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As the practical applications of fully homomorphic encryption (FHE), secure multi-party computation (MPC) and zero-knowledge
(ZK) proof continue to increase, so does the need to design and analyze new symmetric-key primitives that can adapt to these
privacy-preserving protocols. These designs typically have low multiplicative complexity and depth with the parameter domain
adapted to their application protocols, aiming to minimize the cost associated with the number of nonlinear operations or the
multiplicative depth of their representation as circuits. In this paper, we propose two differential fault attacks against a one-way
function RAIN used for Rainier (CCS 2022), a signature scheme based on the MPC-in-the-head approach and an FHE-friendly
cipher HERA used for the RtF framework (Eurocrypt 2022), respectively. We show that our attacks can recover the keys for both
ciphers by only injecting a fault into the internal state and requiring only one normal and one faulty ciphertext blocks. Thus, we can
use only the practical complexity of 226:6=228:8=230:4 bit operations to break the full-round RAIN with 128/192/256-bit keys. For
full-round HERA with 80/128-bit key, our attack is practical with complexity the complexity of 220 encryptions with about 216

memory.

1. Introduction

With the rapid development of technologies, methods of data
management, storage, and transformation have been signifi-
cantly changed. Recently, some advanced protocols, such as
multi-party computation (MPC), fully homomorphic encryp-
tion (FHE), and zero-knowledge (ZK) proof, have received a
lot of attention in modern cryptography due to communica-
tion environments, such as big data and cloud computing.
The development of novel symmetric-key primitives with
MPC, FHE, and ZK applications has become a hot-spot
research topic because of their importance for practical appli-
cations. Other than the traditional primitives, the primitives
applicable to MPC, ZK, and FHE need to follow different
efficiency metrics. In these applications, linear components
can be considered “free,” while nonlinear components can
cause rapid noise growth and significantly increase execution
time. Thus, nonlinear components are the most significant
performance bottleneck in these applications. Specifically,

MPC-friendly schemes aim to minimize the number of non-
linear operations required to evaluate these schemes in order
to reduce the communication cost. ZK-friendly schemes aim
to minimize the number of nonlinear operations required to
prove these schemes. In contrast, FHE-friendly schemes aim
to minimize the multiplication depth of their representation
when the encryption and decryption process are represented
as circuits, in order to improve the efficiency of homomorphic
evaluations.

Some new symmetric schemes have been especially pro-
posed for these privacy-preserving schemes. Some of these
ciphers are designed based on operations over F2 usually with
nonlinear functions of quadratic S-boxes or quadratic Boolean
functions. For example, LowMC, proposed byAlbretch et al. [1],
is the first attempt to put forward a design that aims to mini-
mize the number of AND gates and the AND depth. In 2016,
the same group designedMiMC [2], a family of block ciphers,
which directly operate with nonlinear function x3 on the
native finite field Fq the same with the protocol. This paved
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a new way for such friendly ciphers, called Arithmetization-
oriented ciphers, sincemany protocols naturally support opera-
tions in a large field Fq, and converting operations over Fq into
boolean operations is expensive. Multiple MPC-/ZK-/FHE-
friendly ciphers were later introduced, such as FILP [3], Krey-
vium [4], Jarvis [5], Rasta [6], Vision and Rescue [7], Poseidon
[8], Ciminion [9], HERA [10], HADES [11], Reinforced Con-
crete [12], Rubato [13], Chaghri [14], Rain [15], Griffin [16],
Anemoi [17], Pasta [18], and Hydra [19]. Especially, some ZK-
friendly hash functions like Poseidon and Rescue have been
adopted by the real-world application of blockchains due to
the high efficiency, while someMPC-friendly primitives, such
as LowMC, Rain, and the AIM [20] have been used to build
some postquantum signature schemes, like Picnic and Ban-
quet, with the MPC-in-the-head technique [21].

