Hindawi

IET Information Security

Volume 2024, Article ID 4313185, 15 pages
https://doi.org/10.1049/2024/4313185

|
I — I The Institution of) .
— Engineering and Technology Hindawi

Research Article

VulMPFF: A Vulnerability Detection Method for Fusing Code
Features in Multiple Perspectives

Xiansheng Cao @®," Junfeng Wang ,” Peng Wu®,> and Zhiyang Fang

ISchool of Cyber Science and Engineering, Sichuan University, Chengdu 610207, China
2College of Computer Science, Sichuan University, Chengdu 610065, China
3School of Information and Engineering, Sichuan Tourism University, Chengdu 610100, China

Correspondence should be addressed to Junfeng Wang; wangjf@scu.edu.cn
Received 26 November 2023; Revised 25 February 2024; Accepted 4 March 2024; Published 22 March 2024
Academic Editor: Guowen Xu

Copyright © 2024 Xiansheng Cao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Source code vulnerabilities are one of the significant threats to software security. Existing deep learning-based detection methods
have proven their effectiveness. However, most of them extract code information on a single intermediate representation of code
(IRC), which often fails to extract multiple information hidden in the code fully, significantly limiting their performance. To
address this problem, we propose VulMPFF, a vulnerability detection method that fuses code features under multiple perspectives.
It extracts IRC from three perspectives: code sequence, lexical and syntactic relations, and graph structure to capture the vulnera-
bility information in the code, which effectively realizes the complementary information of multiple IRCs and improves vulnera-
bility detection performance. Specifically, VulMPFF extracts serialized abstract syntax tree as IRC from code sequence, lexical and
syntactic relation perspective, and code property graph as IRC from graph structure perspective, and uses Bi-LSTM model with
attention mechanism and graph neural network with attention mechanism to learn the code features from multiple perspectives
and fuse them to detect the vulnerabilities in the code, respectively. We design a dual-attention mechanism to highlight critical
code information for vulnerability triggering and better accomplish the vulnerability detection task. We evaluate our approach on
three datasets. Experiments show that VulMPFF outperforms existing state-of-the-art vulnerability detection methods (i.e., Rats,
FlawFinder, VulDeePecker, SySeVR, Devign, and Reveal) in Acc and F1 score, with improvements ranging from 14.71% to
145.78% and 152.08% to 344.77%, respectively. Meanwhile, experiments in the open-source project demonstrate that VulMPFF
has the potential to detect vulnerabilities in real-world environments.

analysis [2], symbolic execution [3], and fuzzy testing [4] have
been applied to vulnerability detection. Unfortunately, the
traditional techniques and methods are becoming less and

1. Introduction

With the rapid development of the software supply chain,

open-source software plays an increasingly important role
in software development. In this context, developers are
more likely to inadvertently introduce code vulnerabilities.
Unlawful elements use these vulnerabilities to attack the frag-
ile supply chain, which will not only bring threats to indivi-
duals and enterprises but also threaten national security.
Security testing of source code during the software develop-
ment cycle to reduce vulnerabilities in software at the source
can help enhance software security and improve the security
of the software supply chain.

To detect and eliminate vulnerabilities in software, tech-
niques such as software static analysis [1], taint propagation

less adaptable to software’s increasing size and complexity.
For example, static analysis methods have good adaptability
but require experienced experts to manually define vulnera-
bility patterns, which is usually costly and difficult to detect
more complex triggering conditions, and has high false posi-
tives; dynamic analysis methods are good at capturing vulner-
abilities during software runtime, but because they cannot
reach a lot of code areas, and in combination with the current
status quo of large-scale and high-complexity software, they
often have high false negatives. Deep learning-based methods
are also widely used in software vulnerability detection and
have achieved relatively good results. Analyzing the source

https://orcid.org/0000-0002-0045-2707
https://orcid.org/0000-0003-1699-2270
https://orcid.org/0000-0002-2414-2578
https://orcid.org/0000-0001-6502-8053
mailto:wangjf@scu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

code to extract intermediate representation of code (IRC) con-
taining more code information is the key to applying deep learn-
ing to code vulnerability detection. Some approaches view the
code as a natural sequence and use recurrent neural networks
(RNN) [5-7], convolutional neural networks (CNN) [8, 9], and
their variant networks for vulnerability detection. This class of
methods can effectively capture sequential and contextual infor-
mation in the code. However, they tend to ignore the structural
nature of the code, lose semantic information about vulnerability
triggers, and fail to extract lexical and syntactic information
adequately. There are also methods to represent code as code
relationship graphs as IRC, such as abstract syntax trees (ASTs)
[10], control flow graphs (CFG) [11], data flow graphs (DFG)
[12], program dependency graphs (PDG) [13], and code prop-
erty graphs (CPGs) [14], which in turn use graph neural net-
works (GNNs) to detect vulnerabilities [15-18]. This class of
methods considers the structural characteristics of the code
and can extract semantic information from the code. However,
the contextual information of the vulnerability trigger and criti-
cal lexical and syntactic information will be lost. At the same
time, different vulnerability-triggering patterns may be hidden in
the semantic information of different subgraphs. Most existing
graph-based approaches treat the code graph as a graph struc-
ture in which feature information is passed between nodes that
do not distinguish a subgraph. Most existing graph-based
approaches treat the code graph as a graph structure in which
feature information is passed between nodes that do not distin-
guish a subgraph without sufficiently considering the heteroge-
neous nature of the graph.

This paper proposes a vulnerability detection method,
VulMPFF, that fuses code features in multiple perspectives.
IRC is extracted from three perspectives: code sequence, lex-
ical and syntactic relations, and graph structure to capture
vulnerability information in the code, which effectively rea-
lizes the complementary information of multiple IRCs. First,
serialized AST and CPG are extracted on the preprocessed
function code. After initialization, the serialized AST is fed
into the Bi-LSTM model with a self-attention mechanism to
learn the serialized AST features. At the same time, four
subgraphs are extracted on CPG for different edges. The
GNN with attention mechanism is used to update the node
information on each subgraph to learn different semantic
information about vulnerability triggering in the subgraphs,
and then merge the node representations of the four sub-
graphs into the whole heterogeneous graph and aggregate the
heterogeneous graph node information into the final CPG
features. Finally, the serialized AST and graph features are
fused into a fusion feature fed into the classifier for vulnera-
bility detection. This method effectively combines the advantages
of IRC extracted from different perspectives, extracts the contex-
tual information of vulnerability triggering in the code, and
captures the semantic information and the lexical and syntactic
information of different complex streams in the code, which
provides a better ability to recognize vulnerabilities.

The novelties and contributions of this paper are as follows.
(1) A new vulnerability detection framework, VulMPEFF, is pro-
posed, which extracts IRC from three perspectives: code
sequences, lexical and syntactic relations, and graph structures,

IET Information Security

effectively realizing the complementarity of information from
different IRCs and having a stronger capability of capturing
code vulnerability information. (2) We improve the way of
extracting code information in heterogeneous graphs by updat-
ing the respective node features in different subgraphs and aggre-
gating them into CPGs, which fully considers the heterogeneity
of code relationship graphs. (3) We use serialized ASTs instead
of directly extracting code sequences to extract code information,
fully preserving the contextual information in the code while
compensating for the missing lexical and syntactic information
in the AST subgraphs of CPG. (4) Experiments based on this
design on multiple datasets show that VulMPEF outperforms six
state-of-the-art vulnerability detection methods (i.e., Rats [19],
FlawFinder [20], VulDeePecker [5], SySeVR [7], Devign [15],
and Reveal [16]) in terms of Acc and F1 score are improved from
14.71% to 145.78% and 152.08% to 344.77%, respectively, with
the ability to detect actual open source projects.

In terms of structure, this paper is divided into the follow-
ing sequence: Section 2 presents the related work. Section 3
presents the preliminaries of this paper. Section 4 presents the
overall architecture of VulMPFF. The experimental evalua-
tion is given in Section 5. Section 6 presents a discussion of the
limitations of VulMPFF. Section 7 concludes this paper.

2. Related Work

This section presents the background and related work in
terms of both code intermediate representation and existing
vulnerability detection methods.

2.1. Intermediate Representation of Source Code. Converting
source code into a suitable IRC is the core problem of source
code-oriented vulnerability detection models [21]. Generally,
the richer the code information in IRC, the better the detection
performance. Existing IRCs include treating source code as nat-
ural sequences and converting to ASTs and graph structures.

Source code sequence is a sequence or a set of tokens
containing key elements such as keywords, identifiers, and
operators obtained through lexical analysis of the source
code IRC [9], which can be fully extracted to the contextual
and lexical information in the code sequence, effectively
identifying the vulnerabilities of remote dependencies and
lexical change triggering characteristics.

