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Given a differential characteristic and an existing plaintext pair that satisfies it (referred to as a right pair), generating additional
right pairs at a reduced cost is an appealing prospect. The neutral bit technique, referred to as neutral differences throughout this
paper, provides a solution to this challenge. Traditionally, the search for neutral differences has heavily depended on experimental
testing, leading to limitations in the search range. In this work, we propose the neutral difference table and establish a link between
boomerang cryptanalysis and neutral differences. Furthermore, we propose an automated search for neutral differences to address
the problem of a limited search range of neutral differences, as previous approaches relied on experimental testing. This approach
provides a basis for the subspace spanned by the neutral differences, and we apply this technique to both SPECK32 and LEA, where
the predicted results closely match the experimental ones. Consequently, we present the improved differential-linear distinguishers

for SPECK32 and LEA, along with the 18-round attacks on LEA192 and LEA256 with the lowest time complexity up to date.

1. Introduction

Differential cryptanalysis, proposed by Biham and Shamir
[1], is one of the most powerful cryptanalysis techniques
nowadays. As cryptanalysis progresses, an intriguing phe-
nomenon related to differentials has captured the attention
of researchers. For a differential A — A’, when flipping a
single bit or a set of bits simultaneously for an input x, the
resulted input x @ V makes the differential A — A’ estab-
lished if and only if x makes it satisfied. In this paper, V is
referred to as a neutral difference. Previous literatures [2, 3]
referred to it as a neutral bit when the Hamming weight of V
is 1 and a neutral set otherwise. The neutral difference

SxeV)eSxeVed) =4}

technique holds significant prominence today, having con-
tributed to the advancement of numerous cryptanalysis
records [3-8].

However, the search for neutral differences of a differen-
tial lacks elegant methods except for exhaustion with experi-
ments based on its definition [3-5, 9, 10]. This has led to the
difficulty in finding more neutral differences. Therefore,
there is an urgent need to develop automatic tools for search-
ing neutral differences. We aim to dedicate ourselves to this
problem and related cryptanalysis. The neutral probability of
a neutral difference V for a differential A — A’ is defined as
follows:

_ #Hx eFS(x) D S(xdA) =A
pP= #HxcFS(x) ®S(xdA) =4"} ’

where # represents the size of the set and S is a substitution.

1.1. Contribution. We establish links between neutral differ-
ences and boomerang cryptanalysis, thereby providing a the-
oretical foundation for the search of neutral differences.

(1)

\
Based on this, we introduce an automatic search method
for linearly independent neutral differences. As for applica-
tions, we present the neutral spaces for two differentials of
SPECK32, which are spanned by all neutral differences with
non-zero neutral probabilities. Experimental results confirm
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TasLE 1: Comparison of our distinguishers with previous ones.
Cipher Weak keys Type Round Prob./Cor. Ref.
Linear 9 2714 [11]
DL 9 2893 [12]
Differential 10 273039 [13]
Boomerang 10 272915 [14]
DL 10 271390 [12]
SPECK32 Full
" DL (ND) 10 ey 9]
DL 11 27160 [9]
DL (ND) 11 —2714s (9]
DL (ND) 11 — 1418 This work
DL (ND) 11 — 271307 This work
Boomerang 16 2-171 [15]
DL (ND) 16 — 72804 (6]
LEA Full
“ DL 17 — 5904 [6]
DL (ND) 17 —27%27 This work
DL = differential-linear distinguishers, DL (ND) = DL distinguishers combined with neutral difference technique, DC = differential characteristic, LC = linear
characteristic.
TasLE 2: Key recovery attacks on round-reduced LEA.
Cipher Round Type Data (CP) Time Ref.
14/28 DC 2124.79 2124.79 [16]
LEA192 18/28 DL 212663 218963 [6]
18/28 DL (ND) 2124.96 2180.80 This work
15/32 DC 212479 225279 [16]
LEA256 18/32 DL 2126.63 2189.63 6]
18/32 DL (ND) 212496 2180.80 This work

DL = differential-linear distinguishers, DL (ND) =DL distinguishers combined with neutral difference technique, DC = differential cryptanalysis, CP = cho-

sen-plaintexts.

TasLE 3: Notations.

Symbol Description

x[i] The ith bit of x, written as x; for simplicity. x,,_; (resp. x;) is the most (resp. least) significant bit of x
XKt Rotation of x by t-bit to the left, written as % for simplicity

x>t Rotation of x by t-bit to the right, written as X~ for simplicity

. The inner product of two vectors

#2 or || The size of a set &

Prix=0] Probability that x equals 0

Cor|x] The correlation of x, i.e., Cor[x] = Pr[x =0] — Prlx=1]

x|y Concatenation operation. x,,_; is the most significant bit of the new binary vector

the validity of our method. Furthermore, we present
improved differential-linear distinguishers for 11-round
SPECK32 and 17-round LEA (illustrated in Table 1), as
well as the 18-round attacks on LEA192 and LEA256 with
the lowest time complexity (outlined in Table 2) up to date.

1.2. Organization. The remainder of this paper is organized
as follows: Section 2 introduces the notations and concepts
that will be used throughout the paper. Section 3 establishes
the links between boomerang cryptanalysis and neutral dif-
ferences and presents an automatic method for discovering
neutral differences. Sections 4 and 5 apply the automatic

search method to the SPECK32 and LEA ciphers. Finally,
Section 6 concludes this paper.

2. Notations and Preliminaries

The notations we use in this paper are summarized in
Table 3.

2.1. Preliminaries

Definition 1 (Differential Probability [1]). The probability of
a differential A — A’ for function S:F% — [ is defined by
the following:
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p(A,A/) _ #{x € IF§’|S(x) e;ns(x GBA) = A,} ) (2)

Definition 2 (DDT). Let S be a substitution. The value of
differential distribution table (DDT) at (A, 4’) is defined as
follows:

DDTg(4.4") = #{x € Fi|S(x) ® S(x ®A) =4}, (3)

Definition 3 (NDT). Let S be a substitution. The value of neutral
difference table (NDT) at (A, A’, V) is defined as follows:

. #{xeFS(x) ®S(xdA)=A

NDT (4,4, V) =#{x € F4| S(x) ® S(x ® A)

— A SxBV)DSx DOV DA) =4} 4)

Here, V is called a neutral difference throughout this
paper.