These specialized primitives pose new challenges in devel-
oping general methods or dedicated cryptanalysis techniques
to understand their security. Meanwhile, insights on crypt-
analysis of the new ciphers are constantly proposed to analyze
the security of those ciphers, and many ciphers end up being
found vulnerable to new attacks on their simple structure and
less understood components. For example, there have been
the guess and determine attack on FLIP [22], the Gröbner basis
attack on Jarvis and Friday [23], various algebraic attacks on
LowMC [24–29], the linearization attack on Rasta and Dasta
[30], the high-order differential attacks on MiMC [31–33]
and Chaghri [34, 35] over large finite fields, and the algebraic
attacks on Rubato over rings [36]. There emerged some new
cryptanalysis techniques to evaluate the security of these new
primitives, and developed several useful cryptanalysis tools,
among which the algebraic attacks usually have the most
effective results.

In this paper, we focus on two such novel ciphers: RAIN
designed for the postquantum signature scheme Rainier with
the MPC-in-the-head technique (CCS 2022) [15] and the
HE-friendly cipher HERA designed for RtF (Real-to-Finite-
field) framework (ASIACRYPT 2021) [10]. The signature
scheme of Rainier takes the public key as a single plaintext–
ciphertext pair, and the private key as the secret key for the
encryption of this plaintext–ciphertext pair. That is, the secu-
rity of the signature scheme Rainier depends on the impos-
sibility of recovering the secret key of RAIN by only one
single known plaintext–ciphertext pair. In addition, the non-
linear components in RAIN are operated and implemented
over large finite fields with high algebraic degree. Thus, to
improve the efficiency of the signature scheme, the designers
are very aggressive in the number of rounds chosen for the
security of the RAIN cipher. The designers claimed that 3-
round RAIN is secure and recommended the use of 4-round
to further improve the security margin. Other than even 2-
round RAIN cannot be cracked according to the designers’
analysis, there are two algebraic attacks that have broken two
rounds of RAIN recently [37, 38]. The RtF framework sup-
ports the CKKS scheme, which provides approximate arith-
metic over real and complex numbers by combining the
CKKS and FV homomorphic encryption schemes via stream
ciphers with modular operations. HERA is an instantiation
of such a stream cipher, which uses a simple randomized key

schedule. HERA is an instantiation of such a stream cipher,
which uses a simple randomized key schedule. Since HERA
requires fewer random bits than the HE-friendly ciphers that
use random linear layers, it outperforms in both client and
server side. At present, the analysis of HERA is rare. Cur-
rently, there is an algebraic attack on HERA using multiple
collisions [39].

Until now, very few studies related to side-channel analysis
are conducted on such advanced protocol-friendly symmetric-
key primitives, while through which these ciphers may be
cracked efficiently, thus threatening the security of the system
using these ciphers. Differential fault attack (DFA) is a widely
employed semi-intrusive side-channel analysis, demonstrated
by Biham and Shamir [40] on the symmetric-key ciphers in
1997 for DES. Since then, DFAs against symmetric-key ciphers
have been extensively studied. DFA uses the differential infor-
mation generated by introducing artificial faults when the
cipher is running on the device to carry out the attack, which
leverages computational errors to extract keys. In the tradi-
tional differential attacks, the attackers can only introduce
differences to the public parameters of the cipher, such as
the plaintext or the initialization vector. Instead, DFA is a
more powerful attack model, where the attacker can also inject
faults into the internal state of the cipher at some time instant
in the encryption phase of the cipher. In order to apply DFAs
on real devices, fault injection methods are required, including
laser FI (laser-FI) [41], electromagnetic wave FI (EM-FI) [42],
row-hammer attack (RHA) [43], voltage/clock glitches [44, 45],
and others. Since then, there comes many different FI tech-
niques for practical attacks [46–48]. Especially, high-level
techniques, such as accurate memory address information
or decapsulation, are required for laser-FI andRHA, and instead,
the EM-FI is a practical technique for injecting faults while
scanning the surface of the device, which directly helps the
realization of out attacks.

For the DFA models, distinguishable differences in the
generated ciphertext or keystream impacted by the faults
introduced in the encryption phase of the cipher can be
noticed by the attackers. The specific steps of DFAs for the
attackers are first collect the desired number of normal
ciphertext or keystream bits corresponding to an unknown
key; then injects faults at random locations (since the fre-
quently used techniques for FI cannot realize a very precise
location) of the internal state in some fixed time instant and
collects the required number of ciphertext or keystream bits
affected by the faults; after that, perform statistical tests or
exhaustively search on the keystream bits to determine the
location of the injected fault, for the location of the injected
fault is unknown. The statistical tests refer to [49–51]. In our
work, we do not employ any statistical technique to deter-
mine the location of injected faults, since the required statis-
tics appear to be random. Instead, we guess the location and
value of the injected fault and perform the DFA.

