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Universal composability (UC) is a primary security flavor for designing oblivious transfer (OT) due to its advantage of arbitrary
composition. However, the study of UC-secure OT over lattices is still far behind compared with constructions over prequantum
assumptions. Relying on the learning with errors (LWE) assumption, Quach proposes a dual-mode encryption scheme (SCN’20)
for deriving a two-round OT whose security is provably UC-secure in the common reference string (CRS) model. Due to its use of a
randomized rounding function proposed by Benhamouda et al. (PKC’18), this OT can only be limited to transmitting single-bit
messages. Therefore, conducting trivial repetitions of Quach’s OT when transmitting multibit strings would be very costly. In this
work, we put forward a modified dual-mode encryption cryptosystem under the decisional LWE assumption, from which we can
derive a UC-secure string OT with both full-fledged dual-mode security and better efficiency on transmitting strings. The key
technique we adopt is a key reconciliation scheme proposed by Jiang et al. (PKC’20), which is utilized to extend the single-bit
symmetric encryption key (produced by the aforementioned rounding function) to a multibit case. Through a comprehensive
performance analysis, we demonstrate that our proposal can indeed strike a balance between security and efficiency.

1. Introduction

The two-party computation primitive oblivious transfer (OT)
was first introduced by Rabin [1] and acted as a fundamental
cryptographic building block widely used in secure multi-
party computation [2, 3]. In this scenario, the sender S takes
two messages ðμ0; μ1Þ :2f0; 1gℓ (where ℓ≥ 1) as input and
the receiver R takes a bit b2f0; 1g: as his message choice,
with requiring that R can only obtain the output μb in the
end and remain oblivious to μ1−b, while S is totally unaware
of R’s choice b.

Essentially, OT can be realized in a two-round way. R
first generates and sends to S a public key embedded with a

message choice b. S will use this public key to compute the
other public key for, respectively, encrypting μ0 and μ1, and
send back to R these two encryptions, where only μb can be
exactly recovered by secret decryption key.

With security concerns, universal composability (UC) [4] is a
powerful notion among different simulation-based security fla-
vors, which offers strong security guarantees and efficiency ben-
efits whenever the protocol is executed concurrently or by
arbitrary compositions within some advanced protocols, espe-
cially in multiparty computation or the complex Internet
environment.

At CRYPTO’08, a dual-mode encryption framework for
UC-secure OT is introduced by Peikert et al. [5]. To our best
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knowledge, this is the optimal OT framework up to now,
which not merely satisfies the succinct two-round paradigm
with high efficiency but also achieves UC security under the
common reference string (CRS) model against static corrup-
tions (i.e., the corruption case is determined before the pro-
tocol execution without any modification during the course of
protocol execution). They claim that this generic construction can
provide statistical security for one specific party in each mode
when generally realized under the decisional Diffie–Hellman
assumption and the quadratic residuosity assumption. When it
comes to the learning with errors (LWE) assumption, the receiver
can only achieve computational security in either mode, and each
CRS can be reused in limited sessions.

Targeting to solve this problem, an upgraded dual-mode
encryption from LWE is proposed by Quach at SCN’20 [6],
which rises the receiver’s security to a statistical level and the
reusability of each CRS to an unbounded case. In a nutshell,
they utilize the noise flooding technique, requiring a super-
polynomial LWE modulus q to promote the security of the
receiver and the reusability of each CRS. However, such a use
of superpolynomial modulus would directly contradict to a
polynomial time OðqÞ: simulator for arguing sender’s security
in [5]. For addressing this issue, the work of [6] adopts a
randomized rounding function R (with one-bit output)
introduced by Benhamouda et al. [7] to make the public key
messiness efficiently testable (applying lattice trapdoor tech-
niques) and independent of the LWE modulus size.

However, since only one single-bit output from R is taken
as an almost-uniform symmetric key to hide messages in the
dual-mode encryption of [6], this further limits the derived
UC-secure OT to transmit multibit strings. In addition, as
mentioned in [7], the extension of R into a multibit output
version is still an open question.

One may wonder that without costly trivial repetitions of
this single-bit OT [6], does a variant of dual-mode encryption
over lattices for deriving UC-secure string OT exist, along with
full-fledged dual-mode properties and unbounded reusability
of CRS?

Fortunately, our dual-mode encryption cryptosystem (see
Section 3.2) provides an affirmative answer to this question.

1.1. Our Result. Based on the framework of [5], we propose
an improved dual-mode encryption scheme [6] where it can
directly derive a UC-secure OT (see Figure 1) for transmit-
ting strings, as shown in Theorem 1.

Theorem 1 (informal). Relying on the hardness of LWEwith a
subpolynomial modulus, a two-round UC-secure OT against
static corruptions in the common reference string (CRS) model
exists and satisfies the following properties:

(1) Each CRS can be instantiated in either messy or
decryption mode, where the two modes are computa-
tionally indistinguishable.

(2) In messy mode, it can only provide the sender statisti-
cal security and the receiver computational security.
In decryption mode, it can only provide the sender
computational security and the receiver statistical
security instead.

(3) Each CRS can be reused unbounded times for amorti-
zation between a fixed pair of participants.

(4) This UC-secure OT can transmit multibit strings while
avoiding costly trivial repetitions of single-bit OT.

1.2. Technical Overview. Our work can be viewed as an
improvement of [6], and both works rely on the framework
of [5]. For clarity, we first review the main technique adopted
by Quach [6].

1.2.1. Technical Review of [6]. The work of [6] utilizes the
noise flooding technique (requiring a superpolynomial size
of LWE modulus) to upgrade the receiver security to a sta-
tistical level in decryption mode. However, it results in an
inefficient simulator for arguing the sender’s statistical secu-
rity in messy mode. In particular, such a polynomial-time
simulator for the sender security has to be completed in time
OðqÞ :, which directly conflicts with the use of a superpolyno-
mial LWE modulus in noise flooding technique. Therefore, a
failure happens in a polynomial-time simulator for arguing
receiver’s statistical security.

Alice: Sender
Input: (μ0, μ1) ∊ {0, 1}ℓ

Bob: Receiver
Input: b ∊ {0, 1}

Setup:

CRS
Setup

Setup: = SetupMessy (1n) → (crs, tdM)

or Setup: = SetupDec (1n) → (crs, tdD)
Multi-session OT:

pk0

For each b´ ∊ {0, 1}, compute: 

   Enc (crs, pk0, b´, μb´) → ctb´

KeyGen (crs, b) → (pk0, skb) 

Request
crs

Request
crs

Dec (skb, ctb) → μb
Output: μb

(ct0, ct1)

FIGURE 1: UC-secure OT from LWE.
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For addressing this issue, they follow the pattern of [8]
and take the hash value output of an approximate smooth
projective hash (ASPH) scheme [7] as a symmetric session
key to encrypt the message. In a nutshell, an ASPH scheme
operates on a set X and an NP-language L⊆X by assuming
the existence of a hard subset membership problem, i.e., it is
hard to distinguish whether a random element is chosen
from L or X \ L. For any x2 L, there exists a witness w such
that the pair ðx;wÞ: satisfies a certain NP-relation. In addi-
tion, an ASPH scheme also involves a hashing key hk and a
projection key hp. The projection property demands that the
hash value, Hðhk; xÞ :, is determined by computing the pro-
jected hash value, pHðhp;wÞ:, if x2 L. The smoothness prop-
erty requires that for any x2X \ L, Hðhk; xÞ: is uniformly
distributed even given hp and x.

In particular, the work of [6] utilizes a bit-ASPH [7],
whose hash value is one single-bit output from a randomized
rounding function R :ZqÀ!f0; 1g: (see Section 2.3). Its OT
execution mainly works as follows: Bob (the role of the
receiver) first generates and sends to Alice (the role of the
sender) his public key ðA; c¼Asþ eþ fÞ :, where A2Zm×n

q ,

s À$ Zn
q , e Àχm, f À$ ½−B0; B0�m. For all i2 ½N� :, Alice gen-

erates a hashing key hki¼ ri ÀDm
Z; s and a projection

key hpi¼ pTi ¼ rTi A, and then computes the hash
value Hi¼RðrTi ⋅ cÞ: to encrypt a one-bit message μ2f0;
1g: as βi¼RðrTi ⋅ cÞ : ⊕ μ. Alice sends (hpi, βi) to Bob. Then
Bob computes the projected hash value pHi¼RðpTi ⋅ sÞ : and
RðpTi ⋅ sÞ : ⊕ βi for decryption. If c is close to ΛðAÞ : (i.e., the
q-arry lattice generated by A), by the approximate correctness
of R, we have Hi¼RðrTi ⋅ cÞ:¼RðpTi ⋅ sÞ :¼pHi with high
probability. Therefore, we have μ¼RðpTi ⋅ sÞ : ⊕ βi with
majority in all i2 ½N� :. Otherwise, by the statistical smooth-
ness of R, the public key ðA; cÞ : is messy (see Section 3.1), and
the distribution of βi is statistically close to uniform. The
approximate correctness of R guarantees that Bob can
recover μb on the decryptable branch b2f0; 1g :, while the
statistical smoothness of R provides the message-lossy prop-
erty for μ1−b, i.e., Bob is oblivious to μ1−b.