Definition 4 (Neutral Probability). Let S be a substitution. For
a differential of S, denoted by 4 — A’, V is called a neutral
difference for this differential, and the corresponding neutral
probability is defined as follows:

SxeV)dSxeVea) =4}

#H{xeFyS(x) ®S(x @A) =4"}

_ NDT(4,4",V)
~ DDT(4,4)

In general, the higher the neutral probability p becomes,
the more useful a neutral difference V is for an attack. Bao
et al. [3] have further suggested a way to amplify the neutral
probability by introducing conditional neutral differences,
which necessitate specific conditions to be met by input
pairs. These proposed conditions are evaluated through
experiments in [3].

Definition 5 (Plaintext Pair Structure). Denote m linearly
independent neutral differences of a differential (4;,,4,,)
by M, M,, ..., M,,. Let Q be the linear subspace spanned by
M, M,,...,M,,. Given a plaintext x, we define the plaintext
pair structure P, o 4 astheset {(x @ y.x®y @ A4,,)|y € 2}.

Definition 6 (BCT [17]). Let S be a substitution and S~! be its
inverse. The value of boomerang connectivity table (BCT) at
(4, V) is defined as follows:

BCT4(A,V)
—#{x TS (S(x) BV DS (S(x®A) @ V) =A}.
(6)

Definition 7 (UBCT/LBCT/EBCT [18]). Let S be a substitu-
tion and S7! be its inverse. The values of three variants of
BCT, namely upper BCT, lower BCT, and extended BCT, are
defined, respectively, as follows:

UBCT(4, 4", V)
—#{xng (x)@S(xd4) =4, }
TSX) B V) @S (S(x @A) B V) =4
7)

S
S

(5)
\
LBCT(4,V', V)
{ Sx)dS(xd V)=V, }
=#{xclF} .
SISx)BV)D S (S(xpA)DV)=4
(8)

EBCT,(4,4', V', V)
S(x)®S(xpA) =4,
=#x €| S(x)BS(xBV')=V, .
SISx)dV)dS ! (Sxpa)dV)=A4
)

If the substitution S can be known from the context, the
symbol S will be omitted. For example, DDT will be abbre-
viated as DDT.

3. Links to Boomerang Cryptanalysis and the
Automated Search for Neutral Differences

In this section, we prove that the NDT is the LBCT in Boo-
merang cryptanalysis, which provides a foundation for auto-
mated search of neutral differences. Furthermore, we
introduce an automatic search method for linearly indepen-
dent neutral differences.

3.1. Links between Boomerang Cryptanalysis and Neural
Difference. In this section, we present the links between neu-
tral difference and boomerang cryptanalysis in Theorem 1
and how to calculate the neutral probability of neutral differ-
ences through LBCT in Corollary 1.

Theorem 1. Let S be a substitution. There holds

NDT(A, A", V) = LBCT(V,A,4"). (10)



Proof. 1t is obvious that S(x) @ S(x @ A) =A’ if and only if
S71(S(x) B A’) = x @ A. If x satisfies that S(x) ® S(x D A) =
A’, then we have the following:

SxeV)®S(xdVaA)
=AeSI(Sx)pA)dS (S(xdV)DA)=V.
(11)

LBCT(4, V', V) :#{x cFy

y::<x) #{y eI}

_#{y e

_#{y c 3

According to Theorem 1, we have NDT¢(A,4', V) =
UBCTs1 (4,4, V). O

Theorem 1 demonstrates that the NDT entries of a sub-
stitution S are the entries of LBCT. A similar result connect-
ing the NDT with the UBCT is provided in Theorem 2. For
notational simplicity, we shall primarily focus on LBCT in
our subsequent theoretical developments. Consequently, one
can identify neutral differences with a high neutral probabil-
ity by concurrently constructing models/programs for LBCT
and DDT, as presented in Section 3.2, where an automated
method of searching for neutral differences is introduced.

Corollary 1. For a differential A — A of a substitution S, the
neutral probability of a neutral difference ¥ can be calculated
as follows:

_ NDTy(A,4’, V) LBCTs(V.4,4")
- DDT(4,4')  DDT(4A,4")

(14)

Lemma 1. Let S: [} — F% be a bijection. For a neutral differ-
ence V of a differential (A, A”) with a non-zero probability, if
BCT(V,A") =2" or DDT(A, A") =2", then the correspond-
ing neutral probability p is 1.

Proof. Let DDTg(A,A’) =2". For each x € F, it holds that
S(x) ®S(x®A)=A". Hence, we have S(x®V)d
S(x® V @A) =4A’, which indicates p =1 by Definition 4.
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Therefore, there holds NDTg(4, 4, V) = LBCTg(V,4,4"). O

Theorem 2. Let S be a substitution and S™' be its inverse.
There holds

NDT;(4,4', V) = UBCTs (4", A, V). (12)
Proof. We have

Sx)®S(x® V)=V, }

SEHS(x)dV)DSH(S(xpA)DV)=A4

ST y@ V)@ s(S(S () @4) @ V) =4

yeV=5(5"(y) @V, }

SlyeV)es'(y) =aV, (13)
SIS eAa)dV)=S'yeV)dA }

Sly@ V)@ S(y) =V,
S(S'(y) @A) BSS (YO V) B A) = v}
—UBCT+(V, V', 4)

\

Let BCTg(V,A")=2". For each xecF%, it holds
SHS(x) @A) DS (S(xdV)dA)=V. By Theorem 1,
we have NDTg(A,4’, V) =DDTg(4,4"). Hence, p=1 by
Definition 4. O

By constraining the input variable x to a small set 2" instead
of x € %, we can increase the neutral probability p. In this case,
the neutral difference V is referred to as a conditional neutral
difference, which was first proposed in [3]. Lemma 2 provides
sufficient conditions, under which the neutral probability is 1, by
imposing restrictions on the input variable x.

Lemma 2. Let S:F) — F} be a bijection. For a non-zero
probability differential (A,A"), the neutral probability of a
conditional neutral difference NV, which requires the input of
S limited to a set &, will be 1 if BCTs(V,A")=|Z]| or
DDTg(4,4") = |X|.

Proof. The proof process is similar to that of Lemma 1. [J

3.2. Basic Framework for Automated Search of Neutral
Differences. In this section, we aim to merge the automated
search for differentials and EBCT characteristics in order to
effectively find neutral differences with a higher probability
for a given differential A — A’. Experimental results in Sec-
tion 4 confirm the validity of our method, with the predicted
neural probabilities being close to the experimental ones.
First, we introduce the notations that will be used in this
discussion. Let the cipher S be a composition of Sy, S, ...,
Si_1- Throughout this paper, the term “characteristic” refers
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to a differential/boomerang path, which not only specifies
the input and output differences but also specifies the inter-
mediate differences. For clarity, we will use 4, 4;, and V| to
refer to A, A’, and V, respectively.

