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Two-party private set intersection (PSI) plays a pivotal role in secure two-party computation protocols. The communication cost in
a PSI protocol is normally influenced by the sizes of the participating parties. However, for parties with unbalanced sets, the
communication costs of existing protocols mainly depend on the size of the larger set, leading to high communication cost. In this
paper, we propose a low communication-cost PSI protocol designed specifically for unbalanced two-party private sets, aiming to
enhance the efficiency of communication. For each item in the smaller set, the receiver queries whether it belongs to the larger set,
such that the communication cost depends solely on the smaller set. The queries are implemented by private information retrieval
which is constructed with trapdoor hash function. Our investigation indicates that in each instance of invoking the trapdoor hash
function, the receiver is required to transmit both a hash key and an encoding key to the sender, thus incurring significant
communication cost. In order to address this concern, we propose the utilization of a seed hash key, a seed encoding key, and a
Latin square. By employing these components, the sender can autonomously generate all the necessary hash keys and encoding
keys, obviating the multiple transmissions of such keys. The proposed protocol is provably secure against a semihonest adversary
under the Decisional Diffie–Hellman assumption. Through implementation demonstration, we showcase that when the sizes of the
two sets are 28 and 214, the communication cost of our protocol is only 3.3% of the state-of-the-art protocol and under 100Kbps
bandwidth, we achieve 1.46x speedup compared to the state-of-the-art protocol. Our source code is available on GitHub: https://
github.com/TAN-OpenLab/Unbanlanced-PSI.

1. Introduction

Private set intersection (PSI) protocol is a special case of
secure two-party computation, which allows the receiver
and the sender, holding the input sets X and Y, respectively,
to compute X ∩ Y without revealing anything else (other
than upper bounds on their sizes) [1, 2]. PSI has served
many privacy-preserving applications including COVID-19
risk scoring [3], contact tracing [4], advertising conversion
rate calculation [5], and mobile privacy contact discovery [6].

The first PSI protocol is based on Diffie–Hellman (DH)
key exchange algorithms [7, 8]. After that, PSI has been exten-
sively studied and many protocols have been proposed to
improve the performance, consisting of communication per-
formance and computation performance. The current PSI
protocols are largely based on two technologies, namely,
DH key exchange [2, 7–10] and oblivious transfer (OT)

[3, 11–23]. Among OT-based protocols, some are based on
cuckoo hashing [11–19], and some are based on oblivious key-
value stores (OKVS). In addition, some protocols are based on
RSA [3, 20–23] and homomorphic encryption [24, 25].

When measuring the efficiency of a PSI protocol, the
communication cost and the computation cost are two major
aspects [22]. Recent evidence suggests that communication
costs are far more important than computation costs [2].
Existing PSI protocols primarily focus on the intersection
of two sets with similar sizes and have obtained low commu-
nication costs. However, it is significant to note that the
communication costs in these protocols are influenced by
the sizes of both sets. This is due to the linear relationship
between the communication cost and the size of each party’s
set. Consequently, for unbalanced set sizes, the larger set size
exerts a greater impact on the overall communication costs.
Chen et al. [25] considered the effect of unbalanced sets on
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the communication cost and proposed a PSI protocol based
on fully homomorphic encryption (FHE) such that the num-
ber of messages sent by each party had a linear relationship
with the size of the smaller set. However, FHE requires a large
ciphertext space, bringing about a room for improvement.

PSI protocols for unbalanced sets have considerable
application scenarios. One significant application scenario
is private contact discovery [6], where a user of a mobile
application wishes to identify which of his friends in his
address book are also users of the same application. How-
ever, the server is not allowed to reveal its users’ information
and the user not want to submit his or her address book. In
this case, the server has a large set with all the users, while the
mobile side has a relatively small set. Another well-known
application scenario of unbalanced PSI protocol is advertis-
ing conversion rate calculation [5] where the ad supplier
knows the users who have seen a particular ad, and the
company knows who made a purchase. The two parties are
unwilling to expose the underlying data, but both parties
would still like to compute how many users both saw an
ad and made a corresponding purchase. According to our
observation, unbalanced PSI protocol would be utilized in
authentication schemes [26–28] to match authentication
information between two users who do not trust each other.

Therefore, we aim to construct a PSI protocol specifically
tailored for unbalanced sets, eliminating the effect of the
larger set size on the communication cost. By taking this
approach, the communication cost is solely determined by
the smaller set. The rationale for our research is derived from
this motivation.

Focusing on the above motivation, we propose a PSI
protocol based on trapdoor hash (TDH) function and Latin
square for the intersection of a larger set (sender) and a
smaller set (receiver).

Inspired by Döttling et al. [29] and Chase et al. [30], we
construct private information retrieval (PIR) by TDH to
realize low communication cost. Following this way, the
number of invoking of PIR equals to the size of the smaller
set. However, the hash key and the encoding key should be
sent from the receiver to the sender for each PIR, resulting in
large communication cost. To address this issue, we design a
seed hash key, a seed encoding key, and a Latin square which
are sent by the receiver. The sender can generate all the hash
keys and encoding keys by himself from the seed keys. Intui-
tively, the seed hash key, the seed encoding key, the hash
keys, and the encoding keys are vectors with the same
dimension. We permute the items in the seed hash key to
obtain each hash key and permute the items in the seed
encoding key to obtain each encoding key, where the permu-
tation rule is defined in the Latin square.

The main contributions of this paper are as follows:

(1) We design a permutation rule according to the Latin
square, by which the sender can generate a range of
hash keys and encoding keys for all rounds of TDH
function from only one seed hash key and one seed
encoding key. The communication cost of transmit-
ting multiple keys is reduced to transmitting two seed

keys. The seed keys and the Latin square design do
not involve the items of the two sets, thus it can be
performed in the offline phase.

(2) In the process of PSI, the smaller set is taken as the
ergodic source, and the larger set is taken as the veri-
fication source. Every time an item of the smaller set is
calculated, the TDH function is called once to verify
whether it belongs to the intersection by retrieving it
from the larger set. Consequently, the communication
cost depends only on the smaller set, and this work is
valid for unbalanced sets.

(3) We implement out protocol and public it on GitHub:
https://github.com/TAN-OpenLab/Unbanlanced-PSI
.