In addition, this rounding function R offers a crucial
property for arguing the simulation-based security of the
sender. That is, given an appropriate trapdoor, public key
messiness can be testable efficiently and independently of
modulus q. It helps to complete the UC security proof for
the derived OT in [6] and achieve all the properties of that
well-defined dual-mode encryption (see Section 2.1) over
lattices instead of a weaker instantiation proposed by Peikert
et al. [5].

However, the work of [6] can only encrypt single-bit
messages by the employment of that rounding function R,
and a version of R with ΘðnÞ :-bit output is unresolved yet. In
this work, we adopt a key reconciliation scheme introduced
by Jiang et al. [9] to extend the single-bit symmetric key
output by the bit-ASPH scheme [7] for a UC-secure
string OT.

1.2.2. Extension of Symmetric Key. In essential, the work of
[6] utilizes a KV09-type [10] ASPH scheme [7] to generate
the symmetric keys Hi¼RðrTi ⋅ cÞ: and pHi¼RðpTi ⋅ sÞ: for
hiding and recovering messages, respectively. Recently, the
work of [9] proposes two types (i.e., type-A and type-B) of
ASPH over lattices (both are KV09-type) for building a
password-based authenticated key exchange (PAKE) frame-
work. They introduce a novel key reconciliation scheme to
concatenate after the execution of type-B ASPH in the PAKE
framework for agreeing on a shared secret key between two
participants, i.e., extracting a random multibit shared key
from two close hash value outputs of the type-B ASPH. For
clarity, we denote this key reconciliation scheme as £¼
ð£alice; £bobÞ :, which consists of two algorithms (i.e., £aliceðdÞ
:À!ðσ; ξaliceÞ : and £bobðσ; d0Þ :À!ξbob) and is executed
between Alice and Bob as a one-message key reconciliation
protocol (i.e., from Alice to Bob). Assume that d ÀZq

(Alice’s secret) and d0 ÀZq (Bob’s secret) satisfy the condi-
tion jðd − d0Þqj : ≤ δ (where ðxÞq represents the residue of x2
Zq over ½− q=2; q=2Þ :) for some integer δ≤ q=32. After the
execution of this protocol, both participants can agree on a
common secret ξ, i.e., ξ¼ ξalice¼ ξbob as the subsequent sym-
metric session key for encryption. Because the two hash
values output by the type-B ASPH are actually d¼ rTi ⋅ c and
d0 ¼ pTi ⋅ s, which will be taken as input into £ sequentially.
By observation, both d and d0 are exactly taken as input into
the rounding function R as well [7]. Therefore, we can utilize
this key reconciliation mechanism £¼ð£alice; £bobÞ : to extend
the single-bit symmetric key output by R and encrypt a mul-
tibit message μ¼ðμR; μ£Þ :2f0; 1gℓ as follows:

βi

β£

" #
 À R rTi ⋅ cð Þ⊕ μR

ξalice ⊕ μ£

" #
; ð1Þ

where μR is the first bit of μ, and μ£ is the residual bits of μ.
The correctness of decryption can be guaranteed by Hi¼
RðrTi ⋅ cÞ :¼RðpTi ⋅ sÞ :¼ pHi with very large probability and
ξalice¼ ξbob with jðd − d0Þqj : ≤ δ for δ≤ q=32.

TABLE 1: Analysis on security.

OT protocol
[5] [6] This work

S R S R S R

Security
Messy Statistical Computational Statistical Computational Statistical Computational
Dec Computational Computational Computational Statistical Computational Statistical

Dual-mode properties ✓j ✓ ✓
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The approach we proposed above not only guarantees an
efficient simulator for arguing sender’s statistical security in
the UC model by retaining the use of R but also solves the
open problem for obliviously transferring multibit strings
existing in [6]. Moreover, the adoption of £¼ð£alice; £bobÞ :

is still compatible to public key messiness properties (see
Lemma 9) when c is far away from ΛðAÞ :. Therefore, our
dual-mode encryption cryptosystem is a full-fledged instan-
tiation over the lattice, which can exactly realize the well-
defined primitive notion (see Definition 1).

1.3. Performance Analysis. We compare the security of our
dual-mode encryption cryptosystem with another two
related works (i.e., [5, 6]) in Table 1 to show that this work
can fully achieve the dual-mode properties, as Definition 1
required.

Note that a multisession UC-secure OT (see Figure 1)
can be derived from our proposed dual-mode cryptosystem,
where crs can be reused unbounded times and multibit
string transmitting is available in each single session. How-
ever, in the work of [5], crs can be simply reused in limited
sessions. Moreover, in the work of [6], only single-bit mes-
sage transmission is allowed in each single session instead of
transferring multibit strings.

For a clear efficiency comparison on those three works,
we illustrate some notations for clarity in Table 2. We let ℓ
denote the bit-length of an encrypted message in each ses-
sion and ℓ0 denote the number of permitted sessions for a
common crs. Then we mainly inspect the cost on vector
sampling and the amortization performance during a multi-
session string OT execution (i.e., ℓ≥ 1 and ℓ0 ≥ 1). In partic-
ular, we analyze the cost on generating crs, pk and ct in each
mode, respectively. The cost on generating crs is due to
producing A and v, the cost on generating pk is due to
producing sk and error vector, and the cost on generating
ct is due to randomness sampling.

Here, we let a ⋅ bg denote the cost on running a times
Gaussian sampling from Zm, and b ⋅ bu denote the cost on
running b times uniform sampling from Zm

q . For conve-
nience, we treat the cost on sampling an n-dimensional vec-
tor as the same as that of sampling an m-dimensional vector
according to some certain distribution. Since public matrix A
in messy mode is produced by TrapGenð1n; 1m; qÞ:À!ðA;TÞ :

(see Lemma 4), we denote the cost on generating such a
matrix A as dtrapA . In addition, [6] and our work both use a
heuristic randomized rounding function R (see Lemma 6),
and we denote bR as the cost on sampling required random-
ness during each execution of R. Moreover, our scheme uti-
lizes the key reconciliation mechanism £ (see Section 2.4); we
denote the cost on sampling a binary form integer f ¼ at−1 ⋯
agþ1ag ⋯ a1a0 as bf . Therefore, we can observe the compari-
son result from Table 3.

For transmitting strings by a multisession UC-secure OT
between two fixed participants (e.g., Alice and Bob), the work
of [5] can only reuse a common A during different
(bounded) ℓ0-OT sessions (i.e., requiring ℓ0 multiples of
the cost on generating independent v), and each session

can obliviously transfer multibit messages (i.e., ℓ≥ 1).
Although the work of [6] can reuse a common crs during
different (unbounded) ℓ0-OT sessions, due to the use of R,
each session can only obliviously transfer single-bit messages
(i.e., ℓ¼ 1) and need N ¼OðnÞ : times independent random-
ness sampling for decryption correctness. Our work can also
reuse a common crs during different (unbounded) ℓ0-OT
sessions, but each session can obliviously transfer multibit
strings (i.e., ℓ≥ 1) with the additional price of sampling
binary integer f . Therefore, the total costs on randomness
sampling for encrypting fðμ0; μ1Þj 2 f0; 1gℓgj≤ℓ0 in the

above three works are ℓ0 ⋅ ð2buÞ :, ℓ0 ⋅ ð2Nðbu þ bRÞÞ :, and ℓ0 ⋅
ð2Nðbu þ bR þbf ÞÞ :, respectively.

Moreover, the communication cost in one OT execution
is mainly on transmitting ðpk; fct0; ct1gÞ:. Since the main
difference of communication cost is on the ciphertext size,
we conclude the bit-length of one single ciphertext (i.e., size)
of these three works in Table 3. We observe that the work of
[5] only needs to transmit ðnþℓÞ :logq bits for the encryption
of an ℓ-bit message, which is more efficient than our work
for transferring strings. However, our work can achieve
higher security and allow string OT via transmitting
Nðn logqþ 1Þ :þ logN þ logqþðℓ− 1Þ : bits, instead of the
work of [6] needs Nðn logqþ 1Þ: bits for encrypting one sin-
gle bit.

To sum up, if asking for higher efficiency but permitting
lower security, the work of [5] would be recommended to
use, since its costs on the randomness sampling and the
ciphertext size are both less than the other two works. If it
requires transferring multibit messages (i.e., ℓ>1) with full-
fledged dual-mode security, we only need to run one session
of our string OT, while the work of [6] has to run ℓ0 ¼ℓ

single-bit OT sessions with huge overhead.

1.4. Other Related Work. The work of [11] builds a two-
message OT protocol from LWE, which achieves statistical

TABLE 2: Notations for efficiency analysis.