Assuming that the cipher is a Markov cipher and the
characteristic with the largest probability for a differential
Ay — A; determines the differential probability, it is well-
known [19] that:

p(dg—4)~ max IT plai—=4,). (15)

Ay, AL EF 0<i<l-1

Delaune et al. [18] used Equation (16) to estimate
LBCTS(VO’AO’AI)‘

LBCT §(Vy, A, A;)

R > II EBCT (Vi Vi, 4:,4:4).
Vi VA4 €FF 0<igi-1
(16)

In other words, LBCT characteristics can be approxi-
mated by a cluster of EBCT characteristics. According to
Definitions 1 and 2, there holds p(4,,4;) = W. Based
on Equations (15) and (16), the neutral probability of the
neutral difference V, for a differential A; — A; can be calcu-
lated by the following:

o LBCTS(VOVA()’AZ) o LBCTs(vO,Ao,Al)/zn _ LBCTs(vO,Ao,Al)/zn

DDTg(4,4;) DDTg(4,,4;)/2" p(Ag,4;)
2" Y I EBCT4(ViViAndi) (17)
Vi, VEF? 0gigi-1
IT p(4;—=4)
0<i<l-1

Here, Ag » A — -+ = A refers to the differential char-
acteristic that dominantly determines the probability of the
differential A; — A, and also partially determines the EBCT
characteristics.

The objective of the automated search is to identify a set
of differences that maximizes the neutral probability, as
defined by Equation (17). This neutral probability serves as
the objective function for this automated search problem. By
leveraging Equation (17), we can integrate the automated
search for differential characteristics and extended boomer-
ang characteristics to uncover a neural difference V. The
problem of automatically finding differential characteristics
Ay — A; has been effectively addressed in previous works
such as [11, 19-23]. Similarly, the automatic search for boo-
merang characteristics has been successfully tackled in
[14, 17, 18]. Since this paper does not focus on facilitating
the automatic search for boomerang or differential crypt-
analysis, we will omit the specific details related to these
methods.

Let Ay »> A, — --- > A; be the differential characteristic
that dominantly determines the probability of the differential
Ay — A, Additionally, let ag, a1, ..., a,,_; be m linearly inde-
pendent neutral differences for this differential A; - A; and
Q=Span{ay, ay,...,a,_, }. The following framework out-
lines the process for searching for a new neutral difference
that is linearly independent of ay, ay, ..., a,,_;.

Step 1: In the search model, specify the differences used
in the EBCT trail, namely (Vg,4,), (V,4,),..., (V. 4)). To
ensure the expected propagation of differences, set 4,4, ...,
A; as known values.

Step 2: Introduce constraints to prevent V, from being
selected in Q. This ensures that the newly discovered neutral
difference will be linearly independent of ay, a1, ..., a,,_;. An

\
efficient approach for achieving this is presented in Sec-
tion 3.3.

Step 3: Characterize the relationships between differences
in the EBCT trails and differential trails. Using this search
model, the solvers will return a solution of (Vy,4,), (Vy,
Ay),...,(V},4;) with the maximum neutral probability.

Upon completion of the above process, a new neutral
difference for the differential Ay — 4;, denoted by «,,, will
be obtained. The neutral probability is estimated through an
EBCT trail, and Equation (17) suggests that intermediate
differences should be enumerated. Consequently, to obtain
a more precise estimation of the neutral probability, one can
iterate the aforementioned process to discover additional
EBCT trails. In such cases, Step 2 is modified as follows:

Step 2: Set Vj = a,,, and introduce constraints to exclude
the previously found EBCT trails.

We constructed an automatic search model based on the
Boolean satisfiability problem (SAT), and the source code of
this paper is publicly available at https://github.com/Pigl
nTheSky1234/Unveiling-the-Neutral-Difference-and-Its-A
utomated-Search.

Remark 1. 1t is possible to calculate the probability of LBCT
by directly connecting a single LBCT trail for one round with
a differential trail for the remaining rounds. However, at FSE
2022, Kidmose and Tiessen [24] pointed out a crucial issue
with this approach: when calculating boomerang probabili-
ties, directly connecting differential trails may result in trails
with a zero probability. To address this, they introduced the
concept of 3-difference trails. Notably, a 3-difference trail
can be viewed as a manifestation of an EBCT trail. Therefore,
to achieve a more precise probability estimation, we use
EBCT trails to calculate the probabilities of LBCT trails.


https://github.com/PigInTheSky1234/Unveiling-the-Neutral-Difference-and-Its-Automated-Search
https://github.com/PigInTheSky1234/Unveiling-the-Neutral-Difference-and-Its-Automated-Search
https://github.com/PigInTheSky1234/Unveiling-the-Neutral-Difference-and-Its-Automated-Search
https://github.com/PigInTheSky1234/Unveiling-the-Neutral-Difference-and-Its-Automated-Search

3.3. The Method of Excluding a Linear Space from F%. As far
as we know, in differential-linear/neural cryptanalysis, it is
common to use multiple neutral differences simultaneously,
which forms a neutral space spanned by these differences. If
one wants to exclude all 2" neutral differences point by point
with 2™ constraints to find a neutral difference, the compu-
tational burden of the solver would be greatly increased.
Next, we will give a solution to this problem with only one
constraint. Let m linearly independent neutral differences be
ag, Ay, ..., a,,_;. Denote the neutral space spanned by these
neutral differences as 2 and the remaining space as I} /Q. In
this section, we will demonstrate how to identify neutral
differences for a given differential Ay, — A; within F%/Q
using existing solvers.

