 2. We
notice that compared with the raw Provider, the experiment
based on the proposed Provider(AE) increases the Accuracy
by 1.01%, Precision by 0.52%, Recall by 1.34%, F1-score by
0.82%, and Mcc by 2.38%.

The experimental results presented in Table 2 show that
the Provider or Provider(AE)-based model performs medio-
crely on most indicators. The Provider generally serves
merely as an intermediary for the attack rather than being
directly involved in the potentially malicious activities of the
app. This is the main reason for the poor performance of
models based on single-Provider features. Poor precision
metric refers to the large number of benign apps that are
incorrectly classified as malware. This can be attributed to
the fact that some benign apps share similar Providers with

malicious apps, leading to misclassification. Therefore, we
consider the joint analysis of the Provider with the permis-
sion features that are directly involved in the interaction with
the malicious behavior.

To verify the characterization ability of features extracted
under the multitype feature idea, we compare each compo-
nent by ablation study. We use our proposed ensemble net-
work to learn the hybrid features PEPR (the combination
of Permission or Provider(AE)) and its single component
Permission or Provider(AE). To visually demonstrate the
performance-mentioned models, the average ROC curves
are shown in Figure 4. The area under the ROC curve is
positively correlated with the model performance. Figure 4
preliminarily presents the effectiveness of PEPR features for
improving malware detection performance. Meanwhile, we
found that the detection performance of a model based on
a single Provider was significantly weaker than that of a
model based on permissions or a combination of both.
This is because while both Providers and permissions are
relevant to information security, permission-based features
are often more informative and directly related to the
potential risks and malicious activity an app may exhibit
in a malware detection task. In Figure 4, the red curve
representing the PEPR-based model has a markedly larger
area under the curve than the blue curve referring to the
Permission-based model. This confirms that Providers can
be better combined with permissions for joint analysis.

TABLE 2: Results based on ensemble network and different providers.

Feature Accuracy (%) Precision (%) Recall (%) F1-score (%) Mcc (%)

Provider 75.41 67.21 94.53 78.56 55.82
Provider(AE) 76.42 67.73 95.87 79.38 58.20

Bold values signify the best results.

0.0
0.0 0.2 0.4 0.6 0.8

Permission
Provider(AE)

PEPR

1.0

0.2

0.4Se
ns

iti
vi

ty 0.6

0.8

1.0
ROC

1 – specificity

FIGURE 4: The ROC curves achieved by ensemble network on the
Permission, Provider(AE), and PEPR.

8 IET Information Security

Extensive qualitative experimental results are shown in
Table 3. From Table 3, we can notice that our hybrid feature,
PEPR, is more effective than the single feature. Compared
with the Provider(AE), our model MFEMDroid based on
PEPR has significantly improved the performance on most
evaluation indicators. In addition, compared with Permis-
sion, another momentous component of PEPR, our model
MFEMDroid increased the Accuracy by 1.72%, Precision by
0.63%, Recall by 3.60%, F1-score by 2.15%, andMcc by 3.46%.
Therefore, these results show that MFEMDroid is effective in
malware detection and works as a multiperspective represen-
tation of samples by hybrid features. Furthermore, Table 3
confirms the effectiveness of permissions in detecting malware.

To verify that the use of ensemble modeling is necessary
for the detection performance improvement, we compare it
with the classical machine learning method and individual
DL algorithm. The proposed ensemble network’s effective-
ness is verified by feeding the same hybrid features, consist-
ing of permissions and Providers, to different networks. The
relevant parameters are set as follows: the value of k in the K-
nearest neighbor (KNN) is 2, and the kernel in the support
vector machine (SVM) is linear. The default values for the
sklearn libraries are used for the rest of the parameters in
KNN, DT, and SVM. Resnet, SENet, and SEResNet each
consist of two convolutional blocks. The convolutional layers
in block1 have 3 kernels of size 64 each, while block2 has 3
kernels of size 128 each. SENet and SEResNet both use a
reduction parameter of 16.

The results are shown in Table 4. The second and third
rows of Table 4 show the experimental results based on
KNN, DT, SVM, ResNet, SENet, and SEResNet, respectively.
The experimental results demonstrate that our ensemble net-
work characterizes malicious samples more accurately than
KNN, SVM, DT, ResNet, SENet, and SEResNet. The above
experiment results verified the efficacy of the ensemble model-
ing in enhancing the overall performance of the model. Addi-
tionally, we analyzed the training time for different algorithms

on our real-sample dataset. Table 4 illustrates that while our
ensemble network incurs greater time overhead than a single
model, it is still viable to sacrifice a certain amount of time
overhead to enhance detection performance.

