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At Eurocrypt 2020, Coron et al. proposed a masking technique allowing the use of random numbers from pseudo-random
generators (PRGs) to largely reduce the use of expansive true-random generators (TRNGs). For security against d probes, they
describe a construction using 2d PRGs, each of which is fed with at most 2d random variables in a finite field, resulting in a
randomness requirement of Õðd2Þ. In this paper, we improve the technique on multiple frontiers. On the theoretical level, we push
the limits of the randomness requirement by providing an improved masking multiplication using only d PRGs, each of which is
fed with d random variables, saving more than half random bits. On the practical level, considering that the masking of arithmetic
addition usually requires more randomness (than multiplication), we apply the technique to the algorithm proposed at FSE 2015
that is a very efficient scheme performing arithmetic addition modulo 2w. It significantly reduces the randomness cost of masked
arithmetic addition, and further advocates the advantage of masking with PRGs. Furthermore, we apply our masking scheme to the
SPECK, XTEA, and SPARKLE, and provide the first (to the best of our knowledge) higher order masked implementations for the ciphers
using ARX structure.

1. Introduction

Side-channel attack (SCA) [1, 2] is a kind of attack exploiting
physical leakage (eg:; timing information, power consump-
tion, or electromagnetic leaks) of the cryptographic imple-
mentations. Masking is a popular countermeasure against
SCA, whose concept is to randomly divide every variable
(say, x) into dþ 1 shares x1; x2…xdþ1 such that the joint dis-
tribution of any d shares is independent of x. This is known as
the d-probing (aka., d-private) security, and d is called the
security order. Notably, for the popular Boolean masking, we
have x¼ x1 ⊕ x2 ⊕⋯⊕ xdþ1 with ⊕ the addition over F2

(aka., bitwise XOR). Besides, it has been proved that d-probing
security can ensure that the information exploited from any
adversary decreases exponentially with d [3]. Mainstream
masking schemes use a gate-by-gate approach that transforms
each elemental operation (eg:; addition andmultiplication over

F2w) into its masked correspondence called gadget, surround-
ing which flourishing literature emerges in the last years.

One of the most groundbreaking works toward designing
masking schemes is the work of Barthe et al. [4]. Instead of
proving the security of full implementation at once, this work
introduces the composable security notions called noninter-
ference/strong noninterference (NI/SNI). The composable
security notions allow proving the security of smaller gadgets
in terms of composability with other masked circuits. Later,
Cassiers and Standaert [5] proposed a new composable security
notion called probing–isolating noninference (PINI), enabling a
more straightforward composition of gadgets. That is, gadgets
fulfilling this PINI notion can be freely composed with each
other without interfering with their SCA resistance.

Coron et al. [6] proposed a special technique called local-
ity of randomness subset, allowing the usage of multiple PRGs
to reduce the randomness cost by setting proper randomness
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subsets of each gadget. According to it, if all gadgets are SNI-
R/PINI-R defined in [6], we can securely use d-wise PRGs [7]
to generate the random bit for the gadgets and keep an equiv-
alent security in the probing model, even if the worst case
where the adversary can get the variables in a PRG with one
probe happens. Then, we can reuse the random seeds of d-
wise PRGs in different gadgets based on the locality of the
subsets, which significantly reduces the randomness cost. In
[6], the ISWAND [8] has been proved as SNI-R with 1-local
use of dðdþ 1Þ=2 subsets. Furthermore, two better SNI-R
AND algorithms are given in [6] with d 1-local use subsets
and d 2-local use subsets.

When a cryptographic algorithm involves arithmetic
addition operations (eg:; the add-rotate-xor (ARX)-based
block ciphers such as XTEA [9] and SPECK [10], hash functions
SHA-1 and SHA-2, and NIST lightweight cryptography finalist
SPARKLE [11, 12]), transforming elemental operations becomes
intricate—because of the higher algebra degree of the arithmetic
addition operations. At CHES 2001, Goubin [13] described a
very elegant algorithm for converting between shares x1;…;
xdþ1 and shares A1;…;Adþ1 such that:

x1 ⊕…⊕ xdþ1 ¼ A1 þ…þ Adþ1; ð1Þ

with þ the arithmetic addition. Afterward, there has been a
series of literature focusing on designing better-converting
algorithms [13–19]. At FSE 2015, Coron et al. [20] described
an improved algorithm performing arithmetic addition
modulo 2w with complexity Oðd2 logwÞ that integrated con-
version of both directions. Although Coron’s algorithm is a very
efficient scheme, (there indeed exist some other approaches
only focusing on the conversion (of one direction) from Bool-
ean to arithmetic masking with somewhat better complexities
[18, 21, 22]. Despite their prospective applications in many
scenarios such as masked postquantum cryptography [23, 24],
it is intricate to applying them to arithmetic addition, which
requires the conversions of both directions) it is not provably
secure in any composed security notions and thus is risky to be
used for larger composed computation. Then there is a high-
order arithmetic addition algorithm proposed at [25], which is
based on [20] but only satisfies NI security.

1.1. Our Contributions. Following [6], our main contribution
is to propose a new security notion allowing multiple PRGs,
and a more efficient masked d-order AND algorithm with 1-
local use of 2d randomness subsets based on [5] which satisfies
the new notion. Besides, we consolidate the work on masked
arithmetic addition by improving the existing work of Coron
et al. [20]. Our contributions can be summarized as follows.

1.1.1. A New Security Notion Allowing the Use of Multiple PRGs.
We extend the composable security notion called PINI to allow
more efficient (than the work in [6]) the use of multiple PRGs.
This brings a new notion called PINI-extension (PINI-E). We
also describe the deduction from security in PINI-E to the
security in the probing model. We introduce the usage of
PRGs for PINI-E gadgets at Figure 1.

1.1.2. A New Algorithm for Bitwise Multiplication. We pro-
pose a new d-order AND algorithm with dðdþ 1Þ random
bits and PINI-E security, where we apply the PINI trick
proposed at [5]. Besides, we can keep its 1-local use for 2d
randomness subsets. We show the comparison of the works
proposed at [6] and ours in the locality and randomness
subsets in Table 1.

1.1.3. Application to Arithmetic Addition. Based on the meth-
odology from Coron et al. [20], we provide an algorithm for
higher order masked arithmetic addition, and describe appli-
cations of our countermeasure to the SPECK, XTEA, and SPARKLE.
We implement masked round functions on the ARM Cortex
M3 architecture at the assembly level and report the perfor-
mance results. Notably, to the best of our knowledge, they are
the first implementation results of higher order masking for
the ciphers using the ARX structure.

1.2. Organization. In the rest of this paper, we present nota-
tions and backgrounds in Section 2. And, we describe the
new AND algorithms and give the necessary proofs in Sec-
tion 3. Section 4 presents the arithmetic algorithm, including
its description, related proofs and randomness cost. The imple-
mentations of the arithmetic algorithm are in Section 5. Finally,
we conclude our work in Section 6.

2. Preliminaries

2.1. Notations. Let F2w be a field with characteristic two. Let
⊕ be the field addition over F2 (aka., bitwise XOR), and ⋅ be
bitwise AND operation. We denote a set of variables by

ðxiÞ1⩽i⩽n¼
deffx1…xng, and particularly, if n¼ dþ 1, we denote

the set of variables by x⋆¼deffx1…xdþ1g. In addition, we use

xjIj¼deffxijij 2 Ig to denote a set of variables whose indices are
contained in I and denote the size of indices set I by jIj.
Let þ be addition modulo 2w. For any a⋆ 2Fdþ1

2w , let

⊕ a⋆¼defa1 ⊕ a2 ⊕⋯⊕ adþ1. Let ½d�¼def ½1; d�∩Z. Let a⋆ ⊕
b⋆¼defai ⊕ bi for i2 ½dþ 1�.

In a matrix A, we define sAi j as the element at the i-th row

and j-th column. For n× n matrices A and B, let A×B¼defC

PRG

True randoms

G2G1 G3 ······

State-of-the-art work [12] Our work
Composable security PINI-R∗ PINI-E
Ture random cost
∗The state-of-the-art work is SNI-R security, and its implementation in [12] uses double-SNI
construction to ensure the PINI-R security. We choose to compare with the double-SNI version
for a similar composability.

6d2 2d2

FIGURE 1: The comparison of previous works and ours, and the usage
of multiple PRGs in PINI-E gadgets.
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where sCi j¼
def ðsAi j; sBi jÞ for i; j2 ½n�. Let Ski be a sequence fsi1; si2;

…; sikg in a n× n matrix for i; k2 ½n�. And, let

Sk
0
i =S

k
i ¼
deffsi; kþ1; si; kþ2;…; sik0 g for k<k0.