AST is an IRC that converts source code into a tree struc-
ture [10]. It is an abstract representation of the syntactic
structure of the source code, which represents the syntactic
structure of the programing language in a tree form; each
node in the tree represents a structure in the source code,
corresponding to the main code elements. AST contains syn-
tactic information in the source code and lexical and syntactic
information in the source code, and vulnerabilities triggered
by lexical and syntactic errors can be effectively identified
using AST.

CFG is an internal control graph that converts source
code into a directed graphical structure describing all possi-
ble traversal paths during code execution through control
dependencies in an AST [11]. Each of its nodes corresponds
to a statement in the source code, and it usually requires the
code to have complete functional logic and to be compiled

IET Information Security

before it can be generated. CFG contains the functional logic
relationships in the code, and each of its edges represents the
direction of the control flow within the code. Control-depen-
dency-related vulnerabilities can be effectively identified
using CFG.

DFG is an internal control graph representing the logical
flow of data through the code and the transformation process
[12]. Tt can represent the data dependencies of a series of
operations in source code from the data flow and processing
perspective, and data-dependency-related vulnerabilities can
be identified using DFG.

PDG is an IRC that converts source code into a graphical
structure consisting of a data dependence graph (DDG) and
a control dependence graph (CDG) [13]. It extracts data
dependence and control dependence relationships between
code elements based on AST, and each node can correspond
to a statement of the source code; using PDG, more code
details can be abstracted, and vulnerabilities related to data
dependence and control dependence can be identified.

CPG is a type of IRC that converts source code into a
graph structure, integrating multiple relational graphs of
AST, CFG, and PDG into a single graph containing multiple
complex flow relationships [14]. Multiple semantic informa-
tion can be extracted using CPG, which synthesizes the
advantages of multiple graph-level IRCs and identifies mul-
tiple types of vulnerabilities.

There are other approaches to transforming code into an
extended graph structure IRC, such as extending the AST to
a code-pointing relationship graph containing four kinds of
edges (AST, CFG, DFG, and NCS) [15], and treating the
source code as a simplified code property graph (SCPG)
[22], which start from the goal of extracting a more compre-
hensive semantics and identifying a greater variety of types of
vulnerabilities.

2.2. Vulnerability Detection Methods for Source Code

2.2.1. Pattern-Based Methods. Pattern-based vulnerability
detection methods usually require experienced experts to
manually define vulnerability patterns, which form large
databases of vulnerability rules [1]. Since the pattern-based
is predefined, detection tools such as Rats [19], CppCheck
[23], Flawfinder [20], and Checkmarx [24], which usually use
this approach, can quickly detect known vulnerabilities in
the pattern-based. However, this approach is labor-intensive
and dependent on vulnerability rules, and discovering new
and relatively complex vulnerabilities is often challenging. In
addition, developing vulnerability rules with more complex
triggering conditions is costly, and building a comprehensive
vulnerability pattern database is even more challenging.
Thus, pattern-based approaches are limited to the vulner-
abilities in the vulnerability rule database and cannot do
anything about emerging vulnerabilities.

2.2.2. Code Cloning-Based Methods. Code clone-based meth-
ods are methods for discovering vulnerabilities introduced
by code clones. This approach generally extracts IRC rather
than performing similarity detection directly with code. Vul-
pecker [25] devised a set of definitions for software patches

and proposed a similarity detection method that can auto-
matically identify vulnerabilities and enable localization for
remediation when vulnerabilities and source code are given.
Vuddy [26] is an extensible method that can quickly detect
code cloning vulnerabilities by calculating the hash of a
sequence of strings and comparing the hashes. VDSimilar
[27] is implemented based on vulnerability code and vulner-
ability repair patch code, and it chooses the Bi-LSTM model
with an attention mechanism to learn the difference between
a pair of patches and the homogeneity of classes between a
pair of vulnerabilities for vulnerability detection. Effective
IRC is the key to this type of approach, and although very
efficient, its detection of unknown vulnerabilities is weak,
often only detecting vulnerabilities introduced by code clon-
ing, and usually requires a larger dataset of cloned vulner-
abilities to learn as many vulnerability patterns as possible,
which is a significant limitation.

2.2.3. Deep Learning-Based Methods. Deep learning-based
methods have powerful modeling and intelligent pattern-
learning capabilities to extract source code information auto-
matically. Russell et al. [9] used a lexical analyzer to extract
the sequence tokens of the source code and then used a CNN
model to learn the source code features and later used a random
forest classifier to identify the vulnerabilities. VulDeePecker [5]
constructs a series of code gadgets for a collection of code state-
ments based on heuristics and then processes these for vulnera-
bility detection using Bi-LSTM models. SySeVR [7] can detect
multiple types of vulnerabilities by customizing SyVCs and
SeVCs, which represent syntactic and semantic information of
the code, respectively, and designing automatic extraction meth-
ods. Many other researchers consider source code as natural
sequences [28, 29], usually extracting the code sequence infor-
mation and then using RNN or CNN correlation models for
vulnerability detection.

In recent years, many researchers have made significant
progress using GNNs [30] for vulnerability detection. Devign
[15] extended the AST of function code into a directed graph
of the code containing four types of edges (AST, CFG, DFG,
and NCS) and used a GGNN model to efficiently extract the
semantic information in the source code to identify vulner-
abilities. Reveal [16] extracted the function code as CPG and
used the GGNN model to identify vulnerabilities. Wu et al.
[22] considered the source code as a SCPG and used GGNN
for vulnerability detection. Despite the progress, the existing
GNN-based methods still have limitations and cannot effec-
tively fuse heterogeneous information in different graphs.

3. Preliminaries

3.1. Problem Formulation. The goal of VuIMPFF is to detect
vulnerabilities at function-level granularity. We denote codes
as C={cy, 6, 3, ..., ¢, }. Their labels are L= {0, 1}", where
n represents the number of function codes, 0 illustrates a
vulnerable code, and 1 denotes a nonvulnerable code. Our
approach aims to discover the optimal mapping of the codes
to their corresponding labels ¢ : C — L. We extract the seri-
alized ASTs and CPGs of the codes as IRCs from different
perspectives, and they can be defined as follows:

(CFGEntry)

I
I
} ParameterList
|

int func(int x){
int z=1,024;
inty=x+z

if (y > 0){

int x int z = 1,024;

Pammeter:

IET Information Security

CFGExit
FunctionDef

Stmnts

inty=x+z; if(y > 0) return y; return -1;

return y;

}

return -1;

}

Identifier PrimaryExpr

AST —»
CFG —»
CDG ---»
DDG ---

CoOCH

IdentifierDeclStatement Assignment IfStatement ReturnSi Return$S
Cm JC =)Gy m J(r JC==a) (2) C >) 2)
IdentifierDecIType Identifier ~ AssignmentExpr IdentifierDecIType Identifier AssignmentExpr Condition Identifier UnaryOps

1 -

Identifier AdditiveExpr Identifier PrimaryExpr ~ PrimaryExpr UnaryOperator
y Y
Identifier Identifier

FiGure 1: CPG of the example function func().

Serialized AST: The serialized AST can be represented as
S=s(T), where T = {t,, t,, 13, ..., t,, } denotes all tokens, and
m represents the number of tokens.

CPG: CPG can be represented as G=g(V, E, A), where
V €X denotes all nodes, ECY denotes all edges and A
means all node attributes, X and Y represent the types of all
nodes and edges, respectively. The CPG is a heterogeneous
graph with different subgraphs distinguished by different
edge types, and then there is [X| 4 |Y|>2, and in particular,
|Y| =4 in the CPG.

Then VulMPFF finds the optimal mapping by minimiz-
ing the loss function with the following definition:

min 3. £(p(g,(V. E A)Is(T).31g.5)) + dolg). (1)

1

where #(-) denotes the loss function, (- || -) denotes the
concatenated operation, A(-) denotes the adaptive weight
parameter, and o(-) denotes the regularization term.

3.2. The Intermediate Representation of the Code Used.
VulMPFF chooses serialized AST as IRC under the code
sequence, lexical and syntactic relation perspective, and
CPG as IRC under the graph structure perspective. Figure 1
is the schematic diagram of CPG for the function func(),
where the subgraphs of the AST are consistent with the
nodes and structure of the tree-structured AST of func().
Serialized AST is derived from a planar transformation
based on the tree-structured AST, which consists of nodes
with parent—child mapping relationships at different depths
[31]. We extract the serialized AST on the tree-structured
AST, and Table 1 shows the serialized AST node information
table of func() function in Figure 1. According to the serial-
ized AST node information table, the DFT algorithm is used
to traverse the serialized AST to obtain a planarized sequence
as the final serialized AST representation. For node values, a
lexical analyzer is used to extract all the tokens along with the
traversed node types to form the serialized AST. Taking the
func() function as an example, we extracted the serialized
AST as: {functiondef, int, func, parameterlist, parameter,
int,x, stmnts, identifierdecistatement, int, z, ...}. The serial-
ized AST is very different from pure code sequences. It

TaBLE 1: Serialized AST node information table.

