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Given a differential characteristic and an existing plaintext pair that satisfies it (referred to as a right pair), generating additional
right pairs at a reduced cost is an appealing prospect. The neutral bit technique, referred to as neutral differences throughout this
paper, provides a solution to this challenge. Traditionally, the search for neutral differences has heavily depended on experimental
testing, leading to limitations in the search range. In this work, we propose the neutral difference table and establish a link between
boomerang cryptanalysis and neutral differences. Furthermore, we propose an automated search for neutral differences to address
the problem of a limited search range of neutral differences, as previous approaches relied on experimental testing. This approach
provides a basis for the subspace spanned by the neutral differences, and we apply this technique to both SPECK32 and LEA, where
the predicted results closely match the experimental ones. Consequently, we present the improved differential-linear distinguishers
for SPECK32 and LEA, along with the 18-round attacks on LEA192 and LEA256 with the lowest time complexity up to date.

1. Introduction

Differential cryptanalysis, proposed by Biham and Shamir
[1], is one of the most powerful cryptanalysis techniques
nowadays. As cryptanalysis progresses, an intriguing phe-
nomenon related to differentials has captured the attention
of researchers. For a differential Δ→ Δ0, when flipping a
single bit or a set of bits simultaneously for an input x, the
resulted input x⊕r makes the differential Δ→ Δ0 estab-
lished if and only if x makes it satisfied. In this paper, r is
referred to as a neutral difference. Previous literatures [2, 3]
referred to it as a neutral bit when the Hamming weight ofr
is 1 and a neutral set otherwise. The neutral difference

technique holds significant prominence today, having con-
tributed to the advancement of numerous cryptanalysis
records [3–8].

However, the search for neutral differences of a differen-
tial lacks elegant methods except for exhaustion with experi-
ments based on its definition [3–5, 9, 10]. This has led to the
difficulty in finding more neutral differences. Therefore,
there is an urgent need to develop automatic tools for search-
ing neutral differences. We aim to dedicate ourselves to this
problem and related cryptanalysis. The neutral probability of
a neutral difference r for a differential Δ→ Δ0 is defined as
follows:

p¼ # x 2 Fn
2 S xð Þj ⊕ S x⊕ Δð Þ ¼ Δ0; S x⊕rð Þ⊕ S x⊕r⊕ Δð Þ ¼ Δ0f g

# x 2 Fn
2 S xð Þj ⊕ S x⊕ Δð Þ ¼ Δ0f g ; ð1Þ

where # represents the size of the set and S is a substitution.

1.1. Contribution. We establish links between neutral differ-
ences and boomerang cryptanalysis, thereby providing a the-
oretical foundation for the search of neutral differences.

Based on this, we introduce an automatic search method
for linearly independent neutral differences. As for applica-
tions, we present the neutral spaces for two differentials of
SPECK32, which are spanned by all neutral differences with
non-zero neutral probabilities. Experimental results confirm

Hindawi
IET Information Security
Volume 2024, Article ID 2939486, 15 pages
https://doi.org/10.1049/2024/2939486

https://orcid.org/0000-0002-0859-8161
https://orcid.org/0000-0003-4941-7133
https://orcid.org/0000-0001-5868-4191
https://orcid.org/0000-0002-8074-4581
mailto:cuiting_1209@126.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


the validity of our method. Furthermore, we present
improved differential-linear distinguishers for 11-round
SPECK32 and 17-round LEA (illustrated in Table 1), as
well as the 18-round attacks on LEA192 and LEA256 with
the lowest time complexity (outlined in Table 2) up to date.

1.2. Organization. The remainder of this paper is organized
as follows: Section 2 introduces the notations and concepts
that will be used throughout the paper. Section 3 establishes
the links between boomerang cryptanalysis and neutral dif-
ferences and presents an automatic method for discovering
neutral differences. Sections 4 and 5 apply the automatic

search method to the SPECK32 and LEA ciphers. Finally,
Section 6 concludes this paper.

2. Notations and Preliminaries

The notations we use in this paper are summarized in
Table 3.

2.1. Preliminaries
Definition 1 (Differential Probability [1]). The probability of
a differential Δ→ Δ0 for function S :Fn

2 → Fn
2 is defined by

the following:

TABLE 1: Comparison of our distinguishers with previous ones.

Cipher Weak keys Type Round Prob./Cor. Ref.

SPECK32 Full

Linear 9 2−14 [11]
DL 9 2−8:93 [12]

Differential 10 2−30:39 [13]
Boomerang 10 2−29:15 [14]

DL 10 2−13:90 [12]
DL (ND) 10 − 2−11 [9]

DL 11 2−16:0 [9]
DL (ND) 11 − 2−14:5 [9]
DL (ND) 11 − 2−14:18 This work
DL (ND) 11 − 2−13:07 This work

LEA Full

Boomerang 16 2−117:11 [15]
DL (ND) 16 − 2−28:04 [6]

DL 17 − 2−59:04 [6]
DL (ND) 17 − 2−52:79 This work

DL= differential-linear distinguishers, DL (ND)=DL distinguishers combined with neutral difference technique, DC= differential characteristic, LC= linear
characteristic.

TABLE 2: Key recovery attacks on round-reduced LEA.

Cipher Round Type Data (CP) Time Ref.

LEA192
14/28 DC 2124:79 2124:79 [16]
18/28 DL 2126:63 2189:63 [6]
18/28 DL (ND) 2124:96 2180:80 This work

LEA256
15/32 DC 2124:79 2252:79 [16]
18/32 DL 2126:63 2189:63 [6]
18/32 DL (ND) 2124:96 2180:80 This work

DL= differential-linear distinguishers, DL (ND)=DL distinguishers combined with neutral difference technique, DC= differential cryptanalysis, CP= cho-
sen-plaintexts.

TABLE 3: Notations.

Symbol Description

x½i� : The ith bit of x, written as xi for simplicity. xn−1 (resp. x0) is the most (resp. least) significant bit of x
x⋘ t Rotation of x by t-bit to the left, written as x for simplicity
x⋙ t Rotation of x by t-bit to the right, written as x! for simplicity
⋅ The inner product of two vectors
#X or jXj : The size of a set X
Pr½x¼ 0� : Probability that x equals 0
Cor½x� : The correlation of x, i.e., Cor½x� :¼Pr½x¼ 0� : − Pr½x¼ 1�:

x‖y Concatenation operation. xn−1 is the most significant bit of the new binary vector
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p Δ;Δ0ð Þ ¼ # x 2 Fn
2 S xð Þj ⊕ S x⊕ Δð Þ ¼ Δ0f g

2n
: ð2Þ

Definition 2 (DDT). Let S be a substitution. The value of
differential distribution table (DDT) at ðΔ;Δ0Þ : is defined as
follows:

DDTS Δ;Δ0ð Þ ¼ # x 2 Fn
2 S xð Þj ⊕ S x⊕ Δð Þ ¼ Δ0f g: ð3Þ

Definition 3 (NDT). Let S be a substitution. The value of neutral
difference table (NDT) at ðΔ;Δ0;rÞ : is defined as follows:

NDT S Δ;Δ0;rð Þ ¼ # x 2 Fn
2 j S xð Þ⊕ S x⊕ Δð Þf

¼ Δ0; S x⊕rð Þ⊕ S x⊕r⊕ Δð Þ ¼ Δ0g ð4Þ

Here, r is called a neutral difference throughout this
paper.