4.4. Comparison to State-of-the-Arts. To further evaluate the
effectiveness and generality of the proposed model, we con-
ducted three groups of comparative experiments to verify the
detection capability of the proposed model. We compare
with the frontier representative research work based on
machine learning and the DL model, respectively. All com-
parative experiments are also conducted based on our col-
lected dataset, and the relevant parameter configuration is set
strictly according to the original author’s paper. The fivefold
cross-validation scheme is also applied to all experiments.
Table 5 shows extensive experiment results of our model
and a comparison with the state-of-the-art models.

Arslan et al. [25] proposed a malware detection model
KNN-P based on static feature Permission, which makes use
of the classical machine learning method KNN as a classifier
and achieves optimal performance under the condition of
k= 2. The remaining KNN parameters utilize the default
values of the sklearn library. The experimental results are
shown in the first row of Table 5. It is worth mentioning
that the Accuracy, Recall, F1-score, and Mcc of MFEMDroid
are 5.26%, 5.58%, 2.85%, and 11.65% higher, respectively,
compared to the KNN-P model. It confirms that the pro-
posed malware detection model MFEMDroid performs bet-
ter than KNN-P, no matter both in terms of Accuracy,
Recall, F1-score, and Mcc. While our model’s precision met-
ric falls slightly short of that of KNN-P, the comprehensive
evaluation metrics of Mcc and F1-score indicate significant
improvement.

Ganesh et al. [10] designed the model LeNet-P to research
the permission features based on the LeNet. The parameter in
LeNet is based on standard LeNet-5 architecture. Different
from the 138 permission features mentioned in the original
author’s paper, 147 permissions were extracted from the

TABLE 3: Results of a single feature or hybrid feature based on our ensemble network.

Feature selection Accuracy (%) Precision (%) Recall (%) F1-score (%) Mcc (%)

Provider(AE) 76.42 67.73 95.87 79.38 58.20
Permission 93.66 95.15 90.87 92.97 87.28
PEPR 95.38 95.78 94.47 95.12 90.74

Bold values signify the best results.

TABLE 4: Results based on different networks or classifiers.

Network Accuracy (%) Precision (%) Recall (%) F1-score (%) Mcc (%) Training time (min)

KNN 92.31 96.28 86.96 91.37 84.84 —

DT 93.05 93.61 91.40 92.49 86.05 —

SVM 92.20 93.27 89.84 91.51 84.37 —

ResNet 93.99 94.74 92.28 93.50 87.93 0.46
SENet 94.57 95.02 93.28 94.14 89.09 0.44
SEResNet 95.20 96.65 93.16 94.87 90.42 0.45
MFEMDroid 95.38 95.78 94.47 95.12 90.74 3.79

Bold values signify the best results.

IET Information Security 9

reproduction experiment. The reason for choosing to extract
more permissions is that our samples are more novel. To
adapt the input dimension of LeNet, we fill in 0 columns and
convert the dimension to 13× 13. The experimental results are
shown in Table 5. We can see that our model has achieved
significant performance improvement in the mainstream eval-
uation indicators. It is worth mentioning that, especially in the
comprehensive evaluation index Mcc, our improvement has
reached 3.98%.

Li et al. [45] presented a malicious software detection
system, SigPID, which calculates and filters important per-
mission features through multi-level pruning. First, the per-
missions are filtered with permission ranking with a negative
rate, and 78 permissions are retained. After the second
support-based permission ranking operation, 36 permissions
are reserved, and then the last association rule based on
Apriori [46] is performed to eliminate redundant permis-
sions. Finally, 35 permissions are retained and trained by
SVM. The relevant parameters in SVM use the default values
from the sklearn library. The relevant experimental results are
shown in the third row of Table 5. Compared with SigPID,
our proposed model MFEMDroid obtains superior perfor-
mance on the basis of five popular evaluation indicators.