Node type Depth Values
FunctionDef 0 int func(x)
ParameterList 1 —
Parameter 2 int x
Stmnts 1 —
IdentifierDecIStatement 3 int z=1,024;
IdentifierDecIType 4 int

extracts the keyword method and syntax information related
to vulnerability triggering based on tree-structured AST and,
at the same time, retains the contextual information in the
original sequence, which has better expressive ability.

CPG contains enough semantic information about the
code and can encode the complex flow relationship in the
code into the model. It is based on the AST extension to
heterogeneous graphs and contains four kinds of relational
graphs, AST, CFG, CDG, and DDG, corresponding to four
different semantic relations.

4. Methodology

In this section, we discuss in detail our proposed vulnerabil-
ity detection method, VulMPFF, that fuses code features
under multiple perspectives, including the general frame-
work of the method, the data preprocessing process, the
extraction methods of serialized AST and CPG features,
and the design of the detection classifier.

4.1. Overview. The research goal of VulMPFF is to detect
vulnerabilities at function-level granularity. The general
framework of our proposed method is shown in Figure 2,
divided into three main parts.

(i) Data preprocessing: Multilevel generalization opera-
tions are performed on the function code to improve
the model’s adaptability to code variants, followed
by serialized AST and CPG extraction.

(ii) Source code feature extraction: It includes two parts:
serialized AST feature extraction and CPG feature

IET Information Security

4 4 N\
Data preprocessing Source code features extration Vulnerability detection
(& : 0
=)
Source code " 2 .(@' .. l.

H Word2Vec) Concatenate
' .{‘ﬂ - e AST CDG o =

® QCH > g i

Remove :omments f i i L ;| i CPG feature

V CFG DDG e

] Generate CPG Graph node embedding Extract subgraphs and updating node Merging and readout

o representations in subgraphs
Map user-defined Classifier network
variables H

H)
| ./.D.ﬂ DFT [\ =—= 2

Eh g 3 g Im g S|
Q == <] Vulnerable Benign

Map user-defined .
functions Generate AST Serialized AST Word2Vec Serialized AST embedding ., o=g Serialized AST feature
- J - J -

FiGURE 2: Overall framework of VulMPFF.

extraction. A dual-attention mechanism is intro-
duced to extract serialized AST and CPG features
by the Bi-LSTM model and GNN, respectively.

(iii) Vulnerability detection: Serialized AST and CPG fea-
tures are fused to obtain fusion features and vulner-
ability detection of fusion features at function-level
granularity is performed using classifiers.

4.2. Data Processing. Before extracting the IRC of the source
code, some generalized preprocessing operations are required to
reduce unwanted noise and lower the vectorized dimensionality.
The preprocessing improves the adaptability of VulMPFF to
common code variants while preserving the rich information
in the code. A schematic of the preprocessing operations we
perform on the function code is shown in Figure 3, which
includes three levels of generalization processing operations.

The first step is to remove comments in the code that do not
make sense for vulnerability triggering; while removing the com-
ments, it does not affect various information in the code.

The second step is to map user-defined variable names
uniformly, which can reduce the interference due to the
program developer’s habits and, at the same time, can
improve the model’s adaptability to code modifications.

The third step is to map user-defined function names.

The mapping rule in steps 2 and 3 replaces the developer-
defined variable and function names with VB and MD with a
numeric suffix, where the number counts from 1. If there is
more than one variable and function, the number is incre-
mented in the order of occurrence. For example, the variable
names ¥, ¥, and z are mapped to VB1, VB2, and VB3 in step
2, and the function name func is mapped to MDI in step 3.

4.3. Source Code Features Extraction. After preprocessing the
function code, VulMPFF uses the powerful C/C++ code
analysis tool Joern [32] to generate AST and CPG as IRCs,
after which serialized AST features and CPG features are
extracted on both IRCs.

4.3.1. Serialized AST and Graph Node Embedding.
(1) Serialized AST Embedding. After obtaining the serialized
ASTs, we embedded them into the low-latitude space using a

Source code of a function

(1) Remove comments

int func(int
n .unc(ln I int func(int x){
int z = 1,024;
X int z = 1,024;
inty=x+z .
o g L. inty=x+z;
/*a judgment operation™/ ifly > 0)f
i
if(y > 0){ N /
return y;
return y; }
}
return -1;
return -1; }
}
I
v
(2) Map user-defined (3) Map user-defined
variables functions
int func(int VB1){ int MD1(int VB1){

int VB2 = 1,024;
int VB3 = VBI + VB2;
if(VB3 > 0){
return VB3;
}

return -1;

A 4

int VB2 = 1,024;
int VB3 = VBI + VB2;
if(VB3 > 0){
return VB3;
}

return -1;

FiGUre 3: Data preprocessing.

pretrained Word2vec [33] model to convert the serialized
ASTs into feature vectors that the model could process.
We trained the Word2vec model individually for each data-
set, and the corpus used was derived from the serialized AST's
of all function samples in each dataset. Considering that the
lengths of the serialized ASTs extracted from the function
samples were highly inconsistent, we chose 1,000 as the
length threshold for the serialized ASTs after examining
the datasets used. Short sequences are padded with zeros,
and long sequences are truncated.

(2) Graph Node Embedding. After obtaining the CPG, the
node information in the graph needs to be embedded into
quantizable vectors in the low-dimensional space, which will
be used as the initial feature vectors of the nodes that the
model can process. We use a pretrained Word2vec model to
obtain the initial feature vectors of CPG nodes. Specifically,

the code segments in the nodes are taken, and all tokens are
extracted using a lexical splitter. For the case of multiple
tokens, the multiple tokens are averaged to obtain the initial-
ized feature vector of the node. Node types also provide a lot
of hidden information. We count all the node types in each
dataset that participated in the training and finally encode
each node type as an integer using one-hot. Finally, the node
type encoding is concatenated behind the above initial node
feature vector as the final node initialization feature vector.

4.3.2. Serialized AST Feature Extraction. After obtaining the
initialized feature vectors of the serialized AST, we use a Bi-
LSTM model with an attentional mechanism to capture the
contextual, lexical, and syntactic information in which the
vulnerability triggers the key. The serialized AST passes
through the embedding, Bi-LSTM, and attention layers
before accessing the flatten and fully connected layers. We
added a Dropout layer to the model for randomly discon-
necting a certain percentage of neurons, which can enhance
the model’s generalization ability and reduce the complexity
to some extent. In this section, we choose the Relu function
as the activation function to update the feature vectors of the
serialized AST.

We denote S as a serialized AST containing » tokens, and
each token is mapped to a global vector. Then, S can be
expressed by Formula (2):

S=lellellesll ... Il (2)

where vector ¢,, denotes the vector of the mth token in the
serialized AST S.

The initialized feature vector of the serialized AST is fed
into the Bi-LSTM layer to get the representation of H=
BiLSTM(S). After that, the output of the Bi-LSTM layer is
fed into the attention layer. Adding the attention layer com-
putes the interactions of different units in the serialized AST,
solves the data dependency problem in long sequences, and
highlights the critical information for vulnerability trigger-
ing. The computation of the attention layer is as follows.

We denote hf and h], as the outputs of the Bi-LSTM
layer and first obtain the implicit representation through
an MLP, as shown in Formula (3):

m, ;= tanh (h{ W, 4+ hLW +b), (3)

where W, and W are the key and attention parameters,
respectively, and b is the bias parameter. It is then activated
by a Sigmoid function as shown in Formula (4):

Ny = G(Wamt.t’ =+ bl)’ (4)

where W, denotes the attention parameter and b’ is the bias
parameter. After that, it goes through the Softmax function
to get the normalized weights, as shown in Formula (5):

IET Information Security
Uy = softmax(n,), (5)

where u, s denotes the self-attention value, then the output of
the last self-attention layer can be expressed as Formula (6):

v=">uhy.
> terhy (6)

4.3.3. CPG Feature Extraction. VulMPFF first extracts four
subgraphs by edge type on the CPG that has completed node
initialization, which are AST:0, CFG:1, CDG:2, and DDG:3.
Different subgraphs have different vulnerabilities triggering
critical semantic information. Then, update the respective
node features in each subgraph separately and aggregate
the node features on each subgraph into CPG. Finally, the
problem of aggregating all node representations of the het-
erogeneous graph is viewed as a structured feature classifica-
tion problem to read out the CPG features over the whole
heterogeneous graph.