Definition 4 (Neutral Probability). Let S be a substitution. For
a differential of S, denoted by Δ→ Δ0, r is called a neutral
difference for this differential, and the corresponding neutral
probability is defined as follows:

p¼ # x 2 Fn
2 S xð Þj ⊕ S x⊕ Δð Þ ¼ Δ0; S x⊕rð Þ⊕ S x⊕r⊕ Δð Þ ¼ Δ0f g

# x 2 Fn
2 S xð Þj ⊕ S x⊕ Δð Þ ¼ Δ0f g

¼NDTS Δ;Δ0;rð Þ
DDTS Δ;Δ0ð Þ

: ð5Þ

In general, the higher the neutral probability p becomes,
the more useful a neutral difference r is for an attack. Bao
et al. [3] have further suggested a way to amplify the neutral
probability by introducing conditional neutral differences,
which necessitate specific conditions to be met by input
pairs. These proposed conditions are evaluated through
experiments in [3].

Definition 5 (Plaintext Pair Structure). Denote m linearly
independent neutral differences of a differential ðΔin;ΔoutÞ :

by M1;M2;…;Mm. Let Ω be the linear subspace spanned by
M1;M2;…;Mm. Given a plaintext x, we define the plaintext
pair structure Px;Ω;Δin

as the set fðx⊕ y; x⊕ y⊕ ΔinÞjy2Ωg:.

Definition 6 (BCT [17]). Let S be a substitution and S−1 be its
inverse. The value of boomerang connectivity table (BCT) at
ðΔ;rÞ : is defined as follows:

BCTS Δ;rð Þ
¼ # x 2 Fn

2 S
−1 S xð Þð Þ⊕rj ⊕ S−1 S x⊕ Δð Þ⊕rð Þ ¼ Δf g:

ð6Þ

Definition 7 (UBCT/LBCT/EBCT [18]). Let S be a substitu-
tion and S−1 be its inverse. The values of three variants of
BCT, namely upper BCT, lower BCT, and extended BCT, are
defined, respectively, as follows:

UBCTS Δ;Δ0;rð Þ

¼ # x 2 Fn
2

S xð Þ⊕ S x⊕ Δð Þ ¼ Δ0;

S−1 S xð Þ⊕rð Þ⊕ S−1 S x⊕ Δð Þ⊕rð Þ ¼ Δ

����
( )

;

ð7Þ

LBCTS Δ;r0;rð Þ

¼ # x 2 Fn
2

S xð Þ⊕ S x⊕r0ð Þ ¼ r;
S−1 S xð Þ⊕rð Þ⊕ S−1 S x⊕ Δð Þ⊕rð Þ ¼ Δ

����
( )

;

ð8Þ

EBCTS Δ;Δ0;r0;rð Þ

¼ # x 2 Fn
2

S xð Þ⊕ S x⊕ Δð Þ ¼ Δ0;

S xð Þ⊕ S x⊕r0ð Þ ¼ r;
S−1 S xð Þ⊕rð Þ⊕ S−1 S x⊕ Δð Þ⊕rð Þ ¼ Δ

�������
8><>:

9>=>;:

ð9Þ

If the substitution S can be known from the context, the
symbol S will be omitted. For example, DDTS will be abbre-
viated as DDT.

3. Links to Boomerang Cryptanalysis and the
Automated Search for Neutral Differences

In this section, we prove that the NDT is the LBCT in Boo-
merang cryptanalysis, which provides a foundation for auto-
mated search of neutral differences. Furthermore, we
introduce an automatic search method for linearly indepen-
dent neutral differences.

3.1. Links between Boomerang Cryptanalysis and Neural
Difference. In this section, we present the links between neu-
tral difference and boomerang cryptanalysis in Theorem 1
and how to calculate the neutral probability of neutral differ-
ences through LBCT in Corollary 1.

Theorem 1. Let S be a substitution. There holds

NDTS Δ;Δ0;rð Þ ¼ LBCTS r;Δ;Δ0ð Þ: ð10Þ
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Proof. It is obvious that SðxÞ : ⊕ Sðx⊕ ΔÞ :¼Δ0 if and only if
S−1ðSðxÞ⊕ Δ0Þ :¼ x⊕ Δ. If x satisfies that SðxÞ : ⊕ Sðx⊕ ΔÞ :¼
Δ0, then we have the following:

S x⊕rð Þ⊕ S x⊕r⊕ Δð Þ
¼ Δ0⇔ S−1 S xð Þ⊕ Δ0ð Þ⊕ S−1 S x⊕rð Þ⊕ Δ0ð Þ ¼ r:

ð11Þ

Therefore, there holds NDTSðΔ;Δ0;rÞ :¼ LBCTSðr;Δ;Δ0Þ :. □

Theorem 2. Let S be a substitution and S−1 be its inverse.
There holds

NDTS Δ;Δ0;rð Þ ¼ UBCTS−1 Δ0;Δ;rð Þ: ð12Þ

Proof. We have

LBCTS Δ;r0;rð Þ ¼# x 2 Fn
2

S xð Þ⊕ S x⊕r0ð Þ ¼ r;
S−1 S xð Þ⊕rð Þ⊕ S−1 S x⊕ Δð Þ⊕rð Þ ¼ Δ

����
( )

¼y¼S xð Þ
# y 2 Fn

2

y⊕r¼ S S−1 yð Þ⊕r0ð Þ;
S−1 y⊕rð Þ⊕ S−1 S S−1 yð Þ⊕ Δð Þ⊕rð Þ ¼ Δ

�����
( )

¼# y 2 Fn
2

S−1 y⊕rð Þ⊕ S−1 yð Þ ¼⊕r0;
S−1 S S−1 yð Þ⊕ Δð Þ⊕rð Þ ¼ S−1 y⊕rð Þ⊕ Δ

�����
( )

¼# y 2 Fn
2

S−1 y⊕rð Þ⊕ S−1 yð Þ ¼⊕r0;
S S−1 yð Þ⊕ Δð Þ⊕ S S−1 y⊕rð Þ⊕ Δð Þ ¼ r

�����
( )

¼UBCTS−1 r;r0;Δð Þ

: ð13Þ

According to Theorem 1, we have NDTSðΔ;Δ0;rÞ :¼
UBCTS−1ðΔ0;Δ;rÞ :. □

Theorem 1 demonstrates that the NDT entries of a sub-
stitution S are the entries of LBCT. A similar result connect-
ing the NDT with the UBCT is provided in Theorem 2. For
notational simplicity, we shall primarily focus on LBCT in
our subsequent theoretical developments. Consequently, one
can identify neutral differences with a high neutral probabil-
ity by concurrently constructing models/programs for LBCT
and DDT, as presented in Section 3.2, where an automated
method of searching for neutral differences is introduced.