In the context of privacy protocols, there are only two
reference papers for the DFA attack on the friendly symmetric-
key primitives. The first paper, published in 2021 [52], ana-
lyzes the DFA resilience of two stream ciphers: Kreyvium and
FLIP. Both of these ciphers are suitable for use in FHE
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schemes. The authors demonstrate that by injecting faults
into the internal state of these ciphers, the secret key can be
recovered. Specifically, for Kreyvium, they show that injecting
3-bit faults is sufficient to recover the key, while for FLIP, even
a single-bit fault injection is enough. In the case of Kreyvium,
they utilize statistical tests to pinpoint the location of the
injected fault, whereas for FLIP, they rely on guessing the fault
location. This attack is practical in terms of the time required
to recover the key. The second paper, published in 2023 [53],
extends the DFA analysis to two other FHE-friendly stream
ciphers: Rasta and FiLIPDSM. Similarly, the authors demon-
strate that by injecting a single-bit fault into the initial state of
these ciphers, the secret key can be recovered. For one Rasta
instance, which has a 219-bit block size, the attack requires
only one block of normal and faulty keystream bits. For FiLIP-
430, it requires 30,000 normal and faulty keystream bits to
successfully recover the key. These papers highlight the impor-
tance of considering fault injection attacks when designing
cryptographic primitives, especially those intended for use in
privacy-preserving protocols. As this field of cryptography
continues to evolve, it is crucial to remain vigilant against
such threats and ensure that our cryptographic primitives
are resilient against a wide range of attacks, including DFA.

1.1. Contribution. In this paper, we focus on two recently
proposed MPC and FHE friendly ciphers: RAIN and HERA.
We present a detailed security analysis of these ciphers with
respect to DFA. We first identify specific vulnerabilities in the
designs of RAIN and HERA that make them susceptible to
DFA attacks. After that, we propose fault injection strategies
tailored specifically for RAIN and HERA. Then, we develop
practical key recovery attacks against RAIN and HERA, and
the secret keys of these ciphers can be efficiently recovered.
Finally, we present a comprehensive evaluation of the pro-
posed attacks, discussing their impact on the security of RAIN
and HERA. This evaluation includes a quantitative analysis
of the required resources to successfully mount the attacks.
The major contributions of this paper can be summarized as
follows:

(i) In Section 3, we present a DFA on the RAIN cipher.
Our analysis demonstrates that the secret key of
RAIN can be efficiently recovered by introducing a
single-bit fault into the internal state of the cipher. To
mount this attack, we employ a generic DFA tech-
nique tailored for RAIN. We exhaustively explore
various fault locations within the internal state of the
cipher to identify the most effective points for fault
injection. Our analysis reveals that, for the full-round
concrete instances of RAIN with 128-bit, 192-bit, and
256-bit keys, the complexity of our attacks is practical.
Specifically, using Gaussian elimination with a param-
eter ω¼ 2:8 and a single known plaintext–ciphertext

pair, we show that the key recovery complexity is
approximately 226:6 for the 128-bit version of RAIN,
228:8 for the 192-bit version, and 230:4 for the 256-bit
version.

(ii) In Section 4, we introduce a DFA on the HERA cipher.
Our analysis demonstrates that the secret key of HERA
can be efficiently recovered by introducing a random
word fault into the internal state of the cipher. Employ-
ing a generic DFA technique tailored for HERA, we
exhaustively explore various fault values and word
locations within the internal state. Our experiments
reveal that, for the full-round concrete instances of
HERA with 80-bit and 128-bit keys, our attacks are
indeed practical with the key recovery complexity of
approximately 220 encryptions, requiring about 216

memory and one keystream block.