(1) Updating Node Representations in Subgraphs. We
denote the graph-level IRC as G=|],.;GS,, where e
denotes the four edge types and G¢; denotes the subgraph.
We denote the node in the subgraph G¢, as v,,, where m is
the node serial number. Then, denote the state of node v,, at
the moment k — 1 as hk;}, then node v,, at the moment k as
h, .. The state of node v,, at the moment k is aggregated for its

€

neighboring nodes in subgraph G¢ ;, denoted as Formula (7):

hE = Aggregate(hﬁ,e, Vv, € Nm,e), (7)

where N,, . denotes the neighbor node of node v,, in sub-
graph G¢, when subgraph G¢ updates each node repre-
sentation, we also introduce the attention mechanism to
distinguish between the importance of a node’s neighboring
nodes. We chose the multihead mechanism to enhance the
expressiveness and generalization of the model. We calculate
the correlation coefficient a$,, between node v,, and neigh-

bor node v, in subgraph G¢,, according to Formula (8):

a%, = M([WHE LI WhHELH]). n €N, (8)

where [- || -] denotes the high-dimensional features of the
merged node v, with its neighbor node v,, M(-)denotes a
mapping relationship that maps high-dimensional data into
a low-dimensional space, and W is the shared parameter
matrix. Then, we calculate the attention coefficient a,, of
neighbor node v, to node v,,, according to Formula (9):

o explola)
TS explo(ai,) ©)

where o is the activation function, the representation of the
node v,, can be updated after obtaining the individual atten-
tion coefficients of the neighboring nodes of the node v,, to
that node, according to Formula (10):

IET Information Security

h]r(n.e_”§16< 2 afnanZh’,ifel), (10)

NENp.e

where a5, denotes the zth head of a,,, and W? corresponds
to the zth head of W. We repeat steps Formulas (2)—(4) to
update the node representations to aggregate the information
of the node’s multistep neighbors and extend the sense field.

(2) Merging Node Representations of Subgraphs. After
updating the node representations in different subgraphs, it
is necessary to merge the representations of the nodes of
different subgraphs over the whole graph. Typical operations
include averaging, summing, cascading, maximizing, and
minimizing [34]. We use the averaging method to aggregate
subgraph node representations, represented by Formula

(11):

2 hine
h., :%F]E\ , (11)

where £, denotes the feature of node v,, updated by aggre-
gating elements from all neighboring nodes in different
edges.

(3) Readout CPG Representation. After the subgraph
nodes have finished merging, we read out the graph repre-
sentation by averaging all the node features in the CPG, as
shown in Formula (12):

h/
H _ mgM " (12)
CPG = —|M|)

where M denotes the set of all nodes in the CPG.

4.3.4. Vulnerability Detection. After extracting the serialized
AST and CPG feature vectors, we fused them to obtain fused
feature vectors, determining whether a function is a vulnera-
bility function.

We choose to directly concatenate serialized AST feature
vectors and CPG feature vectors to fuse the two feature vec-
tors. The serialized AST feature vector contains lexical and
syntactic information and remote dependencies critical for
vulnerability triggering. In contrast, the CPG features con-
tain different complex flow semantic information critical for
vulnerability triggering, and the fusion of the two can effec-
tively complement each other’s code information from mul-
tiple perspectives, which can be used to classify and detect
vulnerability functions.

We choose multilayer perceptron (MLP) as the classifier
to perform the linear transformation on the fused feature
vector to extract the abstract features of the code function.
The MLP classifier contains three implicit layers and accesses
a Dropout layer. The Sigmoid is chosen as the activation
function for the classification, denoted as Formula (13):

TaBLE 2: Overview of the datasets.

Dataset Vul. No-Vul. Total Ratio (Vul.:No-vul.)
Big-Vulg,, 10,094 11,027 21,121 1:1.09
Big-Vulfun 10,094 159,354 169,448 1:15.79
Devign 9,824 11,856 21,680 1:1.21
Reveal 1,664 18,169 19,833 1:10.92

y = Sigmoid(MLP(Hsyst || Hepg))s (13)

where 7 is the final detection result and Hgygp and Hcpg are the
function code’s serialized AST and CPG features, respectively.

5. Evaluation

In this section, we discuss in detail our proposed vulnerabil-
ity detection method, VulMPFF, that fuses code features
under multiple perspectives, including the general frame-
work of the method, the data preprocessing process, the
extraction methods of serialized AST and CPG features,
and the design of the detection classifier.

5.1. Experimental Setup

5.1.1. Datasets. To verify the validity of VulMPFF, three
different public datasets are collected in this paper. The three
datasets are the Big-Vul dataset [35], the Devign dataset [15],
and the Reveal dataset [16], as shown in Table 2, for an
overview of our collected datasets. We chose Joern [32] to
extract AST and CPG in our experiments, so we removed the
samples that Joern could not process in each dataset.

The Big-Vul dataset collects 348 real open-source pro-
jects from 2002 to 2019. It covers all CVE entries and over 90
different vulnerability types, totaling over 10,000 vulnerabil-
ity function samples and over 170,000 nonvulnerability func-
tion samples. Due to the uneven distribution of vulnerability
samples and nonvulnerability samples in this dataset, to val-
idate our method more comprehensively, we extract a bal-
anced dataset based on the Big-Vul dataset, which we call the
Big-Vuly,, dataset, with a sample ratio of 1:1.09 (negative
samples:positive samples). The original Big-Vul dataset,
which we call the Big-Vulg,; dataset, has a sample ratio 1:
15.79 (negative samples: positive samples).

The Devign dataset was collected from two open-source
projects, FFmpeg and Qemu, at function-level granularity
and hand-labeled. It contains about 10,000 vulnerability
function samples and 12,000 nonvulnerability function sam-
ples, with a sample ratio 1:1.21 (negative samples:positive
samples), making it a relatively balanced dataset.

The Reveal dataset was collected from two open-source
projects, Linux Debian Kernel and Chromium, at function-
level granularity. It includes about 1,700 vulnerable function
samples and over 18,000 nonvulnerable function samples.
The sample ratio is 1:10.92 (negative and positive samples),
a nonunbalanced dataset.

5.1.2. Evaluation Metrics. In evaluating VulMPFF, we define
the confusion matrix, as shown in Table 3.

8

TasLe 3: Confusion matrix.
Actual/predicted Vul. No-vul.
Vul. T, F,
No-vul. F, T,

TaBLE 4: Software and hardware environment for the experiment.

Environment Version or size
Ubuntu 18.04.6
python ==3.8.12
torch==10.11.1
dgl==11.0
Software keras = =2.9.0
nltk == 3.6.5
gensim == 3.5.0
numpy = = 1.22.4
scikit-learn = =1.1.2
cpu = = Intel(R) Xeon(R) Gold 6144@3.50 GHz
Hardware gpu = =2x NVIDIA GeForce RTX 4,070 Ti
ram == 512GB
disk==22TB

The formulas we used to calculate the assessment indi-
cators are as follows:
Accuracy: Accuracy =

T
Recall: Recall = 2.
.. CptEC T
Precision: Precision = 2.
T,+F,

. __ 2 precisionxrecall
F1 score: F1 = precision+recall

Ty+T,
(Ty+F)+H(T,+F,) *

5.1.3. Baseline Methods. There are many excellent detection
methods and tools for C code. We choose the following six
state-of-the-art tools and methods to compare with our
approach, including two static detectors, Rats [19] and Flaw-
Finder [20]; two sequence-based methods, VulDeepecker [5]
and Sysevr [7]; and two graph structure-based methods,
Devign [15] and Reveal [16].

5.1.4. Implementation Details. The software and hardware
environments in the experimental setting are shown in
Table 4. We assigned each dataset as mutually disjoint train-
ing, validation, and test sets using a ratio of 8:1:1 and ran-
domly shuffled the data at each epoch. We set the model
epoch to 100, the batch size to 128, and the Word2Vec
word vector dimension to 100 when initializing the serialized
AST and CPG node vectors, and to prevent the model from
overfitting, we set all the dropout parameters to 0.2, and set
the number of bi-LSTM model units to 128. We choose the
cross-entropy loss function to compute the parameter loss
and the Adam optimizer with a learning rate of 0.0001.

5.2. Results and Analysis. To better evaluate the performance
of VuIMPFF in detecting vulnerabilities at function-level
granularity and its effectiveness in real-world applications,
we designed and provided detailed answers to four research
questions.

IET Information Security

RQ1: How effective is VulMPFF at detecting vulnerabil-
ities at function-level granularity?

