Research Article

Deciding Irreducibility/Indecomposability of Feedback Shift Registers Is NP-Hard

Lin Wang (i)
Science and Technology on Communication Security Laboratory, Chengdu 610041, Sichuan, China
Correspondence should be addressed to Lin Wang; wanglin4math@outlook.com

Received 14 June 2023; Revised 24 July 2023; Accepted 20 December 2023; Published 7 March 2024
Academic Editor: Guowen Xu
Copyright © 2024 Lin Wang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Feedback shift registers (FSRs) are used as a fundamental component in electronics and confidential communication. A FSR f is said to be reducible if all the output sequences of another FSR g can also be generated by f and the FSR g costs less memory than f. A FSR is said to be decomposable if it has the same set of output sequences as a cascade connection of two FSRs. Two polynomialtime computable transformations from Boolean circuits to FSRs are proposed such that the output FSR of the first (resp. second) transformation is irreducible (resp. indecomposable) if and only if the input Boolean circuit is satisfiable. Through the two transformations, it is proved that deciding irreducibility (indecomposability) of FSRs is NP-hard. Additionally, FSRs are constructed to show that there exist infinitely many irreducible (resp. indecomposable) FSRs which are decomposable (resp. reducible).

1. Introduction

Feedback shift registers (FSRs) are broadly used in spread spectrum radio, control engineering, and confidential digital communication. As a result, this subject has attracted comprehensive research over half a century. Particularly, FSRs play a significant role in the stream cipher finalists of the eSTREAM project [1].

As shown in Figure 1, an n-stage FSR consists of n-bit registers $x_{0}, x_{1}, \ldots, x_{n-1}$ and an n-input feedback logic f. A vector $\mathbf{x} \in \mathbb{F}_{2}^{n}$ is called a state of this FSR, and the values stored in bit registers update themselves along with clock impulses as follows:

$$
\begin{equation*}
\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}, f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)\right), \tag{1}
\end{equation*}
$$

and the mapping defined by Equation (1) is called the state transformation of this FSR. As the stage n and the feedback logic f uniquely determine the FSR, we denote the FSR in Figure 1 by $\operatorname{FSR}_{n}(f)$. Let $\operatorname{Seq}_{n}(f)$ denotes the set of sequences generated by $\mathrm{FSR}_{n}(f)$, i.e.,

$$
\begin{align*}
& \operatorname{Seq}_{n}(f)=\left\{s=\left(s_{0}, s_{1}, \ldots\right) \in \mathbb{F}_{2}^{\infty}: \forall t \geq 0\right. \tag{2}\\
& \left.s_{t+n}=f\left(s_{t}, s_{t+1}, \ldots, s_{t+n-1}\right)\right\}
\end{align*}
$$

where \mathbb{F}_{2}^{∞} is the set of all binary sequences. The subscript n in $\operatorname{FSR}_{n}(f)$ and $\operatorname{Seq}_{n}(f)$ is neglected if the stage n is unambiguous or unnecessary in the context.

If $f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=c_{0} x_{0} \oplus c_{1} x_{1} \oplus \cdots \oplus c_{n-1} x_{n-1}$, where $c_{0}, c_{1}, \ldots, c_{n-1} \in \mathbb{F}_{2}$, then $\operatorname{FSR}(f)$ is called a linear feedback shift register (LFSR), and $p(x)=x^{n} \oplus c_{n-1} x^{n-1} \oplus \cdots \oplus c_{1} x \oplus c_{0}$ is called its characteristic polynomial. This FSR is also denoted by $\operatorname{LFSR}(p)$. For the above linear function f and $b \in \mathbb{F}_{2}$, $\operatorname{FSR}(f \oplus b)$ is said to be affine. A nonaffine FSR is called a nonlinear feedback shift register (NFSR).

For $\operatorname{FSR}_{n}(f)$, if there exists $\operatorname{FSR}_{m}(g)$, such that $m<n$ and $\operatorname{Seq}(g) \subseteq \operatorname{Seq}(f)$, then $\operatorname{FSR}(f)$ is said to be reducible and $\operatorname{FSR}(g)$ is called a subFSR of $\operatorname{FSR}(f)$. Otherwise, $\operatorname{FSR}(f)$ is said to be irreducible. Informally, the subFSR $\operatorname{FSR}(g)$ of $\operatorname{FSR}(f)$ costs less memory than $\operatorname{FSR}(f)$ and the sequences generated by $\operatorname{FSR}(g)$ can also be generated by $\operatorname{FSR}(f)$.

The finite state machine in Figure 2 is called the cascade connection of $\operatorname{FSR}_{n}(f)$ into $\operatorname{FSR}_{m}(g)$. The Grain family ciphers use the cascade connection of a LFSR into a NFSR [2] and such cascade is called the grain-like structure, and the lightweight stream cipher LIZARD employs the cascade connection of two NFSRs [3]. Green and Dimond [4] defined the product FSR (the product of FSRs is denoted by "." in [4],

Figure 1: A feedback shift register with feedback $\operatorname{logic} f$.

Figure 2: The cascade connection of $\mathrm{FSR}_{n}(f)$ into $\mathrm{FSR}_{m}(g)$.
while by "*" in [5]. We follow the latter in order to avoid ambiguity with the period or conventional multiplication.) of
$\operatorname{FSR}(f)$ and $\operatorname{FSR}(g)$, denoted by $\operatorname{FSR}(f) * \operatorname{FSR}(g)$, to be characterized by its feedback logic as follows:

$$
\begin{align*}
\left(x_{0}, x_{1}, \ldots, x_{n+m-1}\right) \mapsto & f\left(g\left(x_{0}, x_{1}, \ldots, x_{m-1}\right) \oplus x_{m}, g\left(x_{1}, x_{2}, \ldots, x_{m}\right) \oplus x_{m+1}, \ldots\right. \\
& \left.g\left(x_{n-1}, x_{n}, \ldots, x_{n+m-2}\right) \oplus x_{n+m-1}\right) \oplus g\left(x_{n}, x_{n+1}, \ldots, x_{n+m-1}\right) \tag{3}
\end{align*}
$$

and showed that $\operatorname{FSR}(f) * \operatorname{FSR}(g)$ generates exactly the same set of sequences as the device in Figure 2. Given any $\operatorname{FSR}(h)$, if there exist $\operatorname{FSR}(f)$ and $\operatorname{FSR}(g)$ satisfying $\operatorname{FSR}(h)=\operatorname{FSR}(f) * \operatorname{FSR}(g)$, then $\operatorname{FSR}(h)$ is said to be decomposable and $\operatorname{FSR}(f)$ (resp. $\operatorname{FSR}(g))$ is called its left (resp. right) $*$-factor [6]. Otherwise, $\operatorname{FSR}(h)$ is said to be indecomposable. It is known that decomposable FSRs outputting the zero sequence are also reducible [4].

It is appealing to decide whether a FSR is (ir)reducible or (in)decomposable for the following three reasons. First, it enables a new perspective on analysis of stream ciphers. A reducible/decomposable FSR in unaware use may undermine the claimed security of stream ciphers, e.g., causing inadequate period of the output sequences. Dependent on specific ciphers, the divide-and-conquer method $[7,8]$ possibly decreases the cost of a brute force attack on a product FSR $\mathrm{FSR}_{n}(f) * \mathrm{FSR}_{m}(g)$. Moreover, note that all sequences generated by $\operatorname{FSR}(g)$ is also generated by $\operatorname{FSR}(f) * \operatorname{FSR}(g)$ if $\operatorname{FSR}(f)$ outputs the zero sequence; and if $\operatorname{FSR}(g)$ is particularly a LFSR in this case, then $\operatorname{FSR}(f) * \operatorname{FSR}(g)$ generates a family of linear recurring sequences, vulnerable to the Berlekamp-Massey algorithm [9, 10]. Second, deciding (ir) reducibility/(in)decomposability is applied for efficiently implementing FSRs. On the one hand, it costs less memory to replace a FSR with its large-stage subFSR (if there is one) while generating part of its output sequences. On the other hand, similar to the idea of Dubrova [11], implementing a decomposable FSR by its corresponding cascade connection as in Figure 2 possibly reduces the circuit depth of the feedback logics, in favor of less propagation time and higher data throughput. Third, an algorithm testing (ir)reducibility/(in) decomposability helps to design useful FSRs. Since the density of irreducible FSRs is lower-bounded by 0.4461 for $n \geq 6$ [12], a great number of irreducible NFSRs can be found if deciding irreducibility of FSRs is feasible; a kind of FSRs generating maximal-length sequences were also constructed based on the inherent structure of decomposable FSRs [5].
1.1. Our Contribution. This correspondence addresses irreducibility and indecomposability of FSRs from the perspective of worst-case computational complexity. Instead of representing FSRs by ANFs of their characteristic functions, we use Boolean circuits to characterize feedback logics of FSRs and measure the size of a FSR by the number of gates in its corresponding Boolean circuit.

PROBLEM: FSR IRREDUCIBILITY

INSTANCE: A $\operatorname{FSR}(f)$ with its feedback $\operatorname{logic} f$ as a Boolean circuit of size $\operatorname{SIZE}(f)$.
QUESTION: Is $\operatorname{FSR}(f)$ irreducible?

PROBLEM: FSR INDECOMPOSABILITY

INSTANCE: A FSR (f) with its feedback $\operatorname{logic} f$ as a Boolean circuit of size $\operatorname{SIZE}(f)$.
QUESTION: Is FSR (f) indecomposable?
NP is the class of all problems computed by polynomialtime nondeterministic Turing machines. A problem is NPhard if it is at least as hard as all NP problems. This paper gives two polynomial-time computable algorithms transforming Boolean circuits to FSRs such that the input Boolean circuit is satisfiable if and only if the output FSR is, respectively, irreducible and indecomposable. Because the Boolean circuit satisfiability problem is NP-complete, the two transformations derive the main results of this paper:

Theorem 1. The FSR IRREDUCIBILITY problem is NP-hard.

Theorem 2. The FSR INDECOMPOSABILITY problem is NP-hard.

It is broadly believed that NP-hard problems could not be solved by quantum algorithms in the polynomial time [25], partially supported by some evidence [26]. Under this
hypothesis, even a quantum computer cannot efficiently decide whether any given FSR is irreducible (or indecomposable).

Additionally, infinitely many instances of FSRs are given to show that irreducible FSRs do not include all indecompsobale FSRs and vice versa.
1.2. Related Work. It is a hot topic to address security issues of FSRs and their cascade connections, and progress has been made in recent years. Until now it is unknown how difficult deciding irreducible FSRs is, and special algorithms were proposed to search linear/affine subFSRs of NFSRs [13]. By Jiang and Lin [14], if $\operatorname{FSR}(h)=\operatorname{LFSR}_{n}(f) * \operatorname{FSR}_{m}(g)$, where $n \geq m$ and any nonzero $s \in \operatorname{Seq}(f)$ is of maximal period $2^{n}-1$, then all affine subFSRs of $\operatorname{FSR}(h)$ are actually those of $\operatorname{FSR}(g)$. Whether a LFSR is indecomposable is completely determined by its characteristic polynomial [4, 6, 15]. In contrast, decomposing NFSRs seems much more challenging. Ma et al. [16] proposed a decomposing algorithm for NFSRs with a linear right $*$-factor using algebraic normal forms (ANFs) of Boolean functions, and Zhong and Lin [17] characterized several properties of general cascade connection using the language of state transition matrices of Boolean networks. Noteworthily, Tian et al. [6] proposed a method to find nonlinear left and right $*$-factors of NFSRs, and their algorithm efficiently and successfully decomposed 80 -stage NFSRs in their experiments. So far it remains open to determine the asymptotic computational complexity of the algorithm in [6]. Instead of considering general decomposition, a practical algorithm has been proposed to find $*$-factors for the special case $\operatorname{FSR}(h)=\operatorname{FSR}(g) * \operatorname{FSR}(g)$ [18]. Zhong and Lin [19] gave strong results on uniqueness of cascade decomposition $\operatorname{FSR}(f) * \operatorname{FSR}(g)$. Additionally, the periods of sequences generated by the grain-like structures are studied [20-24].
1.3. Organization. The rest of this paper is organized as follows: in Section 2, we prepare facts and results for our main theorems. Section 2.1 is some notations. Sections 2.2 and 2.3, respectively, present some basic facts on Boolean circuits and cycles of FSRs. Section 2.4 includes some results on the cascade connection into $\mathrm{FSR}_{1}\left(x_{0}\right)$. In Section 2.5, we consider cycles and subFSRs of specific LFSRs. In Section 2.6, we use the cycle joining method to study subFSRs. Section 3 shows some relations between (ir)reducibility and (in)decomposability. NP-hardness of FSR irreducibility and FSR indecomposability is given in Sections 4 and 5, respectively. The last section includes a summary.

2. Preliminaries

2.1. Notations. Throughout this paper, let \mathbb{Z} denote the set of integers, \mathbb{F}_{2} the binary field, + the addition of integers, \oplus the exclusive-or (XOR), $\mathbf{1}^{m}$ (resp. $\mathbf{0}^{m}$) consecutive ml's (resp. 0's). Vectors are written in bold and upright letters or digits.
For $\mathbf{u} \in \mathbb{F}_{2}^{m}$ and $k \leq m$, let $\lceil\mathbf{u}\rceil_{k}$ denote the most significant k bits of \mathbf{u}.

Let \bar{b} denote the dual of a bit b, and this notation naturally extends to vectors, i.e., for $\mathbf{u} \in \mathbb{F}_{2}^{m}, \overline{\mathbf{u}}=\mathbf{u} \oplus \mathbf{1}^{m}$.

The conjugate of $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$, denoted by $\widehat{\mathbf{u}}$, is $\left(\overline{u_{0}}, u_{1}, \ldots, u_{m-1}\right)$.

Using the reverse lexicographic order, we take a vector $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$ as the nonnegative integer $\sum_{i=0}^{m-1} 2^{i} u_{i}$. In this way,

$$
\begin{equation*}
\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)<\left(v_{0}, v_{1}, \ldots, v_{m-1}\right) \tag{4}
\end{equation*}
$$

if and only if $\sum_{i=0}^{m-1} 2^{i} u_{i}<\sum_{i=0}^{m-1} 2^{i} v_{i}$.
Definition 1. For a Boolean logic $f\left(x_{0}, \ldots, x_{n-1}\right)$, its associated logic is as follows:

$$
\begin{equation*}
f^{*}\left(x_{0}, \ldots, x_{n-1}\right)=f\left(x_{0} \oplus 1, \ldots, x_{n-1} \oplus 1\right) \oplus 1 \tag{5}
\end{equation*}
$$

Following from Definition 1, we have:

$$
\begin{equation*}
f^{*}(\overline{\mathbf{u}})=\overline{f(\mathbf{u})} \text { for any } \mathbf{u} \in \mathbb{F}_{2}^{n} \tag{6}
\end{equation*}
$$

2.2. Boolean Circuits and Circuit Satisfiability Problem. An m-input Boolean circuit f is a directed acyclic graph with m sources and one sink [25]. The value(s) of source(s) is(are) input(s) of the Boolean circuit. Any nonsource vertex, called a gate, is one of the logical operations $\operatorname{OR}(\vee)$, AND (\wedge), and $\operatorname{NOT}(\neg)$, where the fan-in of OR and AND is 2 and that of NOT is 1 . The value outputted from a gate is obtained by applying its logical operation on the value(s) inputted into it. The value outputted from the sink is the output of the Boolean circuit f. The size of the circuit f, denoted by $\operatorname{SIZE}(f)$, is the number of vertices in it. An m-input Boolean circuit f is satisfiable, if there exists $\mathbf{v} \in \mathbb{F}_{2}^{m}$ such that $f(\mathbf{v})=1$.

PROBLEM: CIRCUIT SATISFIABILITY

INSTANCE: A Boolean circuit f with its size $\operatorname{SIZE}(f)$. QUESTION: Is f satisfiable?

A decision problem in NP class is NP-complete if it is not less difficult than any other NP problem.

Theorem 3 (see [25], Lemma 6.10). The CIRCUIT SATISFIABILITY problem is NP-complete.

A FSR is completely characterized by its feedback logic. We use Boolean circuits to characterize the feedback logic of FSRs for the following two reasons. First, FSRs are mostly implemented with silicon chips, and the Boolean circuit is an abstract model of the feedback logics of FSRs in silicon chips [25]. Second, the Boolean circuit is a generalization of Boolean formula [25]. For example, the Boolean function $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=$ $\prod_{i=1}^{n}\left(x_{i} \oplus 1\right)$ can be implemented by a Boolean circuit with $2 n-1$ gates, while expressing it with the ANF needs 2^{n} terms. Therefore, in this paper the size of a FSR is measured by the size of its feedback logic as a Boolean circuit.

2.3. Cycles of FSRs

Lemma 1 [27, 28]. The following three statements are equivalent:
(i) The state transformation of $\operatorname{FSR}_{n}(f)$ is a bijection on \mathbb{F}_{2}^{n}.
(ii) Any sequence generated by $\operatorname{FSR}_{n}(f)$ is periodic.