Corollary 1. For a differential Δ→ Δ0 of a substitution S, the
neutral probability of a neutral differencer can be calculated
as follows:

p¼ NDTS Δ;Δ0;rð Þ
DDTS Δ;Δ0ð Þ ¼

LBCTS r;Δ;Δ0ð Þ
DDTS Δ;Δ0ð Þ : ð14Þ

Lemma 1. Let S :Fn
2 → Fn

2 be a bijection. For a neutral differ-
ence r of a differential ðΔ;Δ0Þ : with a non-zero probability, if
BCTSðr;Δ0Þ :¼ 2n or DDTSðΔ;Δ0Þ :¼ 2n, then the correspond-
ing neutral probability p is 1.

Proof. Let DDTSðΔ;Δ0Þ :¼ 2n. For each x2Fn
2 , it holds that

SðxÞ : ⊕ Sðx⊕ ΔÞ :¼Δ0. Hence, we have Sðx⊕rÞ : ⊕
Sðx⊕r⊕ ΔÞ :¼Δ0, which indicates p¼ 1 by Definition 4.

Let BCTSðr;Δ0Þ :¼ 2n. For each x2Fn
2 , it holds

S−1ðSðxÞ⊕ Δ0Þ : ⊕ S−1ðSðx⊕rÞ⊕ Δ0Þ :¼r. By Theorem 1,
we have NDTSðΔ;Δ0;rÞ:¼DDTSðΔ;Δ0Þ :. Hence, p¼ 1 by
Definition 4. □

By constraining the input variable x to a small setX instead
of x2Fn

2 , we can increase the neutral probability p. In this case,
the neutral difference r is referred to as a conditional neutral
difference, which was first proposed in [3]. Lemma 2 provides
sufficient conditions, under which the neutral probability is 1, by
imposing restrictions on the input variable x.

Lemma 2. Let S :Fn
2 → Fn

2 be a bijection. For a non-zero
probability differential ðΔ;Δ0Þ :, the neutral probability of a
conditional neutral difference r, which requires the input of
S limited to a set X, will be 1 if BCTSðr;Δ0Þ :¼ jXj : or
DDTSðΔ;Δ0Þ :¼ jXj :.

Proof. The proof process is similar to that of Lemma 1. □

3.2. Basic Framework for Automated Search of Neutral
Differences. In this section, we aim to merge the automated
search for differentials and EBCT characteristics in order to
effectively find neutral differences with a higher probability
for a given differential Δ→ Δ0. Experimental results in Sec-
tion 4 confirm the validity of our method, with the predicted
neural probabilities being close to the experimental ones.

First, we introduce the notations that will be used in this
discussion. Let the cipher S be a composition of S0; S1;…;
Sl−1. Throughout this paper, the term “characteristic” refers
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to a differential/boomerang path, which not only specifies
the input and output differences but also specifies the inter-
mediate differences. For clarity, we will use Δ0, Δl, and r0 to
refer to Δ, Δ0, and r, respectively.

Assuming that the cipher is a Markov cipher and the
characteristic with the largest probability for a differential
Δ0 → Δl determines the differential probability, it is well-
known [19] that:

p Δ0 → Δlð Þ ≈ max
Δ1;…;Δl−12Fn

2

∏
0≤i≤l−1

p Δi → Δiþ1ð Þ: ð15Þ

Delaune et al. [18] used Equation (16) to estimate
LBCTSðr0;Δ0;ΔlÞ :.

LBCT S r0;Δ0;Δlð Þ
≈ ∑
r1;…;rl ;Δ1;…;Δl−12Fn

2

∏
0⩽i⩽l−1

EBCT Si ri;riþ1;Δi;Δiþ1ð Þ:

ð16Þ

In other words, LBCT characteristics can be approxi-
mated by a cluster of EBCT characteristics. According to
Definitions 1 and 2, there holds pðΔ0;ΔlÞ :¼ DDTSðΔ0;ΔlÞ

2n . Based
on Equations (15) and (16), the neutral probability of the
neutral difference r0 for a differential Δ0 → Δl can be calcu-
lated by the following:

p¼ LBCTS r0;Δ0;Δlð Þ
DDTS Δ0;Δlð Þ ¼ LBCTS r0;Δ0;Δlð Þ=2n

DDTS Δ0;Δlð Þ=2n ¼ LBCTS r0;Δ0;Δlð Þ=2n
p Δ0;Δlð Þ

≈
2−n ∑

r1;…;rl2Fn
2

∏
0⩽i⩽l−1

EBCT Si ri;riþ1;Δi;Δiþ1ð Þ

∏
0≤i≤l−1

p Δi → Δiþ1ð Þ :
ð17Þ

Here, Δ0 → Δ1 →⋯→ Δl refers to the differential char-
acteristic that dominantly determines the probability of the
differential Δ0 → Δl, and also partially determines the EBCT
characteristics.

The objective of the automated search is to identify a set
of differences that maximizes the neutral probability, as
defined by Equation (17). This neutral probability serves as
the objective function for this automated search problem. By
leveraging Equation (17), we can integrate the automated
search for differential characteristics and extended boomer-
ang characteristics to uncover a neural difference r. The
problem of automatically finding differential characteristics
Δ0 → Δl has been effectively addressed in previous works
such as [11, 19–23]. Similarly, the automatic search for boo-
merang characteristics has been successfully tackled in
[14, 17, 18]. Since this paper does not focus on facilitating
the automatic search for boomerang or differential crypt-
analysis, we will omit the specific details related to these
methods.

Let Δ0 → Δ1 →⋯→ Δl be the differential characteristic
that dominantly determines the probability of the differential
Δ0 → Δl. Additionally, let α0; α1;…; αm−1 be m linearly inde-
pendent neutral differences for this differential Δ0 → Δl and
Ω¼ Spanfα0; α1;…; αm−1g:. The following framework out-
lines the process for searching for a new neutral difference
that is linearly independent of α0; α1;…; αm−1.

Step 1: In the search model, specify the differences used
in the EBCT trail, namely ðr0;Δ0Þ :; ðr1;Δ1Þ :;…; ðrl;ΔlÞ :. To
ensure the expected propagation of differences, set Δ0;Δ1;…;
Δl as known values.

Step 2: Introduce constraints to prevent r0 from being
selected in Ω. This ensures that the newly discovered neutral
difference will be linearly independent of α0; α1;…; αm−1. An

efficient approach for achieving this is presented in Sec-
tion 3.3.

Step 3: Characterize the relationships between differences
in the EBCT trails and differential trails. Using this search
model, the solvers will return a solution of ðr0;Δ0Þ :; ðr1;
Δ1Þ :;…; ðrl;ΔlÞ : with the maximum neutral probability.

Upon completion of the above process, a new neutral
difference for the differential Δ0 → Δl, denoted by αm, will
be obtained. The neutral probability is estimated through an
EBCT trail, and Equation (17) suggests that intermediate
differences should be enumerated. Consequently, to obtain
a more precise estimation of the neutral probability, one can
iterate the aforementioned process to discover additional
EBCT trails. In such cases, Step 2 is modified as follows:

Step 2: Set r0¼ αm and introduce constraints to exclude
the previously found EBCT trails.

We constructed an automatic search model based on the
Boolean satisfiability problem (SAT), and the source code of
this paper is publicly available at https://github.com/PigI
nTheSky1234/Unveiling-the-Neutral-Difference-and-Its-A
utomated-Search.