Parameter Description

ℓ
The bit-length of an encrypted message μ

in each session

ℓ0 The number of permitted sessions for a
common crs

n Implicit security parameter n≥ 1

m Lattice dimension m≥ 2ðnþ 1Þ:logq

bg The cost on running one Gaussian
sampling from Zm

bu The cost on running one uniform
sampling from Zm

qdtrapA The cost on generating a matrix A by
TrapGenð1n; 1m; qÞ:À!ðA;TÞ :

bR The cost on sampling required
randomness during each execution of Rbf The cost on sampling a binary form

integer f ¼ at−1 ⋯ agþ1ag ⋯ a1a0
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sender security and computational receiver security against
malicious adversaries. For obliviously transferring multibit
strings, although ours is less efficient (due to a superpolyno-
mial modulus q) than their work, our scheme can obtain a
stronger UC security at the expense of relying upon a
trusted CRS.

In addition, the work of [12] proposes a generic con-
struction to upgrade a two-round elementary OT to a UC-
secure version in the malicious setting, where the CRS is
reusable for unbounded times. By taking [5] or [11] as the
elementary OT, we can obtain an LWE-based instantiation
with a polynomial-size modulus. However, their work can
only offer both participants computational security instead,
and our proposal is more efficient by avoiding any non-
black-box techniques.

Recently, thework of [13, 14] first introduced an LWE-based
dual-mode non-interactive zero-knowledge proof (NIZK). We
can take [5] as a semimalicious secure dual-mode OT into the
framework of [13, 14] to derive a dual-mode OT with fully
malicious security. Since [5] only achieves computational
receiver security from LWE, if we fix this flaw with the noise
flooding technique, the resulting issue would be the same as the
problem in our scheme caused by the subexponential LWE
modulus. Since the reductions for the soundness of [13, 14]
are in a black-box way, it inherently implies the non-adaptively
sound NIZKs of [13, 14] in statistical zero-knowledge mode.
This can be patched up by complexity leveraging, but it would
consequently lean upon the subexponential LWE hardness.
Moreover, compiling the OT of [5] into the generic NIZKs
framework of [13, 14] would result in practically inefficient
proofs.

2. Preliminaries

2.1. Notations. Here, we take n as an implicit security param-
eter. We let polyðnÞ : denote any function f ðnÞ:¼OðncÞ : for
some constant c, and neglðnÞ : denote an unspecified function
f ðnÞ : such that f ðnÞ :¼ n−ωð1Þ. If a probability is 1− neglðnÞ :,
we call it overwhelming.

We denote column vectors by bold lower cases and
matrices by bold upper cases, e.g., a and A. Their transposi-
tion operations are denoted by aT and AT . We let xmod q
represent the residue of x2Zq over ½0;…; qÞ :, and ðxÞq rep-
resent the residue of x2Zq over ½− q=2; q=2Þ:. The largest
integer smaller than x and the smallest integer greater than x
are, respectively, written by ⌊x⌋ and ⌈x⌉. We let x⊕ y rep-
resent the xor operation between two bit strings x; y2
f0; 1gk. All the distances dð⋅; ⋅Þ : and norms k⋅jj : are in the
ℓ2 norm unless otherwise specified. Let k⋅jj1 denote the
infinity norm. For any positive integers N ≥ 1, we let ½N� :

denote a set of integers f1;…;Ng :.
We letUðEÞ : represent the uniform distribution over a set

E and x À$ E represent the uniform sampling x ÀUðEÞ :. We
say a distribution ψ is B-bounded if the probability of sam-
pling from ψ with the norm at most B2R is overwhelming.
The statistical distance between two distributions D1 and D2

is defined as ΔðD1;D2Þ :¼ 1
2∑x ∣ PrD1

ðxÞ : −PrD2
ðxÞ :∣, where

PrD ð⋅Þ : is the probability mass function of D. We say that
D1 and D2 are statistically indistinguishable if ΔðD1;D2Þ : ≤
neglðnÞ :, denoted by D1 ≈s D2. If for any probabilistic polyno-
mial time distinguisher AÀ!f0; 1g: such that ∣Pr½AðD1Þ¼ 1�
: −Pr½AðD2Þ¼ 1� :∣ ≤ neglðnÞ :, we say that D1 and D2 are com-
putationally indistinguishable, denoted by D1 ≈c D2.

2.2. Dual-Mode Encryption. We first recall the notion of
dual-mode encryption [5, 6]. For clarity, we adopt their nota-
tions for illustration.

Definition 1 (dual-mode encryption). A dual-mode encryption
scheme with message space f0; 1gℓ consists of a bundle of
probabilistic polynomial-time algorithms ðSetupMessy;
SetupDec;KeyGen;Enc;Dec;FindMessy;TrapKeyGenÞ :

defined as follows:

(1) SetupMessyð1nÞ :À!ðcrs; tdMÞ :: Given as input the
security parameter n, the setup algorithm outputs a
common reference string crs along with a trapdoor
tdM in messy mode.

(2) SetupDecð1nÞ :À!ðcrs; tdDÞ :: Given as input the
security parameter n, the setup algorithm outputs a
common reference string crs along with a trapdoor
tdD in decryption mode.

(3) KeyGenðcrs; bÞ :À!ðpk; skbÞ :: Given as input a com-
mon reference string crs and a branch b2f0; 1g:, the
key generation algorithm outputs a public encryption
key pk and a secret decryption key skb for message
encrypted on branch b.

(4) Encðcrs; pk; b0; μÞ :À!ct: Given as input a common
reference string crs, a public key pk, a branch b0 2 f0;
1g : and a message μ2f0; 1gℓ, the encryption algo-
rithm outputs a ciphertext ct on branch b0.

(5) Decðskb; ctÞ:À!μ: Given as input a secret key skb
and a ciphertext ct, the decryption algorithm outputs
a message μ2f0; 1gℓ.

(6) FindMessyðcrs; tdM; pkÞ :À!b̄: Given as input a
common reference string crs, a trapdoor in messy
mode tdM and a (possibly malformed) public key pk,
the algorithm outputs a branch b̄ 2f0; 1g: corre-
sponding to a messy branch of pk.

(7) TrapKeyGenðcrs; tdDÞ :À!ðpk; sk0; sk1Þ :: Given as
input a common reference string crs and a trapdoor
in decryption mode tdD, the algorithm outputs keys
ðpk; sk0; sk1Þ :, where pk is a public encryption key,
and sk0 and sk1 are corresponding secret decryption
keys for branches 0 and 1, respectively.

The above dual-mode encryption is demanded to hold
the following properties:

(1) Completeness on decryptable branch: For every
μ2f0; 1gℓ and b2f0; 1g:, whether ðcrs; tdÞ : À
SetupMessyð1nÞ : or ðcrs; tdÞ: ÀSetupDecð1nÞ : is
executed in setup phrase, decryption is correct on
branch b with overwhelming probability over the ran-
domness of the entire experiment, i.e.,
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Pr Dec skb;Enc crs; pk; b; μð Þð Þ ¼ μ½ � ≥ 1 − negl nð Þ;
ð2Þ

where ðpk; skbÞ : ÀKeyGenðcrs; bÞ :.
(2) Indistinguishability of modes: For every ðcrsM :;

tdMÞ :←SetupMessyð1nÞ : and ðcrsD; tdDÞ : ←
SetupDecð1nÞ :, both two crs outputs from two dis-
tinct setup algorithms are computationally indistin-
guishable, i.e.,

crsM ≈c crsD: ð3Þ

(3) Security in messy mode: For all ðcrs; tdMÞ : À
SetupMessyð1nÞ : and (possibly malformed) pk,
b̄ ÀFindMessyðcrs; tdM; pkÞ : implies that Enc
ðcrs; pk; b̄; ⋅Þ : is message-lossy (i.e., messy). That is,
for all messages μ0; μ1 2f0; 1gℓ,

Enc crs; pk; b̄; μ0
À Á

≈s Enc crs; pk; b̄; μ1
À Á

: ð4Þ

(4) Security in decryption mode: For all ðcrs; tdDÞ : À
SetupDecð1nÞ :, it holds that for every b2f0; 1g:,

crs; pk; skbð Þ ≈s crs;KeyGen crs; bð Þð Þ; ð5Þ

where ðpk; sk0; sk1Þ : ÀTrapKeyGenðtdDÞ : for the left-hand
side above.

The work of [5] showed that once a well-constructed
dual-mode encryption scheme is completed as the above
notion, a UC-secure OT can be directly obtained. Here, we
suppose all readers know the UC security model well and
omit to introduce its corresponding background here. We
recommend to go to [5] for more details.

Theorem 2 (UC-secure OT from dual-mode encryption [5,
6]). If a dual-mode encryption scheme ðSetupMessy;
 SetupDec;  KeyGen;  Enc;  Dec; FindMessy; TrapKeyGenÞ :

is well-defined as above, we can obtain a protocol to UC-realize

themultisessionOT functionality bFOT in theFCRS-hybridmodel
under static corruptions.