Figure 3: A k-cycle \boldsymbol{c} and its corresponding ring bit sequence.
(iii) $f\left(x_{0}, x_{1}, \ldots, x_{n-1}\right)=x_{0} \oplus g\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ for some Boolean logic g.

If any of the statements in Lemma 1 holds, $\operatorname{FSR}(f)$ is said to be nonsingular. In the sequel, we only refer to nonsingular FSRs.

For vectors $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)$, \mathbf{u} is said to precede \mathbf{v} if $u_{i+1}=v_{i}$ for all $0 \leq i \leq n-2$.

Definition 2. (In this paper, cycles are written in bold and italic letters while vectors in bold and upright letters or digits.) [29] A k-cycle \boldsymbol{c} in \mathbb{F}_{2}^{n} is a ring sequence of k distinct n-bit vectors:

$$
\begin{equation*}
\left[\mathbf{u}_{0}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k-1}\right], \tag{7}
\end{equation*}
$$

such that \mathbf{u}_{i} precedes $\mathbf{u}_{(i+1) \bmod k}$ for all $0 \leq i<k$.
Cycles interpret the relation between FSRs and periodic binary sequences.

On the one hand, as in Figure 3, the first column lists the vectors \mathbf{u}_{i} 's in the cycle \boldsymbol{c}; the second column shows the most significant bits of \mathbf{u}_{i} 's, representing a periodic sequence downwards in the boxes. Thus, the cycle \boldsymbol{c} in Figure 3 is also written as the ring bit sequence:

$$
\begin{equation*}
\left[u_{0}, u_{1}, \ldots, u_{k-1}\right] . \tag{8}
\end{equation*}
$$

Two cycles represented by the same ring bit sequence are said to be equivalent, for they correspond to the same set of periodic sequences which are equivalent by shifting.

Example 1. The following two cycles:

$$
\begin{equation*}
\boldsymbol{c}_{1}=[(01),(11),(10)] \text { and } \boldsymbol{c}_{2}=[(011),(110),(101)], \tag{9}
\end{equation*}
$$

correspond to the same ring bit sequence $[0,1,1]$, and are hence equivalent.

Without ambiguity in the context, we do not distinguish a cycle \boldsymbol{c} from its ring bit sequence. Whether $m=n$ or not, an m-bit vector \mathbf{v} occurring (contained) in the cycle Equation (7) means that \mathbf{v} is consecutive m bits in the ring bit sequence Equation (8). Let len (c) denote the number of distinct vectors in the cycle \boldsymbol{c}, i.e., the period of the binary sequence it represents.

On the other hand, if $\operatorname{FSR}_{n}(f)$, with its state transformation denoted by F, generates the periodic sequence Equation (8), then $F\left(\mathbf{u}_{i}\right)=\mathbf{u}_{(i+1) \bmod k}, 0 \leq i<k$. If so, \boldsymbol{c} is called a cycle of $\operatorname{FSR}(f)$, and this is denoted by $\boldsymbol{c} \in \operatorname{FSR}(f)$. Actually, the cycle c is an orbit of the permutation F acting on \mathbb{F}_{2}^{n}. In Figure 3, the second column is the bit outputted by $\operatorname{FSR}(f)$ and the third column shows the sequences which $\operatorname{FSR}(f)$ generates from the initial state \mathbf{u}_{i} 's. Since all the cycles of a FSR uniquely determine its state transformation and hence its feedback logic, we also use $\operatorname{FSR}(f)$ to denote the set of all cycles of this FSR.

Example 2. Let \boldsymbol{c}_{1} and \boldsymbol{c}_{2} be cycles given in Example 1. Then

$$
\begin{equation*}
\boldsymbol{c}_{1} \in \operatorname{LFSR}\left(x^{2} \oplus x \oplus 1\right) \text { and } \boldsymbol{c}_{2} \in \operatorname{LFSR}\left(x^{3} \oplus 1\right) \tag{10}
\end{equation*}
$$

Both $\operatorname{LFSR}\left(x^{2} \oplus x \oplus 1\right)$ and $\operatorname{LFSR}\left(x^{3} \oplus 1\right)$ output the sequence $(0,1,1)$ of period 3 , and it is unambiguous to write $c_{1} \in$
$\operatorname{LFSR}\left(x^{3} \oplus 1\right)$.
As explained above, cycles of a nonsingular FSR essentially characterize its periodic sequences, and the following statements

$$
\begin{gather*}
\operatorname{FSR}(g) \subset \operatorname{FSR}(f) \tag{11}\\
\operatorname{Seq}(g) \subset \operatorname{Seq}(f) \tag{12}\\
\operatorname{FSR}(g) \text { is a } \operatorname{subFSR} \text { of } \operatorname{FSR}(f), \tag{13}
\end{gather*}
$$

are equivalent. Immediately, we have
Lemma 2. $\operatorname{FSR}(g)$ is a subFSR of $\operatorname{FSR}(f)$ if and only if $\operatorname{FSR}(g) \subset \operatorname{FSR}(f)$.

Since the state transformation of an n-stage FSR is a permutation on \mathbb{F}_{2}^{n}, all its cycles exhaust \mathbb{F}_{2}^{n} once, and hence the lengths of its cycles sum to 2^{n}.

Lemma 3. It holds that $\sum_{c \in \mathrm{FSR}_{n}(f)} \operatorname{len}(\boldsymbol{c})=2^{n}$.
Lemma 4. If both \mathbf{u} and its conjugate $\widehat{\mathbf{u}}$ occur as n-bit vectors in the same cycle \boldsymbol{c}, then for any $k<n, \boldsymbol{c}$ is not a cycle of any nonsingular k-stage FSR.

Proof. Assume $\boldsymbol{c} \in \operatorname{FSR}_{k}(g), k<n$. Note that the cycle \boldsymbol{c} contains two n-bit vectors $\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$ and $\left(\overline{u_{0}}, u_{1}, \ldots, u_{n-1}\right)$. Since $k<n$, the state transformation G of $\operatorname{FSR}(g)$ satisfies:
$G\left(u_{0}, u_{1}, \ldots, u_{k-1}\right)=\left(u_{1}, u_{2}, \ldots, u_{k}\right)=G\left(\overline{u_{0}}, u_{1}, \ldots, u_{k-1}\right)$,
which is contradictory to Lemma 1 . Thus, $\boldsymbol{c} \in \operatorname{FSR}_{k}(g)$ is not true.

For a cycle \boldsymbol{c}, let $\min _{n}(\boldsymbol{c})$ be the minimal n-bit vector occurring in \boldsymbol{c}.

Definition 3. Let \boldsymbol{c}_{1} and \boldsymbol{c}_{2} be two cycles in \mathbb{F}_{2}^{n}. If there exists an n-bit vector \mathbf{u} occurring in \boldsymbol{c}_{1} such that $\widehat{\mathbf{u}}$ occurs in \boldsymbol{c}_{2}, then \boldsymbol{c}_{1} is said to be adjacent to \boldsymbol{c}_{2} (at \mathbf{u}). If \boldsymbol{c}_{1} is adjacent to \boldsymbol{c}_{2} at $\min _{n}\left(\boldsymbol{c}_{1}\right)$, then \boldsymbol{c}_{1} is said to be min-adjacent to \boldsymbol{c}_{2}.

Lemma 5. Let $\boldsymbol{c}_{1}, \boldsymbol{c}_{2} \in \operatorname{FSR}_{n}(f)$ and $\mathbf{u}=\min _{n}\left(\boldsymbol{c}_{1}\right)$. If \boldsymbol{c}_{1} is min-adjacent to \boldsymbol{c}_{2} and $\mathbf{u} \notin\left\{\mathbf{0}^{n}, 1 \mathbf{0}^{n-1}\right\}$, then $\min _{n}\left(\boldsymbol{c}_{2}\right)$ $<\min \{\mathbf{u}, \widehat{\mathbf{u}}\}$.

Proof. Denote $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{n-1}\right)$. By Statement (iii) of Lemma 1, the next states of \mathbf{u} and $\widehat{\mathbf{u}}$ are $\left(u_{1}, \ldots, u_{n-1}, 0\right)$ and $\left(u_{1}, \ldots, u_{n-1}, 1\right)$.

Recall that vectors are in the reverse lexicographic order. If $\mathbf{u} \notin\left\{\mathbf{0}^{n}, 1 \mathbf{0}^{n-1}\right\}$, i.e., u_{1}, \ldots, u_{n-1} are not all 0 , then $\left(u_{1}, \ldots, u_{n-1}, 0\right)<\min \{\mathbf{u}, \widehat{\mathbf{u}}\}$ since $\left(u_{1}, \ldots, u_{n-1}, 0\right)$ is the left shift of \mathbf{u} and $\widehat{\mathbf{u}}$.

Furthermore, since $\mathbf{u}=\min _{n}\left(\boldsymbol{c}_{1}\right)$ as in Definition 3, we conclude that $\left(u_{1}, \ldots, u_{n-1}, 0\right)$ is in the same cycle as $\widehat{\mathbf{u}}$ (i.e., in \boldsymbol{c}_{2}), implying

$$
\begin{equation*}
\min _{n}\left(\boldsymbol{c}_{2}\right) \leq\left(u_{1}, \ldots, u_{n-1}, 0\right)<\min \{\mathbf{u}, \widehat{\mathbf{u}}\} \tag{15}
\end{equation*}
$$

Corollary 1. Let $\boldsymbol{c} \in \operatorname{FSR}_{n}(f)$. If $\min _{n}(\boldsymbol{c}) \neq \mathbf{0}^{n}$, then \boldsymbol{c} is not min-adjacent to itself.

Proof. Let \boldsymbol{c}_{1} and \boldsymbol{c}_{2} be as in Lemma 5. Note that the proof of Lemma 5 also holds even if $\boldsymbol{c}_{1}=\boldsymbol{c}_{2}$. If $\min _{n}(\boldsymbol{c}) \notin\left\{\boldsymbol{0}^{n}, \mathbf{1 0}^{n-1}\right\}$, then $\min _{n}\left(\boldsymbol{c}_{1}\right)=\min _{n}\left(\boldsymbol{c}_{2}\right)<\min \{\mathbf{u}, \widehat{\mathbf{u}}\}$ does not hold, and we conclude that \boldsymbol{c} is not min-adjacent to itself.

Furthermore, suppose $\min _{n}(\boldsymbol{c})=1 \mathbf{0}^{n-1}$. Then $\mathbf{0}^{n}$, the conjugate of $1 \mathbf{0}^{n-1}$, is not contained in \boldsymbol{c}. Thus, \boldsymbol{c} is not min-adjacent to itself.

Lemma 6. Let G be a directed graph defined as follows: the vertices of G are cycles of $\operatorname{FSR}_{n}(f)$, and an arc is incident from \boldsymbol{c}_{1} to \boldsymbol{c}_{2} if \boldsymbol{c}_{1} is min-adjacent to \boldsymbol{c}_{2} and $\min _{n}\left(\boldsymbol{c}_{1}\right) \neq \mathbf{0}^{n}$. Then G is acyclic.

Proof. By Corollary 1, the only cycle min-adjacent to itself has $\mathbf{0}^{n}$ as its minimal n-bit vector. Hence, G, as defined above, is loopless.

Now assume that G is not acyclic. Then there is a cyclic walk of length $m>1$ in G, i.e., there exist cycles \boldsymbol{c}_{i} 's, such that \boldsymbol{c}_{i} is min-adjacent to $\boldsymbol{c}_{(i+1) \bmod m}$ at $\min _{n}\left(\boldsymbol{c}_{i}\right), 0 \leq i<m$.

As G is defined, we have $\min _{n}\left(\boldsymbol{c}_{i}\right) \neq \mathbf{0}^{n}$ for any $0 \leq i<m$. Additionally, we also have $\min _{n}\left(\boldsymbol{c}_{i}\right) \neq 10^{n-1}$ for any $0 \leq i<m$. Otherwise, $\min _{n}\left(\boldsymbol{c}_{i}\right)=10^{n-1}$ for some $0 \leq i<m$,
then $\min _{n}\left(\boldsymbol{c}_{(i+1) \bmod m}\right)=\mathbf{0}^{n}$ and $\boldsymbol{c}_{(i+1) \bmod m}$ is hence a sink instead of a vertex in the cyclic walk. Thus, by Lemma 5:

$$
\begin{equation*}
\min _{n}\left(\boldsymbol{c}_{0}\right)>\min _{n}\left(\boldsymbol{c}_{1}\right)>\cdots>\min _{n}\left(\boldsymbol{c}_{m-1}\right)>\min _{n}\left(\boldsymbol{c}_{0}\right), \tag{16}
\end{equation*}
$$

which does not hold. Therefore, G has no cyclic walk in it.
The cycle \boldsymbol{c} in Figure 3 is said to be even if $\oplus_{i=0}^{k-1} u_{i}=0$ (equivalently, $\oplus_{i=0}^{k-1} \mathbf{u}_{i}=\mathbf{0}^{n}$). Otherwise, \boldsymbol{c} is said to be odd [29].

For the cycle \boldsymbol{c} in (7), let $\overline{\boldsymbol{c}}$ denote the cycle $\left[\overline{\mathbf{u}_{0}}, \overline{\mathbf{u}_{1}}, \ldots, \overline{\mathbf{u}_{k-1}}\right]$. A cycle \boldsymbol{c} is said to be self-dual if $\boldsymbol{c}=\overline{\boldsymbol{c}}$ [29]. The cycle \boldsymbol{c} in Equation (7) is said to be primitive if \boldsymbol{c} and $\overline{\boldsymbol{c}}$ have no n-bit vector in common [29].
2.4. The D-Morphism. For any $0<n \in \mathbb{Z}$, the D-morphism [29] is a mapping as below:

$$
\begin{array}{rll}
D: & \mathbb{F}_{2}^{n+1} & \rightarrow \mathbb{F}_{2}^{n} \\
& \left(u_{0}, u_{1}, \ldots, u_{n}\right) & \mapsto\left(u_{0} \oplus u_{1}, u_{1} \oplus u_{2}, \ldots, u_{n-1} \oplus u_{n}\right) . \tag{17}
\end{array}
$$

Notice that if \mathbf{u} precedes \mathbf{v}, then $D(\mathbf{u})$ also precedes $D(\mathbf{v})$. Hence, the D-morphism is also a natural mapping on cycles.

Lempel [29] gave the following results on D-morphism.
Theorem 4 ([29], Corollaries 1 and 2). There exists a one-toone correspondence between the even k-cycles \boldsymbol{d} in \mathbb{F}_{2}^{n} and the primitive pairs of dual k-cycles \boldsymbol{c} and $\overline{\boldsymbol{c}}$ in \mathbb{F}_{2}^{n+1} under which $\boldsymbol{d}=D(\boldsymbol{c})=D(\overline{\boldsymbol{c}})$. There exists a one-to-one correspondence between the odd k-cycles \boldsymbol{d} in \mathbb{F}_{2}^{n} and the self-dual $2 k$-cycles \boldsymbol{c} in \mathbb{F}_{2}^{n+1} under which $\boldsymbol{d}=D(\boldsymbol{c})$.

The D-morphism connects $\operatorname{FSR}(f) * \operatorname{FSR}_{1}\left(x_{0}\right)$ and its left *-factor.

Corollary 2. Let $\mathrm{FSR}_{n+1}(h)=\operatorname{FSR}_{n}(f) * \operatorname{FSR}_{1}\left(x_{0}\right)$. Then the following two statements hold: (i) for any cycle $\boldsymbol{d} \in \operatorname{FSR}(h)$, $D(\boldsymbol{d})$ is a cycle of $\operatorname{FSR}(f)$; (ii) for any odd (resp. even) cycle $c \in \operatorname{FSR}(f)$, its D-morphic preimage(s) is (resp. are) cycle(s) of $\operatorname{FSR}(h)$.

Proof. Substitute $\operatorname{FSR}_{1}\left(x_{0}\right)$ for $\operatorname{FSR}(g)$ in Figure 2. Let H and F be, respectively, the state transformations of $\operatorname{FSR}(h)$ and $\operatorname{FSR}(f)$. As shown in the following commutative diagram

it follows from Equation (3) that $D(H(\mathbf{v}))=F(D(\mathbf{v}))$ for any $\mathbf{v} \in \mathbb{F}_{2}^{n+1}$. Thus, Statement (i) holds, and any $\boldsymbol{d} \in \operatorname{FSR}(h)$ is a D-morphic preimage of $D(\boldsymbol{d}) \in \operatorname{FSR}(f)$. By Theorem 4, under the D-morphism, a k-cycle of $\operatorname{FSR}(f)$ has one $2 k$-cycle as its preimage or two k-cycles as its preimages. If $\operatorname{FSR}(h)$
does not include all D-morphic preimages of cycles in $\operatorname{FSR}(f)$, then the length of cycles of $\operatorname{FSR}(h)$ sum to less than 2^{n+1}, contradictory to Lemma 3. Therefore, Statement (ii) immediately follows.