2.2. Private Circuits. In this part, we describe some definitions
regarding the private circuit proposed in [8]. A circuit is a
directed acyclic graph with gates as vertices and wires as edges,
respectively, where every wire carries a variable in F2w , and each
gate represents an elementary calculation over F2w .We recall the
definition of private circuit proposed at [26] below.

Definition 1 (private circuit [26]). A private circuit for f :
Fn
2w → Fm

2w is defined by a triple ðI;C;OÞ, where

(1) I :Fn
2w → ðFn

2wÞdþ1 is a randomized circuit called
input encoder. It maps each input to dþ 1 indepen-
dent shares.

(2) C is a randomized circuit with n× ðdþ 1Þ inputs and
m× ðdþ 1Þ outputs over F2w .

(3) O : ðFm
2wÞdþ1 → Fm

2w is a circuit called decoder. It
maps the outputs (dþ 1 shares) of C to the original
outputs of the private circuit.

Moreover, a private circuit is called a d-private (or d-
probing secure) circuit if it satisfies the requirements below:

(1) Correctness: for any input x2Fn
2w , OðCðIðxÞÞÞ¼

f ðxÞ;

(2) Privacy: for any x; x0 2Fn
2w and any setP of at most d

wires in C, the distributions of CPðIðxÞÞ and
CPðIðx0ÞÞ are identical, where CPðIðxÞÞ refers to the
values of variables in P with input x.

Although the definition of private circuit nicely provides
protection against the SCAs, proving a large circuit (such as
the AES) to be d-private is nontrivial since the possible tuples
of the d wires grow exponentially with the circuit size. To
cope with such an issue, Ishai et al. [8] proposed a gate-by-
gate approach to transform each gate separately into the
masked correspondence circuit called gadget and compose
the gadgets to achieve the private circuit. A gadget is a circuit
with shares as inputs and outputs.

The first d-probing secure bitwise AND gadget (that
implements the bitwise AND operation over F2w in the masked
domain) was proposed by Ishai et al. [8] at CRYPTO 2003
named ISWAND, which we give an example for d¼ 2 in the
following:

c1 ← a1 ⋅ b1 ⊕r12 ⊕r13
c2 ← a1 ⋅ b2 ⊕ a2 ⋅ b1 ⊕ r12ð Þð Þ ⊕a2 ⋅ b2 ⊕r23
c3 ← a1 ⋅ b3 ⊕ a3 ⋅ b1 ⊕ r13ð Þð Þ ⊕ a2 ⋅ b3 ⊕ a3 ⋅ b2 ⊕ r23ð Þð Þ ⊕a3 ⋅ b3

: ð2Þ

Meanwhile, we give a randomnessmatrix in Figure 2 to
express the construction of its randomness, which will
appear in Section 3 again.

We can verify that the sum ðoverF2wÞ of all cis is the
bitwise AND of a and b. Note that the order of the calcula-
tion is strict. For instance, at line 8, rij ⊕ aj ⋅ bi is calculated
before XORing ai ⋅ bj.

2.3. Composable Security Notions and Extensions. Note that
one has to insert many refreshing gadgets to compose
d-private gadgets securely, significantly increasing the ran-
domness cost. Barthe et al. [4] proposed the concept of

composable security notions NI/SNI that enable the com-
position without refreshing gadgets. Below, we recall the
definitions of NI/SNI proposed at [4].

Definition 2 (NI/SNI [4]). Let G be a gadget taking a⋆; b⋆ as
inputs and returning c⋆. The gadget G is NI (resp., SNI)
secure if and only if for any set of t intermediate variables
and any subset O of output indices such that t0 ¼ tþ jOj⩽d,
there exists sets I and J of input indices with jIj⩽t0 and jJj⩽t0
(resp., jIj⩽t and jJj⩽t), such that the t intermediate variables
and the output variables cjO can be perfectly simulated from
aj I and bj J .

TABLE 1: The comparison among PINI, PINI-R, and PINI-E.

Security Composability Probe for randomness Security requirement∗

PINI d-Private Trivial Wire ⋆

PINI-R d-Private Trivial Subset ⋆ ⋆ ⋆

PINI-E d-Private Limited Subset ⋆ ⋆

∗The more stars there are, the stronger the requirement is. More precisely, a PINI-E gadget is PINI but not the other way. Furthermore, a PINI-R gadget is
PINI-E where the subset number of PINI-E is n, which is not the other way as well. The difference of the diffculty for simulation between PINI-R and PINI-E
comes from the requirement whether cj jR should be simulated or not.

r120

0r12 r23

r13

r23 0r13

FIGURE 2: The randomness matrix of a second-order ISWAND gad-
get. It reflects the bold part of the above example.
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Besides, there is an updated definition called SNI-R pro-
posed at [6], which is used in the situation where a random-
ness subset in gadget G can be got with a single probe.

Definition 3 (SNI-R [6]). Let G be a gadget with input shares
a⋆ and b⋆, output shares c⋆. Let ðρiÞ1⩽i⩽dþ1 be subsets of the
randoms used by G. The gadget is SNI-R if and only if for
any set of t intermediate variables, any subset O of output
indices and any subset R ⊂ ½n�, such that tþ jOj þ jRj⩽d.
Then the t intermediate variables, the output variables
cjO∪R, and all ρi for i2R can be perfectly simulated from the
knowledge of ajI∪R and bjJ∪R with jIj⩽t and jJj⩽t.

However, the security of the trivial composition of sev-
eral private circuits is not evident. More precisely, even the
SNI circuits can not keep its security with trivial composi-
tion. To mitigate this issue, Cassiers and Standaert [5] pro-
posed a new composable security notion called PINI, by
which we can concentrate on the proof of every single gadget
and the global security can be directly deduced. We recall it
in the following.

Definition 4. (PINI [5], adapted (the original PINI security is
defined for arbitrary number of inputs, we provide a fan-in 2
version in our paper)). Let G be a gadget with input shares
a⋆; b⋆ and output shares c⋆. The gadget G is PINI if for any
t1 2N, any set of t1 intermediate variables and any subset O
of output indices, there exists a subset I ⊂ ½1; dþ 1� of input
indices with jIj⩽t1 such that the t1 intermediate variables and
the output shares cjO can be perfectly simulated from the
input shares ajI∪O and bjI∪O.

Meanwhile, Cassiers and Standaert [5] provided a gadget
construction called double-SNI which can turn SNI gadgets
into PINI one.

Definition 5 (double-SNI [5]). Let G be an SNI gadget taking
as input a⋆; b⋆ and output c⋆. Let R be an SNI gadget taking
as input x⋆ and output y⋆. The composite gadget G’ taking as
input x⋆; b⋆, and output c⋆ with G0ðx⋆; b⋆Þ¼GðRðx⋆Þ; b⋆Þ
is PINI.

To reduce the randomness cost of a large circuit, there is
an adapted definition called PINI-R proposed at [6] which
also assumes the adversary can get a randomness subset with
a single probe.

Definition 6 (PINI-R [6]). LetG be a gadget with input shares
a⋆; b⋆ and output shares c⋆. Let ðρiÞ1⩽i⩽dþ1 be subsets of the
randoms used by G. The gadget G is PINI-R if for any t1 2N,
any set of t1 intermediate variables, any subset O of output
indices and any subset R ⊂ ½n�, there exists a subset I ⊂ ½dþ 1�
of input indices with jIj⩽t1 such that the t1 intermediate
variables, the output shares cjO∪R, and the randoms ρi for
i2R can be perfectly simulated from the input shares
ajI∪O∪R and bjI∪O∪R.

2.4. Masking with Randomness from PRGs. In this part, we
recall some definitions for gadgets using randomness gener-
ated from PRGs and the corresponding PRGs.

2.4.1. Locality of Randomness and Its Application. First of all,
we introduce the locality of randomness subset proposed at
[6] used to describe the reuse extent of the randoms. It deci-
des the PRGs used for the subset.

Definition 7 (ℓ-local randomness subset [6], adapted). Let G
be a gadget and ρ be a randomness subset used by G. We say
that ρ is ℓ-local use if any intermediate variable of G is
related with at most ℓ elements of ρ.

With the definition of locality, we propose a weaker secu-
rity definition than PINI-R which can also keep the compo-
sability and d-private with the same extended probing model
as PINI-R. We define it as PINI-E (shorted for PINI-Exten-
sion) and provide the definition in the following.