The proposed protocol is provably secure against a semi-
honest adversary under the Decisional Diffie–Hellman
(DDH) assumption. Performance analysis demonstrates
that the proposed protocol enhances the communication
performance in PSI protocols in terms of unbalanced sets
where the size ratio of two sets exceeds 8.

2. Related Work

Since its introduction, many techniques have been proposed
to improve PSI’s performance. In this section, we discuss the
state-of-the-art PSI protocols and focus on the communica-
tion cost of them. From here on, we assume that the receiver’s
set has n1 items, and the sender’s set has n2 items ðn1 ≤ n2Þ :,
where each item has σ-bit length. We let λ and κ denote the
statistical and computational security parameters, respectively.

Early PSI protocols based on DH have been around since
1986 [7, 8] and proven secure against semihonest adversaries.
Current PSI protocol can be divided into two categories. The
first category is semihonest PSI protocols [11–13, 18–20, 22, 25],
and the second category is malicious PSI protocols
[2, 3, 14–16, 21, 23].

In semihonest protocols, the parties have to follow the exact
prespecified protocol, which implies that they cannot change
their inputs or outputs. PSZ14 [11] is based on private equality
test, where the receiver and the sender, respectively, insert all
their items in the bins by cuckoo hashing and all hash functions.
The using of cuckoo hashing reduces the comparisons of equal-
ity test from Oðn1n2Þ : to Oðn1logn2=loglogn2Þ :. The receiver
compares σ bits for each comparison. PSSZ15 [13] is based on
PSZ14 [11] and permutation-based hashing technique, which
splits each item into left part with logn1 bits length and right
part with ðσ − logn1Þ : bits length. Only the right part is com-
pared, so ðσ − logn1Þ : bits are compared for each comparison.
PSSZ15 [13] and PSZ14 [11] are based on the OT extension
protocol proposed by KK13 [31]. KKRT [12] improved KK13
[31] by extending 1-out-of-256 OT to 1-out-of-1 OT and pro-
posed batch, related-key oblivious pseudorandom function
(OPRF). Their PSI protocol is 3.1–3.6× faster than PSSZ15
[13]. CLR17 [25] used FHE and improved it by batching, win-
dowing, and modulus switching. They constructed a PSI proto-
col for unbalanced sets and achieved a communication overhead
of Oðn1logn2Þ :. PRTY19 [20] improved the OT extension
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protocol proposed by IKNP03 [32], and proposed lightweight
PSI based on sparse OT extension. The sender generates a poly-
nomial P using its set and sends P to the receiver. The receiver
computes the corresponding values of his items in P. For each
item in the intersection, the results computed by the two parties
will be the same. The communication cost of PRTY19 [20] is
40%–50% lower than that of KKRT [12], so it is targeted at low-
bandwidth situations. However, the computation of PRTY19
[20] is not as efficient as KKRT [12], so KKRT is faster at high
bandwidth. CM20 [22] achieves a better balance between KKRT
[12] and PRTY19 [20]. Single-point OPRF of KKRT [12] is
extended to multipoint OPRF, where the key of PRF is a matrix
and a single PRF will compare all the items.

In malicious protocols, the parties may not follow the
exact prespecified protocol, thus the inputs from both parties
need to be verified. On the basis of KKRT [12], PRTY20 [21]
added homomorphic function as linear error correcting code
[16] and proposed a malicious security PSI protocol PaXoS,
which was almost as fast as KKRT [12]. RT21 [2] presented a
construction for a batched OPRF based on vector-OLE and
the PaXoS data structure. GPR21 [23] considered that cuckoo
hashing will lead to a failure probability p of OKVS structure.
They therefore showed novel techniques to improve OKVS
such that the failure probability was reduced to pc for a con-
stant c. RT21 [2] pointed out that OT-based PSI protocols
required a certain number of base OTs first, which applies to
large sets. On small sets, DH-PSI protocols are less costly, so
they proposed a DH-PSI-based PSI for small sets, and reduced
the communication cost by interpolating polynomials.

3. Preliminaries

3.1. PSI Functionality.We use the PSI functionality described
in Chase and Miao’s [22] study. PSI allows two parties to
compute the intersection of their data sets without revealing
any additional information, as shown in Figure 1.

3.2. Security Model. We use the security model described in
David et al.’s [1] and Goldreich’s [33] studies. PSI is a cryp-
tographic protocol of secure two-party computation. There
are two adversarial models which are usually considered,
namely semihonest model and malicious model. A semihon-
est party is one who follows the protocol properly with the
exception that it keeps a record of all its intermediate com-
putations and may try to learn as much as possible from the
messages they receive from other parties. A malicious adver-
sary may deviate arbitrarily from the prescribed protocol in
an attempt to violate security. The semihonest model and the
malicious model are designed for different application sce-
narios, thus both of them have practical value and research

value. Our protocol is designed under the semihonest model
in this paper.

We say the protocol is secure if we can construct simu-
lators who can generate the outputs without the information
of the private sets. The outputs should be indistinguishable in
probabilistic polynomial time from those generated by the
real sender and receiver, respectively. This means that even if
a semihonest adversary corrupts the sender or the receiver, it
cannot obtain any meaningful information about the pri-
vate sets.

3.3. Decisional Diffie–Hellman Assumption. Our protocol
relies on the DDH assumption [34], which we state in the
following.

Definition 1. Decisional Diffie–Hellman (DDH) assumption.
A (prime-order) group generator is an algorithm G that
takes as an input a security parameter 1λ and outputs ðG;
p; gÞ :. G is a multiplicative cyclic group of order p, and with
generator g, where p is always a prime number. We say that
G satisfies the DDH assumption (or is DDH hard) if for any
PPT adversary A, it holds that:

Prj A G; p; gð Þ; ga1 ;ga2 ;ga1a2ð Þð Þ ¼ 1½ �
−Pr A G; p; gð Þ; ga1 ;ga2 ;ga3ð Þð Þ ¼ 1½ �j ¼ negl λð Þ;

ð1Þ

where ðG; p;gÞ :

$←G and a1; a2; a3
$←Zp.

3.4. Latin Square. The definition of Latin square is similar
to [35].

Definition 2. Latin square. Let n be a positive integer, and let
Zn be the set of n distinct elements. A Latin square S of order
n on Zn is an n-by-nmatrix, where each element of S belongs
to Zn and each element of Zn occurs once in each row and
once in each column of S.