Example 3. Let $\boldsymbol{c}_{2}=[0,1,1], \overline{\boldsymbol{c}_{2}}=[0,0,1]$, and $\boldsymbol{c}_{4}=[0,0,0,1$, $1,1]$. We have $\operatorname{LFSR}\left(x^{4} \oplus x^{3} \oplus x \oplus 1\right)=\operatorname{LFSR}\left(x^{3} \oplus 1\right) * \operatorname{FSR}_{1}\left(x_{0}\right)$,

$$
\begin{align*}
& \boldsymbol{c}_{2}, \overline{\boldsymbol{c}_{2}} \in \operatorname{LFSR}\left(x^{4} \oplus x^{3} \oplus x \oplus 1\right), \\
& \boldsymbol{c}_{4} \in \operatorname{LFSR}\left(x^{4} \oplus x^{3} \oplus x \oplus 1\right) \\
& \boldsymbol{c}_{2}=D\left(\boldsymbol{c}_{2}\right)=D\left(\overline{\boldsymbol{c}_{2}}\right) \in \operatorname{LFSR}\left(x^{3} \oplus 1\right), \tag{18}\\
& \text { and } \overline{\boldsymbol{c}_{2}}=D\left(\boldsymbol{c}_{4}\right) \in \operatorname{LFSR}\left(x^{3} \oplus 1\right)
\end{align*}
$$

In Example 3, the even cycle \boldsymbol{c}_{2} has two D-morphic preimages \boldsymbol{c}_{2} and $\overline{\boldsymbol{c}_{2}}$, and the odd cycle $\overline{\boldsymbol{c}_{2}}$ has a unique D morphic preimage \boldsymbol{c}_{4}.
2.5. Cycles and Properties of Certain LFSRs. In the rest of this paper, we use the following polynomials over \mathbb{F}_{2} :

$$
\begin{align*}
& p_{0}(x)=x^{2 n} \oplus x^{n} \oplus 1, \\
& p_{1}(x)=(x \oplus 1) \cdot p_{0}(x)=x^{2 n+1} \oplus x^{2 n} \oplus x^{n+1} \oplus x^{n} \oplus x \oplus 1, \\
& p_{2}(x)=x^{4 n} \oplus x^{2 n} \oplus 1, \tag{19}
\end{align*}
$$

where n is a power of 3 . For simplicity, let $p_{0}{ }^{*}$ denote the associated logic of the feedback logic of $\operatorname{LFSR}\left(p_{0}\right)$, i.e., $p_{0}{ }^{*}\left(x_{0}, x_{1}, \ldots, x_{2 n-1}\right)=x_{n} \oplus x_{0} \oplus 1$.

In all that follows, L_{0}, L_{1}, and L_{2}, respectively, denote the state transformations of $\operatorname{LFSR}\left(p_{0}\right), \operatorname{LFSR}\left(p_{1}\right)$, and $\operatorname{LFSR}\left(p_{2}\right)$ as in Equation (20).

$$
\begin{align*}
& L_{0}: \quad \mathbb{F}_{2}^{2 n} \rightarrow \mathbb{F}_{2}^{2 n} \\
& \left(x_{0}, x_{1}, \ldots, x_{2 n-2}, x_{2 n-1}\right) \quad \mapsto \quad\left(x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{0} \oplus x_{n}\right) \text {, } \\
& L_{1}: \quad \mathbb{F}_{2}^{2 n+1} \rightarrow \mathbb{F}_{2}^{2 n+1} \tag{20}\\
& \begin{aligned}
\left(x_{0}, x_{1}, \ldots, x_{2 n-1}, x_{2 n}\right) & \mapsto\left(x_{1}, x_{2}, \ldots, x_{2 n}, x_{0} \oplus x_{1} \oplus x_{n} \oplus x_{n+1} \oplus x_{2 n}\right), \\
\mathbb{F}_{2}^{4 n} & \rightarrow \mathbb{F}_{2}^{4 n}
\end{aligned} \\
& \left(x_{0}, x_{1}, \ldots, x_{4 n-2}, x_{4 n-1}\right) \mapsto\left(x_{1}, x_{2}, \ldots, x_{4 n-1}, x_{0} \oplus x_{2 n}\right) \text {. }
\end{align*}
$$

Cycles of LFSRs are well-understood.

Lemma 7. If n is a power of 3 , then the cycles of $\operatorname{LFSR}\left(p_{0}\right)$ are $[0]$ and $\left(2^{2 n}-1\right) /(3 n) 3 n$-cycles $\beta_{i}, 1 \leq i \leq\left(2^{2 n}-1\right) /(3 n)$; the cycles of $\operatorname{LFSR}\left(p_{1}\right)$ are the cycles of $\operatorname{LFSR}\left(p_{0}\right)$ and their duals $\overrightarrow{\beta_{i}}, 1 \leq i \leq\left(2^{2 n}-1\right) /(3 n)$; the cycles of $\operatorname{LFSR}\left(p_{2}\right)$ are the cycles of $\operatorname{LFSR}\left(p_{0}\right)$ and $\left(2^{4 n}-2^{2 n}\right) /(6 n) 6 n$-cycles.

Proof. Let $n=3^{t}$. Since $p_{0}(x) \cdot\left(x^{3^{t}} \oplus 1\right)=x^{3^{t+1}} \oplus 1$ and $\operatorname{gcd}\left(p_{0}, x^{3^{t}} \oplus 1\right)=1$, the roots of p_{0} are exactly primitive $3^{t+1}-$ th roots of unity in the algebraic closure of \mathbb{F}_{2}. Furthermore, because $2 \cdot 3^{t}=\min \left\{0<i \in \mathbb{Z}: 3^{t+1} \mid\left(2^{i}-1\right)\right\}$, an extension of \mathbb{F}_{2} containing a primitive 3^{t+1}-th root of unity is of degree at least $2 \cdot 3^{t}$. Thus, the polynomial p_{0} is irreducible over \mathbb{F}_{2}.

Then the cycles of $\operatorname{LFSR}\left(p_{0}\right), \operatorname{LFSR}\left(p_{1}\right)$, and $\operatorname{LFSR}\left(p_{2}\right)$ are given by Lidl and Niederreiter [15, Theorem 8.53, 8.55, 8.63].

In the rest of this paper, let $\mathfrak{B}_{6 n}$ denote the set of $6 n$ cycles of $\operatorname{LFSR}\left(p_{2}\right)$.

In the rest of Section 2.5, we give some properties of $\operatorname{LFSR}\left(p_{0}\right)$ and $\operatorname{LFSR}\left(p_{1}\right)$ in Lemma 9, and study their subFSRs in Theorems 5 and 6.

Theorem 5. $\operatorname{LFSR}\left(p_{0}\right)$ is an irreducible FSR.

Proof. As given in Lemma 7, $\operatorname{LFSR}\left(p_{0}\right)$ exactly includes one 1 -cycle and $\left(2^{2 n}-1\right) /(3 n) 3 n$-cycles. Let $n=3^{t}$.

Suppose $\operatorname{FSR}_{m}(f)$ to be a subFSR of $\operatorname{LFSR}\left(p_{0}\right)$, where $1 \leq m<2 n$. By Lemma 2, the cycles of $\operatorname{FSR}(f)$ are contained
in $\operatorname{LFSR}\left(p_{0}\right)$. Then let $\operatorname{FSR}(f)$ have exactly $k 1$-cycle and $l 3 n$ cycles. Thus, by Lemma 3, the lengths of cycles in $\operatorname{FSR}(f)$ sum to 2^{m}, i.e.,

$$
\begin{equation*}
k+3 n l=2^{m} \tag{21}
\end{equation*}
$$

where $k \in\{0,1\}$ and $l \in\left\{0,1, \cdots,\left(2^{2 n}-1\right) /(3 n)\right\}$. In Equation (21), letting $k=0$ results in the contradiction $3 \mid 2^{m}$; letting $k=1$ leads to $2^{m} \equiv 1 \bmod 3^{t+1}$, where $m<2 n$, contradictory to the fact that 2 is primitive in the residue ring $\mathbb{Z} / 3^{t+1} \mathbb{Z}$, i.e., $2 n=2 \cdot 3^{t}=\min \left\{i>0: 3^{t+1} \mid\left(2^{i}-1\right)\right\}$.

Hence, our supposition does not hold and $\operatorname{LFSR}\left(p_{0}\right)$ has no subFSR.

It is well-known that LFSRs with irreducible characteristic polynomials are also described using finite fields [15, Theorem 8.24].

Lemma 8. Let $p(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{2}, ρ a root of $p(x)$ in the finite field $\mathbb{F}_{2^{n}}$, and P the state transformation of $\operatorname{LFSR}(p)$. Then there exists a linear-space isomorphism $\phi: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2^{n}}$ such that the diagram

is commutative.

Figure 4: Cycles of $\operatorname{LFSR}\left(p_{1}\right)$ and their D-morphic images.

Proof. Let Tr be the trace function of $\mathbb{F}_{2^{n}}$ and define a linear homomorphism:

$$
\begin{align*}
\psi: & \mathbb{F}_{2^{n}} \\
& \rightarrow \mathbb{F}_{2}^{n} \tag{22}\\
x & \mapsto\left(\operatorname{Tr}(x), \operatorname{Tr}(x \rho), \ldots, \operatorname{Tr}\left(x \rho^{n-1}\right)\right) .
\end{align*}
$$

Since $1, \rho, \ldots, \rho^{n-1}$ are a basis of $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2}, ψ is an isomorphism of linear spaces. Let ϕ to be the inverse of ψ and the rest of proof is by direct computation similar to [15, Theorem 8.24].

By Equation (6) and Lemma 7, $\operatorname{LFSR}\left(p_{1}\right)=\operatorname{LFSR}\left(p_{0}\right)$ $\cup \operatorname{FSR}\left(p_{0}{ }^{*}\right)$. In Figure 4 , we sketch cycles of $\operatorname{LFSR}\left(p_{0}\right)$, $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$, and $\operatorname{LFSR}\left(p_{1}\right)$, and a cycle in the (boxed) third row is the D-morphic image of the two cycles of $\operatorname{LFSR}\left(p_{1}\right)$ in the same column.

Lemma 9. Let $p(x)=x^{n} \oplus c_{n-1} x^{n-1} \oplus \cdots \oplus c_{1} x \oplus 1$ be an irreducible polynomial of degree $n>1$ over \mathbb{F}_{2}. Denote the $\operatorname{logic} p^{*}=c_{n-1} x_{n-1} \oplus \cdots \oplus c_{1} x_{1} \oplus x_{0} \oplus 1$. Then the following statements hold:
(i) Any cycle of $\operatorname{LFSR}(p)$ is even and any cycle in $\operatorname{FSR}\left(p^{*}\right)$ is odd.
(ii) The D-morphism is a permutation on cycles of $\operatorname{LFSR}(p)$.
(iii) For any pair of $(n+1)$-bit conjugate vectors $\mathbf{v}, \widehat{\mathbf{v}} \in \mathbb{F}_{2}^{n+1}$, one occurs in some cycle $\boldsymbol{c} \in \operatorname{LFSR}(p)$ and the other occurs in some cycle $\boldsymbol{d} \in \operatorname{FSR}\left(p^{*}\right)$.

Proof. As $p(x)$ is irreducible and $\operatorname{deg} p(x)>1$, then $p(x)$ has no factor $x \oplus 1$ and hence $c_{1} \oplus \cdots \oplus c_{n-1}=1$. So, p^{*} is the associated logic of the feedback logic of $\operatorname{LFSR}(p)$.

By Lemma 8, the states of a nonzero cycle \boldsymbol{c} in $\operatorname{LFSR}(p)$ correspond to a coset of a multiplicative cyclic group, and hence summing them up yields $\mathbf{0}^{n}$, and \boldsymbol{c} is hence even. Furthermore, Equation (6) implies $\operatorname{FSR}\left(p^{*}\right)=\{\overline{\boldsymbol{c}}: c \in$ $\operatorname{LFSR}(p)\}$, and it is known that $\operatorname{len}(\boldsymbol{c})$ is odd for any $\boldsymbol{c} \in \operatorname{LFSR}(p)$ [15]. Hence, any cycle of $\operatorname{FSR}\left(p^{*}\right)$ is odd. Statement (i) holds.

Summing a sequence $\left(s_{0}, s_{1}, s_{2}, \ldots\right)$ generated by $\operatorname{LFSR}(p)$ and its left-shift $\left(s_{1}, s_{2}, s_{3}, \ldots\right)$ derives a sequence $\left(s_{0} \oplus s_{1}\right.$,
$\left.s_{1} \oplus s_{2}, s_{2} \oplus s_{3}, \ldots\right)$ also generated by $\operatorname{LFSR}(p)$. Thus, the D-morphism is a well-defined mapping on $\operatorname{LFSR}(p)$. As shown above, any $\boldsymbol{c} \in \operatorname{LFSR}(p)$ is even and len (\boldsymbol{c}) is odd. Then by Theorem 4, the D-morphic preimages of $c \in$ $\operatorname{LFSR}(p)$ are exactly one even cycle \boldsymbol{e} and its odd dual cycle $\overline{\boldsymbol{e}}$, where $\overline{\boldsymbol{e}} \notin \operatorname{LFSR}(p)$. In other words, the D-morphism is injective on $\operatorname{LFSR}(p)$ and hence Statement (ii) holds.

For $\mathbf{v}=\left(v_{0}, v_{1}, \ldots, v_{n}\right) \in \mathbb{F}_{2}^{n+1}, \mathbf{v}$ is generated by $\operatorname{LFSR}(p)$ (resp. $\operatorname{FSR}\left(p^{*}\right)$) if and only if $v_{0} \oplus c_{1} v_{1} \oplus \cdots \oplus c_{n-1} v_{n-1}$ $\oplus v_{n}=0$ (resp. 1). Then Statement (iii) holds.

Theorem 6. The subFSRs of $\operatorname{LFSR}\left(p_{1}\right)$ are exactly $\operatorname{FSR}_{1}\left(x_{0}\right)$, $\operatorname{LFSR}\left(p_{0}\right)$, and $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$.

To prove Theorem 6, we prepare Lemma 10 and Corollary 3 below.

Lemma 10. Let $p(x)$ be an irreducible polynomial of degree n over \mathbb{F}_{2}, and P the state transformation of $\operatorname{LFSR}(p)$. Then for any $\mathbf{u}_{0}, \mathbf{u}_{n} \in \mathbb{F}_{2}^{n}$, there exist $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n-1}$ such that for any $0 \leq i<n, \mathbf{u}_{i+1} \in\left\{P\left(\mathbf{u}_{i}\right), \overline{P\left(\mathbf{u}_{i}\right)}\right\}$.

Proof. Due to the isomorphism ϕ in Lemma 8, we consider the counterparts of \mathbf{u}_{i} 's in the finite field $\mathbb{F}_{2^{n}}$. Denote $v_{0}=\phi\left(\mathbf{u}_{0}\right), v_{n}=\phi\left(\mathbf{u}_{n}\right)$, and $c=\phi\left(\mathbf{1}^{n}\right)$. Clearly, $c \neq 0$. Since $c, c \rho, \ldots, c \rho^{n-1}$ is a linear basis of $\mathbb{F}_{2^{n}}, v_{n} \oplus \rho^{n} v_{0}=$ $a_{0} c \oplus a_{1} c \rho \oplus \cdots \oplus a_{n-1} c \rho^{n-1}$ for some $a_{0}, a_{1}, \ldots, a_{n-1} \in \mathbb{F}_{2}$. Let $v_{i+1}=v_{i} \rho \oplus a_{n-1-i} c, 0 \leq i<n-1$. Then it is verified that $v_{n}=v_{0} \rho^{n} \oplus\left(\oplus_{i=0}^{n-1} a_{n-i} \rho^{n-i} c\right)=v_{n-1} \rho \oplus a_{0} c$.

Let $\mathbf{u}_{i}=\phi^{-1}\left(v_{i}\right), 0<i<n$. Using the commutative diagram in Lemma 8, for any $0 \leq i<n$, we have:

$$
\begin{align*}
\mathbf{u}_{i+1} & =\phi^{-1}\left(v_{i} \rho \oplus a_{n-1-i} c\right) \\
& =P\left(\mathbf{u}_{i}\right) \oplus a_{n-1-i} \cdot \mathbf{1}^{n} \tag{23}\\
& \in\left\{P\left(\mathbf{u}_{i}\right), \overline{P\left(\mathbf{u}_{i}\right)}\right\} .
\end{align*}
$$

Corollary 3. Let $\left\{\boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\ell}\right\} \subsetneq \operatorname{LFSR}(p)$, where $p(x)$ is an irreducible polynomial of degree n over \mathbb{F}_{2}. Let S be the set of n-bit vectors in $\boldsymbol{c}_{i}, 1 \leq i \leq \ell$. Then $\{\overline{\mathbf{v}}: \mathbf{v} \in S\} \nsubseteq S$.