Remark 1. It is possible to calculate the probability of LBCT
by directly connecting a single LBCT trail for one round with
a differential trail for the remaining rounds. However, at FSE
2022, Kidmose and Tiessen [24] pointed out a crucial issue
with this approach: when calculating boomerang probabili-
ties, directly connecting differential trails may result in trails
with a zero probability. To address this, they introduced the
concept of 3-difference trails. Notably, a 3-difference trail
can be viewed as a manifestation of an EBCT trail. Therefore,
to achieve a more precise probability estimation, we use
EBCT trails to calculate the probabilities of LBCT trails.
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3.3. The Method of Excluding a Linear Space from Fn
2 . As far

as we know, in differential-linear/neural cryptanalysis, it is
common to use multiple neutral differences simultaneously,
which forms a neutral space spanned by these differences. If
one wants to exclude all 2m neutral differences point by point
with 2m constraints to find a neutral difference, the compu-
tational burden of the solver would be greatly increased.
Next, we will give a solution to this problem with only one
constraint. Let m linearly independent neutral differences be
α0; α1;…; αm−1. Denote the neutral space spanned by these
neutral differences asΩ and the remaining space as Fn

2=Ω. In
this section, we will demonstrate how to identify neutral
differences for a given differential Δ0 → Δl within Fn

2=Ω
using existing solvers.

Theorem 3. Let ei¼ 1≪ i and Ω¼ Spanfe0; e1;…; em−1g:.
There holds that

x 2 Fn
2=Ω⇔ ∑

n−1

i¼m
x i½ �>0: ð18Þ

Proof. The necessary and sufficient condition for x2Ω is
that x½m� :¼ x½mþ 1� :¼⋯¼ x½n− 1� :¼ 0, which proves the
above. □

Theorem 4. Let α0; α1;…; αm−1 be m linearly independent
neutral differences and Ω¼ Spanfα0; α1;…; αm−1g:. Let φ :
Fn
2 → Fn

2 be a linear bijection and φðαiÞ :¼ ei for 0≤ i<m.
There holds that

x 2 Fn
2=Ω⇔ ∑

n−1

i¼m
φ xð Þ i½ �

� �
>0: ð19Þ

Proof. Let V ¼ Spanfe0; e1;…; em−1g :. Since φ is a linear bijec-
tion, it holds that x2Ω⇔ φðxÞ:2φðΩÞ :¼V . By Theorem 3,
this theorem holds. □

The following is a construction method for the linear
bijection φ :Fn

2 → Fn
2 . Let φðxÞ :¼Ax and B¼A−1. A is a

n× n binary inverse matrix. φðαiÞ :¼ ei indicates that αi¼
φ−1ðeiÞ :¼Bei¼Bi, where Bi is the ith column of B. There-
fore, α0; α1;…; αm−1 are the first m columns of B. Ensuring
the matrix B is invertible means that the linear bijection φðxÞ
:¼B−1x is obtained, which is easy by the linear algebra
techniques.

Once another neutral difference αm is obtaining, the
ðmþ 1Þ :-th column of B is replaced by αm. Once again, ensur-
ing the matrix B to be invertible will lead to an updated linear
bijection φðxÞ :¼B−1x. The number of constraints excluding
Ω spanned by m neutral differences is reduced from the
original 2m to 1, as stated in Theorem 4.

4. Application to SPECK

First, we apply the automatic search technique of neutral
difference to SPECK32 and experimentally validate its

effectiveness. Second, we enhance the differential-linear dis-
tinguishers for 11-round SPECK32 by incorporating neutral
differences, resulting in increased absolute values of
correlations.

4.1. SPECK. SPECK is a lightweight block cipher designed by
the US National Security Agency, whose round function is
depicted in Figure 1. For word size n2f16; 24; 32; 48; 64g :,
each variant is identified by SPECK2n=mn, where 2n is its
block size and mn is the key size. The rotation constants are
α¼ 7 and β¼ 2 for SPECK32 with 64-bit key, while α¼ 8
and β¼ 3 for the others. Since we do not facilitate properties
of the key schedules, their details are omitted.

4.2. The Neutral Subspaces for Two 2-Round Differentials.
For SPECK32, there is a 2-round differential characteristic
0x0209 0604→ 0x1800 0010→ 0x0040 0000 with a prob-
ability of 2−8. Table 4 shows the neutral space for this differ-
ential, which is spanned by the linearly independent neutral
differences.

The following is an example to illustrate the search pro-
cess introduced in Section 3.2. To search for a neutral differ-
ence for this differential trail, we specify the differences used
in the EBCT trail in the search model, namely ðr0;Δ0Þ :; ðr1;
Δ1Þ :; ðr2;Δ2Þ :. To ensure that the differences propagate as
expected, we set Δ0¼ 0x0209 0604, Δ1¼ 0x1800 0010, and
Δ2¼ 0x0040 0000 in the search model. Suppose that the
neutral difference 0x0219 0604 is known, one can find a
linear bijection φ where φð0x0209 0604Þ :¼ 1 and
φð0x0219 0604Þ :¼ 2. According to Theorem 4, one can
introduce the following constraint to prevent r0 from being
chosen from the linear space spanned by 0x0209 0604 and
0x0219 0604.

∑
n−1

i¼2
φ r0ð Þ i½ �

� �
>0: ð20Þ

Furthermore, one needs to characterize the relationships
between differences in EBCT trails and differential trails.
Using this search model, the solvers will yield a solution of
ðr0;Δ0Þ :; ðr1;Δ1Þ :; ðr2;Δ2Þ : with the maximum neutral
probability. Here, r0 represents the newly discovered neu-
tral difference. Suppose that 0x0040 0000 is the newly dis-
covered neutral difference. By employing an EBCT trail, the
neutral probability is estimated as bPr¼ 2−1. By setting r0¼
0x0040 0000 and repeating the aforementioned process, we
discovered a total of 8 EBCT trails. By using these EBCT

xi+1 ← (xi ⋙ α) ⊞ yi ⊕ ki
yi+1 ← (yi ⋘ β) ⊕ xi+1

xi

⋙ α
yi

⋘ β

xi+1 yi+1

ki
(7, 2)
(8, 3)(α, β) = 

for SPECK 32;
others.

FIGURE 1: The SPECK instance.
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trails, the theoretical estimation of neutral probability is 1,
and the experimental result is 1 as well. Additionally, Table 5
presents the corresponding conditions that improve the neu-
tral probabilities. Similar results for another 2-round differ-
ential 0x2a10 0004→ 0x2050 2040→ 0x8000 0100 with a
probability of 2−6 are shown in Tables 6 and 7.

The input difference is definitely a neutral difference with
a probability of 1. However, it is generally not useful for
further cryptanalysis as exchanging two plaintexts in a pair
of plaintext holds little value. It is crucial to note that not
only should we avoid using the input difference as a neutral
difference but also include it in the neutral space used, which
is inappropriate.

4.3. Enhanced Differential-Linear Distinguishers by Neutral
Differences. This section reviews how to construct a more
effective distinguisher by a simple DL approximation when
enough neutral differences are given. Furthermore, we pres-
ent the improved distinguishers for 11-round SPECK32.