Theorem 3. Let ¢;=1<i and Q=Span{ey, e,,..
There holds that

] em—l}'

xeFy/Qe S afi]>0. (18)

1=m

Proof. The necessary and sufficient condition for x € Q2 is
that x[m]=x[m+ 1] =---=x[n—1] =0, which proves the
above. 0

Theorem 4. Let oy, ay,...,a,,_, be m linearly independent
neutral differences and Q= Span{ay, ay,...,a,,_}. Let ¢:
Fy — T4 be a linear bijection and ¢(a;) =e; for 0<i<m.
There holds that

fEF/Q o [”ffpu)[i@ >0. (19)

Proof. Let V.= Span{ey, ey, ..., €,,_1 }. Since ¢ is a linear bijec-
tion, it holds that x € 2 © ¢(x) € p(£2) = V. By Theorem 3,
this theorem holds. 0

The following is a construction method for the linear
bijection ¢:F% — F5. Let ¢(x) =Ax and B=A"'. A is a
nXxn binary inverse matrix. ¢(q;) =e; indicates that a; =
¢@~'(e;) = Be; = B;, where B; is the ith column of B. There-
fore, ay, ay, ..., a,,_, are the first m columns of B. Ensuring
the matrix B is invertible means that the linear bijection ¢(x)
=B"!x is obtained, which is easy by the linear algebra
techniques.

Once another neutral difference a,, is obtaining, the
(m + 1)-th column of B is replaced by a,,,. Once again, ensur-
ing the matrix B to be invertible will lead to an updated linear
bijection ¢(x) =B~'x. The number of constraints excluding
£ spanned by m neutral differences is reduced from the
original 2 to 1, as stated in Theorem 4.

4. Application to SPECK

First, we apply the automatic search technique of neutral
difference to SPECK32 and experimentally validate its

IET Information Security

X Vi
> a X < (> a)By;@k;
Yis1 < (i < P @ x3,
()
LLT
i
9 <« @) {(7, 2) for SPECK 32;
«. =
N ?
) (8,3) others.

Xis1 Vi1

Ficure 1: The SPECK instance.

effectiveness. Second, we enhance the differential-linear dis-
tinguishers for 11-round SPECK32 by incorporating neutral
differences, resulting in increased absolute values of
correlations.

4.1. SPECK. SPECK is a lightweight block cipher designed by
the US National Security Agency, whose round function is
depicted in Figure 1. For word size n € {16, 24, 32,48, 64},
each variant is identified by SPECK2#n/mn, where 2n is its
block size and mn is the key size. The rotation constants are
a=7 and =2 for SPECK32 with 64-bit key, while a =8
and f§ = 3 for the others. Since we do not facilitate properties
of the key schedules, their details are omitted.

4.2. The Neutral Subspaces for Two 2-Round Differentials.
For SPECK32, there is a 2-round differential characteristic
0x0209_0604 — 0x1800_0010 — 0x0040_0000 with a prob-
ability of 278. Table 4 shows the neutral space for this differ-
ential, which is spanned by the linearly independent neutral
differences.

The following is an example to illustrate the search pro-
cess introduced in Section 3.2. To search for a neutral differ-
ence for this differential trail, we specify the differences used
in the EBCT trail in the search model, namely (V,,4,), (V,
A1), (V,,4,). To ensure that the differences propagate as
expected, we set A; = 0x0209_0604, A; = 0x1800_0010, and
A, =0x0040_0000 in the search model. Suppose that the
neutral difference 0x0219_0604 is known, one can find a
linear Dbijection ¢ where ¢(0x0209_0604)=1 and
¢(0x0219_0604) =2. According to Theorem 4, one can
introduce the following constraint to prevent V, from being
chosen from the linear space spanned by 0x0209_0604 and
0x0219_0604.

Sowa

>0. (20)

Furthermore, one needs to characterize the relationships
between differences in EBCT trails and differential trails.
Using this search model, the solvers will yield a solution of
(Vo,40), (V1,4,),(V,,4,) with the maximum neutral
probability. Here, V, represents the newly discovered neu-
tral difference. Suppose that 0x0040_0000 is the newly dis-
covered neutral difference. By employing an EBCT trail, the
neutral probability is estimated as Pr=2"'. By setting V, =
0x0040_0000 and repeating the aforementioned process, we
discovered a total of 8 EBCT trails. By using these EBCT
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-8
TasLe 4: The subspace for 2-round differential 0x0209_0604 2, 0x0040_0000 of SPECK32, which is spanned by the first 26 neutral

differences with non-zero neutral probabilities.

~ Pr ~ Pr

No. Neutral diff. pr! N R No. Neutral diff. Pr N I

EST EXP EXP EST EXP EXP
1 0x0209_0604 - =5 1.00% 1.00° 1.00* 17 0x2800_0010 272 256 0.68 0.75 1.00
2 0x0219_2604 21 45 1.00° 1.00 1.00 18 0x0a5d_3el4 23 69 0.75 0.75 1.00
3 0x0040_0000 271 8 1.00 1.00 1.00 19 0x6800_0010 273 256 0.62 0.75 1.00
4 0x0249_8604 21 4 1.00 1.00 1.00 20 0x0e09_060c¢ 272 3 0.38 0.37 1.00
5 0x4000_0080 272 111 1.00 1.00 1.00 21 0x0a00_0004 272 7 0.75 0.75 1.00
6 0x0030_2000 272 53 1.00 1.00 1.00 22 0x1800_0010 23 256 0.45 0.50 1.00
7 0x8000_0100 272 42 1.00 1.00 1.00 23 0x0500_0002 273 24 0.50 0.50 1.00
8 0x8002_0100 272 30 1.00 1.00 1.00 24 0x0400_0008 271 1 0.50 0.51 0.00
9 0x0020_4000 272 45 1.00 1.00 1.00 25 0x1000_0000 272 2 0.50 0.50 0.00
10 0x2000_0040 272 256 0.99 1.00 1.00 26 0x1000_0020 272 9 0.50 0.50 0.00
11 0xc209_0684 273 114 1.00 1.00 1.00 27 0x0000_0004 — — No No No
12 0x021d_1e04 273 61 1.00 1.00 1.00 28 0x0000_0200 — — No No No
13 0x0289_0605 272 135 0.88 0.87 1.00 29 0x0000_0400 — - No No No
14 0x00a0_4000 273 256 0.79 0.87 1.00 30 0x0000_0800 - - No No No
15 0x0140_8000 272 70 0.75 0.75 1.00 31 0x0000_1000 - - No No No
16 0x0100_0002 272 26 0.75 0.75 1.00 32 0x0001_0000 — — No No No®

! Prrepresents the theoretical estimation of the neutral probability obtained from a single EBCT trial. 2Pr = neutral probability. EST is a theoretical estimation
of the neutral probability using N EBCT trails. The search program is set to find 256 single trails, while N <256 indicates that there are only N EBCT trails
found. 3 EXP represents the empirical results of the neutral probabilities for these neutral differences. The neutral probability is verified using 2! plaintext pairs
that satisfy the expected differential characteristic. *“EXP represents the empirical results of the neutral probabilities for these neutral differences under the
conditions specified in Table 5. These conditions are common for all 32 neutral differences. *> The input difference is definitely a neutral difference with a
probability of 1, but it is generally of no value for further cryptanalysis. Consequently, the input difference should be excluded out of the neutral space used for
subsequent cryptanalysis. ¢ No represents the neutral probability is 0. These 32 differences form a basis for the vector space [F32.

trails, the theoretical estimation of neutral probability is 1,
and the experimental result is 1 as well. Additionally, Table 5
presents the corresponding conditions that improve the neu-
tral probabilities. Similar results for another 2-round differ-
ential 0x2410_0004 — 0x2050_2040 — 0x8000_0100 with a
probability of 276 are shown in Tables 6 and 7.

