
Research Article
Deep Learning in Cybersecurity: A Hybrid BERT–LSTM
Network for SQL Injection Attack Detection

Yixian Liu and Yupeng Dai

Xi’an University of Posts and Telecommunications, Xi’an 710000, China

Correspondence should be addressed to Yixian Liu; liu-yi-xian@xupt.edu.cn

Received 30 November 2023; Revised 19 March 2024; Accepted 21 March 2024; Published 5 April 2024

Academic Editor: Taimur Bakhshi

Copyright © 2024 Yixian Liu and Yupeng Dai. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the past decade, cybersecurity has become increasingly significant, driven largely by the increase in cybersecurity threats. Among
these threats, SQL injection attacks stand out as a particularly common method of cyber attack. Traditional methods for detecting
these attacks mainly rely on manually defined features, making these detection outcomes highly dependent on the precision of
feature extraction. Unfortunately, these approaches struggle to adapt to the increasingly sophisticated nature of these attack
techniques, thereby necessitating the development of more robust detection strategies. This paper presents a novel deep learning
framework that integrates Bidirectional Encoder Representations from Transformers (BERT) and Long Short-Term Memory
(LSTM) networks, enhancing the detection of SQL injection attacks. Leveraging the advanced contextual encoding capabilities
of BERT and the sequential data processing ability of LSTM networks, the proposed model dynamically extracts word and
sentence-level features, subsequently generating embedding vectors that effectively identify malicious SQL query patterns. Experi-
mental results indicate that our method achieves accuracy, precision, recall, and F1 scores of 0.973, 0.963, 0.962, and 0.958,
respectively, while ensuring high computational efficiency.

1. Introduction

In the modern digital era, while web applications signifi-
cantly enhance convenience in our daily lives, they concur-
rently present multiple cybersecurity vulnerabilities. These
applications store a vast array of user data in their databases
through network data flows, including user credentials, finan-
cial details, personal identifiers, and other confidential data. In
the absence of comprehensive security reviews by web appli-
cation developers, malicious actors may inject harmful code
to pilfer such valuable information, thereby posing substantial
risks to information security. As the manufacturing industry
transitions towards Industry 5.0, characterized by the integra-
tion of advanced technologies such as highly integrated cyber-
physical systems, artificial intelligence, and the Internet of
Things (IoT), cyberattacks pose significant threats, potentially
resulting in production downtime, data breaches, and even
physical harm [1]. Injection attacks represent a prominent
security concern, as highlighted by the Open Web Applica-
tion Security Project (OWASP) in its 2021 report [2]. Among

the various types of injection attacks, SQL injection stands out
as one of the most pernicious and prevalent methods.

In instances where the webpage fails to adequately verify
or inaccurately verify the security of user-entered or uploaded
information, an unauthorized attacker may insert a malicious
database query code into the user’s webpage request, subse-
quently transmitting it to the webpage server [3]. In this
manner, the database server may be deceived into executing
unauthorized queries, thereby acquiring the privacy data. In
certain circumstances, malicious actors gain elevated privi-
leges to execute increasingly devastating attacks, including
taking control of the entire system [4]. This form of attack
has the potential to result in grave security concerns, includ-
ing privacy breaches, identity theft, and compromised traffic
security.

SQL injection attacks are varied and can be surreptitious.
They exploit various vulnerabilities, making it challenging
to establish consistent inspection or defense mechanisms.
Certain specially crafted malicious attack queries can even
circumvent firewalls [5, 6]. Addressing these threats often
demands the expertise of specialized security personnel,

Hindawi
IET Information Security
Volume 2024, Article ID 5565950, 16 pages
https://doi.org/10.1049/2024/5565950

https://orcid.org/0000-0002-1737-2009
https://orcid.org/0009-0003-3607-3711
mailto:liu-yi-xian@xupt.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

leading to considerable human resource and time investments,
especially when dealing with extensive datasets. Figure 1 under-
scores the significance of SQL injection in the landscape of
security vulnerabilities and provides a comprehensive illus-
tration of the SQL injection process.

Websites with databases integrated into their backend
are vulnerable to SQL injection attacks [7]. Malicious queries
can be embedded in URL parameters, post data, cookies, and
even HTTP header information [8]. Depending on the tech-
niques used to extract information, SQL injection attacks can
be categorized into union query injection, error-based injec-
tion, Boolean-based blind injection, time-based blind injec-
tion, and stacked injection. Depending on the mode of attack,
SQL injection can be categorized into nine types: tautology,
logical error-based queries, union queries, stored procedures,
piggy-backed queries, alternative encoding, inference, blind
injection, and timing attacks [9]. Each type of injection demands
a tailored solution. Although rule-based web application fire-
walls (WAF) are prevalent today, attackers often circumvent
developer-implemented rules using specially crafted statements.
Consequently, rule-based WAFs frequently exhibit high rates
of false positives and detection failures.

At present, the primary methods employed for detecting
SQL injection attacks encompass static analysis [10], dynamic
analysis [11], and a hybrid approach integrating both [12].
Nevertheless, static analysis detection methods are limited to
restricting or examining the syntax of user input to determine
if an attack has occurred, which can result in certain attacks
that adhere to the input rules being easily evaded. Dynamic
detection is capable of identifying vulnerabilities that are
predefined by application developers. However, due to the
assorted syntax of malicious statements, it fails to meet
the detection requirements in intricate systems [13].

While pinpointing a shared characteristic across diverse
SQL injection payloads can be challenging, a closer exami-
nation of their attack principles reveals that malicious SQL
queries are invariably embedded within network requests.
These SQL queries must also adhere to the database language
syntax. Consequently, SQL injection attacks can be identified
by leveraging both the malicious SQL injection payload’s
contextual features and keyword attributes. Furthermore,
with the advent of machine learning and deep learning in
network security, we introduced a novel network architecture
that amalgamates the Bidirectional Encoder Representations

OWASP top 10 2021

Abnormal SQL statement

Web Server Database

Select query

Return data
Return incorrect information

Data

e.g. or 1 = 1;/∗
Browser

Input
e.g. username,

password

A01: 2021-Broken access control
A02: 2021-Cryptographic failures Command injection

XML external entity injection
Cross site scripting

SQL injection is one of the most
common types of attacks.
Most applications have SQL injection
vulnerabilities

A04: 2021-Insecure design
A05: 2021-Security misconfiguration
A06: 2021-Vulnerable and outdated
components
A07: 2021-Identification and
authentication failures
A08: 2021-Software and data integrity
failures
A09: 2021-Security logging and
monitoring failures
A10: 2021-Server-side request forgery

A03: 2021-Injection

SQL injection

Attacker’s PC

FIGURE 1: The risks and process of SQL injection.

2 IET Information Security

from Transformers (BERT) model with the Long Short-Term
Memory (LSTM) network model. Empirical testing confirmed
the efficacy of our model in detecting SQL injection attacks.

In the chapters that follow:
Chapter 2 offers a review of the literature, succinctly out-

lining both traditional and contemporary strategies for iden-
tifying SQL injection vulnerabilities. Chapter 3 delineates the
theoretical underpinnings and the comprehensive network
architecture inherent to our suggested approach. Chapter 4
documents the experimental procedures undertaken and
assesses the efficacy of our model. In Chapter 5, the superi-
ority of our method is highlighted by way of comparative
experimental analysis. Finally, Chapter 6 culminates with a
concise summarization of the study’s conclusions.