The correlation [25] of a differential-linear approxima-
tion ðΔ;ΓÞ: for a vectorial Boolean function E :Fn

2 → Fm
2 is

defined as follows:

Cor Δ;Γð Þ ¼ 1
2n

∑
x2Fn

2

−1ð ÞΓ⋅ E xð Þ⊕E x⊕Δð Þð Þ; ð21Þ

where Δ2Fn
2 and Γ 2Fm

2 . Assuming that a DL trail ðΔin;ΓÞ :

has a correlation pq, we aim to enhance the correlation by
incorporating m neutral differences of the prepended short-

round differential ðΔin;ΔoutÞ : with a probability of p. Under
the condition that 2m ≥ q−2, Beierle et al. [5] pointed out that
the DL distinguisher ðΔin;ΓÞ : would work as follows:

Step 1: Randomly generate a plaintext x, and then use m
neutral differences to generate the corresponding plaintext
pair structure Px;Ω;Δin

¼fðx⊕ y; x⊕ y⊕ ΔinÞjy2Ωg :, where
Ω is the space spanned by these m neutral differences.

TABLE 4: The subspace for 2-round differential 0x0209 0604→
2−8

0x0040 0000 of SPECK32, which is spanned by the first 26 neutral
differences with non-zero neutral probabilities.

No. Neutral diff. bPr1 N
Pr

No. Neutral diff. bPr N
Pr

EST EXP EXP EST EXP EXP

1 0x0209 0604 − −
5 1.002 1.003 1.004 17 0x2800 0010 2−2 256 0.68 0.75 1.00

2 0x0219 2604 2−1 45 1.005 1.00 1.00 18 0x0a5d 3e14 2−3 69 0.75 0.75 1.00
3 0x0040 0000 2−1 8 1.00 1.00 1.00 19 0x6800 0010 2−3 256 0.62 0.75 1.00
4 0x0249 8604 2−1 4 1.00 1.00 1.00 20 0x0e09 060c 2−2 3 0.38 0.37 1.00
5 0x4000 0080 2−2 111 1.00 1.00 1.00 21 0x0a00 0004 2−2 7 0.75 0.75 1.00
6 0x0030 2000 2−2 53 1.00 1.00 1.00 22 0x1800 0010 2−3 256 0.45 0.50 1.00
7 0x8000 0100 2−2 42 1.00 1.00 1.00 23 0x0500 0002 2−3 24 0.50 0.50 1.00
8 0x8002 0100 2−2 30 1.00 1.00 1.00 24 0x0400 0008 2−1 1 0.50 0.51 0.00
9 0x0020 4000 2−2 45 1.00 1.00 1.00 25 0x1000 0000 2−2 2 0.50 0.50 0.00
10 0x2000 0040 2−2 256 0.99 1.00 1.00 26 0x1000 0020 2−2 9 0.50 0.50 0.00
11 0xc209 0684 2−3 114 1.00 1.00 1.00 27 0x0000 0004 − − No No No
12 0x021d 1e04 2−3 61 1.00 1.00 1.00 28 0x0000 0200 − − No No No
13 0x0289 0605 2−2 135 0.88 0.87 1.00 29 0x0000 0400 − − No No No
14 0x00a0 4000 2−3 256 0.79 0.87 1.00 30 0x0000 0800 − − No No No
15 0x0140 8000 2−2 70 0.75 0.75 1.00 31 0x0000 1000 − − No No No
16 0x0100 0002 2−2 26 0.75 0.75 1.00 32 0x0001 0000 − − No No No6

1 bPr represents the theoretical estimation of the neutral probability obtained from a single EBCT trial. 2Pr=neutral probability. EST is a theoretical estimation
of the neutral probability using N EBCT trails. The search program is set to find 256 single trails, while N<256 indicates that there are only N EBCT trails
found. 3 EXP represents the empirical results of the neutral probabilities for these neutral differences. The neutral probability is verified using 215 plaintext pairs
that satisfy the expected differential characteristic. 4EXP represents the empirical results of the neutral probabilities for these neutral differences under the
conditions specified in Table 5. These conditions are common for all 32 neutral differences. 5 The input difference is definitely a neutral difference with a
probability of 1, but it is generally of no value for further cryptanalysis. Consequently, the input difference should be excluded out of the neutral space used for
subsequent cryptanalysis. 6 No represents the neutral probability is 0. These 32 differences form a basis for the vector space F32

2 .

TABLE 5: The conditional neutral differences and corresponding
conditions for 2-round differential 0x0209 0604→

2−8
0x0040 0000,

where xl‖xr be a plaintext of SPECK32.

Neutral diff.
Pr

Condition
EXP EXP

0x0289 0605 0.87 1.00

xl½10� : ⊕ xr½3�:¼ 0
0x00a0 4000 0.87 1.00
0x0140 8000 0.75 1.00
0x0100 0002 0.75 1.00

0x2800 0010 0.75 1.00
xl½11� : ⊕ xr½4�:¼ 10x0a5d 3e14 0.75 1.00

0x6800 0010 0.75 1.00

0x0e09 060c 0.37 1.00
xl½12� : ⊕ xr½5�:¼ 0

0x0a00 0004 0.75 1.00

0x1800 0010 0.50 1.00 xl½10� ¼ 0; xl½12� ¼ 1

0x0500 0002 0.50 1.00 xl½8� ¼ 1; xr½1� ¼ 1

EXP (resp. EXP) represents the empirical results of the neutral probabilities
(under the conditions specified in the last column).
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Step 2: The corresponding cipher pair structure of Px;Ω;Δin

is denoted by fðc0; c00Þ; ðc1; c01Þ;…; ðc2m−1; c02m−1Þg:. Then, one
can compute

Cor ¼ 1
2m

∑
0≤i<2m

−1ð ÞΓ⋅ ci⊕c0ið Þ: ð22Þ

Step 3: If the correlation observed using 2m pairs is
approximately q, the distinguisher succeeds. Otherwise, go
to Step 1.

The essential requirement for this distinguisher to be
effective is to identify sufficient neutral differences so that
2m ≥ 1

q2. With probability p, the plaintext pair structure
Px;Ω;Δin

makes the short-round differential satisfied. Denote
the product of the neutral probabilities of the neutral differ-
ences utilized by p̄. With probability pp̄, the distinguisher
succeeds in Step 3. Thus, the data complexity of ðΔin;ΓÞ :

required is Oðp−1p̄−1q−2Þ : instead of Oðp−2q−2Þ :. Note that the

statistical value Cor is derived from 2m ciphertext pairs.
When comparing with the DL distinguishers without using
the neutral difference technique, we regard the (equivalent)
correlations of DL (ND) as p

1
2p̄

1
2q, since the data complexity

required is Oðp−1p̄−1q−2Þ :. Table 8 summarizes the
differential-linear distinguishers for 11-round SPECK32.

5. Application to LEA

5.1. LEA. The LEA family of block ciphers not only serves as
the national standard of the Republic of Korea but also is
included in the ISO/IEC 29192-2:2019 standard. The LEA
family has a block size of 128 bits and consists of three
different key sizes: 128, 192, and 256 bits, denoted by
LEA128, LEA192, and LEA256, respectively. Figure 2(a) pro-
vides a schematic view of the round function of LEA. The
inputs/outputs of each round of LEA consist of four 32-bit
words.