To answer this question, we compare the performance of
VulMPFF on four datasets with the chosen baseline method.
The comparison results are shown in Figure 4. Based on the
performance comparison results, we have the following
observations.

VulMPFF outperforms existing static vulnerability detec-
tion systems Rats and FlawFinder. Rats and FlawFinder have
F1 score below 40% on the Big-Vuly,;, dataset and perform
even worse on the Big-Vulg,; dataset, where their F1 score,
Pre and Reg, are below 15%. This class of methods is used to
detect vulnerabilities by manually defining vulnerability rules
by human experts, which is limited by the size of the vulner-
ability pattern rule database.

VulMPFE outperforms two methods that use code
sequences IRC, VulDeepecker and Sysevr. VulDeepecker
and Sysevr outperform two static vulnerability detection sys-
tems, Rats and FlawFinder. Their Pre, Rec, and F1 score on all
datasets outperform Rats and FlawFinder. Using code
sequence as IRC combined with deep learning techniques
can extract the sequential and contextual information of the
code. Still, it cannot effectively extract the critical semantic
information of the vulnerability triggers in the code and has
limited ability to extract lexical and syntactic information.

The two methods, Devign and Reveal, that use the code
graph structure as IRC, are superior to the other four meth-
ods. Their F1 score exceeds the other methods, with the
Reveal method outperforming the Devign method, but
VulMPEFF equally outperforms both methods. We observe
that VulMPFF’s Acc and F1 score achieve an absolute
improvement from 4.12% to 9.05% and 9.2% to 16.38% on
the four datasets compared to the two methods, respectively,
which is attributed to the fact that VulMPFF fuses the fea-
tures in different perspectives and realizes the complemen-
tarity of the various code information. Also, introducing a
dual attention mechanism helps the model pay more atten-
tion to the critical information of vulnerability triggering.

RQ2: Does fusing features in multiple views improve
vulnerability detection performance?

To answer this question, we subtract the IRCs involved in
fusion in multiple views and perform experiments to com-
pare the performance changes on each of the four datasets.
Meanwhile, in order to further investigate the different roles
of each subgraph in the CPG feature fusion process, we
subtracted each of the four subgraphs and compared their
performance changes. In order to verify the advantages of
serialized AST compared to code sequences in extracting
code information, we also conducted experiments on code
sequences as well as code sequences fused with CPG features,
which are denoted as SEQ and SEQ + CPG, respectively. The
experimental results are shown in Table 5. To highlight the
experimental results, we counted the percentage reduction of
the F1 score after removing a specific IRC in Table 5. The
results are shown in Table 6. From the experimental results,
we have the following observations.

When CPG is removed, at which point only serialized
ASTs are used for vulnerability detection, all four evaluation

IET Information Security

95
90
85
80
75
70
65
60
55t
50
45
40
35+
30

Scores (%)

Acc Pre Rec F1

Rats W Devign
[FlawFinder B Reveal
@ VulDeePecker W VulMPFF
B SyseVR

85 F
80
75
70 ¢
65
60
55t
50
45
40
351
30
251
20
15
10

Scores (%)

Acc Pre Rec F1

Rats W Devign
" FlawFinder B Reveal
' VulDeePecker M VulMPFF
B SyseVR

(¢)

95

9 |
85|
80 II

45
40

Scores (%)

35+
30
25
20
15

Acc Pre Rec F1
Rats B Devign

" FlawFinder
B VulDeePecker
B SyseVR

B Reveal
B VulMPFF

(b)

95 F
90 |
85
80
75
70 ¢
65

551
50
45
40
351
30
25
20
15
10 ¢

Scores (%)

Acc Pre Rec F1

Rats M Devign
" FlawFinder M Reveal
B VulDeePecker M VulMPFF
B SyseVR

(d)

FIGURE 4: Performance of different detection methods on multiple datasets: (a) on Big-Vuly,;, dataset, (b) on Big-Vulg, dataset, (c) on Devign

dataset, and (d) on Reveal dataset.

metrics show substantial decreases across the datasets. Specif-
ically, on the Big-Vuly,, dataset the F1 score decreased by
24.17%, Pre even more by 33.92%, and Acc and Rec decreased
by 25.07% and 8.76%, respectively; on the Big-Vulg,; dataset
the F1 score decreased by 13.67%, and its Acc, Pre, and Rec,
respectively, decreased by 4.54%, 2.31%, and 24.60%; on the
Devign dataset Acc was 53.26%, a decrease of 10.87%, and
Pre, Rec, and F1 score decreased by 7.4%, 22.68%, and 12.94%,
respectively; on the Reveal dataset F1 score decreased by
15.32%, and Acc, Pre, and Rec decreased by 9.81%, 4.48%,

and 25.61%, respectively. After removing CPG, the model
cannot extract the complex flow semantic information critical
for vulnerability triggering, and the detection performance
decreases dramatically, indicating that the semantic informa-
tion in the code contributes a lot to vulnerability detection.
When the serialized AST is removed, at which point only the
CPG is used for vulnerability detection, the four evaluation
metrics show a slight decrease in magnitude across the datasets,
with very few values showing an increase. Specifically, in the Big-
Vuly,, dataset, Big-Vulg, dataset, Devign dataset, and Reveal

10 IET Information Security
TaBLE 5: Results of multifeature fusion ablation experiments (%), I, indicates removal of a IRC.
Big-Vulg,, Big-Vulgy Devign Reveal
Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1 Acc Pre Rec F1
SEQ 65.62 5944 84.71 69.86 90.78 34.52 14.44 2036 51.83 46.49 60.75 52.67 81.26 42.71 25.68 32.07
CPG,em 70.57 58.42 87.34 70.01 89.72 2838 17.85 2195 53.26 48.83 62.15 54.69 83.48 41.44 30.67 3525
SAST e 9322 9228 95.82 94.02 91.14 29.17 40.34 3386 63.28 56.31 81.02 6644 93.06 43.89 56.15 49.27
AST e 91.11 91.15 9224 91.69 90.03 21.62 32.53 2598 61.63 5224 7622 6196 88.03 33.28 53.57 41.05
CFGrem 92.37 92.35 93.13 92.74 9035 27.76 30.28 2897 6134 52.19 79.53 63.06 90.22 3546 54.68 44.72
DDG,em 9321 92.16 95.65 93.87 91.2 2335 3508 28.04 6234 52.18 80.8 63.5 91.37 3898 56.27 46.06
CDG;em 9424 9238 955 9391 9222 2333 3499 2799 6239 5226 8091 6341 9235 389 56.33 46.02
SEQ+CPG 93.39 92.62 95.69 94.13 92.84 30.17 40.68 34.65 63.27 56.21 8145 6652 93.04 44.83 56.09 49.83
VulMPFF 95.64 92.34 96.1 94.18 94.26 30.69 42.45 35.62 64.13 56.23 84.83 67.63 93.29 45.92 56.28 50.57
The bolded values in the table indicate the best result values obtained.
TaBLE 6: Multifeature fusion ablation experiment F1 score reduction 94 | i I I
value statistics (%), Irem indicates removal of a representation. 1
Big-Vulg,, Big-Vulg, Devign Reveal 70r
68 -
CPGery 24.17 13.67 12.94 15.32 I o1
SAST e, 0.16 1.76 1.19 1.30 sl
AST e 2.49 9.64 5.67 9.52 S5l
CFGrem 1.44 6.65 4.57 5.85 Py ok
3 L
DDG,., 0.31 7.58 413 451 S sl i I I
CDGyem 0.27 7.63 422 4.55 [
36
34 +
dataset their F1 score decreased by 0.16%, 1.76%, 1.19%, and 321 I
1.30%, respectively, and in the Devign dataset Pre increased i
slightly by 0.08%, presumably due to experimental perturbations. - I I I I I I I I I I I I I I I I
After removing the serialized AST, the model cannot capture the 20 BigVul, BigVulg, Devign Reveal
critical contextual information of vulnerability triggers in the
. . . .- . SEQ B SEQ + CPG
code, and its ability to extract lexical and syntactic information
. . . [SAST B VulMPFF
is weakened. The performance degradation is smaller than the B CPG

removal of CPG, indicating that serialized AST makes a smaller
contribution than CPG in vulnerability detection.