We can execute this UC-secure OT protocol in either of
two modes. Each time, it is run over a distinct functionality
FCRS that produces crs according to the corresponding
setup algorithm. The messy mode only provides statistical
security for the sender. The decryption mode only provides
statistical security for the receiver. The other party in each
mode can only achieve computational security.

2.3. Lattices Background

2.3.1. Lattices and Gaussians. We first recall some basic
knowledge regarding lattices.

Let B¼fb1;…; bng: consist of n linearly independent
m-dimensional column vectors bi 2Rm for all i2 ½n�:. The

m-dimensional lattice Λ generated by B is defined as ΛðBÞ :¼
fBc¼∑i2½n� ci ⋅ bi : c2Zng:. The dual lattice of Λ is defined
as Λ∗¼fy 2SpanRðΛÞ∣8x2Λ; <x; y> 2Zg:. Let λ11 ðΛÞ :¼
minx2Λ\f0g kxjj1 define the minimum distance of a lattice
in infinity norm. If the column vectors of a matrix A2Zm×n

q

are linearly independent, we say that A is full-rank. Now we
introduce two q-ary lattices defined by A2Zm×n

q :

Λ Að Þ ¼ x 2 Zm∣x ¼ Asmod q for some s 2 Zn
q

È É
; ð6Þ

Λ? Að Þ ¼ r 2 Zm∣rTA¼ 0Tmod qf g: ð7Þ

These two lattices are dual to each other up to a scaling factor
q such that ΛðAÞ :¼ q ⋅ Λ?ðAÞ∗ and Λ?ðAÞ :¼ q ⋅ ΛðAÞ∗.

We define the Gaussian weight function on Rm with
parameter τ>0 as follows:

8x 2 Rm;  ρτ xð Þ ¼ exp −π xk k2=τ2ð Þ: ð8Þ

The discrete Gaussian distribution over Z with parameter
τ>0 is defined as follows:

8x 2 Z;  DZ;τ xð Þ ¼ ρτ xð Þ
∑y2Zρτ yð Þ : ð9Þ

Moreover, we recall an important lattice parameter, i.e.,
the smoothing parameter [15]. For an m-dimensional lattice
Λ and a positive real ϵ>0, the smoothing parameter ηϵðΛÞ : is
defined as the smallest τ>0 such that ρ1=τðΛ∗ \ f0gÞ: ≤ ϵ.

Now we introduce some useful lemmas regarding the
above q-ary lattices defined by A and the corresponding
lattice quantity ηϵ.

Lemma 1 (see [16] Lemma 5.2). Suppose a matrix A2Zm×n
q

whose row vectors can generate Zn
q (a.k.a. A is full-rank), ϵ2

ð0; 12Þ : and τ≥ ηϵðΛ?ðAÞÞ :. For any e ÀDm
Z; τ, the distribution

of u¼ eTAmod q is close to the uniform distribution over Zn
q

within statistical distance 2ϵ.

Lemma 2 (see [16] Lemmas 5.1 and 5.3). Let n, m, and q be
positive integers with q prime and m≥ 2n logq. For all but an
at most q−n fraction of A2Zm×n

q , the rows of A can generate
Zn
q . For all but an at most q−n fraction of A2Zm×n

q , we have a
large minimum distance λ11 ðΛðAÞÞ : ≥ q=4. That is

Pr
A À$ Zm×n

q
A is full-rank ∧ λ11 Λ Að Þð Þ ≥ q=4½ � ≥ 1 − 2q−n:

ð10Þ

Lemma 3 (see [15–17]). For any m-dimensional lattice Λ and
positive real ϵ>0, we have the following:
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ηϵ Λð Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 2m= 1þ 1=ϵð Þð Þ=πp

λ11 Λ∗ð Þ : ð11Þ

Let n, m, and q be positive integers with q prime and m≥
2n logq. For any function ωð ffiffiffiffiffiffiffiffiffiffi

logm
p Þ :, there is a negligible

function ϵðmÞ: such that

ηϵ Λ? Að Þð Þ ≤ ω
ffiffiffiffiffiffiffiffiffiffi
logm

pÀ Á
; ð12Þ

with overwhelming probability over the choice of A À$ Zm×n
q .

2.3.2. LWE.We introduce the definition of (decisional) LWE
problem.

Definition 2 ((decisional) LWE [18]). Let n≥ 1 and q¼ qðnÞ
: ≥ 2 be positive integers, and χ denote an error distribution
over Z. The (decisional) LWE problem LWEq;χ;n states that

for all m¼polyðnÞ : and some secret vector s À$ Zn
q , the dis-

tribution ðA;Asþ eÞ : is computationally indistinguishable
from the distribution of ðA; bÞ :, i.e.,

A;Asþ eð Þ≈c A; bð Þ; ð13Þ

where A À$ Zm×n
q , e Àχm, and b À$ Zm

q .

LWEq;χ;n hardness [18]. For all B≥ Ω̃ð ffiffiffi
n
p Þ:, a B-bounded

distribution χ¼ χðnÞ : exists such that within approximation
factor γ¼ Õð ffiffiffi

n
p

q=BÞ :, breaking the average case problem
LWEq;χ;n is at least as hard as solving the worst case pro-
blems GapSVPγ and SIVPγ using a quantum algorithm.

2.3.3. Lattices Trapdoors. Now, we introduce a lemma
regarding the lattice trapdoor technique, which is used to
identify messy public keys for arguing the sender’s statistical
security in messy mode.

Lemma 4 (see [19] Theorem 5.1). Given some integers n≥ 1,
q≥ 2, and m≥Ωðn logqÞ : as input, there exists an efficient
randomized algorithm

TrapGenð1n; 1m; qÞ : which outputs A2Zm×n along with
a trapdoor T such that

(1) The distribution of A is statistically close to UðZm×n
q Þ :.

(2) For any s2Zm
q and e2Zm

q such that kejj:<q=6
ffiffiffiffi
m
p

,
given c¼Asþ e and the above ðA;TÞ : as input, an
efficient deterministic trapdoor inversion algorithm which
can output ðs; eÞ : exists, i.e., InvertðT;A; cÞ:À!ðs; eÞ:.

2.3.4. Noise Flooding. The following lemma is used for argu-
ing the receiver’s statistical security in decryption mode.

Lemma 5 (see [9, 20]). Suppose B¼BðnÞ : and B0 ¼B0ðnÞ :2Z
are two positive integers. Let e1 2 ½−B;B� : be a fixed integer

and e2 À$ ½−B0;B0� :. The distribution of e2 is statistically close
to the distribution of e2þ e1 as long as B=B0 ¼ neglðnÞ :, i.e.,

U −B0; B0½ �ð Þ≈s U −B0;B0½ �ð Þ þ e1: ð14Þ

2.4. Statistically Smooth Rounding Function over Lattices.We
still employ the statistically smooth rounding function [7] in
our dual-mode encryption construction. It can provide a
crucial property that identifying messy public key is simply
running the trapdoor inversion algorithm once (independent
of the superpolynomial LWE modulus q), which further
helps to build an efficient simulator for arguing the sender’s
statistical security in the UC model.

Lemma 6 (see [6, 7]). A randomized rounding function R :
ZqÀ!f0; 1g: is well-defined such that

Pr R xð Þ ¼ 1½ � ¼ 1=2þ cos 2πx=qð Þ
2

: ð15Þ

Let A2Zm×n
q with m¼Θðn logqÞ :, p2Zn

q , and τ≥ ηϵðΛ?ðAÞÞ :

for some ϵ¼neglðnÞ :. Then, the above randomized rounding
function R satisfies the following properties:

(1) Statistical smoothness: If A is full-rank and for all c2
Zm
q with dðc;ΛðAÞÞ : ≥ q

ffiffiffiffi
m
p

=τ, we have the following:

Pr
R;r ÀDm

Z;τ

R r; ch ið Þ ¼ 1∣rTA¼ pT½ � − 1=2

�����
����� ≤ negl nð Þ;

ð16Þ

where the probability is taken over r ÀDm
Z; τ and the random-

ness of R.
(2) Approximate correctness: For all c¼Asþ e2Zm

q ,
where s2Zn

q and e2Zm
q such that dðc;ΛðAÞÞ : ≤B

(i.e., kejj: ≤B) and B ⋅ τ ⋅
ffiffiffiffi
m
p ¼ oðqÞ :, then for all

large enough n, we have the following:

Pr
R;r ÀDm

Z;τ

R rTAsð Þ ¼ R rTcð Þ½ � ≥ 2=3: ð17Þ

2.5. Key Reconciliation over Lattices. Now, we recall the key
reconciliation scheme introduced in [9], which can extract a
random multibit shared key from two close secrets over Zq.
We denote this scheme as £¼ð£alice; £bobÞ :, which consists of
two algorithms and can be viewed as a one-message key
reconciliation protocol sequentially executed from Alice to
Bob. Assume d ÀZq (Alice’s secret) and d0 ÀZq (Bob’s
secret) with ∣ðd − d0Þq∣ ≤ δ for some integer δ≤ q=32. At the
end of the execution, Alice and Bob could reach a consensus
on a common secret ξ, i.e., ξ¼ ξalice¼ ξbob. Let t¼ ⌊logq⌋
and g¼ ⌈logδ⌉. The scheme £ works as follows:

Alice’s execution (a.k.a. £aliceðdÞ :À!ðσ; ξaliceÞ :):
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(1) Alice sets an integer f ¼ at−1 ⋯ agþ1ag ⋯ a1a0 in a
binary form, where she defines ag¼ 1 and agþ1¼ 0,
and takes aj Àf0; 1g: for 0≤ j≤ t − 1 but j ≠ g; gþ 1.