5.2. Enhanced Differential-Linear Distinguishers by Neutral
Differences. For LEA, there is a 4-round differential charac-
teristic shown in Table 9, with a probability of 2−33. Table 10
of Appendix A outlines 61 linearly independent neutral dif-
ferences for this differential. Since not all of the neutral
probabilities are 1, it is significant to know the probability
of obtaining a plaintext structure consisting of 261 right pairs
from a right pair. In this case, the statistical variable will
clearly demonstrate advantages when the key is guessed cor-
rectly. Though it is computationally infeasible to verify it
directly, we randomly select subspaces spanned by five neu-
tral differences and verify the probability of obtaining 25

right pairs from a right pair. Denote the product of the five
individual neutral probabilities by p, and let the empirical
probability of obtaining 25 right pairs be bp. We utilized 212

right pairs to repeat the above experiments 100 times and

TABLE 6: The subspace for 2-round differential 0x2a10 0004→
2−6

0x8000 0100 of SPECK32, which is spanned by the first 29 linearly
independent neutral differences with non-zero neutral probabilities.

No. Neutral diff. bPr N
Pr

No. Neutral diff. bPr N
Pr

EST EXP EXP EST EXP EXP

1 0x2a10 0004 − − 1.00 1.00 1.00 17 0x0140 8000 2−2 173 0.75 0.75 1.00
2 0x2810 0000 2−1 10 1.00 1.00 1.00 18 0x2b10 0006 2−2 65 0.75 0.75 1.00
3 0x2a30 0004 2−3 38 1.00 1.00 1.00 19 0x0a04 0804 2−1 22 0.75 0.75 1.00
4 0x0040 0000 2−1 7 1.00 1.00 1.00 20 0x2a58 3004 2−3 22 0.50 0.50 1.00
5 0x0040 8000 2−1 13 1.00 1.00 1.00 21 0x2a16 0404 2−3 102 0.75 0.75 1.00
6 0x0060 4000 2−2 70 1.00 1.00 1.00 22 0x5000 0060 2−4 256 0.45 0.49 1.00
7 0x6a10 0084 2−2 256 0.93 0.98 1.00 23 0x201c 0800 2−2 22 0.50 0.50 0.52
8 0x6a10 0004 2−3 256 0.83 0.98 1.00 24 0x3a10 0004 2−2 16 0.50 0.50 0.50
9 0x8000 0100 2−2 256 0.93 0.97 1.00 25 0x1e10 001c 2−2 9 0.25 0.25 0.50
10 0xea10 0084 2−3 256 0.86 0.97 1.00 26 0x2e10 0004 2−2 27 0.50 0.50 0.49
11 0x4001 0080 2−3 256 0.62 0.94 1.00 27 0x1000 0020 2−3 8 0.50 0.50 0.00
12 0x2a11 0204 2−2 256 0.93 0.94 1.00 28 0x0008 1000 2−3 2 0.50 0.50 0.00
13 0x2a12 0404 2−2 93 0.88 0.87 1.00 29 0x0400 0008 2−3 9 0.50 0.50 0.00
14 0x2a90 0005 2−2 256 0.87 0.88 1.00 30 0x0000 0004 − − No No No
15 0x0002 0000 2−3 256 0.85 0.88 1.00 31 0x0000 0010 − − No No No
16 0x2ab0 4004 2−3 256 0.78 0.88 1.00 32 0x0000 0800 − − No No No

The notations are the same as Table 4.

TABLE 7: The conditional neutral differences and corresponding
conditions for 2-round differential 0x2a10 0004→

2−6
0x8000 0100,

where xl‖xr be a plaintext of SPECK32.

Neutral diff.
Pr

Condition
EXP EXP

0x0140 8000 0.75 1.00
xl½10� : ⊕ xr½3� :¼ 0

0x2b10 0006 0.75 1.00

0x0a04 0804 0.75 1.00
xl½3� : ⊕ xr½12� :¼ 00x2a58 3004 0.50 1.00

0x2a16 0404 0.75 1.00

0x5000 0060 0.49 1.00 xl½12� : ⊕ xr½5� :¼ 0

EXP (resp. EXP) represents the empirical results of the neutral probabilities
(resp. under the conditions specified in the last column).
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found 0:398≤bp=p≤ 3:061, and the average of bp=p is 1.033.
In summary, this experiment indicates that the probability of
obtaining 2m right pairs using m neutral differences can be
approximated by the product of the individual neutral prob-
ability experimental values of these neutral differences,
which has been verified in [6]. Consequently, the theoretical
probability of obtaining 261 right pairs from a right pair using
these 61 neutral differences is 2−29:96. The differential-linear
distinguisher that employs the neutral difference technique is
presented in Table 8.

5.3. The 18-Round Key Recovery Attack on LEA. To attack the
18-round LEA with key sizes of 192 and 256 bits, we employ
the 17-round DL (ND) distinguisher described in Table 8 by
adding an additional round. The attack program is outlined
in Algorithm 1, which recovers 60 bits of subkey in the last
round.

For the convenience of introducing the 18-round key recov-
ery attack, we use the following notations (see Figure 2(b)):

zi0; z
i
1; z

i
2; z

i
3ð Þ

¼ x170 ; x171 ⊕ rk171 ; x172 ⊕ rk173 ; x173 ⊕ rk175ð Þ;
k0; k1; k2ð Þ
¼ rk170 ; rk171 ⊕ rk172 ; rk173 ⊕ rk174ð Þ;
yi0; y

i
1; y

i
2ð Þ

¼ x180 ⋙ 9; x181 ⋘ 5; x182 ⋘ 3ð Þ;
ci0; c

i
1; c

i
2ð Þ

¼ yi0 ⊕ zi0 ⊕ zi1 ⊕ k0; yi1 ⊕ zi1 ⊕ zi2 ⊕ k1; yi2 ⊕ zi2 ⊕ zi3 ⊕ k2ð Þ;

;

ð23Þ

where i indicates the current ciphertext comes from the ith
ciphertext pair. If i is obvious in the context, i will be omitted.
Similarly, let ðz̄ i0;⋯; z̄ i3; ȳ

i
0; ȳ

i
1; ȳ

i
2; c̄

i
0; c̄

i
1; c̄

i
2Þ : represent the

other ciphertext for the ith ciphertext pair.
Consider the linear mask ½0; 29; 37; 38; 61; 68; 88; 91;

101; 102; 105; 114�:. The statistical value Cor is calculated as
follows:

Cor k0;k1;k2ð Þ ¼ ∑
0⩽i<2m

−1ð Þ zi3⊕z̄ i3ð Þ 0;29½ �⊕ zi2⊕z̄ i2ð Þ 5;6;29½ �⊕ zi1⊕z̄ i1ð Þ 6;26;29½ �⊕ zi0⊕z̄ i0ð Þ 5;6;9;18½ �; ð24Þ

⋘9 ⋙5 ⋙3

x1
ixi

0 x2
i x3

i

x1
i+1x0

i+1 x2
i+1 x3

i+1

rk4
i

rk5
irk3

irk1
i

rk2
irk0

i

ðaÞ

z0 z1 z2 z3

k0 k1 k2

y0 y1 y2

ðbÞ
FIGURE 2: The LEA instance: (a) the round function of LEA; (b) parallel modular additions.