Proof. See that $S \neq \mathbb{F}_{2}^{n}$ and choose any $\mathbf{u}_{0} \in S$ and $\mathbf{u}_{n} \in \mathbb{F}_{2}^{n} \backslash S$. By Lemma 10, there exist $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n-1}$ such that for any

Figure 5: The assumed $2 n$-stage subFSR $\operatorname{FSR}(h)$ of $\operatorname{LFSR}\left(p_{1}\right)$.
$0 \leq i<n$, either \mathbf{u}_{i+1} or $\overline{\mathbf{u}_{i+1}}$ is in the same cycle as \mathbf{u}_{i}. Note that if $\mathbf{u}_{i} \in S$ and \mathbf{u}_{i+1} is in the same cycle as \mathbf{u}_{i}, then $\mathbf{u}_{i+1} \in S$. Thus, there exist some $1 \leq j \leq n$ such that $\mathbf{u}_{j} \notin S$ and $\overline{\mathbf{u}_{j}} \in S$, implying $\{\overline{\mathbf{v}}: \mathbf{v} \in S\} \nsubseteq S$.

Proof of Theorem 6. By Lemma 2, Figure 4 shows that $\operatorname{FSR}_{1}\left(x_{0}\right), \operatorname{LFSR}\left(p_{0}\right)$, and $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$ are subFSRs of $\operatorname{LFSR}\left(p_{1}\right)$. It remains to show that there exist no other subFSRs.

Let $\operatorname{FSR}_{m}(h)$ be a subFSR of $\operatorname{LFSR}\left(p_{1}\right)$.
First, Lemma 2 ensures $\operatorname{FSR}(h) \subset \operatorname{LFSR}\left(p_{1}\right)$. Due to Lemma 7, let k (resp. l) be the number of $3 n$-cycles (resp. 1 -cycles) of $\operatorname{FSR}(h)$. Lemma 3 derives the following integer equation:

$$
\begin{equation*}
3 n k+l=2^{m} \tag{24}
\end{equation*}
$$

where $1 \leq m \leq 2 n, 0 \leq k \leq 2\left(2^{2 n}-1\right) /(3 n)$, and $0 \leq l \leq 2$. Letting $l=0$ contradicts to $3 \nmid 2^{m}$. Because $2 n=\min \{0<i \in \mathbb{Z}$: $\left.3 n \mid\left(2^{i}-1\right)\right\}$, where n is a power of 3 , Equation (24) holds only if (i) $l=2$ and $m=1$, or (ii) $l=1$ and $m=2 n$.

Case (i) $l=2$ and $m=1$. The cycles of $\operatorname{FSR}(h)$ are exactly [0] and [1], i.e., $\operatorname{FSR}(h)=\operatorname{FSR}_{1}\left(x_{0}\right)$.

Case (ii) $l=1$ and $m=2 n$. $\operatorname{FSR}(h)$ is of stage $2 n$. Notice that $\operatorname{FSR}(h) \subset \operatorname{LFSR}\left(p_{1}\right)$ if and only if $\operatorname{FSR}\left(h^{*}\right) \subset \operatorname{LFSR}\left(p_{1}\right)$. We only have to consider $[0] \in \operatorname{FSR}(h)$, i.e., $\operatorname{FSR}(h)$ has $[0]$ and $\left(2^{2 n}-1\right) /(3 n) 3 n$-cycles. Let $\mathfrak{X}=\{\boldsymbol{c}: \boldsymbol{c} \in \operatorname{FSR}(h), \overline{\boldsymbol{c}} \notin$ $\left.\operatorname{FSR}(h), \boldsymbol{c} \in \operatorname{LFSR}\left(p_{0}\right)\right\}$. Clearly, $[0] \in \mathfrak{N}$ and \mathfrak{A} is not empty.

Assume $\operatorname{FSR}(h) \neq \operatorname{LFSR}\left(p_{0}\right)$. As shown in Figure 5, cycles in $\operatorname{FSR}(h)$ are partitioned into \mathfrak{A} and $\operatorname{FSR}(h) \backslash \mathfrak{A}$ and cycles in $\operatorname{LFSR}\left(p_{0}\right)$ are partitioned into \mathfrak{U} and $\operatorname{LFSR}\left(p_{0}\right) \backslash \mathfrak{N}$. Let

$$
\begin{align*}
& S=\{\mathbf{v}: \mathbf{v} \text { is a } 2 n \text {-bit vector of } \boldsymbol{c}, \boldsymbol{c} \in \operatorname{FSR}(h) \backslash \mathfrak{N}\} \\
& S^{\prime}=\left\{\mathbf{v}: \mathbf{v} \text { is a } 2 n \text {-bit vector of } \boldsymbol{c}^{\prime}, \boldsymbol{c}^{\prime} \in \operatorname{LFSR}\left(p_{0}\right) \backslash \mathfrak{N}\right\} . \tag{25}
\end{align*}
$$

On the one hand, since a $2 n$-stage FSR exhausts $\mathbb{F}_{2}^{2 n}$ as its states:

$$
\begin{equation*}
S=S^{\prime}=\mathbb{F}_{2}^{2 n} \backslash\{\mathbf{v}: \mathbf{v} \text { is a } 2 n \text {-bit vector of } \boldsymbol{a}, \boldsymbol{a} \in \mathfrak{A}\} \tag{26}
\end{equation*}
$$

On the other hand, as the way \mathfrak{H} is defined, we have:

$$
\begin{equation*}
\{\overline{\boldsymbol{c}}: \boldsymbol{c} \in \operatorname{FSR}(h) \backslash \mathfrak{N}\} \subseteq\left\{\boldsymbol{c}: \boldsymbol{c} \in\left(\operatorname{LFSR}\left(p_{0}\right) \cup \operatorname{FSR}(h)\right) \backslash \mathfrak{A}\right\}, \tag{27}
\end{equation*}
$$

implying $\{\overline{\mathbf{v}}: \mathbf{v} \in S\} \subseteq S \cup S^{\prime}=S$, i.e., $\{\overline{\mathbf{v}}: \mathbf{v} \in S\} \subseteq S$, contradictory to $\{\overline{\mathbf{v}}: \mathbf{v} \in S\} \nsubseteq S$ derived by Corollary 3 .

Figure 6: Interchanging next-states of \mathbf{u} and $\widehat{\mathbf{u}}$.

Therefore, the above assumption is not true, i.e., the $2 n$ stage subFSR with the zero cycle is $\operatorname{LFSR}\left(p_{0}\right)$.

2.6. The Cycle Joining Method

Theorem 7 (see [27, 28]) and (see [29], Theorem 2). Let $\mathbf{u}=\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$. Let $f\left(x_{0}, \ldots, x_{m-1}\right)$ be an m-variable Boolean logic and $g\left(x_{0}, \ldots, x_{m-1}\right)=f\left(x_{0}, \ldots, x_{m-1}\right) \oplus \prod_{i=1}^{m-1}$ $\left(x_{i} \oplus \overline{u_{i}}\right)$. Then $\operatorname{FSR}_{m}(g)$ differs from $\operatorname{FSR}_{m}(f)$ only by interchanging the next-states of \mathbf{u} and $\widehat{\mathbf{u}}$. Specifically, as shown in Figure 6, if \mathbf{u} and $\widehat{\mathbf{u}}$ are in the same cycle $\boldsymbol{c} \in \operatorname{FSR}(f)$, then \boldsymbol{c} is split into two adjacent cycles of $\operatorname{FSR}(g)$; if \mathbf{u} and $\widehat{\mathbf{u}}$ are in two distinct cycles $\boldsymbol{c}_{1}, \boldsymbol{c}_{2} \in \operatorname{FSR}(f)$, then \boldsymbol{c}_{1} and \boldsymbol{c}_{2} are joined into a single cycle of $\operatorname{FSR}(g)$.

Definition 4. Given $\operatorname{FSR}_{m}(g)$ and a set $\Lambda \subset \mathbb{F}_{2}^{m}$, the associated graph, denoted by G_{g}^{Λ}, is a directed graph defined as follows: the vertices are cycles of $\operatorname{FSR}(g)$, and an arc is incident from \boldsymbol{c}_{1} to \boldsymbol{c}_{2} if and only if \boldsymbol{c}_{1} is adjacent to \boldsymbol{c}_{2} at $\mathbf{u} \in \Lambda$.

Definition 5. $\Lambda \subset \mathbb{F}_{2}^{m}$ is said to be a potential set of $\operatorname{FSR}_{m}(g)$ if the following two statements hold:
(i) Any cycle of $\operatorname{FSR}(g)$ has at most one vector in Λ;
(ii) The associated graph G_{g}^{Λ} is acyclic.

Remark 1. In Definition 5, the acyclic associated graph G_{g}^{Λ} implies that Λ contains no pair of conjugate vectors.

Definition 6. Given a set $\Lambda \subset \mathbb{F}_{2}^{m}$, its characteristic function $\lambda: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ is:

$$
\lambda(\mathbf{u})= \begin{cases}1, & \mathbf{u} \in \Lambda \tag{28}\\ 0, & \mathbf{u} \notin \Lambda\end{cases}
$$

```
Let \(G_{0}\) be an empty set.
    \(\mathfrak{R}_{0} \leftarrow\left[\boldsymbol{c}_{0}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\ell-1}\right]\) is a list of cycles in a topological ordering of \(G_{g}^{\Lambda}\), where \(\mathfrak{R}_{0}\) exhaust cycles of \(\operatorname{FSR}(g)\) with a state in
\(\{\mathbf{u}: \mathbf{u} \in \Lambda\) or \(\widehat{\mathbf{u}} \in \Lambda\}\).
    for \(i=0\) to \(\ell-1\) do
        Denote \(\mathfrak{R}_{i}=\left[\boldsymbol{c}_{i}^{(i)}, \boldsymbol{c}_{i+1}^{(i)}, \ldots, \boldsymbol{c}_{\ell-1}^{(i)}\right]\).
        if \(\boldsymbol{c}_{i}\) has a state \(\mathbf{u}_{i} \in \Lambda\) then
        As in Theorem 7, let \(\boldsymbol{c}_{i}^{(i)}\) and \(\boldsymbol{c}_{k}^{(i)}\) join into \(\boldsymbol{c}_{k}^{(i+1)}\) by interchanging the next-states of \(\mathbf{u}_{i}\) and \(\widehat{\boldsymbol{u}_{i}}\), where \(\boldsymbol{c}_{k}(i<k \leq \ell-1)\) contains \(\widehat{\mathbf{u}_{i}}\).
        \(\mathfrak{Q}_{i+1} \leftarrow\left[\boldsymbol{c}_{i+1}^{(i+1)}, \boldsymbol{c}_{i+2}^{(i+1)}, \ldots, \boldsymbol{c}_{t-1}^{(i+1)}\right]\), where \(\boldsymbol{c}_{j}^{(i+1)}=\boldsymbol{c}_{j}^{(i)}\) for \(j \neq k\).
        \(\mathfrak{G}_{i+1} \leftarrow \mathfrak{G}_{i}\)
        else
            \(\mathfrak{L}_{i+1} \leftarrow\left[\boldsymbol{c}_{i+1}^{(i)}, \boldsymbol{c}_{i+2}^{(i)}, \ldots, \boldsymbol{c}_{\ell-1}^{(i)}\right]\).
            \(\mathfrak{G}_{i+1} \leftarrow \mathfrak{G}_{i} \cup\left\{\boldsymbol{c}_{i}^{(i)}\right\}\)
        end if
    end for
    return \(\mathfrak{G}_{\ell} \cup\left(\operatorname{FSR}(g) \backslash\left\{\boldsymbol{c}_{0}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\ell-1}\right\}\right)\).
```

Algorithm 1: Cycle transition from $\operatorname{FSR}(\mathrm{g})$ to $\operatorname{FSR}(\mathrm{f})$.

Example 4. Let $\operatorname{FSR}_{m}(f)$ be nonsingular and $\Lambda=$ $\left\{\min _{m}(\boldsymbol{c}) \neq \mathbf{0}^{m}: \boldsymbol{c} \in \operatorname{FSR}(f)\right\}$. Each cycle of $\operatorname{FSR}(f)$ has a unique minimal m-bit vector. Furthermore, by Lemma 6, the associated graph G_{f}^{Λ} is acyclic. Thus, Λ is a potential set of $\operatorname{FSR}(f)$.

Note that for a subset $\Lambda^{\prime} \subset \Lambda, G_{g}^{\Lambda^{\prime}}$ is a subgraph of G_{g}^{Λ}. Hence, a subset of a potential set of $\operatorname{FSR}(g)$ is also potential for $\operatorname{FSR}(g)$.

Theorem 8 is the key tool of this paper.

Theorem 8. Let $\mathrm{FSR}_{m}(g)$ be nonsingular, Λ a potential set of $\operatorname{FSR}(g), \lambda$ the characteristic function of Λ, and $f(\mathbf{x})=g(\mathbf{x})$ $\oplus \lambda(\mathbf{x}) \oplus \lambda(\widehat{\mathbf{x}})$. Then, the following statements hold:
(i) $\mathrm{FSR}_{m}(f)$ is a nonsingular FSR.
(ii) A cycle of $\operatorname{FSR}(f)$ is joined by cycles of $\operatorname{FSR}(g)$ which form a weakly connected component in G_{g}^{A}.
(iii) If $\operatorname{FSR}(h)$ is a subFSR of this $\operatorname{FSR}_{m}(f)$, then any cycle of $\operatorname{FSR}(h)$ is equivalent to a cycle c of $\operatorname{FSR}(g)$ such that \boldsymbol{c} contains no vectors in $\{\mathbf{u}: \mathbf{u} \in \Lambda$ or $\widehat{\mathbf{u}} \in \Lambda\}$.

Proof. Let

$$
\begin{align*}
\lambda(\mathbf{x}) & =\lambda\left(x_{0}, x_{1}, \ldots, x_{m-1}\right) \\
& =x_{0} \cdot \lambda_{1}\left(x_{1}, \ldots, x_{m-1}\right) \oplus\left(1 \oplus x_{0}\right) \cdot \lambda_{2}\left(x_{1}, \ldots, x_{m-1}\right) \tag{29}
\end{align*}
$$

Then, the Boolean logic:

$$
\begin{align*}
\lambda(\mathbf{x}) \oplus \lambda(\widehat{\mathbf{x}})= & \left(x_{0} \oplus 1 \oplus x_{0}\right) \cdot \lambda_{1}\left(x_{1}, \ldots, x_{m-1}\right) \\
& \oplus\left(1 \oplus x_{0} \oplus x_{0}\right) \cdot \lambda_{2}\left(x_{1}, \ldots, x_{m-1}\right) \tag{30}\\
= & \lambda_{1}\left(x_{1}, \ldots, x_{m-1}\right) \oplus \lambda_{2}\left(x_{1}, \ldots, x_{m-1}\right),
\end{align*}
$$

is independent of the first coordinate x_{0} of \mathbf{x}. Thus, by Lemma 1, since $f(\mathbf{x})=x_{0} \oplus g_{1}\left(x_{1}, \ldots, x_{m-1}\right) \oplus(\lambda(\mathbf{x}) \oplus \lambda(\widehat{\mathbf{x}}))$ $\oplus(\lambda(\mathbf{x}) \oplus \lambda(\widehat{\mathbf{x}}))$ for some Boolean function g_{1}, it characterizes a nonsingular FSR. Statement (i) of Theorem 8 is proved.

Due to Remark 1, we have:

$$
\lambda(\mathbf{x}) \oplus \lambda(\widehat{\mathbf{x}})=\left\{\begin{array}{lc}
1, & \mathbf{x} \in \Lambda \text { or } \widehat{\mathbf{x}} \in \Lambda \tag{31}\\
0, & \text { otherwise }
\end{array}\right.
$$

Algorithm 1 obtains cycles of $\operatorname{FSR}(f)$ from those of $\operatorname{FSR}(g)$.