When removing any of the subgraphs in the CPG, there
were varying degrees of decline in the evaluation metrics
across the datasets. The impact is most significant when
the AST subgraph is removed, with the F1 score decreasing
by 2.49%, 9.64%, 5.67%, and 9.52% on the Big-Vuly,;, dataset,
Big-Vulg,; dataset, Devign dataset, and Reveal dataset,
respectively. The three metrics of Acc, Pre, and Rec are
also decreasing the most on each dataset compared to the
removal of other subgraphs also all decreased the most. This
is because the CPG is expanded based on AST, and more
code information is lost when AST is removed. The F1 score
decreases by 1.44%, 6.65%, 4.57%, and 5.85% when CFG is
removed, 0.31%, 7.58%, 4.13%, and 4.51% when DDG is
removed, and 0.27%, 7.63%, 4.22%, and 4.55% when CDG
is removed. The experimental results fully illustrate that dif-
ferent subgraphs contain different vulnerabilities triggering
critical semantic information. The extraction of code infor-
mation on IRC of graph structure needs to fully consider the
heterogeneity of graph structure and extract the code seman-
tic information at a fine-grained level.

Serialized AST has a significant improvement in detec-
tion performance compared to code sequences. To highlight

FIGURE 5: F1 score of SEQ, SAST, CPG, SEQ + CPG, and VulMPFF
on the four datasets.

the experimental results, we counted the F1 scores of SEQ,
SAST (corresponding to the CPG,.,, term), CPG (corre-
sponding to the SAST ., term), SEQ + CPG, and VulMPFF
on the four datasets in Table 5, and the results are shown in
Figure 5. It can be observed that the F1 scores of SAST are
better than SEQ on all four datasets, which is because the
serialized AST retains the lexical and syntactic information
in the code sequences while also including the syntactic
information in the code as well as the remote dependencies
between the code elements; the F1 scores of SEQ + CPG are
better than those of CPG, which indicates that fusing the
code features in a dual perspective extracts more code than
single feature information; the F1 score of VuIMPFF outper-
forms SEQ+ CPG, indicating that fused code features in
multiple views perform better than fused code features in
dual views, which further illustrates that serialized ASTs
contain more code information than code sequences.

RQ3: What is the impact of different feature extraction
methods on model performance?

IET Information Security

96.0
94.5

93.0 1

Scores (%)
oo
o]
w

a-1a-2 a-3 a4 b-1b-2b-3b-4c-1c-2c-3c4d-1d-2d-3d4
Combination of feature extraction methods

—— Acc Rec
~®— Pre -¥- F1

(a)

85.0 1
82.5
80.0
77.5
75.0
72.5 |
70.0 |
67.5
65.0
62.5
60.0
575t
55.0 r
525

Scores (%)

50.0 ! ! ! ! ! ! ! ! ! ! ! ! ! !

a-1a-2a-3a4b-1b-2b-3b-4c-1c-2c3c4d-1d-2d-3d4
Combination of feature extraction methods

—&— Acc Rec
—@— Pre -¥- F1

(©)

11

95.0 F
92.5 H/H/./._././'/'_'_kr"_H
90.0 }

42.5%

40.0 +

375+

35.0

325t
30.0
275 .A—.A

250 f
225t

20.0
17.5

Scores (%)

a-1a-2a-3a-4b-1b-2b-3b-4c¢c-1c¢c2c3c4d-1d-2d-3d4
Combination of feature extraction methods

—& Acc Rec
—@— Pre -¥- F1
92.5

(b)
90.0 ._H—_./H_./I—H—"“"\I—H/.

87.5)

625
60.0
575
55.0
525
50.0 ¢
475 ¢
45.0
25t
40.0
375 ¢
35.0
325 ¢
soo0pe

a-1a-2a-3a-4b-1b-2b-3b-4c1c2c3c4d-1d-2d-3d4
Combination of feature extraction methods

Scores (%)

—&— Acc Rec
~®— Pre -¥- F1

(d)

FIGURE 6: Performance of 16 feature extraction combination schemes on four datasets: (a) on Big-Vuly,, dataset, (b) on Big-Vulg,; dataset,

(c) on Devign dataset, and (d) on Reveal dataset.

To answer this question, we selected four networks on seri-
alized AST and CPG feature extraction, respectively, and com-
bined them two by two to obtain 16 feature extraction schemes
and shared the same experimental configurations for the experi-
ments. The experimental results are shown in Figure 6.

The networks corresponding to serialized AST feature
extraction are LSTM [36], TextCNN [37], Bi-LSTM [38],
and Bi-LSTM with attention mechanism, denoted as
LSTM:1, TextCNN:2, Bi-LSTM:3, and Bi-LSTM + Atten-
tion:4, respectively. The corresponding networks for CPG
feature extraction are GCN [39], GIN [40], GGNN [41],
and GAT [42], denoted as GCN: a, GIN: b, GGNN: ¢, and
GAT: d, respectively. The 16 feature extraction schemes are

denoted as (a—d)—(1-4). For example, a-1 represents the
scheme of the GCN model combined with the LSTM model.
Based on the experimental results, we have the following
observations.

Among the 16 feature extraction combination schemes,
our scheme, i.e., the d-4 scheme, achieves the best results on
several datasets. In contrast, the a-1 scheme performs poorly
on several datasets. The d-4 scheme achieved the optimal F1
score on the Big-Vul,,, Big-Vulg,, Devign, and Reveal data-
sets, which were 94.18%, 35.62%, 67.63%, and 50.57%,
respectively. The a-1 scheme had the lowest F1 score on
several datasets, which were 81.21%, 25.16%, 61.87%, and
35.43%. Overall, extracting CPG features using the GAT

12
95.0
25w MM
70.0
67.5
~ 6501 I I
< o
£
3 500
& 50.
47.5 1
45.0 | I
35.0 | “I “—l
325 I I I l I I
BigVulg, BigVulg,; Devign Reveal
c-3 N d3
M4 N d4

FIGURE 7: F1 score of four feature extraction combination schemes
introducing attention mechanism on four datasets.

model outperforms the other GNN models. The scheme
using the GGNN model outperforms the scheme using the
GIN model, and using the GCN model has the worst perfor-
mance among the four GNN models. The scheme using the
Bi-LSTM model with attention mechanism outperforms the
others on serialized AST, the scheme using the LSTM model
has the worst performance among several schemes, and the
schemes using the TextCNN model or Bi-LSTM model are
close in performance.

To verify whether the introduction of the dual-attention
mechanism facilitates the model to pay more attention to the
critical information of vulnerability triggering in the code,
we, respectively, counted the F1 score performance results of
the four scenarios c-3, c-4, d-3, and d-4 in Figure 6, as shown
in Figure 7. From the results, we can see that the introduction
of the dual-attention mechanism achieves the best perfor-
mance on each dataset, and the introduction of the dual-
attention mechanism facilitates the model to pay more
attention to the critical information of vulnerability trigger-
ing and improves the model vulnerability detection perfor-
mance. When only one attention mechanism is introduced
in the feature extraction process, introducing an attention
mechanism in CPG feature extraction has more significant
and stable performance improvement. If the attention mech-
anism is introduced only in the feature extraction of the
serialized AST, a performance degradation of tiny magnitude
occurs on the bigfull and Devign datasets, presumably due to
the perturbation of noise in the experiments.

RQ4: How effective does VulMPFF perform in real-
world applications?

To answer this question, we further evaluate our approach
in real-world open-source projects. We select five popular
open-source projects: Linux, Libav, Qemu, OpenSSL, and
FFmpeg.

Precisely, we extract function samples on the chosen
version of the open-source project and keep the samples

IET Information Security

that can be extracted using Joern [32] for AST and CPG.
The extracted function samples are subjected to the same
data preprocessing as the experimental dataset, fed into the
VulMPFF pretrained model that has already completed
training on the experimental dataset, and the detection
results are collected. We manually compare the detected
vulnerability functions with the real vulnerabilities we col-
lected. If they belong to the same vulnerability pattern, the
detected vulnerability functions are categorized as real vul-
nerability functions. Some of the vulnerabilities detected by
VulMPFF in five open-source projects are shown in Table 7.
These results demonstrate that VulMPFF can detect vulner-
abilities in real environments.

For example, CVE-2018-1999011 is a buffer overflow
vulnerability in the FFmpeg project in the asf o format
decoder. This vulnerability can lead to remote code execu-
tion due to heap buffer overflow. We extracted the code of
the parse_video_info() function where the vulnerability is
located in the libavf_ormat/asf_dec_o.c file of the FFmpeg-
n6.0 version project, where the lack of necessary boundary
determination for the size_bmp parameter may trigger the
buffer overflow vulnerability. The schematic diagram for fix-
ing the vulnerability in this function is shown in Figure 8(a).
Similarly, we have detected a CVE-2023-28772 vulnerability
in the Linux-4.20-rc6 release project. The vulnerability is
located in the seq buf putmem_hex() function in the lib/
seq_buf.c file, where variable i and variable j follow the origi-
nal data stream and the data stream written to the buffer,
respectively, in a for loop, which triggers a buffer overflow
vulnerability when j is greater than HEX_CHARS. The sche-
matic for fixing this function vulnerability is shown in
Figure 8(b). Vulnerabilities such as CVE-2018-999011 and
CVE-2023-28772 are closely related to semantic information
about data flow and control flow in code. VulMPFF can
effectively detect similar vulnerabilities by extracting the
function code into CPGs containing rich data flow and con-
trol flow semantic information as IRCs and extracting the
critical semantic information triggering the vulnerability at a
fine granularity in different subgraphs.