2. Relevant Work

2.1. Traditional SQL Injection Attack Detection Methods. Fu
et al. [10] introduced SAFELI, a static analysis framework
designed to identify SQL injection vulnerabilities at compile
time. This framework utilizes a hybrid constraint solver to
pinpoint malicious user input at the hotspot of each submitted
SQL query. However, a significant limitation is its manual
operation, rendering it unsuitable for analyzing extensive
data streams within brief periods.

Khalid and Yousif [11] presented a unique dynamic SQL
injection detection tool, grounded on the differentiation of
HTTP requests dispatched by users or clients. Nevertheless,
it has the limitation of detecting only a restricted range of
SQL injection types.

Prakash and Saravanan [12] devised a mechanism incor-
porating both static and dynamic analysis tools. During this
endeavor, they introduced SQLi Instrumentation (SQLID) as
an intermediary virtual database layer situated between the
primary database and the application. A notable drawback is
the elevated false positive rate stemming from the incorpo-
ration of static analysis.

2.2. SQL Injection Attack DetectionMethod Based onMachine
Learning. Kar et al. [14] introduced a detection methodology
wherein SQL queries are transformed into token sequences,
maintaining their inherent structure. These sequences are
then modeled as a graph with tokens as nodes and their
interactions represented by weighted edges. Subsequently,
an SVM classifier is trained using labeled centrality mea-
sures, and this method exhibits commendable performance
on the designated dataset.

Abdulhamza and Al-Janabi [15] unveiled a distinct two-
dimensional convolutional neural network (2DCNN) archi-
tecture. This approach involves the conversion of the dataset
into a two-dimensional matrix via the Skip-Gram model and
takes into account both the contextual and syntactic aspects
of SQL. The experimental outcomes were notably satisfactory.

Zhao et al. [16] crafted a detection model that analyzes
the URL and body content within HTTP requests. Time series
features, derived from the gate recurrent unit (GRU) neural
network, are integrated with discrete features manually
curated by experts. These combined features are then fed
into fully connected neural networks for classification. Owing

to the introduction of a feature fusion method, there was a
noticeable enhancement in the detection accuracy.

Jothi et al. [17] and Zhang et al. [18] employed different
approaches in data preprocessing compared to ours. Jothi
et al. [17] utilized one-hot encoding to generate word index,
while Zhang et al. [18] employed the TF–IDF algorithm to
assess word importance based on word frequency and inverse
document frequency.

The integration of machine learning and deep learning
into network security represents a pivotal avenue for future
research. Such approaches effectively address the limitations
of conventional detection methods, particularly when con-
tending with voluminous data. In the forthcoming discussion
section of this article, the method delineated herein will be
juxtaposed with the previously mentioned five techniques.
Upon comparison, the methodology presented in this study
demonstrated superior outcomes both on the identical data-
set and in real attack detection experiments.

2.3. OtherNovelMethodsApplied toNetwork IntrusionDetection.
Zivkovic et al. [19] decreased the false positive rate of the
network intrusion detection system by employing an enhanced
firefly algorithm to establish optimal hyperparameters for the
XGBoost classifier. Similarly, during our experiment, we con-
tinuously and meticulously adjusted the network’s hyper-
parameters to secure the most effective detection outcomes.

Crespo-Martínez et al. [20] directed their research toward
the data collection process. Their work suggests that in
scenarios where inspection of all packets in a high-traffic
wide-area network (WAN) is not feasible, effective detec-
tion of attacks, such as SQL injection, is still achievable by
monitoring flow data using lightweight protocols, like Net-
Flow. Detecting attacks within high-traffic WANs represent
a key future direction for our applications. The methodol-
ogy presented in this paper offers a new perspective for our
endeavors.

Shah et al. [21] developed a secure, lightweight key man-
agement framework to ensure network security, prevent
unauthorized access, and play a vital role in underwater
wireless sensor networks (UWSNs). Ensuring the network’s
lightweight design has been a pivotal aspect of our research.
This strategy aims to bolster computational efficiency, enabling
the swift detection of large volumes of data, while simulta-
neously preserving network compatibility.

3. Detection Model of Hybrid
BERT–LSTM Network

3.1. BERT Model. The BERT is a widely employed pretrain-
ing model in the discipline of Natural Language Processing
(NLP). It was introduced by the research team at Google in
2018, marking a significant advancement in contemporary
deep learning within the realm of NLP [22].

The primary characteristic of BERT is its bidirectional
encoder architecture, achieved through the use of the Trans-
former model [23]. In contrast to the conventional unidirec-
tional approach, BERT has the capability to utilize contextual
information from both preceding and succeeding directions
to predict the semantic understanding of a word within a

IET Information Security 3

sentence. BERT significantly enhances the performance of
various natural language processing tasks, including sentence
classification, named entity recognition, and textual entail-
ment. The framework of the BERTmodel is shown in Figure 2.

The BERT model also incorporates a multihead self-
attention mechanism, which allows each word to assimi-
late the contextual semantic information of other words
within the sentence. The multihead attention mechanism
extends the ordinary attention mechanism by employing mul-
tiple independent attention heads simultaneously to process
the input sequence. Each attention head learns its own query, a
linear transformation of keys and values, and independently
performs attention computations. Finally, the results from the
multiple attention heads are combined through linear trans-
formation and splicing to obtain the final output. This integra-
tion enhances the model’s ability to capture the relationships
and dependencies between words, thereby improving its
understanding of the overall sentence meaning. By incorpo-
rating the multihead attention mechanism, the model’s expres-
sive capability and generalization performance are improved
while the computational efficiency is maintained.

This paper uses the BERT model to generate embedded
word vectors for the samples, which are input into the LSTM
network to complete the classification task. BERT necessitates
that the input data conform to a specific structure, namely
“[CLS] sentence [SEP].”Here, “[CLS]” serves as the sentence’s
starting marker for tasks at the sentence level, and “[SEP]”
acts as the delimiter. Following preprocessing, each word
is transformed into an embedding vector. BERT, by layering
multiple Transformer blocks, leverages the self-attention

mechanism to assess the interrelations among all words,
thus producing word vectors infused with contextual infor-
mation. Concurrently, the vector associated with the “[CLS]”
marker embodies the representation for the entire input sen-
tence. The self-attention mechanism enables BERT to discern
the varied meanings words may hold across different con-
texts, a capability vital for grasping context-sensitive security
threats like SQL injection. It will have a higher detection
accuracy than the static word vector generated by traditional
Word2vec training.

Word embedding is a significant methodology within the
field of NLP to support language modeling and facilitate fea-
ture learning techniques [24]. This technique involves the
mapping of words or phrases from the vocabulary to vectors
consisting of real numbers. Additionally, word embedding
serves as a mandatory input format for LSTM networks.

The traditional one-hot vector has two disadvantages.
First, the matrix dimension is very large, which wastes space
and requires more computing resources. Second, the one-hot
matrix only distinguishes different word numbers, and the
semantic relationship between words and words cannot be
reflected. The embedded word vector assigns a fixed length
vector representation to each word. In this study, the model
discussed in this article is defined as a length of 128, which
marks a significant reduction compared to the conven-
tional one-hot vector. Table 1 presents three-dimensional
vector representations of the common database query terms
“SELECT,” “select,” “FROM,” and “WHERE.”