In this paper, the following Latin square design method is
used to generate an n-order Latin square S. Let the element of
the ath row and the bth column be Sa;b.

Step 1. Randomly shuffle the n elements in f0;…; n− 1g:

and let the result be row 0 of S as S0;⋅ ¼ðS0;0;…;
S0;n−1Þ :.

Step 2. Generate other elements of S. For each element in
row a and column b:

Sa;b ¼ S0;b þ a
À Á

mod n; ð2Þ

where a2f1; 2;…; n− 1g:, b2f0; 1;…; n− 1g:.

According to the Latin square design above, we can
obtain a Latin square of order n. Each row Sa;⋅ can be seen
as an arrangement of the elements of S0;⋅. Therefore, we
regard S0;⋅ and Sa;⋅ as the permutation rule by which we
can permute a matrix G to a new matrix G0. Let G be an

Parameters: Receiver’s input set size n1, sender’s input set size n2.
Inputs: Receiver inputs a set of items X = {x0, … , xn1 – 1}, where xi ∈ ℤn.
Sender inputs a set of items Y = {y0, … , yn2 – 1}, where yi ∈ ℤn.
Output: Receiver receives the set intersection X ∩ Y.

FIGURE 1: PSI ideal functionality.
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arbitrary matrix with n columns. For each m2Zn, let the
column m of G be the column m0 of G0 if S0;m ¼ Sa;m0 . Then,
G0 is a new matrix with n columns

3.5. Private Information Retrieval from Trapdoor Hash
Function. TDH function was proposed by Döttling et al.
[29]. In this section, we introduce a PIR [36] scheme
using TDH.

In PIR, the sender has a private bitstring y¼f0; 1gn of
length n, and the receiver wants to know the kth bit y½k� :. The
sender will not reveal any information except y½k� :. LetG be a
multiplicative cyclic group of prime order p, and g is a gen-
erator of the group.

Receiver samples the trapdoor t; v $←Zp and samples an
n-dimensional vector of random group elements hk¼fg0;
…;gn−1g :

$←Gn as the seed hash key, as shown in Figure 2.
Then, computes a corresponding encoding key as ek¼fgt0;
…;gtkg

v;…;gt
n−1g:, where for every i2f0;…; n− 1g:, gt

i is gi

to the power t. The only exception is gt
kg

v which is set as gtk
times gv. Receiver sends gt , hk, and ek to sender. Sender
samples r $←Zp and calculates the hash value h and the encod-
ing value e, as follows:

h¼ gr∏
n−1

i¼0
hk i½ �y i½ �; ð3Þ

e¼ gtð Þr∏
n−1

i¼0
ek i½ �y i½ �: ð4Þ

Collision resistance of Function (3) can be routinely
established from the discrete logarithm assumption in G.

Then, the sender sends h and e to the receiver, who
verifies whether e¼ ht or e¼ htgv, where e¼ ht means y½k�
: ¼ 0 and e¼ htgv means y½k� : ¼ 1. For each item in the set of
the receiver, the two parties invoke PIR to compute whether
it belongs to the set of the sender.

4. The Proposed PSI Protocol

The proposed PSI protocol contains offline phase and online
phase. In the offline phase, the PSI preparation is performed
which does not involve the set items of two parties. In the
online phase, two parties complete PSI with their private sets.
Receiver and sender hold the private sets X¼fx0;…; xn1−1g:

and Y ¼fy0;…; yn2−1g :, respectively. Let F¼f0;…; n− 1g: be
the input domain, containing all the possible items of X and

Y . The parameters of the proposed protocol are shown in
Table 1.

The framework of the proposed protocol is described in
Figure 3. In the offline phase, receiver obtains row 0 of Latin
square S0;⋅ by shuffling f0;…; n− 1g:, samples the trapdoor t;
v $←Zp, the initial column number k $←Zn and the seed matrix
G. Then receiver sends S0;⋅, G, and gt to sender.

In the online phase, both parties employ PIR to deter-
mine whether each item xi in the receiver’s set X belongs to
the sender’s set Y . First, the receiver maps the set item xi to
the specific row number ci of Latin square and sends it to the
sender. Then, the sender generates the cith row Sci;⋅ of Latin
square, which satisfies that Sci;xi ¼ S0;k. The sender takes S0;⋅
and Sci;⋅ as the permutation rule to permute the seed key
matrix G to the key matrix Gi of xi. Then, the sender encodes
Gi to obtain the hash value hi and the encoding value ei of xi,
and send them to the receiver. Finally, the receiver decodes
ðhi; eiÞ : and obtains whether xi belongs to X ∩ Y .

4.1. The Offline Phase. Let algorithm G be a prime-order
group generator that takes as an input a security parameter
1λ and outputs ðG; p;gÞ:, where G is a multiplicative cyclic
group, order p is a prime number, and g is the generator. The
algorithm Shuffle() takes a vector as an input and shuffles all
the elements in the vector to form a new vector.

The offline phase consists of the following steps.

Step 1. Using the method described in Section 3.4, the
receiver generates an n-dimensional vector S0;⋅ ¼
shuffleð0;…; n− 1Þ : and sends it to sender.

Step 2. The receiver samples the trapdoor t; v $←Zp, and
samples the initial column number k $←Zn.

hk g0

g t
0 g t

1 g t
2 g t

k
gv g t

n – 1

1 0

e = ht or ht gv

1 1 0

g1 g2 gk gn – 1

y

ek
n – 1

h = gr   Π 
         

hk[i]y[i]
n – 1

i = 0

i = 0

…

…

…

…

…

… e = (gt)r   Π
         

ek[i]y[i]

FIGURE 2: PIR from trapdoor hash function.

TABLE 1: The parameters of the proposed PSI protocol.