(2) Alice sets the common secret as ξalice¼
ðat−1; …; agþ2ÞT and sends σ¼ð f þ dÞ :mod q to
Bob.

Bob’s execution (a.k.a. £bobðσ; d0Þ :À!ξbob):
After receiving σ, Bob takes as input σ and d0, and sets the

common secret ξbob¼ ⌊ ðσ−d
0Þmod q
2gþ2 ⌋ in its binary form.

Lemma 7 (see [9]). We assume d; d0 2Zq with
∣ðd − d0Þq∣ ≤ δ, then Alice and Bob can agree on a common
secret (i.e., ξ¼ ξalice¼ ξbob) after the execution of £¼ð£alice;
£bobÞ :. Furthermore, if d À$ Zq, the common key ξ is confiden-
tial (even given σ) and uniformly distributed over
f0; 1gðt−g−2Þ. The entropy HðξÞ :¼Hðξ∣σÞ : is at least as large
as log q

16σ.

Remark 1. Note that f is independent of d, then d is the one-
time pad for f by σ¼ f þ dmod q. Hence, f is independent of
σ. Furthermore, ξ is determined by the first t −g− 2 ran-
domly chosen bits of f , then ξ is independent of σ and
uniformly random. Therefore, we can use ξ as the one-time
pad key to encrypt multiple bits in our dual-mode encryption
scheme.

3. LWE-Based Dual-Mode Encryption for UC-
Secure String OT

In this section, an LWE-based dual-mode encryption (see
Section 3.2) is proposed for deriving a UC-secure string OT
(as shown in Figure 1), which is more efficient than costly
running multiple independent executions of single-bit OT [6]

(see Table 3) for transmitting multibit messages. We first
introduce its underlying LWE-based messy public-key
encryption in Section 3.1, i.e., an extension scheme of the
counterpart of [6].

3.1. Extended Messy Public-Key Encryption. For a lattice-
based dual-mode encryption cryptosystem over multibit
messages, we need an LWE-based messy public-key encryp-
tion as its underlying encryption algorithm, which is
obtained by extending the messy public-key encryption of
[6] to a multibit encryption version. In particular, we use the
single-bit output of that statistically smooth rounding func-
tion R (see Lemma 6) to encrypt the first bit of the message,
for retaining the property that messy public key can be test-
able efficiently and independently of the LWE modulus size.
Moreover, we add the key reconciliation scheme £ (see Sec-
tion 2.4) into a framework. By taking one of R’s inputs during
its multiple executions (under the same public key) as the
input of £, we can obtain multiple random bits to hide the
residue bits of the message. Since R and £ both utilize the
same public key (possibly malformed), the messy public key
property is naturally inherent in our extended LWE-based
encryption.

3.1.1. Parameters Setting. Consider the randomized rounding
function R (see Lemma 6) and key reconciliation scheme £
(see Section 2.4) together used in the scheme. We show all
the parameters set in Table 4 to satisfy the correctness and
security of the following LWE-based messy encryption
scheme.

3.1.2. Construction. Now we show our extended LWE-based
encryption scheme ðLWEKeyGen:, LWEEnc; LWEDecÞ:

over message space M¼f0; 1gℓ.

(1) LWEKeyGenð1nÞ :: Sample A À$ Zm×n
q , s À$ Zn

q ,

e Àχm, f À$ ½−B0; B0�m and set c¼Asþ eþ f .Output:

TABLE 4: Parameters setting.

Parameter Description Setting

n Implicit security parameter n≥ 1
q Superpolynomial prime modulus q¼ nωð1Þ ≥ 2
m Lattice dimension m≥ 2ðnþ 1Þ:logq
N Number of Sampling N ¼NðnÞ :¼ n
τ Gaussian parameter τ≥ 4

ffiffiffiffi
m
p

χ B-bounded distribution χ¼ χðnÞ:

B Bound defined in Definition 2 B¼ Ω̃ð ffiffiffi
n
p Þ :

B0 Bound defined in Lemma 5 B0 2Z s.t. ðBþB0Þ: ⋅ τ
ffiffiffiffi
m
p ¼ oðqÞ: and B=B0 ¼neglðnÞ :

δ
Upper bound of the gap between two

close inputs of £
δ≤ q=32

t Length of f in binary form t¼ ⌊logq⌋

g Index of the bit set as 1 in generating
binary f

g¼ ⌈logδ⌉

ℓ Bit-length of binary message μ ℓ¼ t −g− 1
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pk¼ A; cð Þ;  sk¼ s: ð18Þ

(2) LWEEncðpk; μ2f0; 1gℓÞ :: For i2 ½N� :, doing as
follows:
1. Sample ri ÀDm

Z; τ , and computepTi ¼ rTi ⋅ A2Z1×n
q .

2. Compute ðσk; ξaliceÞ : À£aliceðrTk ⋅ cÞ :, where rk is set
as any vector chosen from frigi2½N� and k2 ½N� :.

3. Split the message μ into two segments, i.e., μ¼
ðμR; μ£Þ :, where μR is the first bit of μ, and μ£ is the
residual ℓ− 1 bits of μ. Then compute:

βi

β£

" #
 À R rTi ⋅ cð Þ⊕ μR

ξalice ⊕ μ£

" #
: ð19Þ

4. Output the ciphertext ct:

ct¼ pi; βif gi≤N ; k; σk; β£f gÀ Á
: ð20Þ

(3) LWEDecðsk; ctÞ:: For all i2 ½N� :, doing as follows:
1. Compute bi ÀRðpTi ⋅ sÞ : ⊕ βi, and set the major-

ity bit of the bi’s as μR.
2. Compute ξbob À£bobðσk; pTk ⋅ sÞ: and set μ£¼

ξbob ⊕ β£.
3. Output the message μ¼ðμR; μ£Þ :.

Similar to [6], the term f added into c (i.e., noise flooding)
is used for arguing the receiver’s statistical security in decryp-
tion mode. Note that it would not affect any of the following
properties without this term in c. Now, we show the correct-
ness of this extended LWE-based encryption scheme.

Lemma 8 (correctness). Let ðBþB0Þ : ⋅ τ
ffiffiffiffi
m
p ¼ oðqÞ :, τ≥

ωð ffiffiffiffiffiffiffiffiffiffi
logm

p Þ :, and δ≤ q=32, then the above extended public-
key encryption scheme is correct.

Proof. By Lemma 3, ϵ¼ neglðnÞ : can be set such that τ≥
ηϵðΛ?ðAÞÞ : with overwhelming probability over the choice
of A.

If we set kejj : ≤B and k fjj : ≤B0, by the approximate cor-
rectness of R (see Lemma 6), for all i2 ½N� :, we have

Pr
R;ri ÀDm

Z;τ

bi ¼ βi½ � ≥ 2=3; ð21Þ

over the internal randomness of R and ri ÀDm
Z; τ. By

Cauchy–Schwarz inequality, we have ∣rTi ðeþ fÞ :∣ ≤ krijj : ⋅
keþ fjj : ≤ τ

ffiffiffiffi
m
p

⋅ ðBþB0Þ :¼ oðqÞ :.
We can observe from the above that d¼ rTi c and d0 ¼

pTi s, therefore, d− d0 ¼ rTi ðeþ fÞ :. If we set ∣ðd − d0Þq∣ ¼
∣rTi ðeþ fÞ :∣ ≤ δ for some integer δ≤ q=32¼ oðqÞ :, by the cor-
rectness of £ (see Lemma 7), two participants can agree on a
common secret ξ, i.e., ξ¼ ξalice¼ ξbob.