The semantic similarity between two words in the vector
space can be determined by calculating the cosine distance

Input

input_ids
token_type_ids
attention_mask
position_ids

Self-attention Self-attention Self-attention

......
Output

Multihead
Self-attention

......
...

......

...

... ...

...

...

...
...
...

...

...

......
...

...
...

FIGURE 2: The framework of the BERT model.

4 IET Information Security

using Equation (1). When two words have similar semantics,
their cosine distance will be smaller [25].

similarity ¼ cos θ ¼
→
A
⋅ →

B

jjAjj ⋅ jjBjj : ð1Þ

From the provided example, the cosine similarity between
“SELECT” and “select” stands at 0.2901, while there’s 0.8284
between “SELECT” and “FROM.”This difference arises because
the first pair varies only in the case while retaining identical
semantics. Hence, their similarity is lower, indicating a closer
proximity in vector space. These four words, which typically
appear together in malicious SQL queries within network
requests, exhibit similar three-dimensional vector representa-
tions. Consequently, they occupy the same octant in the three-
dimensional vector space.

3.2. LSTMModel. The LSTM neural network is an optimized
network of the recurrent neural network (RNN). RNN stores
past information and current input by introducing state vari-
ables to determine the current output. Previous input values
have an impact on subsequent outputs [26]. Hence, RNN
exhibits impressive ability in the processing of sequential
data types, including linguistic reasoning texts and trend
graphs. Presently, RNN finds its primary usage in various
tasks such as fault prediction [27], text modeling [28], load
prediction [29], sentiment analysis [30], and speech recogni-
tion [31]. The primary objective of detecting SQL injection
attack behavior is to identify the presence of SQL injection
attack statements in the everyday traffic of web applications.
While malicious attack sentences exhibit various forms, they
also possess numerous logical features within their contex-
tual context. These characteristics render the utilization of
RNNs as classifiers technically feasible.

Figure 3 portrays the overall framework of RNN, wherein
A represents a recurrent neuron, xt signifies the input of a
recurrent neuron, and ht denotes the output of a recurrent
neuron. Following the xt input, a portion of the information
is computed and output, while another portion influences
the calculation of the subsequent cycle.

It can be seen in Figure 3 that the output ht of a certain
recurrent neuron is jointly affected by the input xt of this
neuron and the hidden state ht−1 of the previous neuron.
After getting ht , part of the information is used as output
and backpropagated according to the value of loss. Another
part of the information is passed to the next recurrent neuron.
In instances where the input sentence is excessively lengthy,
the neurons that receive input from distinct keywords are

considerably distant from each other. Consequently, the neu-
rons located towards the rear lack the capability to sufficiently
comprehend the information transmitted by the neurons sit-
uated at the front. Consequently, the network is unable to
effectively discern the contextual relevance of long-sequence
data. This situation caused the RNN gradient disappearance
problem, known as the long-term dependency (Long-Term
Dependencies) problem. So, the LSTM neural network was
produced, which is aimed at the internal improvement and
optimization of the recurrent neuron so that the long-term
dependency problem can be obtained as an effective solution.

The fundamental principle of LSTM is the same as RNN,
as the preceding input value influences the ensuing output.
To address the issue of gradient disappearance in RNN, mul-
tiple gate calculations are used in the LSTM neuron, accom-
panied by the introduction of a novel variable denoted as the
“cell state” [32].

The feature screening and memory of neurons for tem-
poral input is accomplished by employing several gate calcu-
lation units, which additionally facilitate the storage and
updating of the cell states. The cell state runs through the
entire neural network, which ensures that information flows
through all cyclic neural units, and the network can learn
long-term dependance on information, improving the prob-
lem of gradient disappearance. The input and control signals
of each gate computing unit are derived from the output of
the preceding neuron, thereby preserving the fundamental
properties of RNN [33].

3.2.1. Forget Gate. The forget gate is responsible for deter-
mining the retention of information in the cell state. The
present neuron is fed with the hidden state ht−1 from the
previous neuron and the current input xt , and generates a
probability value ranging from zero to one using the sigmoid
function. In case the probability value approaches zero, it
indicates that the information is less significant and should
be disregarded to a greater extent. In Equation (2), Wf and
Uf are the coefficients of the linear relationship, whereas bf
denotes the bias term.

ft ¼ sigmoid  Wf ht−1 þ Uf xt þ bf
� �

: ð2Þ

3.2.2. Input Gate. The input gate is responsible for determin-
ing the information that the cell state receives from the current
neuron, as well as the values that require updating. Firstly, the
sigmoid function is utilized to calculate the parameter it, which
indicates the portion of the cell state to be updated. A value
approaching one signifies a greater need for updates. Next, the
at parameter is derived through the tanh function. This param-
eter signifies the updated value of the cell state. In Equation (3)
and (4), Wf and Uf are the coefficients of the linear relation-
ship, whereas bf denotes the bias term.

it ¼ sigmoid  Wiht−1 þ Uixt þ bið Þ; ð3Þ

at ¼ tanh Waht−1 þ Uaxt þ bað Þ: ð4Þ

TABLE 1: Example of embedded word vector.

Words Vector 1 Vector 2 Vector 3

SELECT 0.51 0.13 −0.15
select 0.50 0.12 −0.13
FROM 1.37 0.94 −0.05
WHERE 1.56 1.23 −0.09

IET Information Security 5

3.2.3. Cell State Update. Compute the Hadamard product of
the cell state Ct−1 from the previous neuron and the output f t
of the forge gate to eliminate the information to be forgotten.
Next, incorporate the Hadamard product of it and at as an
adjusted value into the previous cell state after forgetting.
Equation (5) is as follows. Whereas⊙ denotes the Hadamard
product.

Ct ¼ Ct−1 ⊙ ft þ it ⊙ at : ð5Þ

3.2.4. Output Gate. The output gate is responsible for deter-
mining the output value of the present unit, which will be
obtained after filtering the current cell state. First, ot is used
to indicate the specific information within the cell state that
necessitates output. As above, its value is determined by the
previous output ht−1 and the input xt of this unit via the
utilization of the sigmoid function. A value approaching
one signifies a greater need for output. Next, the cell state
is substituted into the tanh function to calculate a value
between minus one and one. Then, the Hadamard product
is applied between this value and ot . Finally, the resultant
output value ht is derived. Equation (6) and (7) are as fol-
lows. Whereas ⊙ denotes the Hadamard product.

ot ¼ sigmoid  Woht−1 þ Uoxt þ boð Þ; ð6Þ

ht ¼ ot ⊙ tanh  Ctð Þ: ð7Þ

Figure 4 shows the details of the gate computation units
within the LSTM neural units and the transmission status of
the data flow.

3.3. Overall Framework of the Hybrid BERT-LSTM Network.
The generation of embedded vectors is accomplished through
the training of the BERT model, subsequently employed as
input for the following LSTM networks. In the initial stage,
the model’s embedding layer integrates the “input_ids,”
“token_type_ids,” and “position_ids” for each word, assign-
ing them random initial values as vectors in a 768-dimen-
sional space. These vectors correspond to word embedding
vectors, sentence embedding vectors, and position embed-
ding vectors. Next, the vector resulting from the addition of
the three initial vector matrices is fed into the BERT layer.
Ultimately, the output comprises two components. The first
component uses the word vector associated with the “[CLS]”
symbol, which we preinsert before each sentence, to represent
the entire sentence as its vector. This element is referred to as
the “pooler output” in the network. The second component
comprises word vectors for individual words, obtained
through word segmentation from the sample, and is referred
to as the “sequence output” in the network.