Notice that, the Boolean logic f differs from g only at the vectors in Λ and their conjugates. Use notations in Algorithm 1. On the one hand, cycles of $\operatorname{FSR}(g)$ other than \boldsymbol{c}_{j} 's $(0 \leq j<\ell)$ are isolated vertices in G_{g}^{Λ}, and are hence cycles both for $\operatorname{FSR}(g)$ and for $\operatorname{FSR}(f)$. On the other hand, Algorithm 1 shows that each cycle of $\operatorname{FSR}(f)$ with a state in $\{\mathbf{u}: \mathbf{u} \in \Lambda$ or $\widehat{\mathbf{u}} \in \Lambda\}$ is joined by at least two cycles of $\operatorname{FSR}(\mathrm{g})$. Specifically, those cycles in the set \mathfrak{G}_{i}, in the list \mathfrak{R}_{i}, or in $\operatorname{FSR}(g) \backslash\left\{\boldsymbol{c}_{0}, \boldsymbol{c}_{1}, \ldots, \boldsymbol{c}_{\ell-1}\right\}$ are exactly cycles of $\operatorname{FSR}\left(f_{i}\right)$, where the Boolean logic f_{i} satisfies Equation (32). Notice that, $\mathbf{u}_{i} \in \Lambda$ occurs in \boldsymbol{c}_{i} and hence in $\boldsymbol{c}_{i}^{(j)}$ for $0 \leq j \leq i$. In Lines $6-8$, Algorithm 1 changes valuation at \mathbf{u}_{i} in the cycle \boldsymbol{c}_{i} (also in $\boldsymbol{c}_{i}^{(i)}$), and at its conjugate $\widehat{\mathbf{u}_{i}}$, and hence derives f_{i+1} from f_{i}.

$$
f_{i}(\mathbf{x})= \begin{cases}g(\mathbf{x}), & \{\mathbf{x}, \widehat{\mathbf{x}}\} \cap\left\{\mathbf{u} \in \Lambda: \exists j, 0 \leq j<i, \mathbf{u} \text { occurs in } \boldsymbol{c}_{j}\right\}=\emptyset \text { and }\{\mathbf{x}, \widehat{\mathbf{x}}\} \cap \Lambda \neq \emptyset ; \tag{32}\\ f(\mathbf{x}), & \{\mathbf{x}, \widehat{\mathbf{x}}\} \cap\left\{\mathbf{u} \in \Lambda: \exists j, 0 \leq j<i, \mathbf{u} \text { occurs in } \boldsymbol{c}_{j}\right\} \neq \emptyset ; \\ f(\mathbf{x})=g(\mathbf{x}), & \mathbf{x} \notin \Lambda \text { and } \widehat{\mathbf{x}} \notin \Lambda .\end{cases}
$$

Because G_{g}^{Λ} is acyclic and each vertex has at most one outdegree, G_{g}^{Λ} is a forest and a weakly connected component in it is a tree. Furthermore, due to the topological ordering, only cycle joining is used in Algorithm 1 and no cycle splitting occurs; and each vector in Λ causes a once joining. Thus, k cycles forming a tree in G_{g}^{Λ} is connected by $k-1$ arcs, and $k-1$ joinings compose them into a cycle in \mathbb{G}_{ℓ}, i.e., a cycle of $\operatorname{FSR}(f)$. Statement (ii) of Theorem 8 holds.

Furthermore, if a cycle $\boldsymbol{c} \in \operatorname{FSR}(f)$ is derived from joining more than one cycles of $\operatorname{FSR}(c)$, then \boldsymbol{c} includes conjugate m-vectors and is hence not a cycle of any subFSR of $\operatorname{FSR}(f)$ by Lemma 4 . Therefore, Statement (iii) of Theorem 8 is proved.

Statement (iii) in Theorem 8 implies Corollary 4 below.
Corollary 4. Let $\operatorname{FSR}(g)$ and $\operatorname{FSR}(f)$ be defined as in Theorem 8. Then any subFSR of $\operatorname{FSR}(f)$ is also a subFSR of $\operatorname{FSR}(g)$.

3. Some Relations between (Ir)Reducible and (In)Decomposable FSRs

Fisrt, we consider LFSRs. As for LFSRs, (note that in this paper LFSRs are defined to be homogeneous, i.e., their feedback logics in ANF do not have nonzero constant) reducibility is equivalent to decomposability. On the one hand, whether a LFSR is decomposable if and only if its characteristic polynomial is reducible $[4,6,15]$. On the other hand, $\operatorname{LFSR}(q(x)) \subset \operatorname{LFSR}(p(x))$ if and only if $q(x) \mid p(x)$ [15]. Thus, deciding indecomposability of LFSRs completely converts to irreducibility of their chracteristic polynnomials.

Second, we consider FSRs with the zero cycle.
Figure 2 straightforwardly yields Proposition 1 below.
Proposition 1. If $\operatorname{FSR}(h)=\operatorname{FSR}_{n}(f) * \operatorname{FSR}(g)$ and $f\left(\mathbf{0}^{n}\right)=$ 0 , then $\operatorname{FSR}(g)$ is a subFSR of $\operatorname{FSR}(h)$.

Proposition 2 (see [4]). Let $\mathrm{FSR}_{d}(h)$ be a decomposable FSR satisfying $h\left(\mathbf{0}^{d}\right)=0$. Then there exist $\mathrm{FSR}_{d-m}\left(h_{1}\right)$ and FSR_{m} $\left(h_{2}\right)$ for some $1 \leq m<d$ such that $\operatorname{FSR}(h)=\operatorname{FSR}_{d-m}\left(h_{1}\right)$ * $\mathrm{FSR}_{m}\left(h_{2}\right)$ and $h_{1}\left(\mathbf{0}^{d-m}\right)=h_{2}\left(\mathbf{0}^{m}\right)=0$. Particularly, $\operatorname{FSR}\left(h_{2}\right)$ is a subFSR of $\operatorname{FSR}(h)$ and $\operatorname{FSR}(h)$ is reducible.

Proof. Assume $\operatorname{FSR}(h)=\operatorname{FSR}_{d-m}(f) * \operatorname{FSR}_{m}(g)$ for some $1 \leq m<d$. Denote $\delta=g\left(\mathbf{0}^{m}\right)$. Then using Equation (3) yields:

$$
\begin{equation*}
h\left(\mathbf{0}^{d}\right)=f(\delta, \delta, \ldots, \delta) \oplus \delta=0 \tag{33}
\end{equation*}
$$

Thereafter we take h_{1} and h_{2} as follows:

$$
\begin{cases}h_{1}=f, h_{2}=g, & \text { if } \delta=0 \tag{34}\\ h_{1}=f^{*}, h_{2}=g \oplus 1, & \text { if } \delta=1\end{cases}
$$

Immediately, we have $h_{1}\left(\mathbf{0}^{d-m}\right)=h_{2}\left(\mathbf{0}^{m}\right)=0$.

Moreover, because $\operatorname{FSR}(f) * \operatorname{FSR}(g)=\operatorname{FSR}\left(f^{*}\right) * \operatorname{FSR}(g \oplus 1)$ [16, Lemma 1], it always holds that $\operatorname{FSR}(h)=$ $\operatorname{FSR}\left(h_{1}\right) * \operatorname{FSR}\left(h_{2}\right)$. The rest of proof is completed by Proposition 1.

The idea of Proposition 2 was given by Green and Dimond [4] and here we reinterpret it.

Third, note that there are infinitely many irreducible and indecomposable FSRs, and below we answer the question whether all irreducible (resp. indecomposable) FSRs are indecomposable (resp. irreducible).

Theorem 9. There exist infinitely many reducible and indecomposable FSRs.

Proof. We give a family of reducible and indecomposable FSRs as below.

Consider any even $n \geq 6$. Since the finite field $\mathbb{F}_{2^{n}}$ has a cyclic multiplicative group $\mathbb{F}_{2^{n}}^{*}$, we choose $p(x)=$ $c_{0} \oplus c_{1} x \oplus \cdots \oplus c_{n-1} x^{n-1} \oplus x^{n}$ to be the minimal polynomial of ρ over \mathbb{F}_{2}, where $\rho \in \mathbb{F}_{2^{n}}^{*}$ is of order $\left(2^{n}-1\right) / 3$. Let

It is known that $\operatorname{LFSR}(p)=\left\{[0], \boldsymbol{c}_{1}, \boldsymbol{c}_{2}, \boldsymbol{c}_{3}\right\}$, where \boldsymbol{c}_{i} 's are three $\left(2^{n}-1\right) / 3$-cycles [15]. Without loss of generality, assume that $\mathbf{1}^{n}$ occurs in \boldsymbol{c}_{1}. Then in $\boldsymbol{c}_{1}, 0 \mathbf{1}^{n-1}$ precedes $\mathbf{1}^{n}$ and $\mathbf{1}^{n}$ precedes $\mathbf{1}^{n-1} 0$. By Theorem 7, in $\operatorname{FSR}(h), \boldsymbol{c}$ is split to [1] and a $\left(2^{n}-4\right) / 3$-cycle $\boldsymbol{c}_{1}^{\prime}$, and hence $\operatorname{FSR}(h)=\{[0],[1]$, $\left.c_{1}^{\prime}, c_{2}, c_{3}\right\}$.

Consider subFSR(s) of $\operatorname{FSR}(h) . \operatorname{FSR}_{1}\left(x_{0}\right) \subset \operatorname{FSR}(h)$, and other possible subFSR(s) should be of stage $n-1$ since

$$
\begin{equation*}
\operatorname{len}\left(\boldsymbol{c}_{2}\right)=\operatorname{len}\left(\boldsymbol{c}_{3}\right)>\operatorname{len}\left(\boldsymbol{c}_{1}^{\prime}\right)=\left(2^{n}-4\right) / 3>2^{n-2} \tag{36}
\end{equation*}
$$

However, because the integer equation:

$$
\begin{equation*}
a \frac{2^{n}-1}{3}+b \frac{2^{n}-4}{3}+c=2^{n-1} \tag{37}
\end{equation*}
$$

where $a, c \in\{0,1,2\}$ and $b \in\{0,1\}$, has no solution, by Lemma 3, $\operatorname{FSR}(h)$ has no subFSR of stage $n-1$. Thus, $\operatorname{FSR}_{1}\left(x_{0}\right)$ is the unique subFSR of $\operatorname{FSR}(h)$.

Assume that $\operatorname{FSR}(h)$ is decomposable. By Proposition 2, $\operatorname{FSR}(h)=\operatorname{FSR}_{n-1}(f) * \operatorname{FSR}_{1}\left(x_{0}\right)$, where $[0] \in \operatorname{FSR}(f)$. Note that $p(x)$ is an irreducible polynomial over \mathbb{F}_{2}. By Corollary 3, the cycle \boldsymbol{c}_{2} is not self-dual. Moreover, by Statement (i) of Lemma 9, the cycle \boldsymbol{c}_{2} is even. If so, by Corollary 2 and Theorem $4, \boldsymbol{c}_{3}$ is the dual of \boldsymbol{c}_{2} and $D\left(\boldsymbol{c}_{3}\right)=D\left(\boldsymbol{c}_{2}\right)$, implying:

```
Require: A Boolean circuit \(f_{0}\).
Ensure: \(\operatorname{FSR}(f)\).
1: Read the fan-in \(r\) of \(f_{0}\).
2: Compute \(n=3^{k}\), where \(k=\min \left\{i \in \mathbb{Z}: i>\log _{3}(r / 2)\right\}\).
3: Construct a \(4 n\)-input Boolean circuit \(f\left(x_{0}, x_{1}, \ldots, x_{4 n-1}\right)=x_{0} \oplus x_{2 n} \oplus \lambda\left(x_{0}, x_{1}, \ldots, x_{4 n-1}\right) \oplus \lambda\left(\overline{x_{0}}, x_{1}, \ldots, x_{4 n-1}\right)\) with \(\lambda\) described in
Figure 8.
4: return \(\operatorname{FSR}_{4 n}(f)\).
```

Algorithm 2: Transforming a Boolean circuit to a FSR (a reduction for Theorem 1).
$\left\{\overline{\mathbf{v}} \in \mathbb{F}_{2}^{n}: \mathbf{v}\right.$ occurs in \boldsymbol{c}_{2} or $\left.\boldsymbol{c}_{3}\right\}=\left\{\mathbf{v} \in \mathbb{F}_{2}^{n}: \mathbf{v}\right.$ occurs in \boldsymbol{c}_{2} or $\left.\boldsymbol{c}_{3}\right\}$,
contradictory to Corollary 3. Therefore, $\operatorname{FSR}(h)$ is indecomposable.

Theorem 10. There exist infinitely many decomposable and irreducible FSRs.

Proof. We construct a family of decomposable and irreducible FSRs as below.

Consider any $n>2$. There exist $\operatorname{FSR}_{n}(f)$ outputting a de Bruijn sequence [27], i.e., $\operatorname{FSR}_{n}(f)$ has only one 2^{n}-cycle \boldsymbol{c}. Let $\operatorname{FSR}(h)=\operatorname{FSR}(f) * \operatorname{FSR}_{1}\left(x_{0}\right)$. Clearly, $\operatorname{FSR}(h)$ is decomposable. Furthermore, by Theorem 4 and Corollary 2, $\operatorname{FSR}(h)$ has exactly two cycles \boldsymbol{d} and $\overline{\boldsymbol{d}}$, implying that $\mathbf{0}^{n+1}$ and $\mathbf{1}^{n+1}$ do not occur in the same cycle. Since no FSR of stage less than $n+1$ generates $\mathbf{0}^{n+1}$ or $\mathbf{1}^{n+1}$, neither \boldsymbol{d} nor $\overline{\boldsymbol{d}}$ defines a subFSR. Therefore, $\operatorname{FSR}(h)$ is irreducible.

4. NP-Hardness of Deciding Irreducible FSRs

This section proves Theorem 1. Above all, we sketch our idea. Our way is to give a polynomial-time Karp reduction
(detailed in Algorithm 2) from the CIRCUIT SATISFIABILITY problem to the FSR IRREDUCIBILITY problem. Using the cycle joining method in Theorem 8, we choose $\operatorname{FSR}(g)=$ $\operatorname{LFSR}\left(p_{2}\right)$ and construct a potential set Λ_{2} such that in the associated graph $G_{p_{2}}^{\Lambda_{2}}$ (i) all $6 n$-cycles of $\operatorname{LFSR}\left(p_{2}\right)$ are not isolated (by Lemma 15) and (ii) all cycles in $\operatorname{LFSR}\left(p_{0}\right)$ are sources (by Lemma 14). The Boolean circuit f_{0} (the input of the Karp reduction) is used to tune Λ_{2} such that all cycles in $\operatorname{LFSR}\left(p_{0}\right)$ are isolated in $G_{p_{2}}^{\Lambda_{2}}$ if and only if f_{0} is unsatisfiable. The parameters are chosen such that there exists no subFSR of stage less than $2 n$ (by Theorem 5). Because a nonisolated cycle in $G_{p_{2}}^{\Lambda_{2}}$ does not admit a subFSR of f (by Lemma 4), p_{0} is the only possible subFSR of f and it occurs if and only if f_{0} is unsatisfiable (by Lemma 16). Additionally, the transformation itself is polynomial-time computable (detailed in Lemma 17). Below we give details of this proof.

In this section, for $\mathbf{v} \in \mathbb{F}_{2}^{4 n}, \operatorname{Cycle}(\mathbf{v})$ denotes the unique cycle of $\operatorname{LFSR}\left(p_{2}\right)$ containing \mathbf{v}.

Definition 7. Let \mathfrak{C} denote the set of cycles of $\operatorname{LFSR}\left(p_{2}\right)$ minadjacent to a cycle of $\operatorname{LFSR}\left(p_{0}\right)$; and let \mathfrak{D} denote the set of cycles \boldsymbol{c} in \mathfrak{C} such that any cycle in $\mathfrak{B}_{6 n}$ is not min-adjacent to c. Formally,

$$
\begin{align*}
& \mathfrak{E}=\left\{\boldsymbol{c} \in \operatorname{LFSR}\left(p_{2}\right): \operatorname{Cycle}\left(\left(10^{4 n-1}\right) \oplus \min _{4 n}(\boldsymbol{c})\right) \in \operatorname{LFSR}\left(p_{0}\right)\right\} ; \tag{39}\\
& \mathfrak{D}=\left\{\boldsymbol{c} \in \mathfrak{C}: \text { for any } \mathbf{v} \in \mathbb{F}_{2}^{4 n} \text { in } \boldsymbol{c}, \operatorname{Cycle}(\widehat{\mathbf{v}}) \notin \mathfrak{B}_{6 n} \text { or } \widehat{\mathbf{v}} \neq \min _{4 n}(\operatorname{Cycle}(\widehat{\mathbf{v}}))\right\} .
\end{align*}
$$

Lemma 11 shows that in $\operatorname{LFSR}\left(p_{2}\right)$, a cycle $\boldsymbol{c} \in \operatorname{LFSR}\left(p_{0}\right)$ is adjacent only to $6 n$-cycles.

Lemma 11. Let $\boldsymbol{c}_{1}, \boldsymbol{c}_{2} \in \operatorname{LFSR}\left(p_{2}\right)$. If \boldsymbol{c}_{1} is adjacent to \boldsymbol{c}_{2} and $\boldsymbol{c}_{1} \in \operatorname{LFSR}\left(p_{0}\right)$, then $\boldsymbol{c}_{2} \in \mathfrak{B}_{6 n}$.

Proof. Let \mathbf{v} be a $4 n$-bit vector in \boldsymbol{c}_{1}. Suppose $\boldsymbol{c}_{2} \in \operatorname{LFSR}\left(p_{0}\right)$. Note that $\widehat{\mathbf{v}}$ is a $4 n$-bit vector in \boldsymbol{c}_{2}. By Lemma 7, we have $L_{2}^{3 n}(\widehat{\mathbf{v}})=\widehat{\mathbf{v}}$ and $L_{2}^{3 n}(\mathbf{v})=\mathbf{v}$. Since L_{2} is a linear transformation and $1 \mathbf{0}^{4 n-1}=\mathbf{v} \oplus \widehat{\mathbf{v}}$, we have $L_{2}^{3 n}\left(10^{4 n-1}\right)=10^{4 n-1}$, contradictory to the fact $L_{2}^{3 n}\left(10^{4 n-1}\right)=\left(\mathbf{0}^{n} 10^{2 n-1} 10^{n-1}\right) \neq\left(10^{4 n-1}\right)$. Therefore, the above supposition does not hold and hence $\boldsymbol{c}_{2} \in \operatorname{LFSR}\left(p_{2}\right) \backslash \operatorname{LFSR}\left(p_{0}\right)=\mathfrak{B}_{6 n}$.