The comparison work presented in Table 5 (i.e., KNN-P,
LeNet-P, and SigPID) is all related to permissions. The
results of these comparative experiments demonstrate that
permissions consistently play a crucial role in malware detec-
tion. Our proposed model achieves superior results by
emphasizing Provider features in addition to permissions,
which effectively compensates for the lack of supervision of
permissions for inter-application resource access scenarios.
Additionally, the improved performance of the proposed
model MFEMDroid can be attributed to our customized
network. Our ensemble network has the ability to explore
more internal corrections amongmultitype features frommul-
tiple perspectives. Considering the above comparative experi-
ments, the contribution of the proposed model MFEMDroid
based on hybrid feature PEPR and ensemble modeling in mal-
ware detection is further verified.

5. Conclusion

In this paper, we proposed a novel malware detection frame-
work MFEMDroid. The multitype feature extraction method
is one of its essential elements. We introduced a novel mal-
ware detection method by combining the permissions and
Providers with inherent relations to reflect the hidden pat-
terns of malware. To reduce the overhead of feature learning,
we employ an autoencoder for feature dimensionality

reduction. The ensemble modeling is another essential compo-
nent. We utilize an ensemble network based on SENet, ResNet,
and SEResNet to explore more internal relationships between
multitype features from different perspectives, thereby improv-
ing the model detection capability. In the experiment, the
Accuracy, Precision, Recall, F1-score, and Mcc of the model’s
detection results are 95.38%, 95.78%, 94.47%, 95.12%, and
90.74%, respectively. The results of comprehensive experi-
ments and analysis show that the MFEMDroid outperforms
the single feature type-based and individual network-based
detection models. Comparison with state-of-the-art malware
detection research works further verifies the effectiveness of
our framework in malware detection. In the future, we will
concentrate on the combinations of more static features to
obtain more efficient malware detection.

Data Availability

Data will be made available on request.

Conflicts of Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Authors’ Contributions

Wei Gu has contributed to the conceptualization, methodology,
investigation, software, and writing—original draft. Hongyan
Xing has contributed to supervision, funding acquisition, and
writing—review and editing. Tianhao Hou contributed to soft-
ware and validation.

Acknowledgments

The authors would like to thank all anonymous reviewers for
their insightful feedback. The authors would like to appreci-
ate Nanjing University of Information Science and Technol-
ogy for supporting this research work. This work is supported
by the National Natural Science Foundation of China
(62171228) and the National Key Research and Development
Program of China (2021YFE0105500).

References

[1] A. Bacci, F. Martinelli, E. Medvet, and F. Mercaldo, “VizMal: a
visualization tool for analyzing the behavior of Android
malware,” in 2nd International Workshop on FORmal Methods
for Security Engineering, 2018.

TABLE 5: Comparison with other detection models.

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) Mcc (%)

KNN-P [25] 90.12 95.95 88.89 92.27 79.09
LeNet-P [10] 93.38 95.28 90.31 92.73 86.76
SigPID [45] 89.32 93.81 82.64 87.87 78.91
MFEMDroid 95.38 95.78 94.47 95.12 90.74

Bold values signify the best results.

10 IET Information Security

[2] S. Wang, Z. Chen, Q. Yan, B. Yang, L. Peng, and Z. Jia, “A
mobile malware detection method using behavior features in
network traffic,” Journal of Network and Computer Applica-
tions, vol. 133, pp. 15–25, 2019.

[3] T. Lei, Z. Qin, Z. Wang, Q. Li, and D. Ye, “EveDroid: event-
aware Android malware detection against model degrading for
IoT devices,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 6668–6680, 2019.

[4] F. Aloraini, A. Javed, O. Rana, and P. Burnap, “Adversarial
machine learning in IoT from an insider point of view,”
Journal of Information Security and Applications, vol. 70,
Article ID 103341, 2022.

[5] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli,
“MADAM: effective and efficient behavior-based Android
malware detection and prevention,” IEEE Transactions on
Dependable and Secure Computing, vol. 15, no. 1, pp. 83–97,
2018.

[6] İ. Atacak, K. Kazım, and A. D. İbrahim, “Android malware
detection using hybrid ANFIS architecture with low
computational cost convolutional layers,” PeerJ Computer
Science, vol. 8, Article ID e1092, 2022.

[7] W. Niu, Y. Wang, X. Liu, R. Yan, X. Li, and X. Zhang,
“GCDroid: Android malware detection based on graph
compression with reachability relationship extraction for IoT
devices,” IEEE Internet of Things Journal, vol. 10, no. 13,
pp. 11343–11356, 2023.