Parameter Definition

X The receiver’s set
Y The sender’s set
xi The ith item of X
yj The jth item of Y
n1 The sizes of X
n2 The sizes of Y
F The input domain
n The size of F and the order of Latin square
ci The row number of the Latin square related to xi
ðhi; eiÞ : The hash value and the encoding value of xi
ri The result bit of ðhi; eiÞ:

S Latin square, a n× n matrix
Si The ith row of S, an n-dimensional vector

G The seed key of the receiver, a 2× nmatrix, consisting
of the hash key and the encoding key

ðt; vÞ: The trapdoor of the receiver
k The initial column number
Gi The key related to xi, a 2× n matrix
λ Statistical security parameter
κ Computational security parameter
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Step 3. The receiver generates the seed key matrix G←
GenSeedKeyðt; v; kÞ :. In detail, the receiver sam-
ples an n-dimensional vector of random group
elements as the seed hash key ðg0;…;gn−1Þ :

$←Gn.
Then calculates the seed encoding key as follows:

u0;…; uk;…; un−1ð Þ ¼ gt0;…;gtkg
v;…;gt

n−1

À Á
; ð5Þ

where for every i2f0;…; n− 1g:, ui ¼ gti . The only exception
is ui which is set as gtkg

v . Let the seed hash key be the 0th row
of matrix G, while the seed encoding key is taken as the first
row of matrix G. We have the equation as folllows:

G¼ g0 … gn−1
u0 … un−1

 !
: ð6Þ

Then, the receiver sends ðS0;⋅;G;gtÞ : to the sender.

4.2. The Online Phase. In the online phase, the receiver and
the sender calculate the intersection of their sets. There are n1
items in receiver’s set X¼fx0;…; xn1−1g : ⊂ F, and n2 items in
sender’s set Y ¼fy0;…; yn2−1g : ⊂ F. For each item xi, both
parties invoke PIR to determine whether it belongs to the
sender’s set Y .

Recall that the receiver sends the seed key matrixG to the
sender in the offline phase, and gv is in the kth column of G.
To calculate xi, we should permute the columns of G to
obtain Gi such that gv is in the xthi column of Gi. Each row
in the Latin square contains all the items in Zn in different

order. Let row ci of Latin square be the target row such that
Sci;xi ¼ S0;k. The process to obtain ci is shown in Algorithm 1.

Let Sci ; ⋅ ←GenLSðci; S0;⋅Þ : be an algorithm which calcu-
lates row ci by row 0 of the Latin square. For each column b:

Sci;b ¼ S0;b þ ci
À Á

mod n: ð7Þ

We can obtain a permutation rule from row S0;⋅ and row
Sci;⋅. For each column mðm2ZnÞ : of G, let m0 be the index of
column such that Sci;m0 ¼ S0;m. Then, set the m0th row of Gi

equal to the mth column of G, namely ðG0
0;m0; G0

1;m0ÞT ¼
ðG0;m; G1;mÞT . The process is shown in Algorithm 2.

The 0th row of matrix Gi is the hash key, while the first
row of matrix Gi takes as the encoding key. Let ðhi; eiÞ : ←
EncodeðGi;Y ;gtÞ : be the algorithm which takes the hash
value and the encoding value as output. More specifically,

Receiver Sender

Output:

Offline

$$

Online

Parameters : input domain  = {0, ... , n – 1}

S0,‧ ← Shuffle (0, ... , n – 1)

for  i ∈ {0, ... , n1 – 1}

X ∩ Y = {xi ⃒ri = 1, x1 ∈ X}

S0,‧, G, gt

Sample t, v ← ℤp, k ← ℤn

G ← GenSeedKey (t, v, k)

X = {x0, ... , xn1 – 1} ⊂ 

ci = Map(S0,., xi, k)

Sci, · ← GenLS (ci, S0,.)

Gi ← GenKey (G, Sci, S0,.)
(hi, ei) ← Encode (Gi, Y, gt)

ci

(hi, ei)
ri = Decode(hi, ei, t, gv)

Y = {y0, ... , yn2 – 1} ⊂ 

(, p, g)cyclic group

FIGURE 3: The framework of the proposed PSI protocol.

Input: S0,k, xi, k

Output: ci
a= 0

While Sa;xi ≠ S0;k
a= a+ 1

Sa;xi ¼ðSa−1;xi þ 1Þ: mod n

EndWhile

ci= a

ALGORITHM 1: Map().
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the sender samples r $←Zp, and calculates the hash value and
the encoding value, as follows:

hi ¼ gr ∏
n2−1

j¼0
Gi

0;y j
; ð8Þ

ei ¼ gtð Þr ∏
n2−1

j¼0
Gi

1;y j
: ð9Þ

Then, sender sends ðhi; eiÞ : to receiver.
Observe that when x2Y , then ei is equal to htigv, and

that otherwise, it is equal to hti . Let ri ¼Decodeðhi; ei; t;gvÞ :

be the algorithm which decodes ðhi; eiÞ : by the trapdoor and
outputs the result bit ri. Let ri denotes the three cases above:

ri ¼
0; ei ¼ hti
1; ei ¼ htig

v

?; other

8><>: : ð10Þ

In summary, the steps of the online phase are as follows.
For each item xi 2X:

Step 1. The receiver calculates ci from xi by algorithm
Map(), and sends ci to the sender.

Step 2. The sender generates row ci by algorithm GenLS
(), and generates the key matrix Gi by algorithm
GenKey(). Therefore, the sender obtains the hash
key and the encoding key of xi.

Step 3. The sender calculates the hash value hi and the
encoding value ei by Encode() and sends them to
the receiver.

Step 4. The receiver decodes ðhi; eiÞ : and obtains whether
xi belongs to X ∩ Y .

For every item in X, the receiver and the sender repeat
the steps above and obtain X ∩ Y as follows:

X ∩ Y ¼ xijri ¼ 1; xi 2 Xf g: ð11Þ

5. Example Analysis

In this section, we offer an illustrative instance of the proposed
PSI protocol aimed at showcasing its practical feasibility.

Let F¼f0;…; 7g: be the input domain, and n¼ 8 be the
number of elements of F. The receiver and the sender,
respectively, hold sets X¼f6; 1g: and Y ¼f4; 0; 2; 6; 7g: of
sizes n1 ¼ 2 and n2 ¼ 5. Let G¼f1; 51; 52;…; 516g : be a mul-
tiplicative cyclic group of order p¼ 17 and with generator
g¼ 5.

In the offline phase, receiver shuffles ð0;…; 7Þ : and obtains
the 0th row S0;⋅¼ð7; 0; 2; 5; 1; 6; 4; 3Þ: of Latin square S.