Therefore, only using a Chernoff bound for the approxi-
mate correctness of R, we can obtain the correct decryption

with overwhelming probability in our extended public-key
encryption scheme. □

3.1.3. Messy Public Keys. For constructing a dual-mode
encryption cryptosystem from LWE, we have to build
upon LWE-based encryption with admitting messy (short
for message-lossy) public keys. We say that a public key pk is
messy, if a ciphertext output byLWEEncðpk; ⋅Þ: carries no infor-
mation (statistically) about the encryptedmessage, i.e., for all μ0;
μ1 2f0; 1gℓ such that LWEEncðpk; μ0Þ :≈sLWEEncðpk; μ1Þ :.
Moreover, given some appropriate lattice trapdoor in the after-
mentioned dual-mode cryptosystem, such messy keys can be
efficiently identified. More precisely, the ciphertext produced
by LWEEnc is ct¼ðfpi; βigi≤N ; fk; σk; β£gÞ :. Therefore, for
any fixed public key pk¼ðA; cÞ:, we have to consider the statis-
tical distance δðpkÞ: betweenUðZn

q ×Z2 ×ZqÞ : and the distribu-
tion of ðrTi A;RðrTi cÞ; rTi cÞ:, where ri ÀDm

Z; τ . For any μ0; μ1 2
Zℓ
2 , both LWEEncðpk; μ0Þ : and LWEEncðpk; μ1Þ : are close to

uniform within δðpkÞ:, then we have the following:

Δ LWEEnc pk; μ0ð Þ; LWEEnc pk; μ1ð Þð Þ ≤ 2δ pkð Þ:
ð22Þ

If δðpkÞ : is negligibly small, then pk is a messy public key.
The correctness of LWEDec implies that if pk is generated
by LWEKeyGen, it has a large δðpkÞ :.

As shown in prior lattice-based cryptosystems [5, 16, 18],
messy public keys have occupied an important position in
security proofs. In particular, it requires [5] that the simula-
tor in the UC model can efficiently identify messy keys with
trapdoor information, which demands an explicit condition
to identify those keys. Since our dual-mode encryption cryp-
tosystem follows the framework of [5], we also present a
sufficient condition for messy public keys as follows:

Lemma 9 (sufficient condition for messy public key). Let

A À$ Zm×n
q , and c2Zm

q . Suppose that the rows of pk¼ðA; cÞ :

generateZnþ1
q . Then for any ϵ¼ð0; 12Þ : and any Gaussian param-

eter τ≥ ηϵðΛ?ðpkÞÞ : used by LWEEnc, we have δðpkÞ : ≤ 2ϵ.
In particular, if dðc;ΛðAÞÞ : ≥ q

ffiffiffiffi
m
p

=τ and τ≥ q ⋅
ωð ffiffiffiffiffiffiffiffiffiffi

logm
p Þ:=λ11 ðΛðpkÞÞ :, pk is messy under LWEEnc. That

is, for all μ0; μ1 2f0; 1gℓ such that

LWEEnc pk; μ0ð Þ ≈s LWEEnc pk; μ1ð Þ: ð23Þ

Proof. First, we can write δðpkÞ : as follows:

δ pkð Þ ¼Δ U Zn
q ;Z2;Zq

À Á
;D rTi A;R rTi cð Þ; rTi cð ÞÀ Á

≤Δ U Zn
q ;Z2;Zq

À Á
;D rTi A;Z2; rTi cð ÞÀ Á

þΔ D rTi A;Z2; rTi cð Þ;D rTi A;R rTi cð Þ; rTi cð Þð Þ
¼Δ U Zn

q ;Zq

À Á
;D rTi A; r

T
i cð ÞÀ Áþ Δ U Z2ð Þ;D R rTi cð Þð Þð Þ

¼δ£ þ δR;

ð24Þ
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where δR denotes the statistical distance between the distri-
bution of RðrTi cÞ : and UðZ2Þ :, and δ£ denotes the statistical
distance between the distribution of ðrTi A; rTi cÞ: and UðZn

q ×
ZqÞ :. Note that in the second part of ct¼ðfpi; βigi≤N ; fk; σk;
β£gÞ: (encrypted by £), we only consider whether the distri-
bution of ðrTi A; rTi cÞ: is nearly-uniform. This is due to the fact
that the security of β£ comes down to whether the distribu-
tion of σk¼ f þðrTk ⋅ cÞ:mod q is close to uniform.

Given A, c, pTi ¼ rTi A such that dðc;ΛðAÞÞ : ≥ q
ffiffiffiffi
m
p

=τ, by
the statistical smoothness of R (see Lemma 6), the distribu-
tion of RðrTi cÞ : is statistically close to uniform over the ran-
domness of R and ri ← Dm

Z; τ, i.e., δR¼ neglðnÞ :. That is,
fβigi≤N are statistically close to uniform bits. Therefore, we
only consider whether δ£ is negligibly small.

We can claim δ£ ≤ 2ϵ by Lemma 1 (for dimension nþ 1
instead of n). It directly implies that ðrTi A; rTi cÞ : is close to the
uniform distribution over Znþ1

q for ri ← Dm
Z; τ within statisti-

cal distance 2ϵ. Then we can claim that δ£¼neglðnÞ : for the
nearly uniform distribution of ðrTi A; rTi cÞ:, which directly fol-
lows from Lemma 3 (i.e., a consequence of Lemma 2.6 in [16]
and the duality between Λ?ðpkÞ : and ΛðpkÞ :) with the statis-
tically hiding property of £ (see Lemma 7).

More precisely, the first bit of the message (i.e., μR) is
information-theoretically hidden by RðrTi cÞ:, then we must
show that the second part of the message (i.e., μ£) is statisti-
cally hidden by ξalice (output by £alice). Here, ξalice is the first
t −g− 2 bits of f (randomly chosen from f0; 1gt−g−2), thus f
works as a one-time pad for hiding μ£. As a part of ciphertext
ct, σk¼ f þðrTk cÞ:mod q can be regarded as a one-time pad
encryption for hiding f by rTk c. By Lemma 7, f is independent
of σk, then ξalice is independent of σk. The claim that μ£ is
statistically hidden by ξalice follows the messiness of pk, i.e., f
is statistically hidden by rTk c. Therefore, the claim follows.□

Now, we state two following lemmas, one of which
claims that most public keys are messy for appropriate
parameters, and the other one argues that our extended
messy public-key encryption scheme is secure under the
LWE assumption.

Lemma 10 (most public keys are messy). Let m≥ 2ðnþ 1Þ
:logq, τ≥ 4

ffiffiffiffi
m
p

, and pk¼ðA; cÞ: À$ Zm×n
q ×Zm

q . Then we have
dðc;ΛðAÞÞ : ≥ q=4 with overwhelming probability, in particu-
lar, ðA; cÞ : is messy.

Proof. Let pk2Zm×ðnþ1Þ
q be comprised of A and c as above.

By Lemma 2 (a consequence of Lemmas 5.1 and 5.3 in [16]),
the rows of pk generate Znþ1

q for all but an at most

q−ðnþ1Þ<q−n fraction of all pk (by Lemma 5.1 of [16]), and
we have λ11 ðΛðpkÞÞ : ≥ q=4 for all but an at most q−n fraction
of all pk (by Lemma 5.3 of [16]). Furthermore, since the set
of points that close to ΛðAÞ : within distance q=4 (in ℓ1
norm) has size at most qnðq=2Þm, we have d1ðc;ΛðAÞÞ : ≥
q=4 with overwhelming probability over the choice of c for
any fixed A2Zm×n

q . As m≥ 2n logq, the probability that

c À$ Zm
q belongs to those points is at most q−n¼neglðnÞ :.

Therefore, for any fixed A, with overwhelming probability

over the randomness of c←
$
Zm
q , we have dðc;ΛðAÞÞ : ≥ d1ðc;

ΛðAÞÞ : ≥ q
ffiffiffiffi
m
p

=τ. By Lemma 9, it implies that such pk¼ðA;
cÞ: is a messy public key. □

Lemma 11 (security). Suppose m≥ 2ðnþ 1Þ :logq, τ≥ 4
ffiffiffiffi
m
p

.
Then the above extended messy public-key encryption scheme
is secure under the LWEq;χ;n assumption.

Proof. With the LWEq;χ;n assumption, the public key ðA; cÞ :

generated from LWEKeyGen is computationally indistin-

guishable from UðZm×n
q ×Zm

q Þ :. If ðA; cÞ : À$ Zm×n
q ×Zm

q , then
by Lemma 10, ðA; cÞ : is messy with overwhelming probability
and security follows. □

Next, we show that given an appropriate trapdoor, messy
public keys can be efficiently identified in the following lemma,
which is further used for arguing the sender’s statistical security
in the messy mode execution of our dual-mode encryption.

Lemma 12 (see [6] Lemma 3.5). Suppose A is full-rank and
τ≥ 6m. Let TrapGenð1n; 1m; qÞ:À!ðA;TÞ :. Then there exists
an efficient algorithm IsMessy which given a vector c as
input, decides whether dðc;ΛðAÞÞ : ≥ q

ffiffiffiffi
m
p

=τ (i.e., the public
key ðA; cÞ: is identified as messy). The algorithm IsMessyðT;
A; cÞ: works as follows:

(1) Run InvertðT;A; cÞ : in Lemma 4.
(2) Output not sure, if the output is ðs; eÞ : with kejj

:<q=6
ffiffiffiffi
m
p

. Otherwise, the output is messy.