[8] A. Arora, S. K. Peddoju, and M. Conti, “Permpair: Android
malware detection using permission pairs,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 1968–1982,
2019.

[9] T. K. Ho, “The random subspace method for constructing
decision forests,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 20, no. 8, pp. 832–844, 1998.

[10] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park,
and H. Jeon, “CNN-based Android malware detection,” in
2017 International Conference on Software Security and
Assurance (ICSSA), pp. 60–65, IEEE, 2017.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

[12] Y. Xu, D. Xu, X. Hong et al., “Structured modeling of joint
deep feature and prediction refinement for salient object
detection,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision, IEEE, 2020.

[13] S. Wang, H. Lu, and Z. Deng, “Fast object detection in
compressed video,” in Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 7104–7113, IEEE,
2020.

[14] R. Hinami, T. Mei, and S. i. Satoh, “Joint detection and
recounting of abnormal events by learning deep generic
knowledge,” in Proceedings of the IEEE International Conference
on Computer Vision (ICCV), IEEE, 2017.

[15] M. Sabokrou, M. Fayyaz, M. Fathy, Z. Moayed, and R. Klette,
“Deep-anomaly: fully convolutional neural network for fast
anomaly detection in crowded scenes,” Computer Vision and
Image Understanding, vol. 172, pp. 88–97, 2018.

[16] W. Wang, M. Zhao, and J. Wang, “Effective Android malware
detection with a hybrid model based on deep autoencoder and
convolutional neural network,” Journal of Ambient Intelligence
and Humanized Computing, vol. 10, no. 8, pp. 3035–3043,
2019.

[17] X. Li, K. Kong, S. Xu, P. Qin, and D. He, “Feature selection-
based Android malware adversarial sample generation and

detection method,” IET Information Security, vol. 15, no. 6,
pp. 401–416, 2021.

[18] L. Xiaofeng, J. Fangshuo, Z. Xiao, Y. Shengwei, S. Jing, and
P. Lio, “ASSCA: API sequence and statistics features combined
architecture for malware detection,” Computer Networks,
vol. 157, pp. 99–111, 2019.

[19] N. Zhang, J. Xue, Y. Ma, R. Zhang, T. Liang, and Y.-A. Tan,
“Hybrid sequence-based Android malware detection using
natural language processing,” International Journal of Intelli-
gent Systems, vol. 36, no. 10, pp. 5770–5784, 2021.

[20] H. Du, H. Yuan, P. Zhao et al., “Ensemble modeling with
contrastive knowledge distillation for sequential recommen-
dation,” in 46th International ACM SIGIR Conference on
Research and Development in Information Retrieval (SIGIR
2023), ACM, Taipei, China, July 23–27, 2023.

[21] R. Lazzarini, H. Tianfield, and V. Charissis, “A stacking
ensemble of deep learning models for IoT intrusion detection,”
Knowledge-Based Systems, vol. 279, Article ID 110941, 2023.

[22] C. W. Kim, “Ntmaldetect: a machine learning approach to
malware detection using native api system calls,” 2018.

[23] P. Bhat, S. Behal, and K. Dutta, “A system call-based Android
malware detection approach with homogeneous & heteroge-
neous ensemble machine learning,” Computers & Security,
vol. 130, Article ID 103277, 2023.

[24] C. Li, Q. Lv, N. Li, Y. Wang, D. Sun, and Y. Qiao, “A novel
deep framework for dynamic malware detection based on API
sequence intrinsic features,” Computers & Security, vol. 116,
Article ID 102686, 2022.

[25] R. S. Arslan, İ. A. Doğru, and N. Barişçi, “Permission-based
malware detection system for Android using machine learning
techniques,” International Journal of Software Engineering and
Knowledge Engineering, vol. 29, no. 1, pp. 43–61, 2019.

[26] M. Alazab,M. Alazab, A. Shalaginov, A.Mesleh, and A. Awajan,
“Intelligentmobile malware detection using permission requests
and API calls,” Future Generation Computer Systems, vol. 107,
pp. 509–521, 2020.

[27] K. Khariwal, J. Singh, and A. Arora, “IPDroid: Android
malware detection using intents and permissions,” in 2020
Fourth World Conference on Smart Trends in Systems, Security
and Sustainability (WorldS4), 2020.

[28] Z. Wang, G. Li, Y. Chi, J. Zhang, T. Yang, and Q. Liu, “Android
malware detection based on convolutional neural networks,”
in 3rd International Conference on Computer Science and
Application Engineering, 2019.