Continue feeding the “sequence output” into the LSTM
layer for sustained training. The output should initially be
processed through a fully connected layer to acquire a matrix
of vectors that match the dimensions of the “pooler output.”
Subsequently, these two vector outputs are concatenated to

ht

Xt

A = A A A

...

A

X1 X2 X3 Xt

h1 h2 h3 ht

FIGURE 3: Overall framework of RNN.

ht–1

Xt–1

X X

X XX X

+ +
tanh tanh

X

X X

+
tanh

Xt–1Xt

ht–1ht

tanhσ σ σtanhσ σ σ tanhσ σ σ

X

X X

+
htanhtanh

tanhσ σ σ

A
X

X X

+
tanhtanhtanh

tanhσ σ σ

A

FIGURE 4: Detailed structure of LSTM units.

6 IET Information Security

forge a more intricate feature representation, adept at discern-
ing subtle semantic distinctions. Next, the result of matrix
concatenation between these two is input into the double-
layer fully connected layer and classifier to obtain the detec-
tion results.

The hybrid BERT-LSTM network’s overall framework
and changes in data dimensions are illustrated in Figure 5.
The specific parameters are: the LSTM layer has 128 input
nodes and hidden nodes. The parameter of the forget gate is
set to 0.1. Simultaneously, the dropout operation is incorpo-
rated with a parameter value of 0.5 to mitigate the risk of
overfitting during the training process. The BERT part is
composed of 12 layers of transformer encoder layers stacked.
Each layer is added with 12 head attention mechanisms, and
the output vector dimension is 768 dimensions. The dimen-
sions are projected onto 128 dimensions, aligning with the
quantity of hidden layer nodes within LSTM. Simultaneously,
parameter count is minimized to ensure the model’s light-
weight design and computational efficiency. This architecture
amalgamates BERT’s robust linguistic comprehension with
LSTM’s prowess in processing time series data, empowering
the model to comprehend intricate language structures while
also discerning underlying sequence patterns. Consequently,
it enhances the efficacy and precision of SQL injection attack
detection.

4. Experiments and Results

4.1. Experimental Environment. The configuration of the lab
environment is shown in Table 2. The BERT model comes

from Google Github open source code. The LSTM model is
implemented by Keras.

4.2. Data Collection and Preprocessing. A total of 10,852
instances of malicious SQL injection attack statements were
acquired from the Httpparams dataset open source database,
serving as positive samples. Additionally, 19,304 samples of
normal web page requests made by users were obtained as
negative samples. The dataset contains various types of mali-
cious entries, including joint query injection, error-based
injection, Boolean-based blind injection, time-based blind
injection, stacking injection, and inferential injection. Addi-
tionally, we have integrated several injection methodologies

Dataset

30,156 258 × 768

1 × 128

1 × 128

Input_num = 258
Dims_num = 128

258 × 128
768
↓

128

12 × transformer
encoder Layer

12-headed self-attention

Tokenizer BERT Linear
mapping

LSTM
Dense
layer

Dense
layerConcat Classifier

W
o
r
d

+
T
y
p
e

P
o
s
i
t
i
o
n

Sequence
output

Pooler
output

Drop-out
SGD

Output

258 to 128 128 to 32 32 to 2

[A;B] Softmax Result128

FIGURE 5: The structure of network.

TABLE 2: Experimental environment.

Platforms Content

PC system Windows11

Hardware
Intel® Core™ i7-8565U CPU

GTX 1070 GPU
16GB RAM

Cuda version Cuda 11.4.1

Software

Python 3.6
Keras 2.06

TensorFlow 1.3.0
Matplotlib 3.3.4
Numpy 1.19.5

Scikit-learn 0.24.2

IET Information Security 7

designed to circumvent established rule-based detections,
such as synonym substitution, copy bypass, string bypass,
and encoding bypass. Concurrently, the benign data segment
comprises typical POST and GET requests. It also uniquely
incorporates benign user inputs embedded with malicious
keywords to evaluate the resilience of the detection algo-
rithms against sophisticated obfuscations. The samples are
then divided in a ratio of 6 : 2 : 2 into training, validation,
and test sets.

Conduct data normalization on both positive and nega-
tive samples, eliminating the host and path details from the
URL while retaining only the portion related to the malicious
attack payload. Substitute the link with “http://u”. The afore-
mentioned data is URL-encoded and stored in a CSV file.
Ultimately, all the data were systematically partitioned into
distinct sets: 60% for training, 20% for validation, and the
remaining 20% for testing.

First of all, conduct a preliminary word segmentation pro-
cess on each sample. For the payload part of SQL injection, in
addition to the common database terminology words: “select,”
“order,” and “union,” additionally, establish specific word seg-
mentation rules outlined in Table 3 to handle special cases.
These rules encompass function bodies that combine charac-
ters with brackets, equations that combine characters with
equal signs, special symbols, characters in single quotes, and
the quotes surrounding them. The special characters are trea-
ted as words through regular expressions and enclosed in sin-
gle quotes. Count the length and number of occurrences of all
words, and establish the maximum length and minimum
number of occurrences. All words whose length is less than
the maximum length and whose number of occurrences are
greater than the minimum number are summarized to create a
basic word list.

The BERTmodel uses theWordpiece word segmentation
algorithm to further divide words. In the event that a word
exceeds the maximum length stated in the aforementioned
basic word list, or its frequency of occurrence falls below the
specified minimum number of times, the word shall undergo
further division into subwords. Such as the word “embed-
dings,” it will be divided into subwords (“em,” “##bed,”
“##ding,” and “## s”), followed by the symbol “##,” which
means that it is not a subword at the beginning of a word,
which can effectively reduce the problem of out-of-vocabu-
lary (OOV), and low-frequency words can also be well
trained. For malicious sentences with uncommon words
and the attacker’s personal idiomatic grammar, reducing
the possibility of false positives. Set an index for each word
to form the final word list.

4.3. Tokenize the Sample. Tokenize the positive and negative
samples using the BERT’s tokenization method to ensure
they meet the input requirements of the BERT model. First,
Prepend each sentence with the “[CLS]” token and append
“[SEP]” at the end.

Then transform all samples into an indexed format based
on the vocabulary dictionary, and employ the variable “inpu-
t_ids” to denote the index assigned to each word. Utilize the
variable “token_type_ids” to ascertain the associated sentence
sample for eachword. Simultaneously, the variable “position_ids”
is used to indicate the position of the word in the corresponding
sample. With the aim of ensuring uniform sentence length, pad-
ding complements all samples to 258 dimensions with the value
of “−1.”At the same time, the variable “attention_mask” serves
to distinguish the actual sample data from the useless padded
data. Consequently, subsequent training can bypass this irrel-
evant data. The process of tokenize is shown in Figure 6.

After obtaining the word vectors and sentence vectors
from BERT’s output, which are necessary for subsequent
processes, these word vectors are further fed into an LSTM
network for training to achieve predictions. Following numer-
ous iterations of training and validation, the model’s hyper-
parameters are adjusted until an optimal level is reached and
the prediction accuracy converges at a higher level. Conse-
quently, we have a predictive model.

4.4. System Deployment. In subsequent experiments, we tested
scenarios in which the detection model was deployed in real-
world applications. To enable a more practical implementa-
tion of our application, we have developed a straightforward
graphical interface that visually presents the monitoring count
and the number of alarms generated from malicious detec-
tion. The interface is illustrated in Figure 7.