TABLE 9: A 4-round differential characteristic for LEA.

r Differences − logðpiÞ:

0 0x8a000080 80402080 80402210 c0402234
1 0x80400014 80000014 88000004 8a000080 17
2 0x80000000 80400000 80400010 80400014 10
3 0x80000000 80000000 80000000 80000000 6
4 0x00000000 00000000 00000000 80000000 0

−∑4
i¼1 logðpiÞ: 33
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where ðzi3 ⊕ z̄ i3Þ :½0; 29�:¼ zi3½0� : ⊕ z̄ i3½0� : ⊕ zi3½29� : ⊕ z̄ i3½29� :.
Here, zi0; y

i
0; y

i
1; y

i
2; z̄

i
0; ȳ

i
0; ȳ

i
1 and ȳ i2 can be directly obtained

from the ith ciphertext pair. We guess the least significant 29
bits of both k0 and k1 to obtain the least significant 29 bits of
z1; z2; z̄1; z̄2, i.e., z1¼ y0⊟ðz0 ⊕ k0Þ :; z2¼ y1⊟ðz1 ⊕ k1Þ :. In
this scenario, we also obtain the least significant 30 bits of
c0; c1. For example, c0½0� :¼ 0 and c0½jþ 1�:¼ðz0 ⊕ k0Þ :½j�

:&c0½j� : ⊕ ðz0 ⊕ k0Þ :½j� :&z1½j�: ⊕ c0½j� :&z1½j� : for 0≤ j<29. Due
to the nature of the additions, we have the following:

z3 0½ �⊕ z̄3 0½ � ¼ z0 ⊕ y0 ⊕ y1 ⊕ y2ð Þ 0½ �⊕ k0 ⊕ k1 ⊕ k2ð Þ 0½ �
  ⊕ z0 ⊕ y0 ⊕ y1 ⊕ y2ð Þ 0½ �⊕ k0 ⊕ k1 ⊕ k2ð Þ 0½ �

¼ z0 ⊕ y0 ⊕ y1 ⊕ y2ð Þ 0½ �⊕ z0 ⊕ y0 ⊕ y1 ⊕ y2ð Þ 0½ �
ð25Þ

and

z1 29½ �⊕ z̄1 29½ � ¼ z0 29½ �⊕ c0 29½ �⊕ k0 29½ �⊕ y0 29½ �⊕ z̄0 29½ �⊕ c̄0 29½ �⊕ k0 29½ �⊕ ȳ0 29½ �
¼ z0 29½ �⊕ z̄0 29½ �⊕ c0 29½ �⊕ c̄0 29½ �⊕ y0 29½ �⊕ ȳ0 29½ �:

ð26Þ

Additionally, we utilize the conditional linear approxi-
mation proposed by Biham and Carmeli [26] to compute
z3½29�: and z̄3½29�:. See Appendix B for more details. For clar-
ity, let b0‖b1 and b2‖b3 represent ðz2 ⊕ k2 ⊕ y2Þ :½28 : 27� : and
ðz̄2 ⊕ k2 ⊕ ȳ2Þ :½28 : 27� :, respectively. Then we have the fol-
lowing:

z3 29½ �⊕ z̄3 29½ � ¼ z2 29½ �⊕ z̄2 29½ �⊕ y2 29½ �⊕ ȳ2 29½ �
⊕ y2 28½ �&b0ð Þ⊕ y2 27½ �& b0 ⊕ 1ð Þ&b1ð Þ
⊕ ȳ2 28½ �&b2ð Þ⊕ ȳ2 27½ �& b2 ⊕ 1ð Þ&b3ð Þ;

ð27Þ

where b0‖b1 ≠ 0 and b2‖b3 ≠ 0. We define Ci
j ¼ cij ⊕ c̄ij, Z

i
j ¼

zij ⊕ z̄ ij, and Yi
j ¼ yij ⊕ ȳ ij for simplicity. As a result, the sta-

tistical value can be rewritten as follows:

Cor k0;k1;k2ð Þ ¼ ∑
0 ≤ i<2m;

b0 b1 ≠ 0; b2k kb3 ≠ 0

−1ð Þ
Zi
2 5; 6½ �⊕ Zi

1 6; 26½ �⊕ Zi
0 0; 5; 6; 9; 18; 29½ �

⊕Yi
3 0½ �⊕ Yi

2 0; 29½ �⊕ Yi
1 0½ �⊕ Yi

0 0; 29½ �⊕ Ci
0 29½ �⊕S ; ð28Þ

Input: m neutral differences M1;…;Mm and corresponding subspace Ω← SpanfM1;…;Mmg :, number of replications R, plaintext
structures Pxj;Ω;Δin

¼fðxj ⊕ y; x⊕ y⊕ ΔinÞjy2Ωg: for 0≤ j<R, threshold Θ.

Output: List of key candidates, denoted by K.

1 K← ;
2 for 1≤ j≤R do

3 Choose the jth plaintext structure Pxj ;Ω;Δin

/ ∗ Denote the ciphertext pairs, encrypted from Pxj;Ω;Δin
, by fðc0; c00Þ; ðc1; c01Þ;…; ðc2m−1; c02m−1Þg:

∗/

4 for each possible k do

5 Cork¼ 0

6 for 0≤ i<2m do

// A filtering process that enhances advantages.

/ ∗ Deck represents one round decryption with k. Γ represents the output mask, and N is the
number of ciphertext pairs to calculate this correlation. ∗/

7 if ðci; c0iÞ: is useful for current k then

8 Corkþ ¼ 1
N ð−1ÞΓ⋅ðDeckðciÞ⊕Deckðc0iÞÞ end

8 else

10 Continue

// Without losing generality, let the correlation of the bottom DL distinguisher be less
than 0 and Θ<0.

11 if Cork<Θ then

12 Store the key candidate k to K.

ALGORITHM 1: Pseudocode for the Key Recovery of Differential-Linear Attack.
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where

S¼ y2 28½ �&b0ð Þ⊕ y2 27½ �& b0 ⊕ 1ð Þ&b1ð Þ⊕ ȳ2 28½ �&b2ð Þ⊕ ȳ2 27½ �& b2 ⊕ 1ð Þ&b3ð Þ: ð29Þ

Note that only 3
4 ×

3
4 ¼ 2−0:83 of the generated

plaintext–ciphertext pairs are used simultaneously. Conse-
quently, we need to guess 60 bits of the subkey, i.e., k2½28� :;
k2½27� :, k1½28 : 0� :, and k0½28 : 0� :.