The input difference is definitely a neutral difference with
a probability of 1. However, it is generally not useful for
further cryptanalysis as exchanging two plaintexts in a pair
of plaintext holds little value. It is crucial to note that not
only should we avoid using the input difference as a neutral
difference but also include it in the neutral space used, which
is inappropriate.

4.3. Enhanced Differential-Linear Distinguishers by Neutral
Differences. This section reviews how to construct a more
effective distinguisher by a simple DL approximation when
enough neutral differences are given. Furthermore, we pres-
ent the improved distinguishers for 11-round SPECK32.

The correlation [25] of a differential-linear approxima-
tion (A,I") for a vectorial Boolean function E:Fj — FZ' is
defined as follows:

1
Cor(A,r)zy Y (=1 EOSEx®A))

x€lF?}

(21)

where A € F} and I" € FY'. Assuming that a DL trail (4;,, ")
has a correlation pg, we aim to enhance the correlation by
incorporating m neutral differences of the prepended short-

TasLe 5: The conditional neutral differences and, corresponding
conditions for 2-round differential 0x0209_0604 — 0x0040_0000,
where x;||x, be a plaintext of SPECK32.

Pr
Neutral diff. _ Condition
EXP EXP

0x0289_0605 0.87 1.00
0x00a0_4000 0.87 1.00

x[10] @ x,[3] =0
0x0140_8000 0.75 1.00
0x0100_0002 0.75 1.00
0x2800_0010 0.75 1.00
0x0a5d_3el4 0.75 1.00 (1] @ x,[4] =1
0x6800_0010 0.75 1.00
0x0e09_060c¢ 0.37 1.00

x[12] @ x,[5] =0
0x0a00_0004 0.75 1.00
0x1800_0010 0.50 1.00 x[10] =0, x[12] = 1
0x0500_0002 0.50 1.00 x[8 =1, x[1]=1

EXP (resp. EXP) represents the empirical results of the neutral probabilities
(under the conditions specified in the last column).

round differential (4;,,4,,,) with a probability of p. Under
the condition that 2™ > g2, Beierle et al. [5] pointed out that
the DL distinguisher (4;,, I") would work as follows:

Step 1: Randomly generate a plaintext x, and then use m
neutral differences to generate the corresponding plaintext
pair structure P, o0 ={(x® y.x Dy @ A,,)|y € 2}, where
£ is the space spanned by these m neutral differences.
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TasLe 6: The subspace for 2-round differential 0x2a10_0004 2, 0x8000_0100 of SPECK32, which is spanned by the first 29 linearly

independent neutral differences with non-zero neutral probabilities.

No. Neutral diff. Pr N

No. Neutral diff. Pr N Pr _

EST EXP  EXP
1 0x2a10_0004 - - 1.00 1.00 1.00
2 0x2810_0000 27! 10 1.00 1.00 1.00
3 0x2a30_0004 273 38 1.00 1.00 1.00
4 0x0040_0000 27! 7 1.00 1.00 1.00
5 0x0040_8000 27! 13 1.00 1.00 1.00
6 0x0060_4000 272 70 1.00 1.00 1.00
7 0x6a10_0084 272 256  0.93 0.98 1.00
8 0x6410_0004 273 256  0.83 0.98 1.00
9 0x8000_0100 272 256 0.93 0.97 1.00
10 0xeal0_0084 273 256  0.86 0.97 1.00
11 0x4001_0080 273 256 0.62 0.94 1.00
12 0x2al1_0204 272 256 0.93 0.94 1.00
13 0x2a12_0404 272 93 0.88 0.87 1.00
14 0x2a90_0005 272 256  0.87 0.88 1.00
15 0x0002_0000 273 256  0.85 0.88 1.00

16 0x2ab0_4004 273 256 0.78 0.88 1.00

17 0x0140_8000 272 173 0.75 0.75 1.00
18 0x2b10_0006 272 65 0.75 0.75 1.00
19 0x0a04_0804 27! 22 0.75 0.75 1.00
20 0x2a58_3004 273 22 0.50 0.50 1.00
21 0x2a16_0404 273 102 0.75 0.75 1.00
22 0x5000_0060  27* 256  0.45 0.49 1.00
23 0x201¢_0800 272 22 0.50 0.50 0.52
24 0x3a10_0004 272 16 0.50 0.50 0.50
25 0x1e10_001c¢ 272 9 0.25 0.25 0.50
26 0x2e10_0004 272 27 0.50 0.50 0.49
27 0x1000_0020 273 8
28 0x0008_1000 273 2 0.50 0.50 0.00
29 0x0400_0008 273 9

30 0x0000_0004 - - No No No
31 0x0000_0010 - - No No No
32 0x0000_0800 - - No No No

The notations are the same as Table 4.

Taste 7: The conditional neutral differences and, corresponding
conditions for 2-round differential 0x2a10_0004 — 0x8000_0100,
where x;||x, be a plaintext of SPECK32.

Neutral diff. Pr _ Condition
EXP EXP

0x0140_8000 0.75 1.00

0x2b10_0006 0.75 1.00 %[10] & %, [3]=0

0x0a04_0804 0.75 1.00

0x2a58_3004 0.50 1.00 x[3] ®x,[12] =0

0x2a16_0404 0.75 1.00

0x5000_0060 0.49 1.00 x[12] @ x,[5] =0

EXP (resp. EXP) represents the empirical results of the neutral probabilities
(resp. under the conditions specified in the last column).

Step 2: The corresponding cipher pair structure of P, g 4,
is denoted by {(co, ;). (¢1.¢}), ... (can_1, chm_;) }. Then, one

can compute

Cor=— v (c1)(aeq), (22)

0<i<2™

Step 3: If the correlation observed using 2™ pairs is
approximately g, the distinguisher succeeds. Otherwise, go
to Step 1.