We extracted valuable information from network traffic
data sourced from logs and security defense equipment.
After processing this data, our prediction model was applied.
If malicious activity is predicted, we initiate emergency
responses or vulnerability hardening. If the request is deter-
mined to be ordinary, it will be executed, and the relevant data
will be returned to the user. The deployment process of the
model for detection is illustrated in Figure 8.

4.5. Experiment Results. In this section, we present the evalua-
tion data for the Detection Model based on BERT and LSTM.
The model was trained on the aforementioned dataset for a
duration of 30 epochs. Additionally, to validate the efficacy of
the trained model in practical scenarios, we established a plat-
form containing vulnerabilities to simulate attacks and collected
relevant netflow data. This data was subsequently utilized for
detection purposes.

4.5.1. Experimental Validation of Model Effectiveness on
Datasets. In this paper, we use accuracy, recall, and F1 score
for model evaluation. Accuracy rate (Acc) is the proportion
of correctly categorized samples to the total samples; Recall
rate (R) is the proportion of correctly predicted malicious
statements among the samples that are actually malicious
statements; F1 score metrics is the reconciled average of
precision rate and recall rate, which is an important score

TABLE 3: Rules of word segmentation.

Category Examples

Function sleep (int), char (69)
Equation 1,557= 1,557, 6,324= 6,324
Content inside single quotes “0 : 0:5”, “otqy”
Others &, #, (, /, -, ||

8 IET Information Security

index for model evaluation, where precision rate (P) is the
proportion of samples predicted to be malicious statements
that are actually positively categorized [34]. The evaluation
formula is shown below:

Precision is defined as Equation (8).

P¼ TP
TPþ FP

: ð8Þ

258 × 128

258 × 768

UNION Select TOP 1 COLUMN_blank>_NAME FROM INFORMATION_blank>_SCHEMA.COLUMNS
Where TABLE_blank>_NAME=logintable Where ...

Partitioning and adding symbols' [CLS]'、'[SEP]
at both ends of the sentence '

Padding to 258 dimensions and tokenizer encoding

Map each word to a 758-dimensional vector

From 768 dimensional Linear map
to 128 dimensional, input to LSTM

'INPUT_IDS': [101, 2769, 1762, 3844, ……. 6407, 8815, 8716, 102,……,–1,–1,–1,–1,–1],
'TOKEN_TYPE_IDS': [0, 0, 0, 0, ……, 0, 0, 0, 0……, 0, 0, 0, 0],
'ATTENTION_MASK': [1, 1, 1, 1, ……, 1, 1, 1, 1……, 0, 0, 0, 0]
'POSITION_IDS': [0, 1, 2, 3, ……, 126, 127, 128, 129……, 255, 256, 257, 258]

['[CLS]', 'UNION', 'TOP', '1', 'COLUMN', 'blank', '>', 'NAME', 'FROM'……'>', ' logintable', 'where'…… '[SEP]']

FIGURE 6: The process of tokenize.

FIGURE 7: The user interface.

IET Information Security 9

Recall is defined as Equation (9).

R ¼ TP
TPþ FN

: ð9Þ

Accuracy is defined as Equation (10).

Acc¼ TP
TPþ FNþ TNþ FP

: ð10Þ

F1 score is defined as Equation (11).

F1¼ 2TP
2TPþ FNþ FP

: ð11Þ

The confusion matrix [35] for each evaluation parameter
in the above is shown in Table 4.

The learning rate is set to 0.01 during training, employ-
ing the stochastic gradient descent algorithm, and utilizing
the classification cross-entropy as the loss function. After
four epochs of data training, the accuracy rate reached
90%. After 30 epochs of training, the final recognition accu-
racy of the model converged to 97.3%; the precision rate
reached 96.3%; the recall rate reached 96.2% and the F1 score
reached 95.8%.

In the experiment, multihead self-attention was used,
and dropout was used to remove neural units in the hidden

layer according to a certain proportion. At the same time, the
number of hidden layers, the number of units in the hidden
layer, batch_size, and other parameters were continuously
adjusted in multiple experiments, which effectively pre-
vented overfitting. Despite a decrease in the validation accu-
racy rate, it still achieved a level of 93.3% by the 30th epoch.

The accuracy value, the precision value, the recall value,
and the F1 score value of the training process are shown in
Figure 9.

The accuracy values of the training process and the vali-
dation process are shown in Figure 10.

The loss of the training process and the verification pro-
cess are shown in Figure 11.

Pooler output

Sequence
output

Dataset
Malicious/normal

Softmax

Normal

Malicious

Back
propagation

Weight
adjustment

Logs
Detect

equipment Firewall Web server

Netflow collection

Netflow collection

[CLS] [SEP]

ę
ę

'input_ids':
'token_type_ids'
'attention_mask'

'position_ids'

[CLS] [SEP]
'input_ids':

'token_type_ids'
'attention_mask'

'position_ids'

BERT

[A;B]

LSTM

Hybrid BERT–LSTM Network

Detection model Netflow

Training

Postattack assessmentsDefend before attack

Vulnerability patching
Emergency response

Database
server

User

Execute

Return
......

............

FIGURE 8: The deployment process of the model for detection.

TABLE 4: Confusion matrix.

Determination of maliciousness Predicted to be malicious Predicted as normal

Actual malicious TP FN
Actual Normal FP TN

0.68
0.72
0.76

0.8
0.84
0.88
0.92
0.96

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Epochs

ACC
P

R
F1

V
al

ue

FIGURE 9: Accuracy, recall, and F1 score of Training.

10 IET Information Security

4.5.2. Experimental Validation of Model Effectiveness on
Simulated Attack. To evaluate the model’s generalization
ability to classify SQL injection vulnerabilities, a testing plat-
form was constructed. This platform encompasses prevalent
types of injections, filtering rules were also added to test the
detection of bypass injection:

(i) Error-based injections.
(ii) Boolean-based BLIND injections, time-based BLIND

injections.
(iii) Stacked SQL injections.
(iv) Referer-based header injections, useragent-based

header injections, cookie-based header injections.
(v) Bypassing blacklist filters stripping comments,

stripping OR and AND, stripping SPACES and
COMMENTS, stripping UNION and SELECT.

The simulated attack platform has been implemented on
the server in order to intercept the data packets that are
exchanged between the user and the server. Subsequently,
the data contained within these packets is forwarded to the
model for detection. Our approach includes incorporating
different forms of payloads, such as typical SQL injection
payloads, obfuscated payloads devised to evade filtering
blacklists, benign statements embedding potentially harm-
ful words, as well as payloads targeting Cross Site Scripting

attacks (XSS), all intended for input and attack purposes.
The experimental results are shown in Table 5.

It can be observed from the experimental results that the
detection model can identify the majority of malicious pay-
loads. Additionally, it exhibits certain generalization capabil-
ities and can accurately predict some simple bypass attacks in
character filtering. Due to the emphasis of the BERT model
on the semantic relationship between words and context
during the generation of embedded word vectors, it effec-
tively reduces false positives in identifying benign statements
that may include potentially harmful words as harmful.

However, a notable shortcoming of the model is its inabil-
ity to accurately predict specially encoded payloads lacking
malicious characteristics. Adding encoding to the dataset can-
not effectively address this issue since there exist attack meth-
ods that can bypass WAF even after multiple encodings. In
practical applications, it is advisable to configure the corre-
sponding decoder. Before sending the netflow to the detection
model, the decoder restores the payload to its original state,
thereby reducing the possibility of false negatives.