Definition 8 (PINIÀ E). Let G be a gadget with input shares
a⋆; b⋆ and output shares c⋆. Let ðρiÞ1⩽i⩽m be subsets of the
randoms used by G with m2N, and each ρi is ℓi local use.
The gadget G is PINI-E if for any set of t intermediate vari-
ables, any subset O of output indices and any set of tr ran-
domness subsets ρi with tþ tr þ jOj⩽d, there exist subsets I;
R ⊂ ½dþ 1� with jIj⩽t and jRj⩽tr such that the t intermediate
variables, the tr subsets ρi and the output shares cO can be
perfectly simulated from the input shares ajI∪O∪R and bjI∪O∪R.

Obviously, PINI-E is an extension of PINI which allows
to probe a subset of randomness with a single probe. And
compared with PINI-R, the PINI-E security does not need to
simulate cjR, therefore PINI-E algorithm is easier to con-
struct. But intuitively, its number of randomness subsets is
not bounded as PINI-R. We introduce the d-private security
and composability of PINI-E in the following and provide
the proofs at Appendix A as supproting information.

Theorem 1 (security of PINIÀ E). Let G be a gadget with
input shares a⋆; b⋆ and output shares c⋆. Let ðρiÞi2½m� be a
partition of the randomness used by G. If G is PINI-E with
randoms ðρiÞi2½m�, then G is d-private secure in an extended
model of security where the adversary can get each ρi with a
single probe.

Theorem 2 (composability of PINIÀ E). Let ðGiÞ1⩽i⩽k
be PINI-E implementations of f with randomness subsets
ðρjÞ1⩽j⩽m. The composite gadget made of Gi is PINI-E with
randomness subsets ðρjÞ1⩽j⩽m.

We stress that the Gi in Theorem 2 are the implementa-
tions of the same f . Meanwhile, we provide a proposition
about the composition of PINI-E gadgets implementing dif-
ferent algorithms ð fiÞ1⩽i⩽k which we also prove at Appendix
A as supproting information.
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Proposition 1. Let ðGiÞ1⩽i⩽k be PINI-E implementations of
ð fiÞi2½k� with randomness ðρikÞk2½ni�. The composite gadget
made of Gi is PINI-E with the same randomness subsets.

Proposition 1 shows why PINI-E is weaker than PINI-R
since the composition of PINI-R gadgets keeps the number
of randomness subsets regardless of the circuit size. We men-
tion that the composability of PINI-E is theoretically limited
for the situation where there is more than one kind of gadget
used to replace the same gates in the unprotected circuit, and
all these gadgets use the same PRG (e.g., two kinds of multi-
plication gadgets are used in one circuit, and both of them
use the same PRG), which barely happens in reality. In Table 1,
we compare the security of PINI, PINI-R, and PINI-E. The
remaining part is the construction of the masked implementa-
tion with locality property. We recall the mask refreshing
named locality refreshing (LR) from the study of Ishai et al.
[7] to keep a small locality for each gadget in Algorithm 1.

Lemma 1. The LR gadget is PINI-E with ρi¼deffsi : i2 ½d�g.

The proof of Lemma 1 is equivalent to prove PINI which
has been proposed at [6], because the division of ρi in Lemma 1
is exactly the single random si.

Theorem 3 (locality composition with randomness subset
[6], adapted). Let ðGiÞ1⩽i⩽k be a set of 2-input gadgets with
randomness subsets ðρijÞ1⩽j⩽m, each of which makes an ℓj-

local use. Consider the gadgets G0
i where the inputs and output

of each G0
i is locality refreshed with randoms sða; iÞt , sðb; iÞt and

sðc; iÞt for 1 ⩽ t ⩽ d. Any composite gadget made ofG0
i makes an

ℓj-local use of randomness ⋃i2½k�ρ
i
j, and for all 1 ⩽ t ⩽ d, it

makes a 1-local use of the randoms in fsða; iÞt ; sðb; iÞt ; sðc; iÞt : i2
½k�g.

2.4.2. Application of Multiple PRGs. We recall the definition
of r-wise independent PRG, which can be much more effi-
cient than traditional PRGs.

Definition 9. (r-wise independent PRG [7] (we adapt the
elements in each subset to those in F2w , while the original
definition was in F2 in [7])). A functionG: Fn

2w → Fm
2w is an r-

wise independent PRG if any subset of its r outputs is inde-
pendently and uniformly distributed when the input is uni-
formly distributed.

Here, we describe two r-wise PRGs called R1 and R2
proposed at [6]. The parameter r of R1 can be set as any
positive integer while that of R2 is fixed as three. However,
the running efficiency ofR2 is much higher than that ofR1.

We define R1 :Fr
2w → F2w

2w as follows:

R1 að Þ ¼ ha 0ð Þ;…; ha 2w − 1ð Þð Þ ; ð3Þ

where a¼ða0;…; ar−1Þ 2Fr
2w and:

ha xð Þ ¼ ∑
r−1

i¼0
aixi : ð4Þ

R1 is an r-wise PRG because there is a bijection between
the r coefficients of haðxÞ and its evaluation at r distinct
points xi [6]. For instance, R1 can output at most w ⋅ 2w
bits of randomness when given wr bit seeds over F2w .

We define another PRG R2 :F2n
2 → Fn2

2 as follows:

R2 x1;…; xn; y1;…; ynð Þ ¼ xi ⊕ yið Þ1⩽i;j⩽n : ð5Þ

This PRG is based on the expander graph used in [7]. It
can generate n2 randoms by 2n bit seeds. It is much more
lightweight (with only XOR operations) thanR1. In [6], it is
proved as a 3-wise PRG, recalled Lemma 2.

Lemma 2 (see [6]). The randomized function R2 is a 3-wise
independent PRG.

Then, we introduce the security of masking with multiple
PRGs in Theorem 4 proposed at [6], where we can keep ℓ-
local gadgets secure when multiple PRGs are used to generate
the random elements. This reduces the randomness cost
efficiently.

Theorem 4 (security with multiple PRGs [6], adapted). Sup-
pose C is a d-private implementation of f with encoder I and
decoder O, where the circuit Cðbω; ρ1;…ρkÞ uses for each
1 ⩽ i ⩽ k, n random elements ρi and makes an ℓ-local use
of ρi, bω are the inputs of C, and the adversary can obtain
ρi with a single probe. Let G :Fnr

2w → Fn
2w be a linear ℓd-wise

independent PRG. Then, the circuit C0 denoted by C0ðbω; ρ01;
…ρ0kÞ¼Cðbω;Gðρ01Þ;…Gðρ0kÞÞ is a d-private implementation
of f with encoder I and decoder O, which uses k ⋅ nr random
elements.

2.5. Coron’s Work on Masked Arithmetic Addition. Coron
et al. [20] introduce a new algorithm to convert from

Input: shares a⋆ 2Fdþ1
2w

Output: shares b⋆ 2Fdþ1
2w

It ensures ⊕ b⋆ ¼⊕ a⋆
1: bdþ1 ¼ adþ1

2: for i¼ 1 to d do

3: si ← f0; 1gw
4: bi ← si
5: bdþ1 ← bdþ1 ⊕ ðai ⊕ siÞ
6: end for

ALGORITHM 1: LR: locality refreshing [7].
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arithmetic masking to Boolean masking, which is introduced
in Theorem 5. This algorithm uses Kogge-Stone [27] carry
look-ahead algorithm proposed at to replace the classical
ripple-carry adder, which reduces the complexity from
OðwÞ (in a previous work [15]) to OðlogwÞ.

Theorem 5 (see [20]). Let x; y2F2w , ℓ¼dlog2ðw− 1Þe.
Define the sequence of w-bit variables PðiÞ and QðiÞ, with
Pð0Þ ¼ x⊕ y and Qð0Þ ¼ x ⋅ y, and:

P kð Þ ¼ P k−1ð Þ ⋅ P k−1ð Þ ≪ 2k−1
À Á

Q kð Þ ¼ P k−1ð Þ ⋅ Q k−1ð Þ ≪ 2k−1
À ÁÀ Á

⊕ Q k−1ð Þ

(
; ð6Þ

for 1 ⩽ k ⩽ ℓ. Then xþ y¼ x⊕ y⊕ ð2QðℓÞÞ.

In Section 4, we propose a new algorithm that expands
the security order from 1 to any d based on Theorem 5.

Besides, we have proved its PINI-E security and locality in
Appendix B as supproting information. We give a new AND
algorithm in Section 3 with 1-local use of its OðdÞ random-
ness subsets with odd d and use it in the new arithmetic
algorithm.

3. The New Masked AND Gadget

In this section, we introduce a new masked AND algorithm
with lower locality, as well as its PINI-E security and corre-
sponding proof.