After sampling the trapdoor t¼ 3; v¼ 7 and the initial
column number k¼ 4, the receiver samples ð56; 52; 59; 51; 57;
53; 54; 513Þ : from G as the 0th row of the seed key matrix G
and calculates ðu0;…; uk;…; un−1Þ : ¼ð56×3; 52×3; 59×3; 51×3;
57×3þ7; 53×3; 54×3; 513×3Þ :, where for every i2f0;…; 7g :,
ui ¼gt

i . The only exception is ui which is set as gt
kg

v. Let
ðu0;…; uk;…; un−1Þ : be the first row of the seed matrix G. We
have the equation as follows:

G¼
56 52 59 51 57 53 54 513

51 56 510 53 511 59 512 55

0B@
1CA: ð12Þ

Finally, the receiver sends ðS0;⋅;G;gtÞ : to sender.
In the online phase, the receiver determines the items of

set X that also belong to X ∩ Y . For the item x0 ¼ 6, the
receiver finds out c0 ¼ 5 such that Sc0;6 ¼ S0;k, and sends c0
to the sender.

The sender calculates the fifth row ð4; 5; 7; 2; 6; 3; 1; 0Þ: of
S from the 0th row ð7; 0; 2; 5; 1; 6; 4; 3Þ: using Equation (7)
and permutes the column vectors of G according to the 0th

row and the fifth. It is evident that S0;0 ¼ S5;2, thus the second
column of G0 should be the same as the 0th column of G.
Similarly, as S0;1 ¼ S5;7, the seventh column of G0 should
match the first column of G. In the same vein, we have the
following equation:

G0 ¼
54 51 56 59 53 513 57 52

512 53 51 510 59 55 511 56

0B@
1CA: ð13Þ

Then, the sender calculates the hash value h0 ¼
∏n2−1

j¼0 G0
0;Yj

¼G0
0;0G0

0;2G0
0;4G0

0;6G0
0;7 ¼ 55 and the encoding

value e0 ¼∏n2−1
j¼0 G0

1;Yj
¼G0

1;0G0
1;2G0

1;4G0
1;6G0

1;7 ¼ 55, and
sends ðh0; e0Þ : to receiver.

The receiver calculates ht0 ¼ 55×3 ¼ 515 and finds that
e0 ¼ ht0gv, thus r0 ¼ 1 and x0 2Y . For the item x1 ¼ 1, the
receiver finds out c0 ¼ 1 such that Sc0;1 ¼ S0;k and sends c0 to
sender.

Input: G,S0,⋅,Sci,
Output: Gi

For m= 0 to n−1
m′= 0

While Sci,m′≠ S0,m
m′=m′+ 1

EndWhile

Gi
0;m0 ¼G0;m

Gi
1;m0 ¼G1;m

EndFor

ALGORITHM 2: GenKey ().
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Sender permutes the column vectors of G according to
the 0th row ð7; 0; 2; 5; 1; 6; 4; 3Þ: and the first row ð0; 1; 3; 6; 2;
7; 5; 4Þ: of S. We can see that S0;0 ¼ S1;5, thus let the fifth
column of G0 be the 0th column of G. Similarly, since
S0;1 ¼ S1;0, let the 0th column of G0 be the first column of
G. In the same vein, we have the following equation:

G0 ¼
52 57 513 53 59 56 51 54

56 511 55 59 510 51 53 512

0B@
1CA: ð14Þ

Then, the sender calculates h1 ¼∏n2−1
j¼0 G0

0;yj ¼G0
0;0G0

0;2

G0
0;4G0

0;6G0
0;7 ¼ 512, e1 ¼∏n2−1

j¼0 G0
1;yj ¼G0

1;0G0
1;2G0

1;4G0
1;6

G0
1;7 ¼ 52, and sends ðh1; e1Þ : to receiver.
The receiver calculates ht0 ¼ 512×3 ¼ 52 and finds that

e0 ¼ ht0, thus r0 ¼ 0 and x0 ∉ Y . Finally, the receiver obtains
X ∩ Y ¼f6g:.

6. Proof of Security

Our protocol relies on the DDH assumption, which is resis-
tant to semihonest attackers. Relying on the previous theory
of security proof [37–39], this section proves the security of
the proposed protocol against the corrupt sender and the
corrupt receiver, respectively.

6.1. Security against the Corrupt Sender

Theorem 1. The proposed protocol is resistant against the
corrupt sender under the DDH assumption. Formally, we
construct a simulator S1 that takes the inputs ðF;G; p;gÞ:

and the outputs ðG; ciÞ : is indistinguishable from the real
receiver.

Proof. According to the proposed protocol, the messages that
receiver sends to sender are the 0th row of Latin square S0;⋅,
seed key matrix G, and the row number ciði2f0;…; n − 1gÞ:.
S0;⋅ is generated by Shuffle() and thus indistinguishable from
random. Consequently, we focus on the security of seed key
matrix G and the row number ci in this section. We proveS1
is indistinguishable from the real receiver via the following
hybrid argument. □

Hybrid 0: Hybrid 0 is the real interaction. In the offline
phase, receiver generates and sends seed key matrix G hon-
estly. In the online phase, for each item xi of X, receiver
performs Map() and sends the row number ci according to
Section 4.

Hybrid 1: Same as Hybrid 0 except thatG is replaced with
a random matrix G0.

Recall that the 0th row of G is randomly sampled and
indistinguishable from random. The elements in the first row
of G are calculated by the elements in the 0th row. In this
hybrid, the elements in the first row of G are replaced by n
random elements ðu00;…; u0n−1Þ :

$←Gn and have the following
equation:

G0 ¼ g0 … gn−1
u00 … u0n−1

 !
: ð15Þ

Let w2f0;…; n− 1g:, and the matrix:

Hw ¼ g0 … gw−1 gw gwþ1 … gn−1
u00 … u0w−1 u0w uwþ1 … un−1

 !
:

ð16Þ

The 0th row of Hw equals to that of G. For the first row,
the 0th element u00 to the wth element u0w are equal to the 0th

element to the wth element in row 1 of G0, and the ðwþ 1Þth
element uwþ1 to the ðn − 1Þth element un−1 are equal to the
ðwþ 1Þth element to the ðn − 1Þth element of G. Obviously,
Hn−1 ¼G0. When w≥ 1, then:

Hw−1 ¼
g0 … gw−1 gw gwþ1 … gn−1

u00 … u0w−1 uw uwþ1 … un−1

 !
:

ð17Þ

The distinction between Hw−1 and Hw is the element in
the first row and the wth column. When w ≠ k, let a1; a3

$←Zp

and a2 ¼ t. Recall that k and t are only held by the receiver.
Let:

eHw ¼ g0 … gw−1 ga1 gwþ1 … gn−1

u00 … u0w−1 ga3 uwþ1 … un−1

 !
;

ð18Þ

eHw−1 ¼
g0 … gw−1 ga1 gwþ1 … gn−1

u00 … u0w−1 ga1a2 uwþ1 … un−1

 !
:

ð19Þ

We have ga1 ≡
c
gw and ga3 ≡

c
u0w as the four values are

generated randomly. It can be shown that ga1a2 ¼ uw as a2 ¼
t. Consequently, we have Hw ≡

c
H0

w and Hw−1 ≡
c
H0

w−1. Since
ðga1 ;ga2 ;ga1a2Þ : and ðga1 ;ga2 ;ga3Þ : are indistinguishable
under DDH assumption, H0

w ≡
c
H0

w−1. Then, we have
Hw ≡

c
Hw−1. When w¼ 1, just let a3 ¼ða3 − vÞ : mod p, and

the conclusion is well-supported in the same vein. Then,
we can observe the following equation:

G≡
c H0 ≡

c
H1 ≡

c
…≡

c
Hn−1 ¼ G0: ð20Þ

Consequently, G≡
c
G0, namely Hybrid 0 and Hybrid 1

are indistinguishable.
Hybrid 2: Same as Hybrid 0, except we replace all the row

number ðc0;…; cn1−1Þ : with random ðc00;…; c0n1−1Þ :

$←Zn1
n .

We prove Hybrid 1 and Hybrid 2 are indistinguishable in
two aspects. When n1 ¼ 1, namely there is only a single
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element in set X. In this case, the relationship among differ-
ent row numbers is not considered, and we focus on the
security of a single row number. When n1>1, we focus on
the relationship among different row numbers.

As described in Section 4.2, ci is the row number of Latin
square S, which denotes the permutation rule of the column
vectors of seed key matrix G. Now the seed key matrix is
replaced with G0 in Hybrid 1. Let the permutation result of
G0 be Pi and P0

i according to ci and c0i, respectively. Since all
the elements of G0 are random, Pi ≡

c
G0 and P0

i ≡
c
G0. Conse-

quently, when n1 ¼ 1, Pi ≡
c
P0

i as well as ci and c0i are
indistinguishable.

When n1>1, for each z2f0;…; n1 − 1g:, let vector Cz ¼
ðc00;…; c0z; czþ1;…; cn1−1Þ :, where the 0th to the zth elements
are random and the ðz þ 1Þth to the ðn1 − 1Þth elements are
true row numbers. Thus, Cz−1 ¼ðc00;…; c0z−1; cz;…; cn1−1Þ :,
and the only difference between Cz−1 and Cz is the zth ele-
ment. Let ca be an arbitrary element of Cz−1 except cz . Let l¼
cz − ca and l0 ¼ c0z − ca. For an arbitrary column of S, we have
Scz ;d ¼ Sca;d þ l and Sc0z ;d ¼ Sca;d þ l0. Every row of S contains
all the elements of f0;…; n− 1g:, hence there exist elements
equal to Scz ;d and Sc0z ;d , respectively, in the row ca. Let the
column index of Scz ;d in row ca be e, and let the column index
of Sc0z ;d in row ca be e0, namely Scz ;d ¼ Sca;e and Sc0z ;d ¼ Sca;e0 .
Hence:

Sca;e ¼ Sca;d þ l; ð21Þ

Sca;e0 ¼ Sca;d þ l0: ð22Þ

Sca;e and Sca;d can be denoted by the elements of row 0 as
Sca;e ¼ S0;e þ ca and Sca;d ¼ S0;d þ ca. Then plug them into
Equations (21) and (22), and further we have the following
equations:

S0;e ¼ S0;d þ l; ð23Þ

S0;e0 ¼ S0;d þ l0; ð24Þ

where e and e0 are column indexes. Since the 0th row is sorted
randomly, the distinction between e and d is random under
any l, resulting in the following equation:

ca; czð Þ≡c ca; c0zð Þ: ð25Þ

It can be shown that:

cz ≡
c c0z ⇒ Cz ≡

c
C z−1ð Þ

⇒ c0;…; cn1−1
À Á

≡
c
C0 ≡

c
…≡

c
Cn−1 ¼ c00;…; c0n1−1

À Á
:

ð26Þ

Consequently, Hybrid 1 and Hybrid 2 are indistinguishable.
Taken together, simulator S1 can be constructed to sim-

ulate receive, such that the simulation is indistinguishable
from the real interaction. Consequently, the proposed

protocol is resistant against the corrupt sender under the
DDH assumption.

6.2. Security against the Corrupt Receiver
Theorem 2. The proposed protocol is resistant against the
corrupt receiver. Formally, we construct a simulator S2 that
takes the inputs ðF;G; p;g; S0;⋅;G;gtÞ :and the outputs ðhi; eiÞ :

is indistinguishable from the real sender.

Proof. To calculate each item xi in X, the only message that
receiver sends to sender is the hash value and the encoding
value ðhi; eiÞ :. In this section, we construct a simulator who
holds ðt; v; fiÞ :, where fi denotes whether xi belongs to inter-
section. fi ¼ 0 denotes xi does not belong to intersection, and
fi ¼ 1 denotes xi belongs to intersection. We prove simula-
tion is indistinguishable from the real ðhi; eiÞ : via the follow-
ing hybrid argument. □

Hybrid 3: The real interaction. To respond each ci
received from receiver, sender samples r0 $←Zp, generates
and sends the verification information ðhi; eiÞ : honestly as
shown in Equations (8) and (9).