In addition, it has been noted that the absence of XSS
attack data within the dataset has impeded the model’s abil-
ity to extract features associated with XSS attack payloads,
particularly for non-SQL injection attacks. While it aligns
with the experimental results, this circumstance poses a con-
siderable risk in practical applications. Consequently, future
research efforts will primarily concentrate on enhancing the
model’s capability to detect a wider range of threats.

5. Comparison and Discussion

In this section, three comparative experiments on SQL injec-
tion detection capabilities and computational efficiency were
set up, using the SQL injection attack detection based on
BERT and LSTM proposed in this paper with the malicious
code classification and detection model based on the graph of
tokens and Support Vector Machine (SVM) [14], the attack
detection model based on 2D-Convolutional Neural Net-
works (2D-CNN) [15], and the detection injection attack
model using Gate Recurrent Unit (GRU) [16] for compari-
son. At the same time, a comparative evaluation is conducted
to assess the natural language feature extraction capabilities
of the BERT model, the Word2vec model [36], as well as the
One-hot [17] and TF-IDF [18] methods.

5.1. Advantages Demonstrated through Comparative Experiments

5.1.1. Comparison of Performance of Different Prediction
Models on the Dataset. Deploy all detection models on the
server in a consistent environment. Use the same dataset for
training and validation processes, and analyze their accuracy
(ACC), recall (R), and F1 scores on the same test set for
comparison. The results of this evaluation are shown in
Figure 12.

Regarding the accuracy (Acc) aspect, it can be observed
that the detection model proposed in this paper along with
the CNN and GRU classification detection models exhibit an
accuracy rate exceeding 90%. Due to the presence of specific
malicious attack statements in the test set intentionally

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Epochs

Training
Verification

0.68
0.72
0.76

0.8
0.84
0.88
0.92
0.96

1

V
al

ue

FIGURE 10: Accuracy of Training and Validation.

0.05
0

0.1
0.15

0.2
0.25

0.3
0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Epochs

Training
Verification

V
al

ue

FIGURE 11: Loss of Training and Validation.

IET Information Security 11

designed to evade the WAF’s detection rules, the SVM-based
detection model experiences a decreased accuracy in recog-
nizing these statements. Regarding the recall (R) aspect, the
detection model proposed in this paper and the CNN-based
detection model have more advantages and exhibit enhanced
precision in recognizing the characteristics of malicious

statements in SQL injection attacks. The detection model
proposed in this paper has a higher F1 score because other
detection models cannot perceive the semantic features and
contextual relationships of the words in the utterance, which
can easily cause misjudgment of the normal user input
request containing sensitive features, so it leads to its lower

TABLE 5: Detection results of the model for different payloads.

Payload Description Detection results

id= 1 union select 1,2,group_concat (table_name), 3 from
information_schema.tables where table_schema= database()

Union select injections Malicious

id= 1′ and ascii(substr (database(),1,1))> 114 Boolean-based BLIND injections Malicious
id= 1′ and if (ascii(substr (database(),1,1))> 114, sleep (3),null) Time-based BLIND injectionst Malicious
id= 1′ union select 1,2,”<?php @eval ($_GET[‘string’])?>” into
outfile xxx.php

Webshell Malicious

id= 1′^ (ascii (mid ((select (GROUP_CONCAT
(TABLE_NAME))from (information_schema.TABLES)where
(TABLE_SCHEMA= database())),1,1))= 1)= ’1′

Bypassing blacklist filters stripping SPACES Malicious

Set @a= concat (‘selec’,‘t from xxx’); prepare h from @a;
execute @a;

Stacked SQL injections Malicious

Set @a= 0x73656c656374202a2066726f6d20787878;prepare h
from @a;execute @a;

Stacked SQL injections and hexadecimal execution
bypasses string filtering

Normal1

?id=−1 union select group_concat (`123`),2 from (select 123
union select ∗ from flag)a

Bypassing blacklist filters stripping OR Malicious

id= 1 unionunion selectselect 1,2,group_concat (table_name),3
from information_schema.tables where table_schema=
database()

Double writing bypasses UNION and SELECT
filtering

Malicious

M!T!@MzIGF.@uZ!CB.1c.GR@.h.dGV.4b.@Ww.!oM!!
Sxjb@25jYX.Qo@M.Hg.@x.LH.V@.zZXI!oKSksM!S!.k.=

Insert special characters “!, @,.” in based64 encoding
to bypass string filtering

Normal1

Select and union and order by
Benign statements embedding potentially harmful

words
Normal

<script >alert (document.cookie);</script > XSS Normal1

1The results indicate that the predicted result is opposite to the actual situation.

0.973 0.962 0.958
0.893

0.921

0.756

0.933 0.958

0.794

0.951 0.947

0.768

0

0.2

0.4

0.6

0.8

1

ACC R F1

LSTM
SVM

CNN
GRU

V
al

ue

FIGURE 12: Comparison of different deep learning models.

12 IET Information Security

precision rate (P), resulting in a lower F1 score. Therefore,
the approach presented in this paper exhibits superior effi-
cacy in identifying SQL injection attacks when juxtaposed
with GRU, SVM, and CNN models.

This experiment additionally examined the detection effi-
cacy on the test sets of dynamically generated word vectors
and sentence vectors using the BERTmodel, in contrast to the
conventional Word2vec [36], One-hot [17], and TF-IDF [18]
methods, which produce static word vectors. Both approaches
utilize LSTMas the predictionmodel. The precision and recall
rates of the ultimate model were assessed and compared. The
outcomes of this comparison are presented in Figure 13.

Based on the comparison results, The BERT model gen-
erates vectors by combining keywords with their respective
sentences. This, in conjunction with advanced word segmen-
tation, leads to enhanced precision (P), recall (R), and F1
scores, surpassing those achieved by the other three static pro-
cessingmethods. Hence, the BERT model yields more effective
results in data preprocessing.

5.1.2. Comparison of Different Prediction Models in Netflow
Detection. The four models are linked to the cyberspace
situation awareness device that has been implemented in
the laboratory. This device actively monitors the data flow
traversing over 500 network assets, encompassing servers,

personal computers, network equipment, etc. Whenever
the detection model recognizes any malicious information,
an alert is activated. Following one week of implementation,
we carried out 1307 SQL attack experiments on multiple devices.
The chart labeled as Table 6 presented beneath showcases the
quantity of alerts generated by each distinct model.

All alarms that were generated were examined manually
in order to determine the rates of false positive and false
negative detection. Based on the findings, it is evident that
the combined BERT and LSTMmodel proposed in this paper
has the lowest rates of false positive and false negative detec-
tion. In contrast, other models encounter a greater number of
words categorized as “unknown” outside the defined vocabu-
lary, or encounter more normal inputs with similar character-
istics to malicious sentences in the detection of extensive and
intricate network traffic. As a result, these models exhibit poor
generalization performance, rendering them unsuitable for
practical applications.