By Definition 7 and Lemma 11, we have $\mathfrak{D} \subseteq \mathfrak{C} \subseteq \mathfrak{B}_{6 n}$.
Example 5. Let $p_{2}(x)=x^{12} \oplus x^{6} \oplus 1$. For $\operatorname{LFSR}\left(p_{2}\right)$,

$$
\begin{align*}
\mathfrak{F}=\{ & {[1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0], } \\
& {[1,0,0,0,1,0,0,1,0,0,0,0,1,1,0,0,1,0], } \tag{40}\\
& {[1,0,0,0,1,1,0,1,1,0,0,0,1,1,1,0,1,1]\} }
\end{align*}
$$

and \mathfrak{D} includes only one cycle:

$$
\begin{equation*}
[1,0,0,0,1,1,0,1,1,0,0,0,1,1,1,0,1,1] . \tag{41}
\end{equation*}
$$

In this section, for a Boolean logic $f_{0}: \mathbb{F}_{2}^{r} \rightarrow \mathbb{F}_{2}, r<2 n$, we define four subsets of $\mathbb{F}_{2}^{4 n}$:

$$
\left\{\begin{array}{l}
\Lambda_{3 n, f_{0}}=\left\{\min _{4 n}(\boldsymbol{c}):[0] \neq \boldsymbol{c} \in \operatorname{LFSR}\left(p_{0}\right), \exists \mathbf{v} \in \mathbb{F}_{2}^{2 n} \text { in } \boldsymbol{c}, f_{0}\left(\lceil\mathbf{v}\rceil_{r}\right)=1\right\} \tag{42}\\
\Lambda_{\overline{\mathbb{C}}}=\left\{\min _{4 n}(\boldsymbol{c}): \boldsymbol{c} \in \mathfrak{B}_{6 n} \backslash \mathfrak{C}\right\} \\
\Lambda_{\mathfrak{D}}=\left\{L_{2}^{5 n}\left(\min _{4 n}(\boldsymbol{c})\right): \boldsymbol{c} \in \mathfrak{D}\right\} \\
\Lambda_{2}=\Lambda_{3 n, f_{0}} \cup \Lambda_{\overline{\mathbb{C}}} \cup \Lambda_{\mathfrak{D}}
\end{array}\right.
$$

Theorem 11. Λ_{2} is a potential set of $\operatorname{LFSR}\left(p_{2}\right)$.
To prove Theorem 11, we need Lemmas 12-14.
To some extent, Lemma 12 describes the cycles in \mathfrak{C}.
Lemma 12. If $\boldsymbol{c} \in \mathfrak{C}$, then

$$
\begin{equation*}
\boldsymbol{c}=\left[1 \mathbf{u}_{0} 0 \mathbf{u}_{1} 0 \mathbf{u}_{2} 0 \mathbf{u}_{0} 1 \mathbf{u}_{1} 0 \mathbf{u}_{2}\right], \tag{43}
\end{equation*}
$$

where $\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2} \in \mathbb{F}_{2}^{n-1}, \mathbf{u}_{2}=\mathbf{u}_{0} \oplus \mathbf{u}_{1}$, and $\left(1 \mathbf{u}_{0} 0 \mathbf{u}_{1} 0 \mathbf{u}_{2} 0 \mathbf{u}_{0}\right)=$ $\min _{4 n}(\boldsymbol{c})$.

Proof. As $\boldsymbol{c} \in \mathfrak{C} \subseteq \mathfrak{B}_{6 n}$, we denote

$$
\begin{equation*}
\boldsymbol{c}=\left[a_{0} \mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} a_{3} \mathbf{u}_{3} a_{4} \mathbf{u}_{4} a_{5} \mathbf{u}_{5}\right] \tag{44}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
a_{i} \in \mathbb{F}_{2}, 0 \leq i \leq 5 \tag{45}\\
\mathbf{u}_{i} \in \mathbb{F}_{2}^{n-1}, 0 \leq i \leq 5 \\
\left(a_{0} \mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} a_{3} \mathbf{u}_{3}\right)=\min _{4 n}(\boldsymbol{c})
\end{array}\right.
$$

Note that, the cycle $\left[10^{4 n-1} 10^{2 n-1}\right] \in \operatorname{LFSR}\left(p_{2}\right)$ contains $10^{4 n-1}$. Then the $6 n$-bit sequence of $\operatorname{LFSR}\left(p_{2}\right)$ containing $\left(10^{4 n-1}\right) \oplus \min _{4 n}(c)$ is:

$$
\begin{equation*}
\left(\overline{a_{0}} \mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} a_{3} \mathbf{u}_{3} \overline{a_{4}} \mathbf{u}_{4} a_{5} \mathbf{u}_{5}\right), \tag{46}
\end{equation*}
$$

since L_{2} is a linear transformation. By Lemma 7, If the sequence Equation (46) is generated by $\operatorname{LFSR}\left(p_{0}\right)$, then its period divides $3 n$, and hence $a_{2}=a_{0} \oplus a_{1} \oplus 1, \mathbf{u}_{2}=\mathbf{u}_{0} \oplus \mathbf{u}_{1}$, $a_{3}=\overline{a_{0}}, \mathbf{u}_{3}=\mathbf{u}_{0}, \overline{a_{4}}=a_{1}, \mathbf{u}_{4}=\mathbf{u}_{1}, a_{5}=a_{2}$, and $\mathbf{u}_{5}=\mathbf{u}_{2}$. Thus, we get

$$
\begin{equation*}
\boldsymbol{c}=\left[a_{0} \mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} \overline{a_{0}} \mathbf{u}_{0} \overline{a_{1}} \mathbf{u}_{1} a_{2} \mathbf{u}_{2}\right] . \tag{47}
\end{equation*}
$$

Due to Equation (45), we have:

$$
\begin{equation*}
\left(a_{0} \mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} \overline{a_{0}} \mathbf{u}_{0}\right)<\left(\overline{a_{0}} \mathbf{u}_{0} \overline{a_{1}} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} a_{0} \mathbf{u}_{0}\right) \tag{48}
\end{equation*}
$$

and hence $a_{0}=1$. Similarly, we have:

$$
\begin{equation*}
\left(a_{0} \mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} \overline{a_{0}} \mathbf{u}_{0}\right)<\left(\mathbf{u}_{0} a_{1} \mathbf{u}_{1} a_{2} \mathbf{u}_{2} \overline{a_{0}} \mathbf{u}_{0} \overline{a_{1}}\right), \tag{49}
\end{equation*}
$$

and hence $a_{1}=0$. Immediately, $a_{2}=a_{0} \oplus a_{1} \oplus 1=0$. The proof is complete.

Lemma 13 describes in which cycles the conjugates of vectors in $\Lambda_{\mathfrak{D}}$ are located.

Lemma 13. For any $\mathbf{v} \in \Lambda_{\mathfrak{D}}, \widehat{\mathbf{v}}$ is contained in a cycle in $\mathfrak{B}_{6 n} \backslash \mathfrak{C}$.

Proof. Let $\boldsymbol{c} \in \mathfrak{D}$ and $\mathbf{v}=L_{2}^{5 n}\left(\min _{4 n}(\boldsymbol{c})\right)$. Since $\mathfrak{D} \subseteq \mathfrak{C}, \boldsymbol{c}$ is of the form Equation (43) given in Lemma 12. Then,

$$
\begin{equation*}
\widehat{\mathbf{v}}=\left(1 \mathbf{0}^{4 n-1}\right) \oplus L_{2}^{5 n}\left(\min _{4 n}(\boldsymbol{c})\right)=\left(1 \mathbf{u}_{2} 1 \mathbf{u}_{0} 0 \mathbf{u}_{1} 0 \mathbf{u}_{2}\right) \tag{50}
\end{equation*}
$$

and hence,

$$
\begin{equation*}
\text { Cycle }(\widehat{\mathbf{v}})=\left[1 \mathbf{u}_{2} 1 \mathbf{u}_{0} 0 \mathbf{u}_{1} 0 \mathbf{u}_{2} 1 \mathbf{u}_{0} 1 \mathbf{u}_{1}\right] . \tag{51}
\end{equation*}
$$

For a $6 n$-cycle $\left[b_{0}, b_{1}, \ldots, b_{6 n-1}\right]$,

$$
\begin{equation*}
\left(b_{i}, b_{(i+n) \bmod 6 n}, b_{(i+2 n) \bmod 6 n}, \ldots, b_{(i+5 n) \bmod 6 n}\right) \tag{52}
\end{equation*}
$$

is called an n-sampling of $\left[b_{0}, b_{1}, \ldots, b_{6 n-1}\right], 0 \leq i<6 n$.
On the one hand, see that len $(\operatorname{Cycle}(\widehat{\mathbf{v}})) \notin\{1,3 n\}$. Thus, by Lemma 7, $\operatorname{Cycle}(\widehat{\mathbf{v}}) \in \mathfrak{B}_{6 n}$.

On the other hand, by Lemma 12, (100010) occurs as an n-sampling of any cycle in \mathfrak{C}. However, as shown in (51), (100010) is not an n-sampling of $\operatorname{Cycle}(\widehat{\mathbf{v}})$. Therefore, Cycle $(\widehat{\mathbf{v}}) \notin \mathfrak{C}$.

Lemma 14. The cycles of $\operatorname{LFSR}\left(p_{0}\right)$ are sources in the associated graph $G_{g}^{\Lambda_{2}}$, and $G_{g}^{\Lambda_{2}}$ is acyclic.

Proof. Recall that an arc is incident from \boldsymbol{c}_{1} to \boldsymbol{c}_{2} if \boldsymbol{c}_{1} is adjacent to \boldsymbol{c}_{2} at some $\mathbf{v} \in \Lambda_{2}$.

First, consider cycles of $\operatorname{LFSR}\left(p_{0}\right)$. By Lemma 11, the successor of any cycle of $\operatorname{LFSR}\left(p_{0}\right)$ in $G_{g}^{\Lambda_{2}}$, if there is one, is a cycle in $\mathfrak{B}_{6 n}$. Moreover, by Definition 7 and Lemma 13, no cycle in $\left(\mathfrak{B}_{6 n} \backslash \mathfrak{C}\right) \cup \mathfrak{D}$ is adjacent to a cycle in $\operatorname{LFSR}\left(p_{0}\right)$ at some $\mathbf{v} \in \Lambda_{2}$. Thus, cycles of $\operatorname{LFSR}\left(p_{0}\right)$ are sources in $G_{p_{2}}^{\Lambda_{2}}$.

Second, consider cycles in \mathfrak{D}. By Definition 7 (resp. Lemma 13), in $G_{p_{2}}^{\Lambda_{2}}$ there exists no arc incident from any cycle in $\mathfrak{B}_{6 n} \backslash \mathfrak{C}($ resp. in $\mathfrak{D})$ to a cycle in \mathfrak{D}. Hence, due to Definition 4 and Equation (42), in $G_{p_{2}}^{\Lambda_{2}}$, a cycle in \mathfrak{D} is either a source or a successor of a cycle of $\operatorname{LFSR}\left(p_{0}\right)$. Therefore, in either case any $\boldsymbol{d} \in \mathfrak{D}$ is not a vertex in a cyclic walk in $G_{p_{2}}^{\Lambda_{2}}$.

Thus, $G_{p_{2}}^{\Lambda_{2}}$ is acyclic if and only if $G_{p_{2}}^{\Lambda_{3 n, f_{0}} \cup \Lambda_{\mathbb{E}}}$ is acyclic.
Because any $\mathbf{v} \in \Lambda_{3 n, f_{0}} \cup \Lambda_{\overline{\mathbb{C}}}$ is the nonzero minimal $4 n$ vector in $\operatorname{Cycle}(\mathbf{v}), G_{p_{2}}^{\Lambda_{3 n, f_{0}} \cup \Lambda_{\bar{区}}}$ is loopless by Corollary 1, and is furthermore acyclic by Lemma 6. The proof is complete.

Incorporating the proof of Lemma 14 and Definition 7, we present Figure 7 to show (possible) directions of arcs in $G_{p_{2}}^{\Lambda_{2}}$.

Proof of Theorem 11. By (42) and $\mathfrak{D} \subseteq \mathfrak{C} \subseteq \mathfrak{B}_{6 n}$, any cycle of $\operatorname{LFSR}\left(p_{2}\right)$ has at most one vector in Λ_{2}. By Lemma $14, G_{p_{2}}^{\Lambda_{2}}$ is

Figure 7: A sketch of (possible) directions of arcs in $G_{p_{2}}^{\Lambda_{2}}$.
acyclic. Therefore, Λ_{2} satisfies Statements (i) and (ii) in Definition 5.

Lemma 15. No cycle in $\mathfrak{B}_{6 n}$ is an isolated vertex in $G_{p_{2}}^{\Lambda_{2}}$.
Proof. Note that $\mathfrak{B}_{6 n}=\left(\mathfrak{B}_{6 n} \backslash \mathfrak{C}\right) \cup \mathfrak{D} \cup(\mathfrak{C} \backslash \mathfrak{D})$. See Figure 7.
By Definition 4 and Equation (42), any cycle in ($\left.\mathfrak{B}_{6 n} \backslash \mathfrak{C}\right)$ $\cup \mathfrak{D}$ is not isolated in $G_{p_{2}}^{\Lambda_{2}}$.

Moreover, by Definition 7, for $c \in \mathfrak{C} \backslash \mathfrak{D}$, there exists $\boldsymbol{d} \in \mathfrak{B}_{6 n}$ such that \boldsymbol{c} contains the conjugate of $\min _{4 n}(\boldsymbol{d})$. Then $\boldsymbol{d} \notin \mathfrak{C}$ by Definition 7 , and hence $\min _{4 n}(\boldsymbol{d}) \in \Lambda_{\overline{\mathbb{C}}}$. Thus, there exists $\boldsymbol{d} \in \mathfrak{B}_{6 n} \backslash \mathfrak{C}$ min-adjacent to \boldsymbol{c}. Therefore, any cycle in $\mathfrak{C} \backslash \mathfrak{D}$ is not isolated in $G_{p_{2}}^{\Lambda_{2}}$.

Lemma 16. Let Λ_{2} be defined in Equation (42) and λ its characteristic function. Let

$$
\begin{align*}
& f\left(x_{0}, x_{1}, \ldots, x_{4 n-1}\right)=x_{0} \oplus x_{2 n} \oplus \lambda\left(x_{0}, x_{1}, \ldots, x_{4 n-1}\right) \\
& \oplus \lambda\left(\overline{x_{0}}, x_{1}, \ldots, x_{4 n-1}\right) . \tag{53}
\end{align*}
$$

Then $\operatorname{FSR}_{4 n}(f)$ is irreducible if and only if the Boolean circuit f_{0} is satisfiable.

Proof. By Theorem 11, Λ_{2} is a potential set of $\operatorname{LFSR}\left(p_{2}\right)$.
By Theorem 8, $\operatorname{FSR}(f)$ is nonsingular and it is reducible if and only if there exists $\operatorname{FSR}_{m}(h), m<4 n$, such that all its cycles essentially belong to $\operatorname{LFSR}\left(p_{2}\right)$ and all m-bit vectors generated by $\operatorname{FSR}(h)$ are not in $\left\{\mathbf{v}: \mathbf{v} \in \Lambda_{2}\right.$ or $\left.\widehat{\mathbf{v}} \in \Lambda_{2}\right\}$. Furthermore, by Lemma 15, any cycle in $\mathfrak{B}_{6 n}$ has a state in $\left\{\mathbf{v}: \mathbf{v} \in \Lambda_{2}\right.$ or $\left.\widehat{\mathbf{v}} \in \Lambda_{2}\right\}$, and hence we only have to consider such $\operatorname{FSR}(h)$ with its cycles in $\operatorname{LFSR}\left(p_{0}\right)$.

Suppose f_{0} to be unsatisfiable. Then $\Lambda_{3 n, f_{0}}$ is empty as defined in Equation (42). By Definition 4 and Lemma 14, all cycles of $\operatorname{LFSR}\left(p_{0}\right)$ are isolated vertices in $G_{p_{2}}^{\Lambda_{2}}$. Therefore, $\operatorname{LFSR}\left(p_{0}\right)$ is a subFSR of $\operatorname{FSR}(f)$.