3.1. The Description of the New Algorithm. We describe our
new algorithm with odd d in Algorithm 2, which is provable
secure in PINI-E with 1-local use of 2d randomness subsets.
We will prove its PINI-E security and locality in the next
section. Algorithm 3 provides a PINI trick proposed at [5]
keeping LatinAND PINI (and PINI-E). Note that the inputs
and ouput of PIRT (short for PINI-PART) are explained at
Figure 3.

Intuitionally, PINI security does not allow the leakage of
more than one input indices with one probe, and the PINI
trick (i.e., Algorithm 3) avoids these leakages in the multipli-
cation gadgets by changing the operation order of multiply-
ing secret (i.e., ai and bj in Algorithm 3) and adding randoms
(i.e., ri0j0 in Algorithm 3). In comparison, ISWAND calculates
ai ⋅ bj þ rij directly and thus it is not PINI.

The intermediate step intuitionally defines a partial order
among the intermediate variables. We use this definition in

G

PIRT··· ···

ai,bj,rí j́

c ć
··· ···

FIGURE 3: The example of how PIRT works in a gadget G. The
indexes i0; j0 are used to mention they are independent with i; j.

Input: shares a⋆ 2Fdþ1
2w and b⋆ 2Fdþ1

2w

Output: shares c⋆ 2Fdþ1
2w

It ensures ⊕ c⋆ ¼⊕ a⋆ ⋅ ⊕ b⋆
1: cdþ1 ← adþ1 ⋅ bdþ1

2: for i¼ 1 to d do

3: ci ← ai ⋅ bi
4: for j¼ 1 to dþ 1 do

5: if j<dþ 2− i then

6: ti; dþ2−j ← f0; 1gw
7: ci ← ci ⊕ ti; dþ2−j

8: end if

9: if i< j then

10: rij ← f0; 1gw
11: ci ← PIRTðai; bj; rij; ciÞ
12: end if

13: end for

14: end for

15: for i¼ 2 to d do

16: for j¼ 1 to d− 1 do

17: if j>dþ 2− i then

18: ci ← ci ⊕ tj; dþ1−i

19: end if

20: if i> j then

21: ci ← PIRTðaiþ1; bj; rj; iþ1; ciÞ
22: end if

23: end for

24: end for

25: for j¼ 1 to d do

26: cdþ1 ← cdþ1 ⊕ tj; dþ1−j

27: cdþ1 ← PIRTðajþ1; bj; rj; jþ1; cdþ1Þ
28: end for

ALGORITHM 2: LatinAND: the new PINI-E AND algorithm.

Input: input shares ai; bj, random ri0 j0 and an intermediate
variable c

Output: the intermediate variable c0

It ensures c0 ¼ c⊕ aibj ⊕ r

1: sij ← bj ⊕ ri0j0

2: p0i j ← ðai ⊕ 1wÞ⋅ ri0j0
3: p1i j ← ai ⋅ sij
4: c0 ← c⊕ p0i j ⊕ p1i j

ALGORITHM 3: PIRT: part of a PINI algorithm [5], adapted.
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the PINI-E proof of LatinAND which is given at Appendix B
as supproting information.

Definition 10. (Intermediate step). Let a and c be the inter-
mediate variables of gadget G. We define a as the intermedi-
ate step of c if some b exists for a⊕ b¼ c or a ⋅ b¼ c.

Theorem 6. LatinAND is PINI-E with randomness subsets ρLk
and ρRk for k2 ½d�.

3.2. The Randomness Reuse of LatinAND. We mention that
LatinAND is 1-local use of 2d randomness subsets in Theo-
rem 7. And we can build a gadget G with LatinAND which
always keeps its 1-local use of randomness subsets by Theo-
rem 3. And, if G satisfies the d-probing security in Theorem
4, we can use 2d d-wise PRGs to generate all rij and tij
in LatinAND.

Theorem 7. LatinAND is 1-local use of ρLk and ρRk for k2 ½d�.

The proof of Theorem 7 is obvious, because all randoms
in each ρLk or ρRk appear only once in each ci. This is exactly
the definition of the locality of randomness subset.

3.3. Discussion for the Randomness of LatinAND. We have
proven in the prevoius subsections that PINI-E gadget is d-
probing secure with PRG-generated randoms and almost
trivial composability, and the PRGs are required to be ℓd-
wise if the randoms are ℓ-local use. Also, we provide the
construction of r-wise PRGs with arbitrary r. Moreover, we
have proven that LatinAND is PINI-E. Thus, the random-
ness of LatinAND is theoretically indistinguishable from a d-
probing secure AND gadget with TRNG-generated randoms
if the PRGs of LatinAND are d-wise.

To validate the impact of the randomness on the practi-
cal security, we run LatinAND and another multiplication
gadget proposed in [28] on a ChipWhisperer STM32F4 UFO
target board and collect its power traces with Picoscope
5244D at sampling rate of 125MS/s. Besides, we perform a
Welch’s T-test with 10, 000 executions, whose randoms are

generated by PRGs (LatinAND) and TRNGs (AND gadget
proposed in [28]), respectively, to compare the randomness
of the PRG implementation and the TRNG ones. Figure 4
depicts the T-test results for LatinAND, and we provide in
Figure 5, the result for the other gadget with the randomness
from TRNGs.

4. Application to Arithmetic Addition

In this section, we implement LatinAND gadget in an arith-
metic addition algorithm proposed at [25], which is costly in
randomness for previous multiple gadgets.

Our description is structured by means of top-down.
All gadgets presented in this subsection are PINI-E, and
we defer the security proofs to Appendix B as supproting
information. First of all, we describe the algorithm
SecADD to perform addition operations directly on the
masked shares, which is similar to the algorithm proposed
in [25] but we add some construction in our algorithm so
that it can use multiple PRGs. More precisely, we receive
the shares a⋆ and b⋆ satisfying a¼⊕ a⋆ and b¼⊕ b⋆ as
inputs, and the goal is to compute c⋆ satisfying ⊕ c⋆ ¼ aþ
b. Note that our new algorithm is based on the concept of
[20] and adapted for higher security orders. We describe it
in Algorithm 4.

In the rest of this subsection, we will explain the con-
struction of the ingredients GoQi and GoPi. Both of them are
additionally with locality property for the use of r-wise PRGs,
so that the randomness cost can be reduced.

First, we propose the gadgets to calculate PðiÞ and QðiÞ in
Theorem 5. We will introduce GoPk gadget first, which is
used to generate Pk proposed at Equation (6) because the
inputs of GoPk are the outputs of GoPk−1, furthermore, they
do not need any intermediate variables from the generation

of Qk for 0 ⩽ k ⩽ ℓ− 1 with ℓ¼defdlog2ðw− 1Þe. Algorithm 5
is the description of GoPk.

Then it comes to QðkÞ, which is shown in Algorithm 6.
We use GoQk gadget to get all QðkÞ proposed at Equation (6).
But the inputs of GoQk are the outputs of GoPk−1 and
GoQk−1, so we must get Pðk−1Þ and Qðk−1Þ first to calculate
QðkÞ, and this is why we introduce it as the latter one.
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FIGURE 5: AND gadget proposed in [28], TRNGs.
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FIGURE 4: LatinAND, PRGs.
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Meanwhile, we provide the evaluation of the randomness
cost for Algorithm 4 in Appendix C.

5. Masked Implementations of SPARKLE, XTEA,
and SPECK

In this section, to evaluate the performance of SecADD, we
apply our scheme to SPARKLE, XTEA, and SPECK ciphers. SPARKLE

[11, 12] is a family of cryptographic permutations shortlisted
for the finalists NIST lightweight cryptography standardiza-
tion. We choose SPARKLE256 for the evaluation. XTEA block
cipher was introduced in [9], which is designed to correct
weaknesses in TEA. And SPECK is a family of lightweight
block ciphers publicly released by the National Security
Agency (NSA) [10], which is optimized for performance in
software implementations.

SPARKLE, XTEA, and SPECK are all based on the ARX design
with arithmetic addition, rotation, and XOR operations,
where the masked arithmetic addition perfectly fits SecADD.
We can use SecXOR for the masking of bitwise XOR opera-
tions, which is PINI-E. For masking of shifting operations, we
directly use the trivial implementation where each share is
operated separately. For example, the masked rotate left shift-
ing by n can be implemented by ci ¼ ai ⋘ n; i2 ½1; dþ 1�
with ai the input share and ci the output one, which is secure
in PINI-E. We use independent random bits/seeds for differ-
ent SecADD. SecADD is PINI-E according to the composa-
bility of PINI-E. By Proposition 1, the masked SPARKLE, XTEA,
and SPECK are all PINI-E.