We have detected a CVE-2020-35965 vulnerability in the
FFmpeg-1n6.0 release project. The vulnerability is located in
the decode_frame() function in the libavcodec/exr.c file. An
out-of-bounds write error results when performing a memset
operation in a multiple for loop. A schematic for fixing this
vulnerability is shown in Figure 8(c). Similarly, we have detected
the CVE-2023-0401 vulnerability in the OpenSSL-3.0.4 release
project. The vulnerability is in the pkes7_bio_add_digest() func-
tion in the crypto/pkes7/pk7_doit.c file, and is a classic null
pointer dereference vulnerability. The vulnerability is caused
by the lack of necessary checks on the return value of the initiali-
zation function, as Figure 8(d) shows a schematic diagram for
fixing the vulnerability in this function. Detecting vulnerabilities
like CVE-2020-35965 and CVE-2023-0401 requires models that
can extract contextual information related to vulnerability trig-
gers, data flow and control flow information in code, and a
strong ability to capture lexical and syntactic information.
VulMPFF extracts serialized ASTs and CPGs as IRCs in
sequence, lexical and syntactic, and graph structure perspectives,

IET Information Security 13
TaBLE 7: Some of the vulnerabilities detected by VulMPFF in the open-source project.
Project CVEID Vulnerable file in the target product Release date Vulnerability type
. CVE-2021-43975 drivers/net/ethernet/ aqua.ntla/ atlantic/hw 2021-11-17 CWE-787
Linux-4.20-rc6 atl/hw atl utils.c
CVE-2023-28772 lib/seq buf.c 2023-03-23 CWE-120
Libav-12.3 CVE-2018-19128 libavcodec/lcldec.c 2018-11-09 CWE-125
ibav-12.
CVE-2019-14443 libavcodec/apedec.c 2019-07-30 CWE-369
Q 420 CVE-2021-20203 hw/net/vmxnet3.c 2021-02-25 CWE-190
emu-4.2.
CVE-2021-3507 hw/block/fdc.c 2021-05-06 CWE-119 CWE-787
CVE-2023-0401 to/pkes7/pk7_doit. 2023-02-08 CWE-476
OpenSSL-3.0.4 crypro/presripi/ cott.c
CVE-2022-2274 crypto/bn/rsaz_exp_x2.c 2022-07-01 CWE-787
CVE-2020-35965 libavcodec/exr.c 2021-01-04 CWE-787
FFmpeg-n6.0 .
CVE-2018-1999011 libavformat/asfdec_o.c 2018-07-23 CWE-119

static int parse_video_info(AVIOContext *pb, AVStream *st)
T

st->codecpar->codec_id = ff_codec_get_id(ff_codec_bmp_tags, tag);
size_bmp = FEMAX(size_asf, size_bmp);

- if (size_bmp > BMP_HEADER_SIZE{
+ if (size_bmp > BMP_HEADER_SIZE &&
+ size_bmp <INT_MAX -AV_INPUT_BUFFER_PADDING_SIZE) {
int ret;
st->codecpar->extradata_size = size_bmp -BMP_HEADER_SIZE;
if (I(st->codecpar->extradata = av_malloc(st->codecpar->extradata_size

iy

int seq_buf_putmem_hex(struct seq_buf *s, const void *mem,
WARN_ON(s->size == 0);

+ BUILD_BUG_ON(MAX_MEMHEX_BYTES * 2 >= HEX_CHARS);
+
while (len) {
- start_len = min(len, HEX_CHARS -1);
+ start_len = min(len, MAX_MEMHEX_BYTES);
#ifdef __BIG_ENDIAN
for (i=0,j = 0;1i<start_len; i++) {
#else

(a)

(b)

static int decode_frame (AVCodecContext *avctx, void *data,
T

for (i = 0;i < planes; i++) {
ptr = picture->datali];
for (y = 0; y < s->ymin; y++) {
+ for (y = 0; y < FEMIN(s->ymin, s->h); y++) {
memset (ptr, 0, out_line_size);
ptr +=picture->linesize[il;

}

I

static int pkcs7_bio_add_digest(BIO* *pbio, X509_ALGOR *alg,

(void)ERR_pop_to_mark();
BIO_set_md (btmp, md);
if (BIO_set_md(btmp, md) <= 0) {
ERR_raise (ERR_LIB_PKCS7, ERR_R_BIO_LIB);
EVP_MD_free (fetched);
goto err;
}
EVP_MD_free (fetched);
if (*pbio == NULL)
*pbio = btmp;

+ + + + +

(©)

(d)

Ficure 8: Function fix patch code: (a) CVE-2018-1999011, (b) CVE-2023-28772, (c) CVE-2020-35965, and (d) CVE-2023-0401.

and the fusion of features extracted from multiple perspectives
can effectively capture multiple code information related to vul-
nerability triggering and has better detection capability for simi-
lar vulnerabilities.

6. Discussion and Limitations

Our proposed VulMPFF vulnerability detection method still
has some limitations that can be further investigated. The
first limitation concerns the datasets used to validate our
approach. We validated our method on three public datasets:
Big-Vul [35], Devign [15], and Reveal [16]. Although they
already contain a large amount of high-quality function
code, these function codes containing vulnerabilities will

gradually become obsolete as computer technology con-
tinues to evolve. In the future, we will use more high-quality
datasets to evaluate our algorithm further.

The second limitation is that our approach only supports
code vulnerability detection at function-level granularity.
While function-level granularity is a common detection
granularity for most vulnerability detection methods, finer-
grained vulnerability detection, such as line-of-code vulner-
ability detection, is more likely to be applied in practice. In
the future, we will further explore the possibility of extending
our approach to line-of-code granularity.

The third limitation is that our approach is specific to C
code, our data processing process is not yet extensible, and
the datasets we chose are all C code datasets. In the future, we

14

will further explore extending our algorithm to more pro-
graming language types (e.g., Java, JavaScript, Python, Go,
PHP, etc.).

7. Conclusions

Aiming at the problems of existing vulnerability detection
methods, a vulnerability detection method, VulMPFF, that
fuses code features under multiple perspectives is proposed.
This method extracts serialized ASTs and CPGs as IRCs to
capture code information under various perspectives, which
can effectively realize the complementary information of
multiple IRCs. The dual-attention mechanism is introduced
in feature extraction to highlight the critical information
related to vulnerability triggering, the heterogeneous nature
of the code relationship graph is considered on CPG, and the
regional subgraph extracts the semantic information of dif-
ferent complex flows. The fused features in multiple perspec-
tives contain critical context, lexical and syntactic, and
different complex flow semantic information of vulnerability
triggers. Compared with other state-of-the-art vulnerability
detection methods, VulMPFF significantly improves the F1
score on multiple datasets from 152.08% to 344.77%. Experi-
ments in open-source projects show that the algorithm can
detect vulnerabilities in real environments.

Data Availability

The datasets used in this paper are public, free, and available at
Big-Vul (https://github.com/ZeoVan/MSR_20_Code_vulnera
bility_ CSV_Dataset), Reveal (https://drive.google.com/drive/
folders/1KulYgFcvWUXheDhT-cBALsfy114utOy), and Devign
(https://drive.google.com/file/d/1x6hoF7G-tSYxg8A
FybggypLZgMGDNHI{F/edit).

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported in part by the National Key Research
and Development Program under Grant 2022YFB3305203, in
part by the National Natural Science Foundation of China under
Grants U2133208 and 62101368, and in part by the Sichuan
Youth Science and Technology Innovation Team under Grant
2022JDTD0014 and in part by the Major Science and Technol-
ogy Special Project of Sichuan Province under Grant
20227DZX0008.

References

[1] X. Du, B. Chen, Y. Li et al., “Leopard: identifying vulnerable
code for vulnerability assessment through program metrics,”
in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), pp. 60-71, IEEE, 2019.

[2] W.Niu, X. Zhang, X. Du, L. Zhao, R. Cao, and M. Guizani, “A
deep learning based static taint analysis approach for IoT
software vulnerability location,” Measurement, vol. 152,
Article ID 107139, 2020.

IET Information Security

[3] S. Guo, Y. Chen, P. Li et al.,, “SpecuSym: speculative symbolic
execution for cache timing leak detection,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software
Engineering, pp. 1235-1247, ACM, 2020.