Suppose f_{0} to be satisfiable. Since the nonzero cycles of $\operatorname{LFSR}\left(p_{0}\right)$ exhaust all nonzero $2 n$-bit vectors and $r<2 n$, there exists at least one nonzero cycle $\boldsymbol{c} \in \operatorname{LFSR}\left(p_{0}\right)$ containing a $2 n$-bit vector \mathbf{v} such that $f_{0}\left(\lceil\mathbf{v}\rceil_{r}\right)=1$. Then $\Lambda_{3 n, f_{0}}$ is not empty as defined in Equation (42). In this case, all cycles in $\mathfrak{B}_{6 n}$ and some cycle(s) of $\operatorname{LFSR}\left(p_{0}\right)$ are not isolated vertices in $G_{p_{2}}^{\Lambda_{2}}$. Thus, by Theorem 8, a subFSR of $\operatorname{FSR}(f)$ should
be a subFSR of $\operatorname{LFSR}\left(p_{0}\right)$. Anyhow, $\operatorname{LFSR}\left(p_{0}\right)$ has no subFSR by Theorem 5, and hence $\operatorname{FSR}(f)$ is irreducible.

Lemma 17. There exists a polynomial-time algorithm for the transformation defined by Algorithm 2.

Proof. In Figure 8, the characteristic functions of $\Lambda_{3 n, f_{0}}, \Lambda_{\overline{\mathbb{E}}}$, $\Lambda_{\mathfrak{D}}$ and Λ_{2} are given in peudocodes. Note that in Test $\Lambda_{\mathfrak{D}}$, $\mathbf{v}_{0}=L_{2}^{n}(\mathbf{x})$ is equivalent to $\mathbf{x}=L_{2}^{5 n}\left(\mathbf{v}_{0}\right)$.

First, the linear transformations L_{0}, L_{1} and L_{2} have complexity $\mathcal{O}(1)$. Second, the subprocedure IsNonzero ${ }_{k}$ decides whether \mathbf{x} is a nonzero k-bit vector and IsNonzero ${ }_{4 n}$ costs $\mathcal{O}(n) ; \operatorname{IsMin}_{T, l}$ decides whether \mathbf{x} is the minimal vector in the sequence $\mathbf{x}, T(\mathbf{x}), \ldots, T^{k}(\mathbf{x})$, where T is the state transformation, and $\mathrm{IsMin}_{L_{2}, 6 n}$ costs $\mathcal{O}\left(n^{2}\right)$; IsInB6n decides whether $\operatorname{Cycle}(\mathbf{x}) \in \mathfrak{B}_{6 n}$, and costs $\mathcal{O}(n)$; IsSol 3 n decides whether f_{0} is evaluated 1 at some r-bit vector in the cycle $\boldsymbol{c} \in \operatorname{LFSR}\left(p_{0}\right)$ containing \mathbf{x}, and costs $\mathcal{O}\left(n \cdot \operatorname{SIZE}\left(f_{0}\right)\right)$. Thus, the time complexity of $\operatorname{Test}_{\Lambda_{3 n, f_{0}}}$, $\operatorname{Test}_{\Lambda_{\overline{\mathbb{C}}}}$, $\operatorname{TeSt}_{\Lambda_{\mathfrak{D}}}$, and λ are, respectively, $\mathcal{O}\left(n^{2}+n \cdot \operatorname{SIZE}\left(f_{0}\right)\right), \quad \mathcal{O}\left(n^{2}\right), \quad \mathcal{O}\left(n^{3}\right)$ and $\mathcal{O}\left(n^{3}+n \cdot\right.$ $\left.\operatorname{SIZE}\left(f_{0}\right)\right)$. Third, Line 2 of Algorithm 2 costs $\mathcal{O}(\log r \cdot \log n)$, and ensures $r<2 n \leq 3 r$. Moreover, the fan-in is not greater than the circuit size, i.e., $r \leq \operatorname{SIZE}\left(f_{0}\right)$. Therefore, the time complexity of λ, and hence that of f, is polynomial in $\operatorname{SIZE}\left(f_{0}\right)$.

Furthermore, incorporating Figure 9 we give a branchless interpretation of the $\operatorname{logic} \lambda$ via standard instructions and the input circuit f_{0}. Additionally, the nesting depth of loop structures is not greater than three, and each loop structure has a controlling counter upper-bounded by $6 n$, including implicit loops in IsNonzero, L_{2}^{n} and $L_{2}^{3 n}$. Thus, we conclude that Figures 8 and 9 enable to express the feedback logic f as a straight-line program scaling up its size up to n (essentially dependent on $\operatorname{SIZE}\left(f_{0}\right)$), with at most poly (n) instructions, where $\operatorname{poly}(n)$ is a polynomial in n. Moreover, the parameter $n \leq 3 \cdot \operatorname{SIZE}\left(f_{0}\right) / 2$ is efficiently decided in Line 2 of Algorithm 2. Therefore, given a Boolean circuit f_{0}, there exists a polynomialtime algorithm characterizing the above $\operatorname{FSR}(f)$.

Proof of Theorem 1. By Theorem 3, Lemmas 16 and 17, Algorithm 2 gives a polynomial-time Karp reduction from the NP-complete problem CIRCUIT SATISFIABILITY to FSR IRREDUCIBILITY. Therefore, we conclude that FSR IRREDUCIBILITY is NP-hard.

5. NP-Hardness of Deciding Indecomposable FSRs

This section proves Theorem 2. Above all, we sketch our idea. Similar to the proof of Theorem 1, we give a Karp reduction (detailed in Algorithm 3) from the CIRCUIT SATISFIABILITY problem to the FSR INDECOMPOSABILITY problem. Using the cycle joining method in Theorem 8, we take $\operatorname{FSR}(g)=$ $\operatorname{LFSR}\left(p_{1}\right)$ and construct a potential set $\Lambda_{p_{0}, f_{0}}$ of $\operatorname{LFSR}\left(p_{1}\right)$ in the following way. The potential set of $\operatorname{LFSR}\left(p_{0}\right)$ defined in

Require: A Boolean circuit f_{0}.
Ensure: $\operatorname{FSR}(f)$.
1: Read the fan-in r of f_{0}.
2: Compute $n=3^{k}$, where $k=\min \left\{i \in \mathbb{Z}: i>\log _{3}(r / 2)\right\}$.
3: Construct a $(2 n+1)$-input Boolean circuit $f\left(x_{0}, x_{1}, \ldots, x_{2 n}\right)=x_{0} \oplus x_{1} \oplus x_{n} \oplus x_{n+1} \oplus x_{2 n} \oplus \lambda\left(x_{0}, x_{1}, \ldots, x_{2 n}\right) \oplus \lambda\left(\overline{x_{0}}, x_{1}, \ldots, x_{2 n}\right)$ with λ described in Figure 10.
4: return $\operatorname{FSR}_{2 n+1}(f)$.

Algorithm 3: Transforming a Boolean circuit to a FSR (a reduction for Theorem 2).

Figure 8: Subprocedures for Algorithm 2 and the logic of $\operatorname{FSR}(f)$.

Example 4 is tuned by the Boolean circuit f_{0} (the input of the Karp-reduction), and then $\Lambda_{p_{0}, f_{0}}$ includes their D-morphic preimages generated by $\operatorname{LFSR}\left(p_{0}\right)$. If f_{0} is unsatisfiable, $\operatorname{FSR}(f)$ is equivalent to $\operatorname{LFSR}\left(p_{0}\right) * \operatorname{FSR}_{1}\left(x_{0}\right)$. If $\operatorname{FSR}(f)$ is decomposable, a possible right $*$-factor of $\operatorname{FSR}(f)$ is a subFSR of $\operatorname{LFSR}\left(p_{1}\right)$ (by

Proposition 2 and Corollary 4), which turns out to be either $\operatorname{LFSR}\left(p_{0}\right)$ or $\mathrm{FSR}_{1}\left(x_{0}\right)$ (by Theorem 6). If f_{0} is satisfiable, Theorem 8 ensures that $\operatorname{LFSR}\left(p_{0}\right)$ is not a right $*$-factor of $\operatorname{FSR}(f)$, and Lemma 6 does not admit $\operatorname{FSR}_{1}\left(x_{0}\right)$ as a right $*$-factor of $\operatorname{FSR}(f)$ (detailed in the proof of Lemma 19). That is, f is

```
IsInB6n (x)
    \(\mathrm{v}_{3 n} \leftarrow \mathrm{~L}_{2}^{3 n}(\mathrm{x})\)
    return IsNonzero \({ }_{4 n}\left(\mathrm{v}_{3 n} \oplus \mathrm{x}\right)\)
\(\operatorname{IsMin}_{T, l}(\mathrm{x})\)
    \(\mathrm{v}_{0} \leftarrow \mathrm{x}\)
    \(a_{0} \leftarrow 1\)
    for \(i=1\) to \(l\) do
        \(\mathrm{v}_{i} \leftarrow T\left(\mathrm{v}_{i}-1\right)\)
        \(a_{i} \leftarrow a_{i-1} \wedge \operatorname{IsNonzero2}\left(1-\operatorname{Sign}\left(\mathrm{v}_{0}-\mathrm{v}_{i}\right)\right)\)
        \(/ v_{i}\) and \(v_{0}\) are taken as integers and \(\operatorname{Sign}\left(v_{0}-v_{i}\right)\) gives the sign of \(v_{0}-v_{i}\).
    return \(a_{l}\)
Test \(_{\Lambda \mathfrak{D}}: \mathbb{F}_{2}^{4 n} \rightarrow \mathbb{F}_{2}\), the characteristic function of \(\Lambda_{\mathscr{D}}\)
    \(\mathrm{v}_{0} \leftarrow L_{2}^{n}(\mathrm{x})\)
    \(w_{0}=\operatorname{IsMin}_{L_{2}, 6 n}\left(\mathrm{v}_{0}\right) \wedge \operatorname{IsInB6n}(\mathrm{x}) \wedge\left(\neg \operatorname{IsInB6n}\left(\widehat{\mathrm{v}_{0}}\right)\right)\)
    for \(i=1\) to \(6 n\) do
        \(\mathrm{v}_{i} \leftarrow L_{2}\left(\mathrm{v}_{i}-1\right)\)
        \(w_{i}=w_{i-1} \wedge\left(\neg\left(\operatorname{IsInB6n}\left(\widehat{\mathrm{v}}_{i}\right) \wedge \operatorname{IsMin}_{L_{2}, 6 n}\left(\widehat{\mathrm{v}_{i}}\right)\right)\right)\)
    endfor
    return \(w_{6 n}\)
```

Figure 9: Branchless interpretation of some subprocedures for λ.
indecomposable if and only if f_{0} is satisfiable. Additionally, the transformation itself is polynomial-time computable (by Lemma 20). Below we give details of this proof.

In this section, for $\mathbf{v} \in \mathbb{F}_{2}^{2 n+1}$, $\operatorname{Cycle}(\mathbf{v})$ denotes the unique cycle of $\operatorname{LFSR}\left(p_{1}\right)$ containing \mathbf{v}.

For a Boolean logic $f_{0}: \mathbb{F}_{2}^{r} \rightarrow \mathbb{F}_{2}, r<2 n$, we define a subset of $\mathbb{F}_{2}^{2 n+1}$:

$$
\Lambda_{p_{0}, f_{0}}=\left\{\begin{array}{l|l}
\mathbf{v} \in \mathbb{F}_{2}^{2 n+1} & {[0] \neq \operatorname{Cycle}(\mathbf{v}) \in \operatorname{LFSR}\left(p_{0}\right),} \tag{54}\\
D(\mathbf{v})=\min _{2 n}(D(\operatorname{Cycle}(\mathbf{v}))), \\
\exists \mathbf{u} \in \mathbb{F}_{2}^{2 n} \text { in } D(\operatorname{Cycle}(\mathbf{v})), f_{0}\left(\lceil\mathbf{u}]_{r}\right)=1
\end{array}\right\} .
$$

Theorem 12. $\Lambda_{p_{0}, f_{0}}$ is a potential set of $\operatorname{LFSR}\left(p_{1}\right)$.
Proof. As Statement (ii) of Lemma 9, the D-morphism is a permutation on $\operatorname{LFSR}\left(p_{0}\right)$, and hence $D($ Cycle $(\mathbf{v})) \in$ $\operatorname{LFSR}\left(p_{0}\right)$. Note that any cycle of $\operatorname{LFSR}\left(p_{0}\right)$ has a unique minimal $2 n$-bit vector. Thus, $\min _{2 n}(D(\operatorname{Cycle}(\mathbf{v})))$ is welldefined and its D-morphic preimages are a pair of dual vectors. By Statement (i) of Lemma 9 and Theorem 4, as shown in Figure 4, one of the preimages occurs in a cycle of $\operatorname{LFSR}\left(p_{0}\right)$, and the other in a cycle of $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$. Thus, the preimage in a cycle of $\operatorname{LFSR}\left(p_{0}\right)$ is uniquely determined. Therefore, each nonzero cycle of $\operatorname{LFSR}\left(p_{0}\right)$ has at most one $(2 n+1)$-bit vector in $\Lambda_{p_{0}, f_{0}}$, and any cycle of $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$ has no vector in $\Lambda_{p_{0}, f_{0}}$.

By Definition 4, Equation (54) and Statement (iii) of Lemma 9, an arc in the associated graph $G_{p_{1}}^{\Lambda_{p 0, f 0}}$ always goes
from a cycle in $\operatorname{LFSR}\left(p_{0}\right)$ to a cycle in $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$. Then $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$ is therefore acyclic.

In summary, $\Lambda_{p_{0}, f_{0}}$ satisfies Statements (i) and (ii) of Definition 5 and is hence a potential set of $\operatorname{LFSR}\left(p_{1}\right)$.

We define a directed graph G as follows: the vertices of G are cycles of $\operatorname{LFSR}\left(p_{0}\right)$, and an arc is incident from \boldsymbol{c}_{1} to \boldsymbol{c}_{2} if and only if $\boldsymbol{c}_{1} \neq[0]$ is min-adjacent to \boldsymbol{c}_{2} at $\min _{2 n}\left(\boldsymbol{c}_{1}\right)$ and $\exists \mathbf{u} \in \mathbb{F}_{2}^{2 n}$ in \boldsymbol{c}_{1} such that $f_{0}\left(\lceil\mathbf{u}\rceil_{r}\right)=1$.

Lemma 18. G is a contraction graph of $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$, where for all $\beta \in \operatorname{LFSR}\left(p_{0}\right)$, two vertices β and $\bar{\beta}$ of $\mathcal{G}_{p_{1}}^{\Lambda_{p_{0}, f o}}$ are identified as one vertex $D(\beta)$ in G.

Proof. The pair of vertices β_{l} and $\overline{\beta_{l}}$ contract to $D\left(\beta_{l}\right)$ in G, $1 \leq l \leq\left(2^{2 n}-1\right) /(3 n)$, and the pair of 1 -cycles $[0]$ and $[1]$ contract to [0].

On the one hand, the same as in the proof of Theorem 12, if an arc in $G_{p_{1}}^{\Lambda_{p o f}}$ goes from some cycle in $\left\{\beta_{i}, \overline{\beta_{i}}\right\}$ to some cycle in $\left\{\beta_{j}, \overline{\beta_{j}}\right\}$, then this arc is necessarily incident from β_{i} to $\overline{\beta_{j}}$. By Definition 4 and Equation (54), an arc in $G_{p_{1}}^{\Lambda_{p_{0} f_{0}}}$ is incident from a nonzero cycle β_{i} to $\overline{\beta_{j}}$ if and only if there exists $\mathbf{v} \in \mathbb{F}_{2}^{2 n+1}$ satisfying the following four statements: (i) $\mathbf{v} \neq \mathbf{0}^{2 n+1}$ is $(2 n+1)$-bit vector in β_{i}; (ii) $D(\mathbf{v})$ is the minimal $2 n$-bit vector in $D\left(\beta_{i}\right)$; (iii) f_{0} is evaluated 1 at an r-bit vector in $D\left(\beta_{i}\right)$; and (iv) $\widehat{\mathbf{v}}$ occurs in $\overline{\beta_{j}}$.

On the other hand, the vertices of G are [0] and β_{i} 's, $1 \leq i \leq\left(2^{2 n}-1\right) /(3 n)$, and an arc in G is incident from the nonzero cycle $D\left(\beta_{i}\right)$ to $D\left(\beta_{j}\right)$ if and only if there exists $\mathbf{w} \in \mathbb{F}_{2}^{2 n}$ satisfying the following three statements: (i) $\mathbf{w} \neq$ $0^{2 n}$ is the minimal $2 n$-bit vector in $D\left(\beta_{i}\right)$; (ii) f_{0} is evaluated 1 at an r-bit vector in $D\left(\beta_{i}\right)$; and (iii) $\widehat{\mathbf{w}}$ occurs in $D\left(\beta_{j}\right)$.

Let $\mathbf{w}=D(\mathbf{v})$. Then $\widehat{\mathbf{w}}=D(\widehat{\mathbf{v}})$. Note that $\widehat{\mathbf{v}}$ is a $(2 n+1)$ bit vector generated by $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$ by Statement (iii) of Lemma 9. Considering $D\left(\beta_{j}\right)=D\left(\overline{\beta_{j}}\right)$, we conclude that $\widehat{\mathbf{w}}$ is contained in $D\left(\beta_{j}\right)$ if and only if $\widehat{\mathbf{v}}$ is contained in $\overline{\beta_{j}}$. Therefore, the D morphism determines a one-one correspondence between \mathbf{v} 's and w's as above.