That is, if dðc;ΛðAÞ : ≥ q=6
ffiffiffiffi
m
p

≥ q
ffiffiffiffi
m
p

=τ, then IsMessy
outputs messy by Lemma 4.

3.2. Dual-Mode Encryption over Multibit Messages. For
achieving a UC-secure string OT (as shown in Figure 1),
we take the above extended LWE-based messy public-key
encryption (see Section 3.1) as the underlying encryption
to build a dual-mode encryption over lattices. Here, we
slightly change the Gaussian parameter τ to τ≥ 6m since test
messy keys is required (see Lemma 12).

3.2.1. Construction. Now we follow the framework of [6] to
show our LWE-based dual-mode cryptosystem for oblivi-
ously transferring multibit strings, where the prior encryp-
tion scheme ðLWEKeyGen; LWEEnc; LWEDecÞ: is served
as its underlying encryption.

(1) SetupMessyð1nÞ :À!ðcrs; tdMÞ :: Sample ðA;TÞ : À
TrapGenð1n; 1m; qÞ:. Pick v À$ Zm

q . Output:

crs¼ A; vð Þ;  tdM ¼ T: ð25Þ

(2) SetupDecð1nÞ :À!ðcrs; tdDÞ :: SampleA À$ Zm×n
q . Pick

s∗ À$ Zn
q and e∗ Àχm. Set v¼As∗þ e∗ and output:
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crs¼ A; vð Þ;  tdD ¼ s∗: ð26Þ

(3) KeyGenðcrs; bÞ :À!ðpk0; skbÞ :: Pick s À$ Zn
q , e Àχm,

f À$ ½−B0; B0�m. Output:
pk0 ¼ Asþ eþ f − b ⋅ v;  skb ¼ s: ð27Þ

It always satisfies that pkb¼Asþ eþ f and pk1 − pk0¼ v.
(4) Encðcrs; pk0; b0; μÞ:À!ct: Compute pkb0 ¼ c :
¼pk0þ b0v. Output ct ÀLWEEncððA; cÞ; μÞ:.

(5) Decðskb; ctÞ :À!μ: Parse the ciphertext as ct¼
ðfpi; βigi≤N ; fk; σk; β£gÞ:. Output μ ÀLWEDecðskb;
ctÞ :.

(6) FindMessyðtdM; pk0Þ :À!b̄: Run IsMessyðpk0Þ :

(defined in Lemma 12). If it outputs messy, output
0. Otherwise, output 1.

(7) TrapKeyGenðtdDÞ :À!ðpk; sk0; sk1Þ :: Pick s À$ Zn
q ,

e Àχm, f À$ ½−B0; B0�m. Output:
pk0 ¼ Asþ eþ f ;  sk0 ¼ s;  sk1 ¼ sþ s∗: ð28Þ

3.3. Dual-Mode Properties. According to Definition 1, we
show the above-proposed cryptosystem satisfies the required
dual-mode properties.

Lemma 13 (completeness on decryptable branch). Suppose
ðBþB0Þ : ⋅ τ ⋅

ffiffiffiffi
m
p ¼ oðqÞ :, τ≥ωð ffiffiffiffiffiffiffiffiffiffi

logm
p Þ :, and δ≤ q=32.

Then, the above scheme is correct.

Proof. Since the scheme ðLWEKeyGen; LWEEnc;
LWEDecÞ: is taken as the underlying encryption in the
above cryptosystem, therefore, the correctness (i.e., on
decryptable branch b2f0; 1g:) of our dual-mode encryption
directly follows by Lemma 8. □

Lemma 14 (indistinguishability of modes). By the hardness
of LWEq;χ;n, the above dual-mode encryption satisfies indis-
tinguishability of modes.

Proof. The difference between two modes is due to the dis-
tribution of crs produced by two different setup algorithms

(i.e., SetupMessyð1nÞ : or SetupDecð1nÞ :). By Lemma 4,
crsM ¼ðA; vÞ: ÀSetupMessyð1nÞ : is statistically close to
UðZm×n

q ×Zm
q Þ :. By the LWEq;χ;n assumption, crsD¼ðA;

v¼As∗þ e∗Þ : ÀSetupDecð1nÞ : is computationally indis-

tinguishable from ðA; vÞ : À$ Zm×n
q ×Zm

q . Therefore, computa-
tional indistinguishability between two modes follows. □

We hope that Alice (the sender) can achieve statistical
security in the messy mode execution of derived OT, which is
followed by the security in messy mode, as shown in Defini-
tion 1. The security in messy mode (see the undermentioned
Lemma 16) can be obtained directly by a consequence of
Lemmas 9 and 10 regarding messy public keys to guarantee
that at least one of two branches on ðct0; ct1Þ : is message-
lossy under the (possibly malformed) public key ðA; cÞ : given
by Bob (the receiver).

As another flavor for clarity, we show in Lemma 15 that
the ciphertext ctb̄ of message μb̄R on branch b̄¼ 1− b is mes-
sage-lossy.

Since the encryption of μb̄R (i.e., the former part of μb̄)
encrypted under the messy public key ðA; c¼Asþ eþ f þ v)

(where v À$ Zm
q ) is message-lossy by the statistical smooth-

ness of R, we only need to prove that μb̄£ (i.e., the latter part

of message μb̄) can be statistically hidden by ξb̄alice. Moreover,
by the correctness of £, Bob (the receiver) can decrypt βb£ (i.e.,
the latter part of the ciphertext ctb on decryptable branch b).
That is, on branch b, the key ξbbob computed by Bob with given
σbk (a.k.a. £bobðσbk; d0bÞ :À!ξbbob) is equal to the key ξbalice com-
puted by Alice (a.k.a. £aliceðdbÞ :À!ðσbk; ξbaliceÞ :). Moreover, it
requires that Bob cannot recover Alice’s encryption key
ξb̄alice on the (messy) branch b̄. In particular, the advantage

of Bob can correctly recover ξb̄alice on branch b̄ is neglðnÞ :, i.e.,

Pr½ξb̄bob¼ ξb̄alice� :¼ 1
2t−g−2 þneglðnÞ :. This guarantees the

encryption of μb̄£ can be statistically hidden by ξb̄alice. The fol-
lowing claim follows.

Lemma 15. For any b2f0; 1g:, the encryption of message μb̄
on branch b̄¼ 1− b is message-lossy.

Proof. In messy mode on branch b̄, we have c¼Asþ eþ f þ
v, where v À$ Zm

q . Once (p
b̄
k ; σ

b̄
k ) is obtained from Alice, Bob

can compute ξb̄bob as follows:
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ξb̄bob ¼
σb̄k − pb̄k T ⋅ s

� �
mod q

2gþ2

6664 7775
¼

fb̄ þ rb̄k T ⋅ c − pb̄k T ⋅ s
� �

mod q

2gþ2

6664 7775
¼

fb̄ þ rb̄k T ⋅ Asþ eþ f þ vð Þ − pb̄k T ⋅ s
� �

mod q

2gþ2

6664 7775
¼

fb̄ þ rb̄k T ⋅ Asþ eþ fð Þ − pb̄k T ⋅ sþ rb̄k T ⋅ v
� �

mod q

2gþ2

6664 7775
¼

fb̄ þ rb̄k T ⋅ Asþ eþ fð Þ − pb̄k T ⋅ s
� �

mod qþ rb̄k T ⋅ v
� �

mod q

2gþ2

6664 7775:

ð29Þ

At the side of Alice, μb̄£ is encrypted by ξb̄alice (i.e., the first t −
g− 2 bits of fb̄ used for encryption of message μb̄). Therefore,
by the mechanism of £, ξb̄alice can be recovered at the side of
Bob by computing

fb̄ þ rb̄k T ⋅ Asþ eþ fð Þ − pb̄k T ⋅ s
� �

mod q

2gþ2

6664 7775: ð30Þ

Now, we analyze that how can Bob recover a correct encryp-
tion key ξb̄alice. First, Bob could obtain ðσb̄k ; pb̄kÞ : from the
ciphertext ctb̄ on μb̄ . Since σb̄k ¼ fb̄ þðrb̄k T ⋅ cÞ :, fb̄ can be
viewed as encrypted by rb̄k Tc, where the messy key c¼
Asþ eþ f þ v (referring to Lemma 16), fb̄ is message-lossy
under the key rb̄k Tc. Therefore, ξ

b̄
alice is statistically hidden.

Second, we can observe from the above computation of ξb̄bob
that ξb̄bob ≠ ξb̄alice by the syndrome rb̄k Tv except for the case

that v¼ 0. Therefore, the proof for Pr½ξb̄bob¼ ξb̄alice� :¼ 1
2t−g−2 þ

neglðnÞ : turns to show the proof for Pr½ðrb̄k TvÞmod q¼ 0�:¼
1
q þ neglðnÞ :. More precisely, we can show that the syndrome

ðrb̄k TvÞ :mod q corresponds to a nearly-uniform distribution
over Zq as the following argument.