We implement masked SPARKLE XTEA and SPECK based on
ARM Cortex M3 architecture at assembly level, for illustra-
tive purposes and timing comparisons. We show the costs in

Input: shares a⋆ 2Fdþ1
2w and b⋆ 2Fdþ1

2w

Output: shares c⋆ 2Fdþ1
2w

It ensures ⊕ c⋆ ¼⊕ a⋆ þ⊕ b⋆
1: Q⋆ ← LRðLatinANDðLRða⋆Þ; LRðb⋆ÞÞÞ
2: P⋆ ← LRðLRða⋆Þ⊕ LRðb⋆ÞÞ
3: ℓ¼dlog2ðw− 1Þe
4: for k¼ 1 to ℓ− 1 do

5: Q⋆ ← GoQkðP⋆; Q⋆Þ ▹ QðkÞ ← ðPðk−1Þ ⋅ ðQðk−1Þ ≪ 2k−1ÞÞ⊕Qðk−1Þ

6: P⋆ ← GoPkðP⋆Þ ▹ PðkÞ ← Pðk−1Þ ⋅ ðPðk−1Þ ≪ 2k−1Þ
7: end for

8: Q⋆ ← GoQℓðP⋆; Q⋆Þ
9: for i¼ 1 to dþ 1 do

10: Qi ← Qi ≪ 1

11: end for

12: x⋆ ← LRðLRða⋆Þ⊕ LRðb⋆ÞÞ
13: c⋆ ← LRðLRðQ⋆Þ⊕ LRðx⋆ÞÞ

ALGORITHM 4: SecADD: masked addition.

Input: shares a⋆ 2Fdþ1
2w and b⋆ 2Fdþ1

2w

Output: shares c⋆ 2Fdþ1
2w

1: for i¼ 1 to dþ 1 do

2: xi ← bi ≪ 2k−1

3: end for

4: y⋆ ← LRðLatinANDðLRðx⋆Þ; LRða⋆ÞÞÞ
5: c⋆ ← LRðLRðy⋆Þ⊕ LRðb⋆ÞÞ

ALGORITHM 6: GoQk: generation ofQ
(k)= (P(k− 1) ⋅ (Q(k− 1)≪ 2k− 1))

⊕Q(k− 1).

TABLE 2: Running kilocycles/random bits of masked SPARKLE with
different security orders.

Security order SecADD with R1 SecADD with R2

d¼ 1 6,67/2,560 791/22,976
d¼ 2 2,654/11,264 933/44,544
d¼ 3 6,626/23,040 1,115/69,120
d¼ 5 21,814/64,000 —

Input: shares a⋆ 2Fdþ1
2w

Output: shares c⋆ 2Fdþ1
2w

1: for i¼ 1 to dþ 1 do

2: bi ← ai ≪ 2k−1

3: end for

4: c⋆ ← LRðLatinANDðLRða⋆Þ; LRðb⋆ÞÞÞ

ALGORITHM 5: GoPk: generation of P(k)= P(k− 1) ⋅ (P(k− 1)≪ 2k− 1).
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Tables 2–4, with the number of required true random num-
ber bits. We present the implementations using SecADD
with both R1 and R2 introduced in Section 2.

6. Conclusion

We proposed a new security definition named PINI-E to
release the requirements in PINI-R proposed in [6], where
both of them support the randoms generated by multiple
PRGs. Furthermore, we provide a high-order PINI-E multi-
plication gadget (i.e., Algorithm 2) with a two-thirds reduc-
tion of true random cost compared with the state-of-the-art
work proposed in [6]. Then we apply the new multiplication
gadget into the Boolean-to-Boolean arithmetic addition algo-
rithm (i.e., Algorithm 4), and use it in the implementations
of SPARKLE, XTEA, and SPECK based on ARM Cortex M3, which
are the first implementations of higher order masking for the
ciphers using the ARX structure.

Appendix

A. Composability and Security of PINI-E

A.1. Proof of Composability
Proof. Consider the composite gadget like Figure 6, we define
Pi as the probed intermediate variables of Gi, where jPij ¼ ti.
And we denote by Ri the indice sets of probed randomness

subsets ρj for each Gi. Furthermore, the indice set of probed
output are defined as Oi for Giþ1. For G1 which is the last
gadget of the composite gadget, its probed output set is O.
Meanwhile, we have:

∑ Pij j þ ∑ Rij j þ ∑ Oij j þ Oj j ⩽ d : ðA:1Þ

First we consider G1. According to PINI-E, the indice set
of its inputs I1 ∪ O ∪ R1 can simulate all probes in G1, where
jI1j⩽jP1j. Then we consider G2. Since the outputs of G2 are
the inputs of G1, the indice set for the simulation of G1 is
equivalent to the probed output of G2. Therefore the probed
output indice set of G2 becomes O1 ∪ I1 ∪ O ∪ R1. Mean-
while, according to Theorem 4, the indice set of randoms for
G2 should be R1 ∪ R2. So, the indice set of input for G2 to
simulate all the probes is as follows:

I2 ∪ O0 ∪ R0 ¼ I2 ∪ O1 ∪ I1 ∪ O ∪ R1ð Þ ∪ R1 ∪ R2ð Þ
¼ I1 ∪ I2ð Þ ∪ O ∪ O1ð Þ ∪ R1 ∪ R2ð Þ :

ðA:2Þ

With this proof method, the indice set of input for the
first Gi of the composite gadget is ⋃Ii ∪⋃Oi ∪ O ∪⋃Ri.
And we have:

⋃
i2 k½ �

Ii ∪ ⋃
i2 k−1½ �

Oi ∪ O ∪ ⋃
i2 k½ �

Ri

�����
�����

⩽ ⋃
i2 k½ �

Ii

�����
�����þ ⋃

i2 k−1½ �
Oi

�����
�����þ Oj j þ ⋃

i2 k½ �
Ri

�����
�����

⩽ ∑
i2 k½ �

Pij j þ ∑
i2 k½ �

Rij j þ ∑
i2 k−1½ �

Oij j þ Oj j

⩽ d

; ðA:3Þ

which means the composite gadget is also PINI-E with
ðρjÞj2½m�. □

A.2. Proof of Security
Proof. WLOG, let tþ jRj þ jOj⩽d. The t intermediate vari-
ables and jRj probed randomness subsets can be simulated
by input shares with indices I ∪ R, and the probed outputs
can be simulated by the inputs with indices O. Consider jIj
⩽t, we have

I ∪ O ∪ Rj j ⩽ Ij j þ Oj j þ Rj j ⩽ t þ Rj j þ Oj j ⩽ d :

ðA:4Þ

Therefore the adversary learns nothing from the inputs. □

A.3. Proof of Proposition 1
Proof. We suppose the input indice set for Gi is Ii and the
probed randomness subset is Ri. Consider the last gadget G1
where its ouput O is the output of the whole composition, we

TABLE 3: Running kilocycles/random bits of masked XTEA with dif-
ferent security orders.

Security order SecADD with R1 SecADD with R2

d¼ 1 1,015/1,120 1,203/10,052
d¼ 2 4,041/4,928 1,418/19,488
d¼ 3 10,092/10,080 1,694/30,240
d¼ 5 33,232/28,000 —

TABLE 4: Running kilocycles/random bits of masked SPECK with dif-
ferent security orders.

Security order SecADD with R1 SecADD with R2

d¼ 1 8/160 10/1,436
d¼ 2 32/704 11/2,784
d¼ 3 79/1,440 13/4,320
d¼ 5 260/4,000 —

P3 P2 P1

···
R3 R2 R1

G3 G2 G1

O2 O1 O

FIGURE 6: The composition of PINI-E gadgets. Let Pi be the set of
probed intermediate variables, and let Ri be the randomness subsets.
Oi are the probed outputs of Giþ1. Specially, O is the probed output
set of the composite gadget.
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use I1 ∪ R1 ∪ O to simulate all its probed variables. For G2
where its output O1 is one of the inputs of G1, its indice set
for simulation should be:

I2 ∪ R2 ∪ O1 ∪ I1 ∪ R1 ∪ Oð Þ ¼ I2 ∪ R2 ∪ O1 ∪ I1 ∪ R1ð Þ ∪ O :

ðA:5Þ

If G1 and G2 is the implementation of the same fi, they are
PINI-E according to Theorem 2. And if they are different
implementations, we have

I2 ∪ R2 ∪ O1 ∪ I1 ∪ R1 ∪ Oð Þj j
⩽ I2 ∪ R2 ∪ O1j j þ I1 ∪ R1 ∪ Oj j
⩽ t2 þ R2j jð Þ þ t1 þ R1j jð Þ
⩽ d

; ðA:6Þ

where t2 (resp., t1) is the number of probes in G2 (resp., t1)
without its probed output. Therefore, the simulation for the
whole composition needs no more than ∑i2½k�ðti þ jRijÞ⩽d
input indices, and the indice set is Ik ∪ ð⋃i2½k−1�ðRi ∪ Ii ∪ OiÞ
∪ RkÞ∪O which satisfies PINI-E. As a result, the composition
is PINI-E. □

A.4. Application of PINI-E. Consider the properties of
PINI-E, if ðGiÞi2½n� are proved as PINI-E, their composition
will satisfy Theorem 4. Moreover, all ℓ-local randomness
subsets ρj in Theorem 2 can be generated by a ℓd-wise PRG.