Y. Deng, C. S. Xia, H. Peng, C. Yang, and L. Zhang, “Large

language models are zero-shot fuzzers: fuzzing deep-learning

libraries via large language models,” in Proceedings of the 32nd

ACM SIGSOFT International Symposium on Software Testing

and Analysis, pp. 423-435, ACM, 2023.

[5] Z. Li, D. Zou, S. Xu et al,, “Vuldeepecker: a deep learning-
based system for vulnerability detection,” arXiv preprint arXiv:
1801.01681, 2018.

[6] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “4¢VulDeePecker: a
deep learning-based system for multiclass vulnerability
detection,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 5, pp. 2224-2236, 2019.

[7] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “SySeVR: a
framework for using deep learning to detect software
vulnerabilities,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, no. 4, pp. 2244-2258, 2021.

[8] Y. Wu, D. Zou, S. Dou, W. Yang, D. Xu, and H. Jin, “VulCNN:
an image-inspired scalable vulnerability detection system,” in
Proceedings of the 44th International Conference on Software
Engineering, pp. 2365-2376, ACM, 2022.

[9] R. Russell, L. Kim, L. Hamilton etal, “Automated
vulnerability detection in source code using deep representa-
tion learning,” in 2018 17th IEEE International Conference on
Machine Learning and Applications (ICMLA), pp. 757-762,
IEEE, 2018.

[10] L Neamtiu, J. S. Foster, and M. Hicks, “Understanding source
code evolution using abstract syntax tree matching,” in
Proceedings of the 2005 International Workshop on Mining
Software Repositories, pp. 1-5, ACM, 2005.

[11] F. E. Allen, “Control flow analysis,” ACM SIGPLAN Notices,
vol. 5, no. 7, pp. 1-19, 1970.

[12] E. Yourdon and L.L. Constantine, Structured Design.
Fundamentals of a Discipline of Computer Program and
Systems Design, Yourdon Press, Englewood Cliffs, 1979.

[13] H. Nasirloo and F. Azimzadeh, “Semantic code clone detection
using abstract memory states and program dependency
graphs,” in 2018 4th International Conference on Web
Research (ICWR), pp. 19-27, IEEE, Tehran, Iran, 2018.

[14] W. Xiaomeng, Z. Tao, W. Runpu, X. Wei, and H. Changyu,
“CPGVA: code property graph based vulnerability analysis by
deep learning,” in 2018 10th International Conference on
Advanced Infocomm Technology (ICAIT), pp. 184-188, IEEE,
Stockholm, Sweden, 2018.

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: effective
vulnerability identification by learning comprehensive
program semantics via graph neural networks,” in Interna-
tional Conference on Neural Information Processing Systems,
pp. 10197-10207, Vancouver, BC, Canada, 2019.

[16] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, no. 9, pp. 3280-3296, 2022.

[17] D. Hin, A. Kan, H. Chen, and M. A. Babar, “LineVD:
statement-level vulnerability detection using graph neural
networks,” in Proceedings of the 19th International Conference
on Mining Software Repositories, pp. 596-607, ACM, 2022.

[18] X. Cheng, H. Wang, J. Hua, G. Xu, and Y. Sui, “DeepWukong:
statically detecting software vulnerabilities using deep graph
neural network,” ACM Transactions on Software Engineering
and Methodology, vol. 30, no. 3, pp. 1-33, 2021.

[4

o

https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://github.com/ZeoVan/MSR_20_Code_vulnerability_CSV_Dataset
https://drive.google.com/drive/folders/1KuIYgFcvWUXheDhT--cBALsfy1I4utOy
https://drive.google.com/drive/folders/1KuIYgFcvWUXheDhT--cBALsfy1I4utOy
https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF/edit
https://drive.google.com/file/d/1x6hoF7G-tSYxg8AFybggypLZgMGDNHfF/edit

IET Information Security

[19] Secure Software Inc., “Rough audit tool for security,” 2023,
{https://code.google.com/archive/p/rough-auditing-tool-for-
security/}.

[20] D. A. Wheeler, “Flawfinder,” 2023, {https://dwheeler.com/fla
wiinder/}.

[21] T. Ben-Nun, A. S. Jakobovits, and T. Hoefler, “Neural code
comprehension: a learnable representation of code semantics,”
Advances in Neural Information Processing Systems, vol. 31,
pp. 1-13, 2018.

[22] Y. Wu, J. Lu, Y. Zhang, and S. Jin, “Vulnerability detection in
C/C++ source code with graph representation learning,” in
2021 IEEE 11th Annual Computing and Communication
Workshop and Conference (CCWC), pp. 1519-1524, IEEE,

NV, USA, 2021.
[23] Cppcheck, “Cppcheck,” 2023, {https://github.com/danmar/
cppcheck}.

[24] Checkmarx, “Checkmarx,” 2023, {https://www.checkmarx.com/}.

[25] Z. Li, D. Zou, S. Xu, H. Jin, H. Qj, and J. Hu, “Vulpecker: an
automated vulnerability detection system based on code
similarity analysis,” in Proceedings of the 32nd Annual
Conference on Computer Security Applications, pp. 201-213,
ACM, 2016.

[26] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: a scalable
approach for vulnerable code clone discovery,” in 2017 IEEE
Symposium on Security and Privacy (SP), pp. 595-614, IEEE,
San Jose, CA, USA, 2017.

[27] H. Sun, L. Cui, L. Li et al., “VDSimilar: vulnerability detection
based on code similarity of vulnerabilities and patches,”
Computers & Security, vol. 110, Article ID 102417, 2021.

[28] A. Xu, T. Dai, H. Chen, Z. Ming, and W. Li, “Vulnerability
detection for source code using contextual LSTM,” in 2018 5th
international conference on systems and informatics (ICSAI),
pp. 1225-1230, IEEE, Nanjing, China, 2018.

[29] H. Feng, X. Fu, H. Sun, H. Wang, and Y. Zhang, “Efficient
vulnerability detection based on abstract syntax tree and deep
learning,” in IEEE INFOCOM 2020-IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pp. 722-
727, IEEE, Toronto, ON, Canada, 2020.

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and
G. Monfardini, “The graph neural network model,” IEEE
Transactions on Neural Networks, vol. 20, no. 1, pp. 61-80,
2009.

[31] G. Lin, J. Zhang, W. Luo et al, “Cross-project transfer
representation learning for vulnerable function discovery,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 7,
pp. 3289-3297, 2018.

[32] Joern, “Open-source code analysis platform for C/C++ based
on code property graphs,” 2023, {https://joern.io/}.

[33] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient
estimation of word representations in vector space,” arXiv
preprint arXiv: 1301.3781, 2013.

[34] N. Navarin, D. Van Tran, and A. Sperduti, “Universal readout
for graph convolutional neural networks,” in 2019 Interna-
tional Joint Conference on Neural Networks (IJICNN), pp. 1-7,
IEEE, Budapest, Hungary, 2019.

[35] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “A C/C++ code
vulnerability dataset with code changes and CVE summaries,”
in Proceedings of the 17th International Conference on Mining
Software Repositories, pp. 508-512, ACM, 2020.

[36] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: a search space odyssey,” IEEE
Transactions on Neural Networks and Learning Systems,
vol. 28, no. 10, pp. 2222-2232, 2017.

15

[37] Y. Kim, “Convolutional neural networks for sentence
classification,” arXiv preprint arXiv: 1408.5882, 2014.

[38] T. Chen, R. Xu, Y. He, and X. Wang, “Improving sentiment
analysis via sentence type classification using BiLSTM-CRF
and CNN,” Expert Systems with Applications, vol. 72, pp. 221-
230, 2017.

[39] T. N. Kipf and M. Welling, “Semi-supervised classification
with graph convolutional networks,” arXiv preprint arXiv:
1609.02907, 2016.

[40] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are
graph neural networks?” arXiv preprint arXiv: 1810.00826,
2018.

[41] Y.Li, D. Tarlow, M. Brockschmidt, and R. Zemel, “Gated graph
sequence neural networks,” arXiv preprint arXiv: 1511.05493,
2015.

[42] P. Veli¢kovié, G. Cucurull, A. Casanova, A. Romero, P. Lio,
and Y. Bengio, “Graph attention networks,” arXiv preprint
arXiv: 1710.10903, 2017.

https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://code.google.com/archive/p/rough-auditing-tool-for-security/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://dwheeler.com/flawfinder/
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://github.com/danmar/cppcheck
https://www.checkmarx.com/
https://www.checkmarx.com/
https://www.checkmarx.com/
https://joern.io/
https://joern.io/