The essential requirement for this distinguisher to be
effective is to identify sufficient neutral differences so that
2m>L With probability p, the plaintext pair structure
P, o4, makes the short-round differential satisfied. Denote
the product of the neutral probabilities of the neutral differ-
ences utilized by p. With probability pp, the distinguisher
succeeds in Step 3. Thus, the data complexity of (4,,,I)
required is O(p~'p~1q7?) instead of O(p~2g~2). Note that the

statistical value Cor is derived from 2™ ciphertext pairs.
When comparing with the DL distinguishers without using
the neutral difference technique, we regard the (equivalent)
correlations of DL (ND) as pzpiq, since the data complexity
required is O(p~'p~'q?). Table 8 summarizes the
differential-linear distinguishers for 11-round SPECK32.

5. Application to LEA

5.1. LEA. The LEA family of block ciphers not only serves as
the national standard of the Republic of Korea but also is
included in the ISO/IEC 29192-2:2019 standard. The LEA
family has a block size of 128 bits and consists of three
different key sizes: 128, 192, and 256 bits, denoted by
LEA128, LEA192, and LEA256, respectively. Figure 2(a) pro-
vides a schematic view of the round function of LEA. The
inputs/outputs of each round of LEA consist of four 32-bit
words.

5.2. Enhanced Differential-Linear Distinguishers by Neutral
Differences. For LEA, there is a 4-round differential charac-
teristic shown in Table 9, with a probability of 2733, Table 10
of Appendix A outlines 61 linearly independent neutral dif-
ferences for this differential. Since not all of the neutral
probabilities are 1, it is significant to know the probability
of obtaining a plaintext structure consisting of 2°! right pairs
from a right pair. In this case, the statistical variable will
clearly demonstrate advantages when the key is guessed cor-
rectly. Though it is computationally infeasible to verify it
directly, we randomly select subspaces spanned by five neu-
tral differences and verify the probability of obtaining 2°
right pairs from a right pair. Denote the product of the five
individual neutral probabilities by p, and let the empirical
probability of obtaining 2° right pairs be p. We utilized 2!?
right pairs to repeat the above experiments 100 times and



IET Information Security

"6 2[qe], Ul pasy| douatdpIp ndur oy syuasaxdar ¢ *(,_b;_d,;_d)g st pazmba1 firxordwoo eyep oy durs

‘bedd se (QN) 10 Jo suonep1I0d (Juareamba) oy predar om xaH ‘bd 4q s[ren reauT[-[eNULIAHIP 3Y) JO UONEPLIOD [[19A0 3y} J0U(T 4, *,_b <, 7 18yl Yons 128a)ut Jso[[ewus o) SE 144 125 M BLIAILID dwres o1y utsn
(AN) T 2Y) 27en[eAd O, *d ST S9OUIIP [eInat 3s3Y) Jo saniiqeqoid ay) Jo Jonpoid a1y a1oym A[SNOSUR)NUILS SIOUSISJIP [BIINSU ([EUONIPU0D) i FUIZINn IaysMIUNSIP T(T JUSLIND 3Y) sajousp ¢ /us ‘| 4q pajousp
st 1oded TeurStio ay) ut payuasald [eNUSIAPIP PUNOI- JA0QE Y} 10] SIOUSIJIP [BNNAU ([BUOHIPUOD) JO IDQUINU YT, ( [ied} T WONO0q Y} JO UONEB[21I0D [eIuawiddxa o1 st b TenuaIdpip punoi-1oys papuadord

a1 Jo Aiqeqoad [edna10ay) = d, “JJIp 9IRIPIWIANUI 18 SPUS pue JJIp INdUl WOoIJ $)1e)s [eNUSIAJIP PUNOI-7 Y} AI9YM rer) (] PUNOI-g © PUe [eNUSIJJIP PUNOI-7 UR SSUIQWIOD 1o} ((IN) T © SePUl g + V7,
[FIT°G0TTOTTOTI‘T6

JIoM SIYT, 6175-C ™ os0z-C/€S 19 $0'97-C ~ ce-C 98991986/ €°67°0)] 0000-0008%0 o . €I+7¥ VaT
(9] $08-C ~ y111-C/1C 43 601-C ~ ge-C [S01°16°19'6°0] a+y

JIoMm ST, 10€1-C~ 0T/1C 8¢ £001-C~ 9-C Tr8e¥58¢X0 00T0~0008X0 7000 01vCX0 6+7C

oM ST, §1p1-C — 0'1/1C e 8101-C ~ g-C 08¢F~ 0FCTx0 0000~ 0%00%0 $09076020%0 [ 6+¢ Z6DAdS
(6] sp1-C ™ 1-¢/SC 14 a-¢— p-C FP8ETHS8EX0 0%0T~050TX0 $00070127x0 0T+1
[6] p1-C— OT/1C 8¢ 01-C— ¢ FP8ETHS8EX0 00T0~0008X0 0¥0ZT~0S0TX0 6+1
PEN| ﬁm d/w W b d ysew jndino ‘JJIp S1eIpauLIaiu] ‘pip indug S Yea [punoy 1oydip

(AN) T1a £q pajouap onbruta) 2OUIIPFIP [eINAU Y} YIIM PIUIQUIOD SIAYSINGUNSIP T(J ‘g T1aV],



10 IET Information Security
xb x xb o % 1 z R
I_v 4 v
é’ rk é’ ki é’ rk} E ko E ky E ky
Tamat? & Zamt? & Tama & - - -
v v v 4 4 4
1] 1] 1] > > ‘R
1 1] 1 L[] L[] L]
v \4 v
«9 >»5 >»3 v A\ 4 \4
Yo N1 Y2
x6+1 x1i+1 x£+l X31;+1
() (b)
FIGURE 2: The LEA instance: (a) the round function of LEA; (b) parallel modular additions.
TaBLE 9: A 4-round differential characteristic for LEA.
r Differences — log(p;)
0 0x8a000080-80402080_-80402210_c0402234
1 0x80400014_-80000014_88000004_8a000080 17
2 0x80000000_-80400000_80400010_80400014 10
3 0x80000000_80000000_80000000_80000000 6
4 0x00000000_-00000000_00000000_80000000 0
-2 log(p) 33
found 0.398 <p/p <3.061, and the average of p/p is 1.033. (2,2}, 2,,2)
In summary, this experiment indicates that the probability of =(x17. xV7 @ rk17 x)7 @ 1k, x17 @ rkl7);
obtaining 2™ right pairs using m neutral differences can be
. . P (kO’ kl ’ k2)
approximated by the product of the individual neutral prob-
. K R Z(Vk17 rkl7 fas) k7 k17 D rk17).
ability experimental values of these neutral differences, VR0 TR 20103 4 )
which has been verified in [6]. Consequently, the theoretical (o> 71:052)
probability of obtaining 2% right pairs from a right pair using ~ =(x{® 3> 9, 4% « 5, x}® « 3);
these 61 neutral differences is 27*%°. The differential-linear (¢ i )
distinguisher that employs the neutral difference technique is i ; i i i i i i i
= zZb @z Dk, 2Dk DD Dk,);
presented in Table 8. %®2 820k 02020k, 020 369(223))