Moreover, we provide the whole procedure of how to use
multiple PRGs in PINI-E gadgets and keep them d-private in
the following.

How to use multiple PRGs in PINI-E gadgets:

(1) We assume gadget G is the composition of gadgets
ðGijÞi2½n� where G is the implementation of f and Gij

are those of fi, and each Gij is PINI-E with random-
ness subsets ðρikÞk2½qi�, each of which is ℓi

k local use.

The subscript k is used to distinguish the different
randomness subsets in Gij. We mention that the sub-
script j is used to count how many times the fi is
implemented in f .

(2) According to Theorem 3, we add three LR gadgets to
the two inputs and one output of each Gij, each of

which owns the randomness subsets ρðkÞs; i¼
deffsðk; pÞi ;

p2 ½n ⋅ mi�g; k2 ½3� and i2 ½d� with 1-local use. So
that each randomness subset ρik keeps their ℓ

i
k-local

use. We define the composition of Gij and LRs as G0.
(3) According to Theorem 2, the composition of Gij with

the same i is PINI-E with the randomness subsets
ðρikÞk2½qi�. We define these compositions as Gi for

each i. And the LRs are also PINI-E with randomness

subsets ρðkÞs; i .

(4) According to Proposition 1, gadget G0 is PINI-E with
randomness subsets ðρikÞk2½qi� which keeps ℓi

k-local

use, and LR gadgets with 1-local use randomness

subsets ρðiÞs; i. Therefore according to Theorem 4, G0

is still d-private with 3dþ∑i2½n�qi PRGs among
which the ℓi

kd-wise one is used to generate randoms
for the ℓi

k-local subset, and the other 3d PRGs are
used to generate randoms for the LR gadgets.

According to the illustration in Sections 2.3 and 2.4, we
summarize a proof sketch on the probing security of gadgets’
composition in Figure 7.

B. Proofs for LatinAND

B.1. The Security of LatinAND. First we introduce the con-
struction of the matrix Ld . We give a ðdþ 1Þ× d matrix as
Figure 8. Its first row is f1; 2;…; dg, and in other rows, the
order of sequence is the cyclic shift of its last row except the
last row whose first dþ1

2 elements are 2j− 1 for the j-th ele-
ment and the rest elements are 2j− d− 1. Then we add a
sequence f0gdþ1 as the first column of Ld . We give the con-
struction of L5 as an instance in Figure 8.

Then letMr
d be the randomness matrix of r in LatinAND

with order d, and we define the mapping ϕ : Ld →Md × Ld
where ϕðsðLÞi j Þ¼

def ðsðMÞ
i j ; sðLÞi j Þ with sðLÞi j 2 Ld and s

ðMÞ
i j 2Mr

d . For a
d-order LatinAND, we define:

ρL
s Lð Þ
ij

¼def s Mð Þ
i j :ϕ s Lð Þ

i j

� �
¼ s Mð Þ

i j ; s Lð Þ
i j

� �n o
; ðB:1Þ

with sðLÞi j 2 ½d�, which are the randomness subsets of randoms
r. The randomness matrix of randoms t, called Mt

d , is the
mirror symmetry of Mr

d . And the construction of the

PINI-E for
global gadgets

Locality for
global gadgets

PINI-E for
single gadget

Locality for
single gadget

d-Probing
securityRandomness from PRGs

Proposition 1

Theorem 2

Theorem 3

Theorem 4

FIGURE 7: One can focus on PINI-E security and locality property of each single gadget, then the whole algorithm’s probing security can be
deducted by the proof sketch.
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randomness subsets of t is also the mirror symmetry of ρLk for
k2 ½d�, called ρRk . We give an example of Mr

d and Mt
d in

Figure 9. Let Md¼defMr
d þMt

d be the randomness matrix
of LatinAND.

Finally, we define Nd as the matrix mixed Md with the
inputs ai; bj. More precisely, let:

s Nð Þ
i j ¼def s Mð Þ

i j ⊕ aibj : ðB:2Þ

For example, sðMÞ
12 ¼ r12 ⊕ t13 and correspondingly s

ðNÞ
12 ¼

a1b2 ⊕ r12 ⊕ t13. And we define jsðNÞ
i j j

I
as the indice set of the

corresponding aibj of s
ðNÞ
i j .

We provide Lemma 3 for the proof of PINI-E and prove
it at Appendix C as supproting information.

Lemma B.1. In Mr
d, there are at most 2 randoms ri1j1 2 Ski and

ri2j2 2 Sk
0
i0 satisfying ri1j1 ¼ ri2j2 for rik; ri0k0 2 ρLj .

Proposition B.1. Lemma 3 also works when we replace Ski ; S
k0
i0

with Sdþ1
i =Ski and Sdþ1

i0 =Sk
0
i0 . More precisely, the randoms pair

exists for Sdþ1
i =Ski and S

dþ1
i0 =Sk

0
i0 iff the randoms pair in Lemma

3 does not exist.

Lemma 3 and Proposition 2 show that every random is
used only twice in the different outputs.

B.2. Proof of Lemma 3
Proof. According to the construction of Mr

d , there always
exists ri1 j1 and ri2j2 satisfying Lemma 3 between Sdþ1

i and

Sdþ1
i0 . So Lemma 3 is proved. □

B.3. Proof of Proposition 2
Proof. Mention that Ski ∪ ðSdþ1

i =Ski Þ¼ Sdþ1
i and Sk

0
i0 ∪

ðSdþ1
i0 =Sk

0
i0 Þ ¼ Sdþ1

i0 , the proof is the same as Lemma 3. □

B.4. Proof of Theorem 6
Proof. There are two steps in our proof, the proof of PINI and
the extension to PINI-E.

First we prove the PINI security. Let I be the indice set of
inputs. WLOG, we only consider the randoms r, because the
other randoms do not weaken the security.

(1) According to the construction ofMd , each pair of aibj
and ajbi for i ≠ j is protected by the same random rij.
As a result, if the random rij in the probed variables is
simulated, we put the corresponding indice i; j into I.

(2) Then we consider the situation where the randoms r
of probed variable p are simulated by more than one
probe, for example, r1; r2 in the probed variable p1
are simulated by variables p2 and p3 because each
probe can simulate at most one random of the other
probe according to Lemma 3 and Proposition 2.
Consider Algorithm 2, the input indice of each

3 4 521

2 3 4 5 1

3 4 5 1 2

4 5 1 2 3

5 1 2 3 4

1 3 5 2 4

2
0

1543

2 3 4 5 1

1 2 3 4 5

4 5 1 2 3

5 1 2 3 4

Latin square

3 4 5 1 2

0 2 3 4 5 1

0 1 2 3 4 5

0 4 5 1 2 3

0 5 1 2 3 4

0 1 3 5 2 4

Add a row Add {0}d + 1

FIGURE 8: Constructing an Ld from an latin square with d¼ 5.

(t14, 3)(r14, 3)(r13, 2)(r12, 1)(0, 0)

(0, 0) (r13, 2) (r23, 3) (r24, 1)

(0, 0) (r14, 3) (r24, 1) (r34, 2)

(0, 0) (r12, 1) (r23, 3) (r34, 2)

(t13, 2) (t12, 1) (0, 0)

(t24, 1)

Randomness subsets for r Randomness subsets for t

(t23, 3) (t13, 2) (0, 0)

(t34, 2) (t24, 1) (t14, 3) (0, 0)

(t34, 2) (t23, 3) (t12, 1) (0, 0)

FIGURE 9: Examples of the randomness subsets for Algorithm 2 with d¼ 3. Each element in the same ρLk or ρ
R
k is the same color. Intuitionally

inMr
d , the randoms corresponding to the “initial” latin square of Ld are axial symmetry to the diagonal of latin square, and the randoms at the

last row are exactly the randoms at the diagonal. Meanwhile Mt
d is Mr

d ’s mirror symmetry.
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intermediate step of ci for i2 ½d� are continuous.
More precisely, for the adjacent elements ri1j1 and
ri2j2 in Ski ofM

r
d , there must be i1 ¼ i2 or j1 ¼ j2, which

means the input indices corresponding to the ran-
doms are also continuous. Thus in this case, each
additional probe only adds 1 more indice into I.