The 18-round attack utilizes all 61 neutral differences in
Table 10 simultaneously and sets the parameter R as
233þ29:96¼ 262:96. Let N ¼ 261−0:83¼ 260:17 and c¼ − 2−26:04

represent the correlation of the bottom DL approximation
(see the last row of Table 8). If the guessed subkey is correct
and each pair of Px;Ω;Δin

satisfies the prepended short-round
differential, the statistical variable Corðk0;k1;k2Þ follows the
normal distribution with mean of c and variance of
ð1þcÞð1−cÞ

N . Otherwise, Corðk0;k1;k2Þ follows the normal distribu-
tion with mean of 0 and variance of 1

N. When the threshold Θ
is set to − 2−26:26, the right key will pass through Line 9 of
Algorithm 1 with a probability of Φð Θ−cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þcÞð1−cÞ=N
p Þ :¼ 0:99

while a wrong key will pass with a probability of Φð Θ−0ffiffiffiffiffiffi
1=N
p Þ

:¼ 2−145. Here, ΦðxÞ:¼ 1ffiffiffiffi
2π
p

R
x
−1e

−x2
2 dx is the distribution

function of the standard normal distribution. The expected
number of wrong keys in key candidates is 262:96 × 260 ×
2−145 ≈ 0. The data complexity should be 262:96 × 261 × 2¼
2124:96 chosen plaintext pairs and the time complexity should
be 2124:96 × 260¼ 2184:96 operations. Each operation consists
of a partial decryption for one round, a dot product, and an

addition. Roughly estimated, we assume that the time com-
plexity for one operation is approximately equal to that of
one round of decryption. Therefore, the final time complex-
ity for our 18-round attack is 2184:96=18¼ 2180:80 full encryp-
tions of 18-round LEA. The success rate is determined by the
probability of obtaining a plaintext structure, where each
plaintext pair satisfies the prepended short-round differential
characteristic, i.e., Succ¼ 1− ð1 − 2−33−29:96Þ233þ29:96 ¼ 0:632.
The comparison of our attack with previous attacks on LEA
is shown in Table 2.

6. Conclusion

In this paper, we have investigated the link between neutral
difference and boomerang cryptanalysis. Based on it, we
introduce an automated approach for identifying linearly
independent neutral differences. Consequently, we present
the improved differential-linear distinguishers for SPECK32
and LEA, along with the 18-round attacks on LEA192 and
LEA256 with the lowest time complexity up to date.

Appendix

A. Neural Differences for 4-Round Differential
on LEA

TABLE 10: The neutral differences for 4-round differential, as shown in Table 9.

No. Neutral diff. Pr

1 0x8a000080 80402080 80402210 c0402234 1.00
2 0x00000000 00000000 00000000 00000004 1.00
3 0x00000000 00000000 00000010 00000010 0.99
4 0x00000000 00400000 00400000 00400000 1.00
5 0x00000000 00000000 00000000 80000000 0.89
6 0x00000000 00000000 00000000 00004000 0.99
7 0x00000000 00000000 00000000 00008000 0.99
8 0x00000000 00000000 00000000 00010000 0.99
9 0x00000000 00000000 00000000 00020000 0.99
10 0x00004000 00000000 00000000 00000000 0.99
11 0x00008000 00000000 00000000 00000000 0.99
12 0x00010000 00000000 00000000 00000000 0.98
13 0x00000000 00000000 00000000 00040000 0.98
14 0x00000000 00000000 00000000 00080000 0.97
15 0x00020000 00000000 00000000 00000000 0.96
16 0x10000000 00000000 00000000 00000000 0.94
17 0x00000000 00000000 00080000 00000000 0.94
18 0x20000000 00000000 00000000 00000000 0.94
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TABLE 10: Continued.

No. Neutral diff. Pr

19 0x00000000 00000000 00000000 00100000 0.95
20 0x00040000 00000000 00000000 00000000 0.93
21 0x40000000 00000000 00000000 00000000 0.92
22 0x00000000 00000000 00000000 00200000 0.92
23 0x00000000 00000000 00100000 00000000 0.90
24 0x00000100 00000000 00000000 00000000 0.81
25 0x00000000 00040000 00040000 00000000 0.91
26 0x00000000 80000000 80000000 00000000 0.80
27 0x80000000 00000000 00000000 00000000 0.90
28 0x00080000 00000000 00000000 00000000 0.86
29 0x00000000 00000000 00000000 00800000 0.86
30 0x00000000 00000000 00200000 00000000 0.83
31 0x00000000 00004000 00004000 00000000 0.82
32 0x00000000 00080000 00000000 00000000 0.84
33 0x00000200 00000000 00000000 00000000 0.81
34 0x00000000 00008000 00008000 00000000 0.77
35 0x00000000 00000000 00000000 01000000 0.78
36 0x0a000080 00002080 00002200 40002221 0.74
37 0x0a010080 00012080 00012200 40012220 0.73
38 0x0a000080 00002080 00802200 40802220 0.73
39 0x00000000 00000000 00004000 00005000 0.74
40 0x8a000080 80502080 80502210 c0502234 0.68
41 0x8a000080 80402080 8040a210 c040a234 0.66
42 0x8a000080 80402080 81402210 c1402234 0.60
43 0x0a000080 00002080 00002600 40002620 0.57
44 0x00000000 00000020 00000000 00000000 0.65
45 0x00000000 00000000 00010000 00010000 0.55
46 0x00000000 00000000 00000000 04000000 0.51
47 0x80000000 80420000 80420010 80420014 0.48
48 0x00000000 00000000 00000002 00000002 0.39
49 0x80000000 90400000 90400010 90400014 0.46
50 0x8a000080 80402080 90402210 d0402234 0.44
51 0x0a200080 00202080 00202200 40202220 0.41
52 0x0a000480 00002480 00002600 40002620 0.47
53 0x8a000080 80402480 80402610 c0402634 0.43
54 0x80000020 80400000 80400010 80400114 0.43
55 0x0a000080 00002080 00002a00 40002a20 0.45
56 0x80000000 80000000 80000000 80000002 0.50
57 0x80000000 80400000 80401010 80401014 0.48
58 0x80000000 80400000 82400010 82400014 0.44
59 0x00000000 00200000 00200000 00200000 0.42
60 0x0a000081 00002081 00002201 40002221 0.41
61 0x00800000 00800000 00800000 00800000 0.40
62 0x80000000 80c00000 80c00010 80c00014 0.40

The 2nd to 35th neutral differences were proposed in [6]. The empirical results of the neutral probabilities are obtained from 218 right pairs.
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B. Conditional Linear Approximations
for Additions

This section introduces the conditional linear approximation
technique, which is also known as the partitioning technique
proposed by Biham and Carmeli [26]. This technique has the
ability to amplify the bias of linear approximations of additions.
Furthermore, it has been applied to the differential-linear

attack on ARX ciphers [5, 6, 27]. The core of the conditional
linear approximation technique is shown in Lemma B.1.

Lemma B.1 (Page 10, [5]). Let y¼ x⊞ z and s¼ y⊕ x,
where x; y; z 2Fn

2 . Let Si
b0b1
¼fðx; yÞ 2F2n

2 js½i − 1� ¼ b0;
s½i − 2� ¼ b1g :. For i≥ 3, we have the following:

z i½ � ¼
x i½ �⊕ y i½ �⊕ y i − 1½ �⊕ 1; with corr: 1;  if   x; yð Þ 2 Si

1∗

x i½ �⊕ y i½ �⊕ y i − 2½ �⊕ 1; with corr: 1;  if   x; yð Þ 2 Si
01

x i½ �⊕ y i½ �⊕ y i − 3½ �⊕ 1; with corr: 0:5;  if   x; yð Þ 2 Si
00

8><>: ; ðB:1Þ

where Si
1∗¼Si

10 ∪Si
11 and Si

0∗¼Si
00 ∪ Si

01.
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