5.3. The 18-Round Key Recovery Attack on LEA. To attack the
18-round LEA with key sizes of 192 and 256 bits, we employ
the 17-round DL (ND) distinguisher described in Table 8 by
adding an additional round. The attack program is outlined
in Algorithm 1, which recovers 60 bits of subkey in the last
round.

For the convenience of introducing the 18-round key recov-
ery attack, we use the following notations (see Figure 2(b)):

Cor (i k, k) =
0<i<2™m

Y (-1) (Z@zL)[0.29]@ (@2} )[5.6.29]@ (2 @21 )[6.26.29] (2D} ) [5.6.9.18]

where i indicates the current ciphertext comes from the ith
ciphertext pair. If i is obvious in the context, i will be omitted.
Similarly, let (zi, -, 25, yi, 7%, 74, €h, €4, ¢,) represent the
other ciphertext for the ith ciphertext pair.

Consider the linear mask [0,29,37,38,61,68,88,91,
101, 102, 105, 114]. The statistical value Cor is calculated as
follows:

(24)
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Output: List of key candidates, denoted by %
1% <0

2 for 1<j<Rdo

3 Choose the jth plaintext structure Py g4,

4 for each possible k do
5 Cor, =0
6 for 0<i<2™ do

7 if (c;, c}) is useful for current k then

8 Cory + :ﬁ (_l)r'(Deck(C,‘)@Dﬂﬂk(ﬂf)) end
8 else

10 Continue

than 0 and ©@<0.
11 if Cor, <O then
12 Store the key candidate k to %

Input: m neutral differences M, ..., M,, and corresponding subspace Q2 « Span{M;, ..., M,,}, number of replications R, plaintext
structures Py o4, ={(x @y, x ®y ® A;,)|y € 2} for 0<j<R, threshold 6.

/* Denote the ciphertext pairs, encrypted fromP, o4, , by {(co. ). (c1.¢1). .o, (canr, )} ¥/

// Afiltering process that enhances advantages.

/ * Dec,, represents one round decryptionwith k. I’ represents the output mask, and N is the
number of ciphertext pairs to calculate this correlation. */

// Without losing generality, let the correlation of the bottom DL distinguisher be less

ArcoriTHM 1: Pseudocode for the Key Recovery of Differential-Linear Attack.

where (2 @ z%)[0,29] = Z4[0] & Z4[0] @ 25[29] & Z5[29).
Here, 2, ). 1. 5. 24, 7b. 74 and ) can be directly obtained
from the ith ciphertext pair. We guess the least significant 29
bits of both k, and k; to obtain the least significant 29 bits of
21,2,21, 25, e, z1=yH(20 @ ko), 2, =y,H(z1 ® k). In
this scenario, we also obtain the least significant 30 bits of
co»¢1- For example, ¢[0]=0 and cyfj+1]= (20 @ ko)lj]
&eylj] @ (2 ® ko) [j]&z1[j] ® colj]&z,[j] for 0<j<29. Due
to the nature of the additions, we have the following:

z3[0] @ 23 [0] = (2 © yo © y1 © »2)[0] @ (ko @ k1 @ k,)[0]
D Zo DY DY) ©7,)[0] @ (ko @ ki ® k;)[0]
=(20 @ )0 @ y1 © 1)[0] B (20 By, DY, ©7,)[0]
(25)

and

21[29] @ 2, [29] = 20[29] @ ¢0[29] @ ko[29] @ y0[29] D 2,[29] D & [29] D ko[29] D J,[29]
= 20[29] @ 29[29] @ [29] D €, [29] D y,[29] D 70[29].

Additionally, we utilize the conditional linear approxi-
mation proposed by Biham and Carmeli [26] to compute
z3[29] and z3[29]. See Appendix B for more details. For clar-
ity, let by ||b; and b, ||b; represent (z, @ k, @ y,)[28:27] and
(z, Dk, @ j,)[28:27], respectively. Then we have the fol-
lowing:

(26)

\
z3[29] @ 25 [29] = 2,(29] @ 2,[29] & y,(29] @ 7,(29)]
©(12[28]&by) @ (1,[27]&(by @ 1)&b,)
®(7,[28]&b,) @ (7,[27]&(b, @ 1)&b;).
(27)

where by |b; # 0 and b,||b; # 0. We define G =¢; @ ¢, Z; =
z} @ zi and Y]’ = y]’f ® )7]’: for simplicity. As a result, the sta-
tisticaf value can be rewritten as follows:

Zi[5,6] @ Zi[6,26] @ Zi[0,5,6,9,18,29)

Corpbih) = 2

0<i<2™,
bol|by #0,b,|bs # 0

(-1) DYi[0] @ Y5[0,29] @ Y] [0] @ Y§[0,29] ® Cy[29] D S, (28)
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where
|
§ = (2[28]&by) @ (v,[27]&(by @ 1)&by) @ (7,[28]&b,) @ (7,[27]& (b, @ 1)&eby). (29)
\
Note that only 32x3=270% of the generated addition. Roughly estimated, we assume that the time com-

plaintext—ciphertext pairs are used simultaneously. Conse-
quently, we need to guess 60 bits of the subkey, i.e., k,[28],
k;[27], k,[28:0], and ky[28:0].