[29] B.Wu, S. Chen, C. Gao et al., “Why anAndroid app is classified
as malware,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 30, no. 2, pp. 1–29, 2021.

[30] H.-J. Zhu, W. Gu, L.-M. Wang, Z.-C. Xu, and V. S. Sheng,
“Android malware detection based on multi-head squeeze-
and-excitation residual network,” Expert Systems with
Applications, vol. 212, Article ID 118705, 2023.

[31] N. Bakhshinejad and A. Hamzeh, “Parallel-CNN network for
malware detection,” IET Information Security, vol. 14, no. 2,
pp. 210–219, 2020.

[32] M. Ficco, “Malware analysis by combining multiple detectors
and observation windows,” IEEE Transactions on Computers,
vol. 71, no. 6, pp. 1276–1290, 2021.

[33] H. Naeem, X. Cheng, F. Ullah, S. Jabbar, and S. Dong, “A deep
convolutional neural network stacked ensemble for malware
threat classification in internet of things,” Journal of Circuits,
Systems and Computers, vol. 31, no. 17, Article ID 2250302,
2022.

IET Information Security 11

[34] H. Naeem, S. Dong, O. J. Falana, and F. Ullah, “Development of
a deep stacked ensemble with process based volatile memory
forensics for platform independent malware detection and
classification,” Expert Systems with Applications, vol. 223,
Article ID 119952, 2023.

[35] Androguard, Androguard, 2022, https://github.com/androgua
rd/androguard.

[36] T. G. Kim, B. J. Kang, M. Rho, S. Sezer, and E. G. Im, “A
multimodal deep learningmethod forAndroidmalware detection
using various features,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 3, pp. 773–788, 2019.

[37] Android 6.0, Google Developer Documentation, 2022, https://de
veloper.android.google.cn/guide/topics/manifest/permission-
element.

[38] VirusTotal, VirusTotal, 2022, https://www.virustotal.com/ko.
[39] K. Xu, Y. Li, and R. H. Deng, “ICCDetector: ICC-based

malware detection on Android,” IEEE Transactions on
Information Forensics and Security, vol. 11, no. 6, pp. 1252–
1264, 2016.

[40] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, IEEE, 2016.

[41] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2018.

[42] G. Tao, Z. Zheng, Z. Guo, and M. R. Lyu, “MalPat: mining
patterns of malicious and benign Android apps via permission-
related APIs,” IEEE Transactions on Reliability, vol. 67, no. 1,
pp. 355–369, 2018.

[43] D. Arp,M. Spreitzenbarth, M.Hübner, H. Gascon, and K. Rieck,
“Drebin: effective and explainable detection of Androidmalware
in your pocket,” Network & Distributed System Security
Symposium, vol. 14, pp. 23–26, 2014.

[44] Y. Nishimoto, N. Kajiwara, and S. Matsumoto, “Detection of
Android API call using logging mechanism within Android
framework,” in International Conference on Security and Privacy
in Communication Systems, T. Zia, A. Zomaya, V. Varadharajan,
and M. Mao, Eds., pp. 393–404, vol. 127 of SecureComm 2013.
Lecture Notes of the Institute for Computer Sciences, Social
Informatics and Telecommunications Engineering, Springer,
Cham, 2013.

[45] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an, and H. Ye, “Significant
permission identification for machine-learning-based Android
malware detection,” IEEE Transactions on Industrial Informat-
ics, vol. 14, no. 7, pp. 3216–3225, 2018.

[46] R. Agrawal and R. Srikant, “Fast algorithms for mining
association rules in large databases,” in VLDB ’94: Proceedings
of the 20th International Conference on Very Large Data Bases,
pp. 487–499, ACM, 1994.

12 IET Information Security

https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://github.com/androguard/androguard
https://developer.android.google.cn/guide/topics/manifest/permission-element
https://developer.android.google.cn/guide/topics/manifest/permission-element
https://developer.android.google.cn/guide/topics/manifest/permission-element
https://developer.android.google.cn/guide/topics/manifest/permission-element
https://developer.android.google.cn/guide/topics/manifest/permission-element
https://developer.android.google.cn/guide/topics/manifest/permission-element
https://www.virustotal.com/ko
https://www.virustotal.com/ko
https://www.virustotal.com/ko