5.1.3. Comparison of Computational Efficiency among Different
Prediction Models. Furthermore, for the purpose of assessing
the computational efficiency of the models, we meticulously
documented the duration of training and test for all models
with equal epoch numbers. Moreover, additional software and
hardware environments are constructed with the objective of

0.973
0.962 0.9630.957

0.941
0.925

0.823
0.814 0.822

0.897
0.885

0.854

0.7

0.75

0.8

0.85

V
al

ue

0.9

0.95

1

ACC R P

BERT
Word2vec

One-hot
TF–IDF

FIGURE 13: Comparison of different data processing techniques.

TABLE 6: The quantity of alerts generated by each distinct model.

Model Quantity of alerts False positive rate False negative rate

BERT-LSTM 1,247 13% 17%
Word2Vec-LSTM 1,202 25% 31%
GRU 1,271 27% 29%
CNN 980 16% 38%
SVM 2,594 62% 25%

IET Information Security 13

guaranteeing the genuineness of the outcomes. The outcomes
of this comparison can be observed in Table 7.

In the present section of the comparison, the model com-
bining BERT and LSTM proposed in this article does not
achieve the best performance, but it still ranks among the top
performers. Among these models, the SVM model, despite
having the highest computational efficiency in the same exper-
imental environment, experiences challenges due to its poor
generalization ability. Consequently, its usage potentially com-
promises safety.

Considering all aforementioned comparative test results,
it is believed that the method proposed in this article exhibits
distinct advantages over other detection models in terms of
detection accuracy, practical performance, and computational
efficiency. Consequently, the method suggested in this article
holds greater potential and promising application prospects
in the field of security.

5.2. Outlooks. As individuals and the general public observe a
growing emphasis on network security, diverse defense and
detection systems are perpetually advancing. Ultimately, our
strategies will be consolidated and incorporated into software
or hardware to fortify the security of cyperspace. The future
applications can be divided into two main categories: the first
category involves examining the system log file in order to
determine if it has been targeted by an attack, and identifying
the specific area of vulnerability that requires strengthening.
The second category consists of deploying a protective system
between the main system and the user, similar to a firewall, to
filter out data packets that contain harmful payloads, effec-
tively safeguarding the main system from potential attacks.

In order to achieve the objective, it is imperative to
improve the dataset by integrating the attributes of diverse
attacks. This includes features like HTML tags used in XSS
attacks (“<script >”), system commands employed in com-
mand injection (“sys”, “ping”), etc. Simultaneously, modifi-
cations are made to the network structure so that it can
directly predict the attack type. Finally, it is essential to incor-
porate functions capable of decoding and sanitizing the orig-
inal data prior to inputting it into the model.

In the future, we intend to integrate our method with
emerging technologies such as homomorphic encryption
[37], federated learning, and zero-knowledge proof (ZKP)
[38] to bolster its security, scalability, and detection capabilities.

6. Conclusion

Compared with the existing technology, since the BERT
model dynamically generates word vectors and sentence vec-
tors, and then combines the two during prediction, the vec-
tor values mapped to the same word in different sentences
are different. For keywords containing malicious features in
the sample, such as “union”, when used as a word normally
input by the user, the possibility of categorizing the sample as
malicious is reduced. Hence, it possesses the benefits of a
diminished occurrence of false-positive alerts and an ele-
vated level of precision. The Wordpiece word segmentation
algorithm is employed, enabling effective mitigation of out-
of-vocabulary (OOV) issues, and low-frequency words can
also be trained well. It has a high recall rate and low false
negative rate for detecting malicious sentences with uncom-
mon words and personal characteristics of the attacker.

In conclusion, this study presents a model for SQL injec-
tion attack statement detection, integrating BERT and LSTM
methodologies. The model showcases superior precision
rates and is notably adept at identifying malevolent state-
ments characterized by rare lexicon and unique attacker sig-
natures. Future research initiatives will aim to refine this
model, enhancing its capability to discern and elevate the
performance of injection statement recognition. Moreover,
efforts will be directed towards expanding its application
within the broader domain of network security research.

Data Availability

Httpparams dataset open source database were analyzed in
this study. This data can be found here: https://github.com/
Morzeux/HttpParamsDataset. The source code of the BERT
model from Google Github open source code can be found
here: https://github.com/google-research/bert. The processed
data required to reproduce the experiment is available on
request from the corresponding author as the data also forms
part of an ongoing study.

Additional Points

Limitations. The experimental results clearly illustrate the
advantages of this approach in extracting SQL injection
statements and identifying SQL injections. However, our
research identifies several limitations that necessitate further

TABLE 7: This is a table, T. Comparison of resources consumed by different model training and test.

Model Environment Time of training Time of test

BERT-LSTM

Python3.5/GPU

204.3 s 51.7 s
Word2Vec-LSTM 198.6 s 32.2 s
GRU 247.1 s 49.9 s
CNN 279.5 s 76.2 s

SVM Python3.5/CPU 143.8 s 18.2 s

BERT-LSTM

Python2.7/CPU

407.6 s 142.6 s
Word2Vec-LSTM 392.3 s 123.1 s
CNN 430.7 s 158.7 s
GRU 467.2 s 182.9 s

14 IET Information Security

https://github.com/Morzeux/HttpParamsDataset
https://github.com/Morzeux/HttpParamsDataset
https://github.com/Morzeux/HttpParamsDataset
https://github.com/google-research/bert

improvement. The model demonstrates insufficient accuracy
in detecting payloads that have undergone multiple encod-
ings to bypass censorship. Moreover, attackers often employ
multiple attack techniques concurrently. However, this method
proves ineffective in identifying other forms of injection attacks,
such as XSS and system command injections. Lastly, it is cru-
cial to make additional adjustments to the dataset and network
hyperparameters to enhance both the model’s detection accu-
racy and computational efficiency.

Conflicts of Interest

The authors declare that there is no conflict of interest regard-
ing the publication of this paper.

References

[1] A. Salam, F. Ullah, F. Amin, and M. Abrar, “Deep Learning
techniques for web-based attack detection in industry 5.0: a
novel approach,” Technologies, vol. 11, no. 4, Article ID 107,
2023.

[2] OWASP, “OWASP top ten,” 2021, https://owasp.org/Top10/.
[3] M. Alghawazi, D. Alghazzawi, and S. Alarifi, “Detection of

SQL injection attack using machine learning techniques: a
systematic literature review,” Journal of Cybersecurity and
Privacy, vol. 2, no. 4, pp. 764–777, 2022.

[4] A. Katole, S. Swati, and T. Vilas, “Detection of SQL injection
attacks by removing the parameter values of SQL query,” in
Proceedings of 2018 2nd IEEE International conference on
inventive systems and control (ICISC), pp. 736–741, IEEE,
Coimbatore, India, 2018.

[5] D. Chen, Q. Yan, C. Wu, and J. Zhao, “SQL injection attack
detection and prevention techniques using deep learning,”
Journal of Physics: Conference Series, vol. 1757, no. 1,
Article ID 012055, 2021.

[6] L. Demetrio, A. Valenza, G. Costa, and G. Lagorio, “WAF-A-
MoLE: evading web application firewalls through adversarial
machine learning,” in Proceedings of the 35th Annual ACM
Symposium on Applied Computing, pp. 1745–1752, ACM,
Brno, Czech Republic, 2020.

[7] S. Manmadhan and M. Thankappan, “A method of detecting
SQL injection attack to secure web applications,” International
Journal of Distributed and Parallel Systems, vol. 3, no. 6,
pp. 1–8, 2012.