Let v À$ Zm
q and rb̄k ÀDm

Z; τ. Let ðrb̄k TvÞ :mod q¼
∑m

j¼1r
b̄
k j ⋅ vjmod q. We have that for 8vj À$ Zq, i2 ½m�:, as long

as 9j2 ½m� :, rb̄k j ≠ 0, then ðrb̄k TvÞ :mod q is uniform distributed

over Zq. We denote the event rb̄k ¼ 0 as E0, then Pr½E0�:¼
DZ;τð0Þm. For clarity, we denote X¼ðrb̄k TvÞ :mod q and Y is a
random variable uniformly distributed over Zq.

Δ D1 Xð Þ;D2 Yð Þð Þ
¼ 1
2
∑
q−1

i¼0
Pr X ¼ i½ � − Pr Y ¼ i½ �j j

¼ 1
2
∑
q−1

i¼0
Pr X ¼ i½ � − 1

q

���� ����
¼ 1
2

Pr X ¼ 0½ � − 1
q

���� ����þ ∑
q−1

i¼1
Pr X ¼ i½ � − 1

q

���� ����� �
¼ 1
2

Pr E0½ � þ 1 − Pr E0½ �ð Þ 1
q
−
1
q

���� ����þ ∑
q−1

i¼1
1 − Pr E0½ �ð Þ 1

q
−
1
q

���� ����� �
¼ 1
2

Pr E0½ � −
1
q
Pr E0½ �

���� ����þ ∑
q−1

i¼1
1
q
Pr E0½ �

� �
¼ 1
2

q − 1
q

Pr E0½ � þ
q − 1
q

Pr E0½ �
� �

¼ q − 1
q

Pr E0½ �<Pr E0½ � ¼ DZ;τ 0ð Þm<negl nð Þ

: ð31Þ
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As long as m≥OðnÞ:, we have 0<DZ;τð0Þ :¼ 1
∑y2Z ρτðyÞ <1. □

Lemma 16 (security in messy mode). Suppose that τ≥ 6m,
m≥ 2ðnþ 1Þ:logq, and δ≤ q=32. Then, the above scheme
satisfies security in messy mode.

Proof. First, for all pk0, at least one of the public key pk0¼ c0
or pk1¼ c1 satisfies dðcb;ΛðAÞÞ : ≥ q=6

ffiffiffiffi
m
p

. This is because if
c0 and c1 are both close to ΛðAÞ :, by triangular inequality, v¼
pk1 − pk0¼ c1 − c0 is close to ΛðAÞ : as well. In particular, if
dðcb;ΛðAÞÞ : ≤ q=6

ffiffiffiffi
m
p

for both b2f0; 1g:, then dðv;ΛðAÞÞ : ≤
q=3

ffiffiffiffi
m
p

with negligible probability over the randomness of
SetupMessy by Lemma 10. Therefore, for all pk0, at least
one of the public key pk0¼ c0 or pk1¼ c1 is messy by
Lemma 10 with overwhelming probability over the choice
of A by Lemmas 2 and 3.

In addition, by Lemma 12, we can efficiently identify a
messy branch, i.e., for all pk0, we use FindMessyðT;A; pk0Þ
:À!b̄ to identify the messy branch as b̄ and it holds:

Enc crs; pk; b̄; μ0
À Á

≈s Enc crs; pk; b̄; μ1
À Á

: ð32Þ
□

Lemma 17 (security in decryption mode). Assuming B0=B¼
neglðnÞ :, the above scheme satisfies security in decryption
mode.

Proof. Now we prove that for all ðcrs; tdDÞ : À
SetupDecð1nÞ :, the distributions ðpkb; skbÞ : generated by
either KeyGenðcrsD; bÞ: or TrapKeyGenðtdDÞ : are statisti-
cally close to each other for any b2f0; 1g :.

For any ðcrsD; tdDÞ : ÀSetupDecð1nÞ :, where crsD¼ðA;
v¼As∗þ e∗Þ : and tdD¼ s∗, we let ðpk0; sk0; sk1Þ : À
TrapKeyGenðtdDÞ :. We set the following:

pk0 ¼ Asþ eþ f;  sk0 ¼ s; ð33Þ

pk1 ¼ A sþ s∗ð Þ þ eþ e∗ð Þ þ f;  sk1 ¼ sþ s∗: ð34Þ

By Lemma 5 (i.e., e is statistically close to eþ e∗), the above
ðpk1; sk1Þ : is statistically close to the following:

pk1 ¼ A sþ s∗ð Þ þ eþ f ;  sk1 ¼ sþ s∗: ð35Þ

We denote the regular key pair on decryptable branch b
generated by KeyGenðcrsD; bÞ : as follows:

cpkb ¼ Asþ eþ f;  cskb ¼ s; ð36Þ

where s À$ Zn
q , e Àχm, f À$ ½−B0; B0�m, and cpk1 −cpk0¼ v.

Therefore, for all b2f0; 1g:, the joint distribution of

ðcrsD; pkb; skbÞ : is statistically close to that of ðcrsD;cpkb;cskbÞ : by using noise flooding technique (see Lemma 5). □

Corollary 1. Assuming the hardness of LWEq;χ;n with the
parameters defined in the above dual-mode encryption

cryptosystem, therefore, a UC-secure string OT as shown in
Figure 1 with the specifications of Theorem 2 can be achieved.

Proof. Once a full-fledged dual-mode encryption scheme
relying on the hardness of LWEq;χ;n is achieved, by Theo-
rem 2, we can directly obtain a UC-secure OT for transmit-
ting multibit strings over lattice (as shown in Figure 1).
Specifically, Alice acts as the sender and Bob as the receiver.
They both execute the setup phase to obtain crs by selecting
messy or decryption mode. In OT session, Bob first runs
KeyGenðcrs; bÞ : for sending pk0, and then Alice uses pk0
to encrypt each message μb0 by running Encðcrs; pk0; b0; μb0 Þ
:. After Bob received two encryptions ðct0; ct1Þ :, he can obtain
his chosen message μb by running Decðskb; ctbÞ :.

The UC security proof of this proposed string OT is
highly similar to that of [5]. Please refer to the following
remark and capture a proof sketch of our string OT in the
UC model. □

Remark 2 (illustration for simulation). Our dual-mode
encryption over multibit messages mainly follows the frame-
work of [6], whose simulation-based security proof is similar
to the counterpart of [5], except that in the messy mode, the
trapdoor inversion algorithm is simply run once by the cru-
cial property of R. Since our scheme retains the advantage by
using R in the trapdoor inversion part, our simulation-based
proof also follows [5, 6]. For clarity, we make a sketchy
simulation-based proof for our string OT protocol as follows:

Simulator for the case when only the receiver R is cor-
rupted: Regardless of which mode the protocol runs in the
real world, the simulator Sim for a corrupted receiver R in
the ideal world works as follows: run the algorithm
SetupMessy to generate ðcrs; tdMÞ : and follow the simula-
tion steps specified in [5]. We only need to run the trapdoor
inversion once for identifying a messy key by the crucial
property of R. Then, we can build an efficient simulator when
only R is corrupted.

Simulator for the case when only the sender S is cor-
rupted: Regardless of which mode the protocol runs in the
real world, the simulator Sim for a corrupted receiver S in
the ideal world works as follows: run the algorithm
SetupDec to generate ðcrs; tdDÞ : and follow the simulation
steps specified in [5]. Note that we simply need one modifi-
cation in the reply of the adversary. After Sim sends pk0 to
the corrupted S, the external adversary (or the corrupted S)
will reply ðct0; ct1Þ : to Sim. Since the simulator Sim has the
trapdoors on both branches, then both messages can be
recovered correctly by tdD.

Along with all the aforementioned dual-mode properties,
therefore, we can obtain a two-round UC-secure string OT
from LWE in the CRS model, as shown in Theorem 1.

4. Conclusions

Targeting to design a UC-secure OT for transmitting multi-
bit strings, we follow up the work of [5, 6] and propose an
improved LWE-based dual-mode encryption cryptosystem.
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Our scheme not only satisfies the well-defined dual-mode
encryption notion but also avoids some costly vector sam-
pling in simple repetitions of sing-bit OT execution for string
OT applications. By a comprehensive analysis on both secu-
rity and efficiency, we show that our scheme performs better
than the other two most related works (i.e., [5, 6]).

In addition, a natural problem comes to mind is that
whether an OT construction along with the properties, as
shown in Theorem 1, is compatible with a polynomial
LWE modulus. We believe it is nontrivial due to the use of
the noise flooding technique. Another interesting question is
to extend this work into their ring-setting version (even over
module-lattice) for efficiency in practice. It seems easy to
extend R with one-bit hash value output in the ring-setting.
However, some building blocks (e.g., the key mechanism
scheme and lattice trapdoor techniques) should also be
adapted into the ring-setting properly.
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