(3) For the intermediate steps of cdþ1, the adjacent ele-
ments of Ski also own the same indice. And thanks to
PIRT, the simulation of c0 in PIRT needs all randoms
contained in its intermediate steps, which is similar
to case 2. Consider sij and p0i j must satisfy PINI, there
is only p1i j left for the proof of PINI. Since p1i j ¼
aibj ⊕ airi0j0 , there are at least 2 probes to simulate
airi0j0 . Therefore the intermediate steps of cdþ1 also
satisfy PINI, the PINI security of LatinAND is
deduced.

The proof also works when we only consider the ran-
doms t, the proof is the same as that of r so we omit it. Then
we prove the PINI-E of LatinAND. We provide Figure 10 to
describe the distribution of proved randoms atMd when a ρLi
and a ρRj are probed.

First, we prove that all intermediate variables must satisfy
PINI-E except those at the “intersection” as Figure 10. In
other words, an intermediate variables will not break
PINI-E unless all its randoms r and t are contained in the
probed randomness subsets. Consider the proof of PINI, if
the randoms r for some intermediate variable are probed, it
still satisfies PINI security because the PINI proof also works

with the randoms t. And the situation of probing t is the
same. We mention that the only difference between PINI-E
and PINI is the probes of randomness subsets, so the inter-
mediate variables mentioned above also satisfy PINI-E.

As a result, we only consider those intermediate variables
whose randoms are simulated with their randomness sub-
sets, which is called bare in the rest of the proof.

(1) We prove that there are at most two bare sðNÞ
i j when

there are one probe for ρLk and ρRk0 , respectively, with
k; k0 2 ½d�. First, we consider the i-th row for i2 ½d�.
In this case, the proof is equal to prove there are at
most two intersections in Figures 10(a) and 10(b).
Mention that the included angle of either the blue
line or the orange line in Figure 10 and the edges of
Md are

π
4, we know that the blue line is perpendicular

to the orange one. We assume, there are more than
two intersections of these lines, i.e., there are three or
four intersections. In this case there must be two
intersections at the extreme points of one of the dot-
ted lines, WLOG, we assume they are at the extreme
points of the vertical line. However, according toMr

d ,

if sðM
rÞ

1j 2 ρLk , s
ðMrÞ
d; jþ1 2 ρLk . And for Mt

d , s
ðMtÞ
1j 2 ρRk refers

to sðM
tÞ

d; j−1 2 ρRk . Hence, there must not be two intersec-

tions at the extreme points of the dotted line, which
means there are no more than two intersections. So,
we prove the proposition. WLOG, in the rest of the
proof we assume there are two bare aibj for each two

··· (i, j) (i − 1, j +1)
(i + 1, j) (i, j +1)

···
··· ···

ðaÞ

··· (i, j) ···

ðbÞ

r + t  r + t  r + t

r + t

r + t

t r r

···

t

···

t trr

ðcÞ

r + t r + t

r + t r + t

t r

r t

···

···

ðdÞ
FIGURE 10: Subparts (a, b) are the two cases for probing randomness subsets ρLk and ρRk at ci for i2 ½d�, where the blue line corresponds to the
probed ρLk and the orange one corresponds to ρRk . And the ði; jÞ is the index of ðρLi ; ρRj Þ in Md . Subpart (a) refers to the situation where the
probed ρLi and ρ

R
j do not intersect atMd , while subpart (b) does. Subparts (c, d) are two cases of the intersections of more than one probes to

ρLi and ρ
R
i , where we assume there are three probes for both ρLi and ρ

R
i . The r (resp., t) refers to the probed randoms at ρL (resp., ρR), and rþ t

refers to that both randoms r and t are probed, defined as bare. The red squares in subparts (c, d) are used to stress the bare variables.
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probes of ρLk and ρ
R
k0 with k; k

0 2 ½d� (generally, if sðMrÞ
1j ;

sðM
rÞ

d j0 2 ρLk and sðM
tÞ

1k ; sðM
tÞ

dk0 2 ρRk0 , we have jj− kj ¼ jj0 −
k0j− 2, which comes from the construction of Ld .
Therefore we only consider j¼ k).

(2) Then we show that indice set jsðNÞ
i j j

I
∪ jsðNÞ

i j0 jI for

1< i ⩽ d and 1< j; j0 ⩽ i satisfies ‖sðNÞ
i j jI ∪ jsðNÞ

i j0 jI j ¼ 3,

which can be got from the construction of Nd . And it
also works for j; j0> i. More precisely, for a fixed i,
there is always an input indice iþ 1 in the sðNÞ

i j with

1< j; j0 ⩽ i, and i for j; j0> i. Specially, jsðNÞ
i; i jI ∩

jsðNÞ
i; iþ1jI ¼fiþ 1g. Meanwhile, there are jsðNÞ

i j j
I
∩

jsðNÞ
i0 j jI ¼fjg for i; i0< j and jsðNÞ

i j j
I
∩ jsðNÞ

i0 j jI ¼fj− 1g
for i; i0 ⩾ j. Therefore, each probe for adjacent sðNÞ

i j

can provide at most one more indice.
(3) Then we prove there are at least two probes to get

Ski =S
k
i0 at Nd . Mention that there is no aibj appearing

directly in the intermediate variables at PIRT, the

only way to get sðNÞ
i j is to probe both Sij and Sij−1 at

Nd . As a result, getting m Ski =S
k
i0 needs at least 2m

probes. Moreover, consider the distribution of aibj in
Nd , which we discuss at last case, the most efficient
probe method for the adversary is to probe the con-

tinuous sequence Ski =S
k
i0 instead of s

ðNÞ
i j with discrete j,

thus we omit other situations in the rest of the proof.
(4) According to case 2 and case 3 above, we consider the

probes containing the adjacent ρLm and ρRn for m; n2
½d� and the corresponding intermediate variables, the
“adjacent” means the subsets are adjacent at Mr

d and
Mt

d and intuitionally the adjacent subsets can also
describe as the orange and blue lines in Figure 10
with larger thickness. Figures 10(a) and 10(b) show
two different situations of the intersections of ρLm and

ρRn . In the situation of Figure 10(a), there are no sðNÞ
i j

are bare, so we only consider the situation of
Figure 10(b) according to case 1. And the case of
Figure 10(b) can be divided into two different situa-
tions as Figures 10(c) and 10(d). The “shapes”
(enclosed by the red lines at Figures 10(c) and

10(d)) of the bare sðNÞ
i j may be square, hexagon or

octagon, which depends on the choice and the num-
ber of probes. All the shapes can be contained at a

square with side length ℓ where ℓ¼def ℓ1þℓ2
2 and ℓ1

(resp., ℓ2) is the number of probes of ρLi (resp., ρRi ).
We assume the number of probes at ρLi and ρRi is
equivalent, and we put the explanations about the
propositions and assumption above into Appendix
C as supproting information. In the rest of the proof,
we assume the shape of the bare variables is the ℓ-
length square proposed at Figure 11.

(5) According to case 2, the adjacent sðNÞ
i j at the same row

or the same column have at least one same indice if

the adjacent elements satisfy j ⩽ i or j> i. Therefore, if
any Ski =S

k
i0 for Nd is probed, there are at least 2κ more

probes for the randomness subsets needed to make

the probe bare with κ¼def jSki =Ski0 j. And consider that
there are at most κþ 1 indices contained at Ski =S

k
i0 ,

its simulation satisfies PINI-E. Mention that κ< d
2, we

consider other probes contained by the ℓ-length
square mentioned at case 4. Note that, there are two
intersections for the probes of randomness subsets,
we assume there are α ⩽ d

6 probes for each of ρLi and
ρRi , and probe all sequences contained by the two
squares, which are 2× αþ 2× ð2× αÞ¼ 6α ⩽ d
probes totally according to the discussion at case 3.
First, we consider the square with the probe simu-
lated before, each other sequence in this square pro-
vides at most two more input indices, one of the
additional indice comes from the situation with i; i0 ⩽
j mentioned at case 2 and the other possible indice
comes from i; i0> j. Therefore the probes in this
square provide at most ðαþ 1Þþ 2× ðα− 1Þ¼ 3α−
1< d

2, and the indices for the two squares are less than
d. Hence, we prove the PINI-E security for ci and
their intermediate steps with i2 ½d�.