[8] A. Rai, M. M. I. Miraz, D. Das, H. Kaur, and Swati, “SQL
injection: classification and prevention,” in Proceedings of 2021
2nd IEEE International Conference on Intelligent and Manage-
ment (ICIEM), pp. 367–372, IEEE, London, United Kingdom,
2021.

[9] M. A. Azman, M. F. Marhusin, and R. Sulaiman, “Machine
learning based technique to detect SQL injection attack,”
Journal of Computer Science, vol. 17, no. 3, pp. 296–303, 2021.

[10] X. Fu, X. Lu, B. Peltsverger, S. Chen, K. Qian, and L. Tao, “A static
analysis framework for detecting SQL injection vulnerabilities,” in
Proceedings of the 31st Annual International Computer Software
and Applications Conference, vol. 1, pp. 87–97, IEEE, Beijing,
China, 2007.

[11] A. Khalid and M. M. F. Yousif, “Dynamic analysis tool for
detecting SQL injection,” International Journal of Computer
Science and Information Security (IJCSIS), vol. 14, no. 2,
pp. 224–232, 2016.

[12] J. Prakash and G. Saravanan, “SQLID: SQL injection detection
based on static and dynamic analysis,” Transylvanian Review,
no. 1, 2016.

[13] M. Nasereddin, A. ALKhamaisehat, M. Qasaimeh, and R. Al-
Qassas, “A systematic review of detection and prevention
techniques of SQL injection attacks,” Information Security
Journal: A Global Perspective, vol. 32, no. 4, pp. 252–265, 2023.

[14] D. Kar, S. Panigrahi, and S. Sundararajan, “SQLiGoT:
detecting SQL injection attacks using graph of tokens and
SVM,” Computers & Security, vol. 60, pp. 206–225, 2016.

[15] F. R. Abdulhamza and R. J. S. Al-Janabi, “SQL injection
detection using 2D-convolutional neural networks (2D-
CNN),” in Proceedings of 2022 International Conference on
Data Science and Intelligent Computing (ICDSIC), pp. 212–
217, IEEE, Kerbala, Iraq, 2022.

[16] C. Zhao, S. Si, T. Tu, Y. Shi, and S. Qin, “Deep-learning based
injection attacks detection method for HTTP,” Mathematics,
vol. 10, no. 16, Article ID 2914, 2022.

[17] K. R. Jothi, S. B. Balaji, N. Pandey, P. Beriwal, and A. Amarajan,
“An efficient SQL injection detection system using deep
learning,” in 2021 International Conference on Computational
Intelligence and Knowledge Economy (ICCIKE), pp. 442–445,
IEEE, Dubai, United Arab Emirates, 2021.

[18] W. Zhang, Y. Li, X. Li et al., “Deep neural network-based SQL
injection detection method,” Security and Communication
Networks, vol. 2022, Article ID 4836289, 9 pages, 2022.

[19] M. Zivkovic, M. Tair, V. K, N. Bacanin, Š. Hubálovský, and
P. Trojovský, “Novel hybrid firefly algorithm: an application to
enhance XGBoost tuning for intrusion detection classifica-
tion,” PeerJ Computer Science, vol. 8, Article ID e956, 2022.

[20] I. S. Crespo-Martínez, A. Campazas-Vega, Á. M. Guerrero-
Higueras, V. Riego-DelCastillo, C. Álvarez-Aparicio, and
C. Fernández-Llamas, “SQL injection attack detection in
network flow data,” Computers& Security, vol. 127, Article ID
103093, 2023.

[21] S. Shah, A. Munir, A. Waheed et al., “Enhancing security and
efficiency in underwater wireless sensor networks: a lightweight
key management framework,” Symmetry, vol. 15, no. 8,
Article ID 1484, 2023.

[22] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT:
pre-training of deep bidirectional transformers for language
understanding,” in Proceedings of Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, vol. 1, pp. 4171–
4186, Association for Computational Linguistics, Minneapolis,
Minnesota, USA, 2019.

[23] F. A. Acheampong, H. Nunoo-Mensah, and W. Chen,
“Transformer models for text-based emotion detection: a
review of BERT-based approaches,” Artificial Intelligence
Review, vol. 54, no. 8, pp. 5789–5829, 2021.

[24] B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C. J. Kuo,
“Evaluating word embedding models: methods and experi-
mental results,” APSIPA Transactions on Signal and Informa-
tion Processing, vol. 8, no. 1, Article ID e19, 2019.

[25] M. Farouk, “Measuring text similarity based on structure and
word embedding,” Cognitive Systems Research, vol. 63, pp. 1–
10, 2020.

[26] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural
network regularization,” Eprint Arxiv, 1409.2329, 2014.

[27] E. Borandag, “Software fault prediction using an RNN-based
deep learning approach and ensemble machine learning
techniques,” Applied Sciences, vol. 13, no. 3, Article ID 1639,
2023.

IET Information Security 15

https://owasp.org/Top10/
https://owasp.org/Top10/

[28] C. Wang, J. Feijun, and Y. Hongxia, “A hybrid framework for
text modeling with convolutional RNN,” in Proceedings of
23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data MIning, pp. 2061–2069, ACM, Halifax,
Canada, 2017.

[29] A. Ajitha, M. Goel, M. Assudani, S. Radhika, and S. Goel,
“Design and development of residential sector load prediction
model during COVID-19 pandemic using LSTM based RNN,”
Electric Power Systems Research, vol. 212, Article ID 108635,
2022.

[30] B. M. Ehsan, N. Shahla, A.Moloud, C. Erik, and A. U. Rajendra,
“ABCDM: an attention-based bidirectional CNN-RNN deep
model for sentiment analysis,” Future Generation Computer
Systems, vol. 115, pp. 279–294, 2021.

[31] G. Saon, Z. Tueske, D. Bolanos, and B. Kingsbury, “Advancing
RNN transducer technology for speech recognition,” inProceedings
of ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5654–5658, IEEE,
Toronto, ON, Canada, 2021.

[32] S. Hochreiter and J. Jürgen, “Long short-term memory,”
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[33] C. Staudemeyer and M. Eric, “Understanding LSTM–a tutorial
into long short-term memory recurrent neural networks,”
Eprint Arxiv.1909.09586, 2019.

[34] R. Yacouby andD. Axman, “Probabilistic extension of precision,
recall, and f1 score formore thorough evaluation of classification
models,” in Proceedings of Association for Computational
Linguistics First Workshop on Evaluation and Comparison of
NLP Systems, pp. 79–91, Association for Computational
Linguistics, Red Hook, NY, United States, 2020.

[35] J. Liang, “Confusion matrix: machine learning,” POGIL
Activity Clearinghouse, vol. 3, no. 4, 2022.

[36] P. C. Wen, C. W. He, W. Xiong, and J. H. Liu, “SQL injection
detection technology based on BiLSTM-attention,” in Proceed-
ings of 2021 4th IEEE International Conference on Robotics,
Control and Automation Engineering (RCAE), pp. 165–170,
IEEE, Wuhan, China, 2021.

[37] A. Salam,M. Abrar, F. Ullah, I. A. Khan, F. Amin, and G. S. Choi,
“Efficient data collaboration using multi-party privacy preserving
machine learning framework,” IEEE Access, vol. 11, pp. 138151–
138164, 2023.

[38] A. Salam, M. Abrar, F. Amin et al., “Securing smart
manufacturing by integrating anomaly detection with zero-
knowledge proofs,” IEEE Access, vol. 12, pp. 36346–36360,
2024.

16 IET Information Security