Hybrid 4: Simulator S2 receives ci, and samples r0 $←Zp.
Then calculates:

h0i ¼ gr0; ð27Þ

e0i ¼ gtr0gvfi : ð28Þ

Simulator S2 sends ðh0i; e0iÞ : to the receiver. The corrupt
receiver calculates:

h0ið Þt ¼ gr0t: ð29Þ

When fi ¼ 0, e0i ¼ðh0iÞt , the receiver obtains ri ¼ 0.
When fi ¼ 1, e0i ¼ðh0iÞtgv, the receiver obtains ri ¼ 1. We
have ri ¼ fi, thus receiver cannot distinguish ðhi; eiÞ : and
ðh0i; e0iÞ : from the relationship between h and e. Due to the
collision resistance of TDH function, distinguishing ðhi; eiÞ :

and ðh0i; e0iÞ : is the discrete logarithm problem. Conse-
quently, we have ðhi; eiÞ : ≡

c ðh0i; e0iÞ :.
Taken together, Hybrid 3 and Hybrid 4 are indistinguish-

able. The proposed protocol is resistant against the corrupt
receiver.

7. Performance Evaluation

7.1. Comparison of Communication. To demonstrate com-
munication performance of the proposed protocol, we report
on it in comparison with the state-of-the-art PSI protocols.
The communication costs of different protocols are shown in
Tables 2 and 3. Since [2, 3, 21–23] proposed both malicious
and semihonest protocols, we compare with the semihonest
versions only.

We set the computational security κ¼ 128 and statistical
security λ¼ 40. ϕ is the size of elliptic curve group elements
(256 is used here). The costs of base OTs are independent of
input size and equal to 5κ. n1; n2; n denote the sizes of
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receiver’s set, sender’s set, and input field F, and we set n¼
2100. n0; q; α are the parameters of FHE, where n0 ¼ 213 and
q¼ 2189 − 221 þ 9× 215 þ 1. α increases as n2 get higher, and
Table 2 shows the distinct values of α under distinct n2
according to CLR17 [25]. l¼ logn denotes the width of OT
extension matrix. χ logn1 is the upper bound on the number
of cycles in a cuckoo graph of PaXoS. s is the maximum stash
size for cuckoo hashing. When three hash functions are uti-
lized to map n2 elements to 1:2n2 bins, the relationship
between n2 and s is shown in Table 3 according to
KKRT [12].

Table 4 shows the communication costs of different pro-
tocols when n2 ¼ 224 and n1 ranges from 224 to 216. It is
apparent from this table that the communication cost of the
proposed protocol is proportional to n1 and is not related to
n2, thus the communication cost decreases as n1 get smaller.

When ðn1; n2Þ : equal to ð222; 224Þ : or ð224; 224Þ :, the communi-
cation cost of the proposed protocol is higher than some of
the other protocols. However, when n1 ≤ 221, the communi-
cation cost of the proposed protocol is the lowest. The reason
is the communication costs of the other protocols are related
to both n1 and n2. When the sizes of the two sets are ð221;
224Þ :, the ratio of them is 23, and the communication cost
required by our protocol is 55.14% of the state-of-the-art
protocol. When the size of the two sets is ð216; 224Þ :, the
communication cost required by our protocol is only 0.6%
of the state-of-the-art protocol.

Table 5 shows the communication costs of different pro-
tocols when n1 ¼ 28 and n2 ranges from 28 to 224. It is shown
that the communication cost of the proposed protocol is
invariant while the communication costs of other protocols
rapidly increase with n2. When n2 ≥ 210, the communication

TABLE 2: Correspondence between parameter α and n2.

n2 216 220 224

α 25 27 28

TABLE 3: Correspondence between parameter s and n2.

n2 28 29 210 212 216 220 224

s 12 10 8 6 4 3 2

TABLE 4: Theoretical communication costs of PSI protocols with invariant n2 (in bits).

Protocol Communication
(n1; n2)

(224; 224) (222; 224) (221; 224) (220; 224) (218; 224) (216; 224)

KKRT [12] ð3þ sÞ:ðλþ logðn1n2ÞÞ:n1 þ 1:2ln2 þ jbaseOTj : 920n1 2,350n1 4,365n1 8,100n1 31,130n1 123,280n1
CLR17 [25] 2ðlogð3n2=n0αÞþ 0:15αÞ:n1logq 16,248n1 16,248n1 16,248n1 16,248n1 16,248n1 16,248n1
SpOT [20] 1.02 (λþ logn2 þ 2Þn1 þ ln2 þ jbaseOTj : 467n1 1667n1 3,267n1 6,467n1 25,667n1 102,467n1
PaXoS [21] ðλþ logðn1n2ÞÞ:n1 þ lð2:4n2 þ λþ χÞ: þ jbaseOTj : 1,048n1 3,926n1 7,765n1 15,444n1 61,522n1 245,840n1
CM20 [22] ðλþ logðn1n2ÞÞ:n1 þ 4:8κn2 þ jbaseOTj : 702n1 2,543n1 5,000n1 9,914n1 39,403n1 157,366n1
RS21 [3] ðλþ logðn1n2ÞÞ:n1 þ 217κn0:052 þ κn2 þ jbaseOTj :

218n1 607n1 1,127n1 2,168n1 8,421n1 33,436n1
RT21 [2] ðλþ logðn1n2ÞÞ:n1 þϕn2 þϕ 344n1 1,110n1 2,133n1 4,180n1 16,466n1 65,616n1
GPR21 [23] ðλþ logðn1n2ÞÞ:n1 þ lð1:3n2 þ 0:5logn2 þ λÞ: þ jbaseOTj : 608n1 2,166n1 4,245n1 8,404n1 33,362n1 133,200n1
Authors ðlognþ 2ϕÞ :n1 612n1 612n1 612n1 612n1 612n1 612n1
Italic values indicate the best results of each column.

TABLE 5: Theoretical communication costs of PSI protocols with invariant n1 (in bits).