(6) The PINI-E security for cdþ1 and its intermediate

steps is trivial. Since the adjacent sðM
rÞ

dþ1; j and sðM
tÞ

dþ1; j

are different with any other elements at other rows,

the probed sðMÞ
dþ1; j are not adjacent when we probe the

adjacent sðMÞ
i j with i2 ½d�, which means there are

twice probes needed to probe the bare sðNÞ
dþ1; j. There-

fore the PINI-E security also works for cdþ1 and its
intermediate steps, and we deduce Theorem 6. □

Remark B.1. In this part we give a retrospect of the proof.
First, we prove LatinAND is PINI with either ρLi or ρ

R
i . Then

in the proof of PINI-E, we reduce the scope of potential
“unsecure” intermediate variables and finally prove that all
variables are PINI-E. More precisely,

(1) In case 1 we provide the distribution of the bare sðNÞ
i j

with the single probe of both ρLi and ρRi . Consider the
PINI security of LatinAND with either ρLi or ρRi for
i2 ½d�, the intermediate variables which are not bare
must satisfy PINI, and thus satisfy PINI-E. As a

result, we only consider these bare sðNÞ
i j .

(2) In case 2 we analyze the indices of the elements at Nd
at the same row or column.

(3) In case 3 we provide the relation between the number
of probes and the constructions of probed sequences
at Nd . Consider the indice distribution of Nd dis-
cussed at case 2, we determine the most efficient
probing method to get most indices.

(4) In case 4 we extend the conclusion at case 1 from the
single probe of both ρLi and ρRi to several probes.
Also, we discuss the “shape” of the bare variables

IET Information Security 13



and extend it into a square in Nd which is easier to
prove security. The details of why the “shape” is
exactly what we claim and how the size of the
extended square comes are put at Appendix C as
supproting information. According to case 1, we
only need to prove the security of the sðNÞ

i j contained
in the extended squares.

(5) In case 5 we prove the PINI-E security of sðNÞ
i j and

their intermediate steps with the conclusion in case 2
and 3 for i2 ½d�.

(6) In case 6 we prove the PINI-E of the rest intermedi-
ate variables (i.e., cdþ1 and its intermediate steps).

B.5. Explanations about the Proof of Theorem 6

B.5.1. The Enclosed Part at Figures 10(c) and 10(d). We pro-
vide the different shapes at Figure 11, in which the enclosed
parts of the dashed lines refer to the probed randomness
subsets and those with full lines refer to the bare variables
at Nd . The Figure 11(a) is the situation where there is an
element of Nd at each vertex of the dashed square exactly,
therefore the full line square is also a square. The Figure 11(b)
is the situation where there is no element at the top and
bottom vertexes of the dashed square, thus the remained
shape is hexagon, note that if the top vertex is not element,
the bottom one is neither because of the symmetry of the
construction. Figure 11(c) is the situation where there is no
element at all 4 vertexes of the dashed square, therefore the
remained shape is octagon.

B.5.2. The Figure of the Enclosed Part and the Scaled Square.
Figure 11(d) shows the situation where the probe number of
ρLi and ρ

R
i is unequal. With the green full lines at Figure 11(d),

we know that the red rectangle can be contained by a square
with side length ℓ1þℓ2

2 (this conclusion comes from elemen-
tary geometry and we omit the detailed proof), where ℓ1 and
ℓ2 is the probe number of ρLi and ρRi and we assume ℓ1>ℓ2.
The blue squares at Figure 11 are the scaled ones at the proof
of Theorem 6, easy to see that its side length is ℓ1þℓ2

2 and it

contains all bare sðNÞ
i j .

C. Evaluation of the Randomness Cost
for SecADD

In this part, we will calculate the cost of randomness in
SecADD. We consider the operations are over F2w and let

ℓ¼def⌈log2ðw− 1Þ⌉.
Now we calculate the cost in SecADD with multiple

PRGs. According to Theorem 4, we use a set of d-wise
PRGs to generate randoms used by LR gadgets as they

make a 1-local use of each ρðkÞs; i for k2 ½3�, and a set of d-wise
PRGs to generate rij and tij in LatinAND gadget because they
make a 1-local use of each ρLk and ρ

R
k . In the following, we will

separately discuss the number of PRGs and randoms with
either R1 or R2.

When using R1, we calculate the number of PRGs and
randoms in different situations. First, we consider PRGðrÞ
which is used to generate the randoms in ρLk and ρRk . Accord-
ing to the maximum distance separable (MDS) conjecture
[29], we have the following inequality, where there are 2ℓ
LatinAND gadgets used in a SecADD:

2ℓ ⋅
d þ 1
2

⩽ 2w; ðC:1Þ

from which we have d ⩽ 2w
ℓ
− 1. In our implementation, we

set w¼ 8 and ℓ¼ 5 (the input length of SecADD are set as
32. When randoms are needed, we use 4 outputs of the 8-bit
PRGs to generate a 32-bit random. In other words, there are
4 PRGs needed for a random with different seeds). It means
that we can use 4d d-wise PRGs to generate all randoms in ρLk
or ρRk for any d ⩽ ⌊ 2w

ℓ
− 1⌋¼ 50. Then we calculate PRGðsÞ

k

for ρðkÞs; i with some k2 ½3�, we have:

3ℓþ 3 ⩽ 2w : ðC:2Þ

From the value of d and ℓ given above, we know that it is
satisfied. Therefore, we need 4d d-wise PRGs to generate the
randoms in ρðkÞs; i for k2 ½3�. According to all the calculations

ðaÞ ðbÞ ðcÞ ðdÞ
FIGURE 11: Subparts (a–d) are the different shapes of bare sðNÞ

i j and their corresponding extended squares in the proof of Theorem 6. The

enclosed parts of the dotted lines refer to the sðNÞ
i j which randoms r or t are probed, and the enclosed parts of the full lines are the bare sðNÞ

i j .
Meanwhile, the blue squares refer to the extended squares.
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above, we know that we need 2 ⋅ 32d2 þ 3 ⋅ 32d2 ¼ 160d2

bits of randomness for the whole SecADD algorithm.
Then we consider the case using R2, and we will also

calculate PRGs and randoms, respectively. As the output ofR2
is 3-wise independent, according to Theorem 4, we always need
d-wise PRGs, and thus the security order d is no more than 3.

Let xr and xs be the numbers of randoms needed inR2 for ρLk
or ρRk and ρðkÞs; i for some k2 ½3�. First, we consider PRGðrÞ, we
can get the following inequality by the definition of R2:

2ℓ ⋅
d þ 1ð Þ
2

⩽
xr
2

� �
2
 ; ðC:3Þ

therefore xr ⩾ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℓðd þ 1Þp ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðd þ 1Þp

. Similarly, for
PRGðsÞ

k we have:

3ℓþ 3 ⩽
xs
2

� �
2
 ; ðC:4Þ

thus we have xs ⩾ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ℓþ 3

p ¼ 6
ffiffiffi
2

p
. Then we know that we

need 8d R2 with w⌈2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðd þ 1Þp

⌉¼ 8⌈2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5ðd þ 1Þp

⌉ bit
seeds to generate all ρLk and ρRk in LatinAND, and 12d R2
with w⌈6

ffiffiffi
2

p
⌉¼ 72 bit seeds to generate all randoms in LR.

We compare the randomness cost of R1;R2 and situation
without PRGs in Table 5.

Then, we discuss the case when a set of PRGs are used by
mutliple SecADD. We only consider the use of PRG R1, and
the maximum number of SecADD can be calculated by n¼
⌊ 2w

2ℓ⋅⌈d2⌉
⌋. It means that there are 2ℓ LatinAND in each

SecADD and each randomness subset of LatinAND contains
at most ⌈d=2⌉ elements, and thus 2ℓ ⋅ ⌈d=2⌉ elements are
contained by a ρLk in a SecADD algorithm. And, 2w refers to
the number of output variables of a PRG. Hence, ⌊ 2w

2ℓ⋅⌈d2⌉
⌋ is

the maximum number of SecADD for one set of R1. We set
d¼ 1, w¼ 8, and ℓ¼ 5 which is quite a practical relevant
setting. Then, we have n¼ 25. Considering that, in Table 5,
one SecADD using R1 and no PRGs requires 160d2 and
320d2 þ 1; 728d random bits, respectively. Therefore, the
randomness cost can be reduced by a factor of up to
25ð320d2 þ 1; 728dÞ=160d2 ¼ 320.
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