The 18-round attack utilizes all 61 neutral differences in
Table 10 simultaneously and sets the parameter R as
2334+29.96 _ 962.96 et N —261-083 — 96017 414 o— _ 2-26.04
represent the correlation of the bottom DL approximation
(see the last row of Table 8). If the guessed subkey is correct
and each pair of P, , 5, satisfies the prepended short-round
differential, the statistical variable Cor i ,) follows the
normal distribution with mean of ¢ and variance of
%. Otherwise, Cor x, k, x,) follows the normal distribu-
tion with mean of 0 and variance of 3. When the threshold &
is set to —27262%, the right key will pass through Line 9 of

Algorithm 1 with a probability of ¢(m) =0.99
C —C

plexity for one operation is approximately equal to that of
one round of decryption. Therefore, the final time complex-
ity for our 18-round attack is 2!84% /18 = 218080 fy]] encryp-
tions of 18-round LEA. The success rate is determined by the
probability of obtaining a plaintext structure, where each
plaintext pair satisfies the prepended short-round differential
characteristic, i.e, Succ=1— (1 — 27337299627 _( g3
The comparison of our attack with previous attacks on LEA
is shown in Table 2.

6. Conclusion

In this paper, we have investigated the link between neutral
difference and boomerang cryptanalysis. Based on it, we
introduce an automated approach for identifying linearly

hil K a ith babili £ p(-6=0 independent neutral differences. Consequently, we present
while a wrong key Wil pass with a probability o (\/ I/N) the improved differential-linear distinguishers for SPECK32

=275 Here, qb(x):\/%—; J* OOefozdx is the distribution

function of the standard normal distribution. The expected
number of wrong keys in key candidates is 2629 x 290 x
27 %~ 0. The data complexity should be 26296 x 2! x 2 =
21249 chosen plaintext pairs and the time complexity should
be 212496 % 260 = 21849 operations. Each operation consists
of a partial decryption for one round, a dot product, and an

and LEA, along with the 18-round attacks on LEA192 and
LEA256 with the lowest time complexity up to date.

Appendix

A. Neural Differences for 4-Round Differential
on LEA

TasLe 10: The neutral differences for 4-round differential, as shown in Table 9.

No. Neutral diff. Pr

1 0x8a000080_80402080_80402210_c0402234 1.00
2 0x00000000_00000000_00000000_00000004 1.00
3 0x00000000_00000000_00000010_00000010 0.99
4 0x00000000_00400000_00400000_00400000 1.00
5 0x00000000-00000000_00000000_80000000 0.89
6 0x00000000_00000000_00000000_00004000 0.99
7 0x00000000_-00000000_00000000_00008000 0.99
8 0x00000000_00000000_00000000__00010000 0.99
9 0x00000000_00000000_00000000_00020000 0.99
10 0x00004000_00000000_00000000_00000000 0.99
11 0x00008000_00000000_00000000_00000000 0.99
12 0x00010000-00000000_00000000_00000000 0.98
13 0x00000000_00000000_00000000__00040000 0.98
14 0x00000000_00000000_00000000_00080000 0.97
15 0x00020000_00000000_00000000_00000000 0.96
16 0x10000000_00000000_00000000_00000000 0.94
17 0x00000000_00000000_00080000_00000000 0.94
18 0x20000000_00000000_00000000_00000000 0.94
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TasLe 10: Continued.
No. Neutral diff. Pr
19 0x00000000_00000000_00000000__00100000 0.95
20 0x00040000_00000000_00000000_00000000 0.93
21 0x40000000_00000000_00000000_00000000 0.92
22 0x00000000_00000000_00000000_00200000 0.92
23 0x00000000_00000000_00100000_00000000 0.90
24 0x00000100_00000000_00000000_00000000 0.81
25 0x00000000_00040000_00040000_00000000 091
26 0x00000000_80000000_80000000__00000000 0.80
27 0x80000000_00000000_00000000_00000000 0.90
28 0x00080000_00000000_00000000_00000000 0.86
29 0x00000000_00000000_00000000_00800000 0.86
30 0x00000000_00000000_00200000_00000000 0.83
31 0x00000000_00004000_00004000_00000000 0.82
32 0x00000000_00080000_00000000_00000000 0.84
33 0x00000200_00000000_00000000_00000000 0.81
34 0x00000000_00008000_00008000_00000000 0.77
35 0x00000000_00000000_00000000_01000000 0.78
36 0x0a000080_00002080_00002200_40002221 0.74
37 0x0a010080_00012080_00012200_40012220 0.73
38 0x0a000080_00002080_00802200_40802220 0.73
39 0x00000000_00000000_00004000_00005000 0.74
40 0x8a000080_80502080_80502210_c0502234 0.68
41 0x8a000080_80402080_8040a210_c040a234 0.66
42 0x8a000080_80402080_81402210_c1402234 0.60
43 0x0a000080_00002080_00002600_40002620 0.57
44 0x00000000_00000020_00000000_00000000 0.65
45 0x00000000_00000000_00010000__00010000 0.55
46 0x00000000_00000000_00000000_04000000 0.51
47 0x80000000_80420000_80420010_80420014 0.48
48 0x00000000_00000000_00000002_00000002 0.39
49 0x80000000_-90400000_90400010_90400014 0.46
50 0x8a000080_80402080_90402210_d0402234 0.44
51 0x0a200080_00202080_00202200_40202220 0.41
52 0x0a000480_-00002480_00002600_40002620 0.47
53 0x8a000080_80402480_80402610_c0402634 0.43
54 0x80000020-80400000_80400010_80400114 0.43
55 0x0a000080_00002080_00002a00_-40002a20 0.45
56 0x80000000_80000000_80000000_80000002 0.50
57 0x80000000_80400000_80401010_80401014 0.48
58 0x80000000_80400000_82400010_82400014 0.44
59 0x00000000-00200000_00200000_00200000 0.42
60 0x0a000081_00002081_00002201_40002221 0.41
61 0x00800000-00800000_00800000_00800000 0.40
62 0x80000000_80c00000_80c00010_80c00014 0.40

The 2nd to 35th neutral differences were proposed in [6]. The empirical results of the neutral probabilities are obtained from 2'8 right pairs.
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B. Conditional Linear Approximations
for Additions

This section introduces the conditional linear approximation
technique, which is also known as the partitioning technique
proposed by Biham and Carmeli [26]. This technique has the
ability to amplify the bias of linear approximations of additions.
Furthermore, it has been applied to the differential-linear

xil@ylil@yli-1] @1,
[ @ylil®yli-2]®1,
@ yli®yli-3]®1,

z[ij=14 x

where 81, = &', U S, and Si, =i, U Sh,.
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with corr. 1, if (x,y) € S,
with corr. 1, if (x,y) € i,
with corr. 0.5, if (x,y) € Sk,

(B.1)
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