Thus, an arc in $G_{p_{1}}^{\Lambda_{0}, f_{0}}$ is incident from some cycle in $\left\{\beta_{i}, \overline{\beta_{i}}\right\}$ to some cycle in $\left\{\beta_{j}, \overline{\beta_{j}}\right\}$ if and only if an arc in G is incident from the nonzero cycle $D\left(\beta_{i}\right)$ to $D\left(\beta_{j}\right)$. Therefore, G is a contraction of $G_{p_{1}}^{\lambda_{0}, f_{0}}$.

Lemma 19. Let $\Lambda_{p_{0}, f_{0}}$ be as in Equation (54) and λ its characteristic function. Let

$$
\begin{align*}
& f\left(x_{0}, x_{1}, \ldots, x_{2 n}\right)=x_{0} \oplus x_{1} \oplus x_{n} \oplus x_{n+1} \oplus x_{2 n} \tag{55}\\
& \oplus \lambda\left(x_{0}, x_{1}, \ldots, x_{2 n}\right) \oplus \lambda\left(\overline{x_{0}}, x_{1}, \ldots, x_{2 n}\right) .
\end{align*}
$$

Then $\operatorname{FSR}_{2 n+1}(f)$ is indecomposable if and only if the Boolean circuit f_{0} is satisfiable.

$$
\left.\frac{\lambda: \mathbb{F}_{2}^{2 n+1} \rightarrow \mathbb{F}_{2} \text {, the characteristic function of } \Lambda_{p_{0}, f_{0}}}{\text { return IsNonzero }} 2 n+1(\mathbf{x}) \wedge\left(\neg\left(x_{0} \oplus x_{n} \oplus x_{2 n}\right)\right) \wedge \operatorname{lsMin}_{L_{0}, 3 n}(D(\mathbf{x})) \wedge \operatorname{IsSol} 3 n\left(D(\mathbf{x}), f_{0}\right)\right)
$$

Figure 10: A subprocedure for the logic of $\operatorname{FSR}(f)$ (IsNonzero, IsMin, and IsSol3n given in Figure 8).

Proof. By Theorem 12, $\Lambda_{p_{0}, f_{0}}$ is a potential set of $\operatorname{LFSR}\left(p_{1}\right)$. By Theorem 8, $\operatorname{FSR}(f)$ is nonsingular.

Suppose f_{0} to be unsatisfiable. Then $\Lambda_{p_{0}, f_{0}}$ is empty as defined in (54), and hence the Boolean function λ is constant zero. In this case, $\operatorname{FSR}(f)$ is equivalent to $\operatorname{LFSR}\left(p_{1}\right)=$ $\operatorname{LFSR}\left(p_{0}\right) * \operatorname{FSR}_{1}\left(x_{0}\right)$ and is hence decomposable.

Now suppose f_{0} to be satisfiable.
Since $r<2 n$ and the nonzero cycles of $\operatorname{LFSR}\left(p_{0}\right)$ contain all r-bit vectors, there exists at least one nonzero cycle $\beta \in \operatorname{LFSR}\left(p_{0}\right)$ such that $D(\beta)$ contains an r-bit vector \mathbf{x} such that $f_{0}(\mathbf{x})=1$. Then the $(2 n+1)$-bit vector \mathbf{v} in β with its D-morphic image $D(\mathbf{v})$ minimal in $D(\beta)$ is a vector in $\Lambda_{p_{0}, f_{0}}$. Thus, $\Lambda_{p_{0}, f_{0}}$ is not empty and $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$ has at least one arc.

Assume that $\operatorname{FSR}(f)$ is decomposable. Note that $\mathbf{0}^{2 n+1} \notin$ $\Lambda_{p_{0}, f_{0}}$ and then $[0]$ is an isolated vertex in $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$, implying $[0]$ $\in \operatorname{FSR}(f)$ by Theorem 8. Then by Proposition 2, $\operatorname{FSR}(f)=$ $\operatorname{FSR}(g) * \operatorname{FSR}(h)$, where $\operatorname{FSR}(h) \subset \operatorname{FSR}(f)$ and $[0] \in \operatorname{FSR}(h)$. By Corollary 4, $\operatorname{FSR}(h)$ is also a subFSR of $\operatorname{LFSR}\left(p_{1}\right)$. Thus, by Theorem $6, \operatorname{FSR}(h)$ is either $\operatorname{LFSR}\left(p_{0}\right)$ or $\mathrm{FSR}_{1}\left(x_{0}\right)$. Anyhow, as shown above, $G_{p_{1}, f_{0}}^{\Lambda_{p_{0}}}$ has at least one arc, i.e., at least one nonzero cycle of $\operatorname{LFSR}\left(p_{0}\right)$ is not an isolated vertex in $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$. Then it follows from Theorem 8 that $\operatorname{LFSR}\left(p_{0}\right)$ is not a subFSR of $\operatorname{FSR}(f)$. Therefore, below we only have to consider $\operatorname{FSR}(h)=\operatorname{FSR}_{1}\left(x_{0}\right)$, i.e., $\operatorname{FSR}(f)=\operatorname{FSR}(g) * \operatorname{FSR}_{1}\left(x_{0}\right)$.

First, we claim that each odd cycle (i.e. any cycle in $\left.\operatorname{FSR}\left(p_{0}{ }^{*}\right)\right)$ has indegree at most 1 . Otherwise, suppose that $\overline{\beta_{j}}$ has indegree >1 in $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$. Let $\mathfrak{N} \subset \operatorname{LFSR}\left(p_{1}\right)$ be the weakly connected component containing $\overline{\beta_{j}}$ and denote the set of the dual cycles $\overline{\mathfrak{Z}}=\{\overline{\boldsymbol{c}}: \boldsymbol{c} \in \mathfrak{A}\}$. On the one hand, recall that each even cycle (i.e., any cycle in $\operatorname{LFSR}\left(p_{0}\right)$) has outdegree ≤ 1 in $G_{p_{1}}^{\Lambda_{0}, f_{0}}$. Hence, even cycles outnumber odd cycles in \mathfrak{U}. On the other hand, by Theorem 4 and Corollary 2, since cycles in \mathfrak{A} and those in $\overline{\mathfrak{A}}$ have the same D-morphic images, $\overline{\mathfrak{N}}$ is also a weakly connected component in $G_{p_{1}}^{1_{p_{0}, f_{0}}}$ and its cycles are joined into one cycle of $\operatorname{FSR}(f)$ since we have assumed $\operatorname{FSR}(f)=\operatorname{FSR}(g) * \operatorname{FSR}_{1}\left(x_{0}\right)$. However, odd cycles outnumber even cycles in $\overline{\mathfrak{N}}$, and cycles in $\overline{\mathfrak{N}}$ are hence not weakly connected since each even cycle has outdegree at most 1 , yielding contradiction. So, the claim is proved.

Second, we conclude that for any $1 \leq k \leq\left(2^{2 n}-1\right) /(3 n)$, β_{k} and $\overline{\beta_{k}}$ are in different weakly connected components. Otherwise, there is an undirected path connecting β_{k} with $\overline{\beta_{k}}$. In $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$, each cycle in $\operatorname{LFSR}\left(p_{0}\right)$ has 0 indegree and at most 1 outdegree, and each cycle in $\operatorname{FSR}\left(p_{0}{ }^{*}\right)$ has 0 outdegree and at most 1 indegree as in the above claim. Thus, the only possible undirected path from β_{k} to $\overline{\beta_{k}}$ is an arc from β_{k} to $\overline{\beta_{k}}$. However, there exists no arc from β_{k} to $\overline{\beta_{k}}$. Otherwise, in the contraction graph G there is a self-loop of $D\left(\beta_{k}\right)$ (see Figure 4), contradictory to Lemma 6. So, by Theorem 8 , there are no self-dual cycles in $\operatorname{FSR}(f)$.

Therefore, a weakly connected component in $G_{p_{1}}^{\Lambda_{p_{0}, f_{0}}}$ (as shown in Figure 4) is of the form $\left\{\beta_{i}, \overline{\beta_{j}}\right\}$ with an arc incident
from β_{i} to $\overline{\beta_{j}}$, where β_{i} and β_{j} are distinct nonzero cycles of $\operatorname{LFSR}\left(p_{0}\right)$. Notice that,

$$
\begin{align*}
& \left\{\mathbf{v} \in \mathbb{F}_{2}^{n}: \mathbf{v} \text { in } D\left(\beta_{i}\right) \text { or } D\left(\overline{\beta_{j}}\right)\right\} \\
= & \left\{\mathbf{v} \in \mathbb{F}_{2}^{n}: \mathbf{v} \text { in } D\left(\overline{\beta_{i}}\right) \text { or } D\left(\beta_{j}\right)\right\} . \tag{56}
\end{align*}
$$

The same as above, because we assume $\operatorname{FSR}(f)=$ $\operatorname{FSR}(g) * \mathrm{FSR}_{1}\left(x_{0}\right)$, by Equation (56), Theorem 4 and Corollary 2, we conclude that β_{j} and $\overline{\beta_{i}}$ also join into one cycle of $\operatorname{FSR}(f)$, i.e., there is an arc from β_{j} to $\overline{\beta_{i}}$. Consider the contraction graph G. If so, in G, an arc goes from $D\left(\beta_{i}\right)$ to $D\left(\beta_{j}\right)$ and another from $D\left(\beta_{j}\right)$ to $D\left(\beta_{i}\right)$, implying that G is not acyclic, contradictory to Lemma 6.

Thus, our assumption does not hold and $\operatorname{FSR}(f)$ is indecomposable.

Lemma 20. There exists a polynomial-time algorithm for the transformation defined by Algorithm 3.

Note that $\mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{2 n}\right)$ occurs in a cycle of $\operatorname{LFSR}\left(p_{0}\right)$ if and only if $x_{0} \oplus x_{n} \oplus x_{2 n}=0$. Then Figure 10 presents the peudocode of the characteristic function of $\Lambda_{p_{0}, f_{0}}$. The proof of Lemma 20 is similar to that of Lemma 17, and we omit it here.

Proof of Theorem 2. By Theorem 3, Lemmas 19 and 20, Algorithm 3 gives a polynomial-time Karp-reduction from the NP-complete problem CIRCUIT SATISFIABILITY to FSR INDECOMPOSABILITY. Therefore, we conclude that FSR INDECOMPOSABILITY is NP-hard.

6. Conclusion

Deciding irreducibility/indecomposability of FSRs is interesting for sophisticated circuit implementation and security analysis of stream ciphers. We studied both problems from the standing point of the worst-case computational complexity, and by now have proved that both the decision problems are NP-hard. Constructive examples are also given to show that there exist infinitely many irreducible (resp. indecomposable) FSRs that are decomposable (resp. reducible). We hope that this theoretical work serves as an inspiration to further explore the underlying obstacles to generally finding subFSRs or decomposing FSRs. To find subFSRs and $*$-factors of FSRs with no help of groundbreaking computing, it is therefore recommended to make good use of their specific feedback logics. Additionally, it is also interesting and challenging to study the average-case computational complexity of irreducibility and indecomposability of FSRs in future.

Data Availability

The data used to support the findings of this study are included within the article.

Disclosure

A preprint of this paper has previously been published [30]. Differing from the earlier version, this paper gives a new proof of Theorem 2 using the language of graph theory, and also shows that irreducible (resp. indecomposable) FSRs do not exclude decomposable (resp. reducible) FSRs.

Conflicts of Interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The author would like to express sincere gratitude to Prof. Dr. Klaus Pommerening for his invaluable and encouraging suggestions to improve the manuscript. This work is supported by the National Key R\&D Program of China (Grant No. 2021YFB3100200) and the National Natural Science Foundation of China (Grant No. 61502441).

References

[1] M. Robshaw and O. Billet, New Stream Cipher Designs: The eSTREAM Finalists, Springer-Verlag, Heidelberg, 2008.
[2] M. Hell, T. Johansson, A. Maximov, and W. Meier, "The grain family of stream ciphers," in New Stream Cipher Designs, M. Robshaw and O. Billet, Eds., vol. 4986 of Lecture Notes in Computer Science, pp. 179-190, Springer, Berlin, Heidelberg, 2008.
[3] M. Hamann, M. Krause, and W. Meier, "Lizard—a lightweight stream cipher for power-constrained devices," IACR Transactions on Symmetric Cryptology, vol. 2017, no. 1, pp. 45-79, 2017.
[4] D. H. Green and K. R. Dimond, "Nonlinear product-feedback shift registers," in Proceedings of the Institution of Electrical Engineers, vol. 117, pp. 681-686, IET Digital Library, 1970.
[5] J. Mykkeltveit, M. K. Siu, and P. Tong, "On the cycle structure of some nonlinear shift register sequences," Information and Control, vol. 43, no. 2, pp. 202-215, 1979.
[6] T. Tian, J. M. Zhang, C. D. Ye, and W. F. Qi, "A survey and new results on the decomposition of an nfsr into a cascade connection of two smaller nfsrs," Cryptology ePrint Archive, Paper 2014/536, 2014.
[7] A. Klein, Stream Ciphers, Springer Publishing Company, Incorporated, 2013.
[8] B. Zhang, C. Xu, and W. Meier, "Fast near collision attack on the grain v1 stream cipher," in Advances in CryptologyEUROCRYPT 2018, J. B. Nielsen and V. Rijmen, Eds., pp. 771802, Springer International Publishing, Cham, 2018.
[9] E. R. Berlekamp, Algorithmic Coding Theory, McGraw-Hill, New York, 1968.
[10] J. Massey, "Shift-register synthesis and BCH decoding," IEEE Transactions on Information Theory, vol. 15, no. 1, pp. 122127, 1969.
[11] E. Dubrova, "A transformation from the fibonacci to the galois NLFSRs," IEEE Transactions on Information Theory, vol. 55, no. 11, pp. 5263-5271, 2009.
[12] Y. Jiang and D. Lin, "Lower and upper bounds on the density of irreducible NFSRs," IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3944-3952, 2018.
[13] T. Tian and W.-F. Qi, "On the largest affine sub-families of a family of nfsr sequences," Designs, Codes and Cryptography, vol. 71, no. 1, pp. 163-181, 2014.
[14] Y. Jiang and D. Lin, "On affine sub-families of grain-like structures," Designs, Codes and Cryptography, vol. 82, no. 3, pp. 531-542, 2017.
[15] R. Lidl and H. Niederreiter, Finite Fields, Vol. 20, Cambridge Univ. Press, Cambridge, U.K, 1997.
[16] Z. Ma, W.-F. Qi, and T. Tian, "On the decomposition of an NFSR into the cascade connection of an NFSR into an LFSR," Journal of Complexity, vol. 29, no. 2, pp. 173-181, 2013.
[17] J. Zhong and D. Lin, "Decomposition of nonlinear feedback shift registers based on Boolean networks," Science China Information Sciences, vol. 62, no. 3, Article ID 39110, 2019.
[18] Z. Wang, X. Zhao, Q. Zheng, X. Feng, and Z. Sun, "The decomposition of an nfsr into the cascade connection of two smaller nfsrs revisited," Designs, Codes and Cryptography, vol. 91, pp. 1889-1910, 2023.
[19] J. Zhong and D. Lin, "On equivalence of cascade connections of two nonlinear feedback shift registers," The Computer Journal, vol. 62, no. 12, pp. 1793-1804, 2019.
[20] H. Hu and G. Gong, "Periods on two kinds of nonlinear feedback shift registers with time varying feedback functions," International Journal of Foundations of Computer Science, vol. 22, pp. 1317-1329, 2011.
[21] J. Zhong and D. Lin, "On minimum period of nonlinear feedback shift registers in grain-like structure," IEEE Transactions on Information Theory, vol. 64, no. 9, pp. 6429-6442, 2018.
[22] Y. Yang, X. Zeng, and Y. Xu, "Periods on the cascade connection of an LFSR and an NFSR," Chinese Journal of Electronics, vol. 28, no. 2, pp. 301-308, 2019.
[23] Z. Wang, Q. Zheng, X. Zhao, and X. Feng, "Grain-like structures with minimal and maximal period sequences," Designs, Codes and Cryptography, vol. 89, no. 4, pp. 679-693, 2021.
[24] Y. Jiang, "Weak grain-like structures," IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7717-7723, 2020.
[25] S. Arora and B. Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2012.
[26] C. H. Bennett, E. Bernstein, G. Brassard, and U. Vazirani, "Strengths and weaknesses of quantum computing," SIAM Journal on Computing, vol. 26, no. 5, pp. 1510-1523, 1997.
[27] S. W. Golomb, Shift Register Sequences, Aegean Park Press, Laguna Hills, CA, USA, 1981.
[28] Z. Wan, Z. Dai, M. Liu, and X. Feng, Nonlinear Feedback Shift Registers, Science Press, Beijing, 1978.
[29] A. Lempel, "On a homomorphism of the de bruijn graph and its applications to the design of feedback shift registers," IEEE Transactions on Computers, vol. C-19, no. 12, pp. 1204-1209, 1970.
[30] L. Wang, "Deciding irreducibility/indecomposability of feedback shift registers is np-hard," $1702.01423,2017$.