Protocol Communication
(n1; n2)

ð28; 28Þ : ð28; 29Þ: ð28; 210Þ: ð28; 212Þ: ð28; 216Þ : ð28; 220Þ:

KKRT [12] ð3þ sÞ:ðλþ logðn1n2ÞÞ:n1 þ 1:2ln2 þ jbaseOTj : 1,322n1 1703n1 2,560n1 8,222n1 123,330n1 1,966,558n1
CLR17 [25] 2ðlogð3n2=n0αÞþ 0:15αÞ:n1logq — — — — 1814n1 7,856n1
SpOT [20] 1.02 (λþ logn2 þ 2Þn1 þ ln2 þ jbaseOTj : 453n1 854n1 1655n1 6,457n1 102,461n1 1,638,465n1
PaXoS [21] ðλþ logðn1n2ÞÞ :n1 þ lð2:4n2 þ λþ χÞ : þ jbaseOTj : 1,093n1 2,054n1 3,975n1 15,497n1 245,901n1 3,932,305n1
CM20 [22] ðλþ logðn1n2ÞÞ :n1 þ 4:8κn2 þ jbaseOTj : 672n1 1,288n1 2,518n1 9,892n1 157,352n1 2,516,653n1
RS21 [3] ðλþ logðn1n2ÞÞ :n1 þ 217κn0:052 þ κn2 þ jbaseOTj : 86,661n1 89,840n1 93,254n1 101,444n1 146,939n1 655,430n1
RT21 [2] ðλþ logðn1n2ÞÞ:n1 þϕn2 þϕ 313n1 570n1 1,083n1 4,157n1 65,601n1 1,048,645n1
GPR21 [23] ðλþ logðn1n2ÞÞ:n1 þ lð1:3n2 þ 0:5logn2 þ λÞ: þ jbaseOTj : 647n1 1,169n1 2,210n1 8,454n1 133,261n1 2,130,068n1
Authors ðlognþ 2ϕÞ:n1 612n1 612n1 612n1 612n1 612n1 612n1
Italic values indicate the best results of each column.
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TABLE 6: Experimental communication cost comparison.

Protocol Communication cost (KB)

Size ð28; 28Þ: ð28; 210Þ: ð28; 212Þ: ð28; 214Þ:

KKRT [12] 43.8 101.8 224.6 542.7
SpOT [20] 30.72 71.68 235.52 870.4
PaXoS [21] 69.83 158.8 274.8 665.6
CM20 [22] 43 99.3 325.6 1234.9
RT21 [2] 16.04 40.04 136.04 520.04
Authors 17 17 17 17

Italic values indicate the best results of each column.

TABLE 7: Online computation cost comparison.

Protocol Online time (s)

Size ð28; 28Þ : ð28; 210Þ: ð28; 212Þ: ð28; 214Þ:

Bandwidth LAN 1Mbps 100Kbps LAN 1Mbps 100Kbps LAN 1Mbps 100Kbps LAN 1Mbps 100Kbps

KKRT [12] 0.071 0.795 7.177 0.083 2.247 18.682 0.103 7.295 63.194 0.167 28.012 236.499
SpOT [20] 0.068 0.187 1.504 0.217 0.915 6.379 0.989 3.441 28.674 4.34 14.203 161.215
PaXoS [21] 0.094 0.674 12.058 0.133 1.514 30.3 0.184 2.887 105.429 0.373 6.138 387.782
CM20 [22] 0.048 0.109 2.899 0.579 1.912 10.727 0.2003 4.407 38.193 0.277 17.614 162.895
RT21 [2] 0.047 0.305 0.458 0.563 0.547 2.932 0.099 1.16 11.466 0.298 4.355 44.233
Authors 0.587 0.686 1.609 1.791 1.879 2.842 8.389 8.402 9.12 29.32 30.272 30.338

Italic values indicate the best results of each column.
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FIGURE 4: Online computation cost comparison when n1 ¼ 28.

10 IET Information Security



costs of other protocols are higher than the proposed proto-
col. In addition, the advantage of the proposed protocol is
increasingly apparent as n1 get larger.

7.2. Experimental Results. In order to evaluate the perfor-
mance of our PSI protocol, we built and evaluated an imple-
mentation. Our source code is available on GitHub: https://
github.com/TAN-OpenLab/Unbanlanced-PSI.

We implement our protocol in C++, and run our proto-
col on Ubuntu 16.04 with 8GB RAM. We set n¼ 216, and
other parameters are the same as in Section 7.1. We set the
values of n1 and n2, and record communication cost and
online time. As Table 6 shows, the communication cost of
the proposed protocol is 17 KB when n1 ¼ 28 and is not
related to n2. The advantage of the proposed protocol over
communication cost is increasingly apparent as n2 increases.
Particularly, when n1 ¼ 28 and n2 ¼ 210, the communication
cost of our protocol is 42.5% of the best existing protocol
RT21 [2]. When n2 ¼ 214, our protocol requires only 3:3%
communication cost of RT21 [2]. Although it has been
shown from online time that the computation cost still
remains to be reduced.

Due to the low communication cost, the proposed pro-
tocol is more suitable for the scenarios with low network
bandwidth. As shown in Table 7, for the specific set sizes,
the online time changes little with network LAN, 1 Mbps and
100Kbps bandwidths. Although our protocol is not the fast-
est with network LAN and 1 Mbps bandwidth, we gain an
apparent advantage with 100Kbps bandwidth. With the set
sizes ð28; 214Þ : and 100 Kbps bandwidth, our protocol
achieves a 7.8x speedup compared to KKRT [12], a 5.31x
speedup compared to SpOT [20], a 12.78x speedup com-
pared to PaXoS [21], a 5.37x speedup compared to CM20
[22] and 1.46x speedup compared to RT21 [2]. Thus, our
protocol is applicable to low bandwidth networks. With
unbalanced sets ð28; 210Þ :, ð28; 212Þ :, and ð28; 214Þ :, our proto-
col is faster than other protocols under 100 Kbps bandwidth,
and we achieve 1.03x, 1.26x, and 1.46x speedup compared to
RT21 [2], which proves our protocol is applicable to two sets
with larger difference.

We present the computation cost intuitively in Figure 4.
When we fix the value of n1 to 28 and set the bandwidth to
100Kbps, it is evident that for all protocols, the computation
cost rises as the set size increases. The relationship between
the set size of n2 and the online time is linear, and the online
time of our protocol is the lowest compared to the other
protocols.

8. Conclusion

We propose a semihonest efficient PSI protocol for unbal-
anced sets based on trapdoor hashing and Latin square,
which relies on the DDH assumption. By employing trap-
door hashing, the communication cost is only dependent on
the smaller set, effectively eliminating the impact of the
larger set size on communication cost. The use of Latin
square reduces the number of times encoding keys need to
be sent, enhancing communication efficiency. The results of
the performance analysis clearly indicate that the proposed

protocol exhibits optimization in terms of communication
cost specifically for unbalanced sets on low bandwidth. Fur-
thermore, the advantage of our protocol becomes more
prominent as the disparity between the sizes of n1 and n2
increases. In future work, our focus will be directed toward
reducing the computation time and storage cost associated
with our proposed protocol.
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