1.2. Outline. In Section 2, we briefly describe the specifica-
tions of RAIN and HERA. Then, in Section 3 and Section 4,
we present the DFA on RAIN andHERA, respectively. Finally,
in Section 5, we conclude the paper by summarizing our
findings.

2. Preliminaries

2.1. Design Specification of RAIN. RAIN is an MPC-friendly
cipher used for the Signature scheme Rainer proposed at CCS
2022 [15].

The r-round RAIN is a keyed permutation FkðxÞ : shown
in Figure 1. The nonlinear operation S is the inverse function
over F2n , i.e.:

S xð Þ ¼ x2
n
−2 ¼ x−1; if x ≠ 0

0; if x ¼ 0

(
: ð1Þ

The round constants and linear layers are randomly gen-
erated according to some public parameters and fixed for
each instance. Let ci and Mi 2 ðF2Þn×n be the round constant
added and the linear layer matrix acting on the internal state
over F2 used in round i of RAIN, respectively. This matrix
multiplication with such a binary matrix Mi can be trans-
formed into a linearized polynomialMi 2F2n ½X� :, by a sum of
n terms, each degree of which is a power of 2, i.e.:

Mi Xð Þ ¼ ∑
n−1

j¼0
ai;jX2j ; ð2Þ

for some known coefficients ai;0;…; ai;n−1 2F2n . In RAIN, it
has been ensured ai;j ≠ 0 for each Mi, j2f0;…; n− 1g :,
which means that the polynomial is of maximum degree and

k c1

M1 Mr – 1x–1 x–1

c2 cr

Sr

k k k

s0

FIGURE 1: The r-round RAIN.
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as dense as possible. Let si be the internal state in round i for
i2f0;…; rg:, then:

s0; srð Þ : Fk s0ð Þ ¼ sr; ð3Þ

is the plaintext–ciphertext pair. Thus, we have the round
function Ri defined as follows:

si ¼ Ri si−1ð Þ ¼ Mi ∘ S si−1 ⊕ k⊕ cið Þ; if i<r

S si−1 ⊕ k⊕ cið Þ⊕ k; if i¼ r

(
: ð4Þ

That is, the input of each round is the XOR result of the
output of the previous round with the round constant and
the key. If it is not the last round, the output is a combination
of linear layer operations and nonlinear operations; if it is the
last round, there is only one more XOR operation with
the key.

The concrete instances are defined in Table 1.
The security of RAIN is mainly based on the fact that the

attacker only knows one plaintext–ciphertext pair under the
same key. Therefore, the designer chose the number of rounds
r to be 3 or 4 to ensure security under this restriction. Indeed,
in the signature scheme Rainer, k is the secret key while the
ðs0; srÞ : is the public key. Therefore, the attack on RAIN is
directly related to the security of Rainer.

According to the analysis of the designers of RAIN, even
2-round RAIN cannot be broken. However, attacks on 2-
round RAIN one 128/192/256-bit key in the complexity of
2116=2171=2224 by equivalent representations are given in Liu
et al.’s [38] study recently.

2.2. HERA. We denote Zt with Z ∩ ð− t=2; t=2� : for an inte-
ger t. The target stream cipher HERA for λ-bit security takes
a secret key k2Z16

t , a nonce nc2f0; 1gλ, a counter ctr¼ 0;
1;…; l− 1 as input and returns a keystream of needed l
blocks z2 ðZ16

t Þl, where the nonce and counter are fed into
an underlying extendable output function (XOF) that out-
puts an element in ðZ16

t Þ∗.
The process of HERA cipher is defined as follows:

HERA k; nc ctrk½ � icð Þ ¼ Fin k; nc ctrk ; r½ � ∘ RF k; nc ctrk ; 1½ �
∘ ⋯ ∘ RF k; nc ctrk ; 1½ � ∘ ARK k; nc ctrk ; 0½ � icð Þ;

ð5Þ

where ic is a constant ð1; 2;…; 16Þ: 2Z16
t , RF½k; nckctr; i� : is

the ith round function and Fin is the final round function.
Let the internal state be si 2Z16

t for i¼ 0; 1;…; r, which is
also viewed as a 4× 4-matrix over Zt . Then:

s0 ¼ARK k; nc ctrk ; 0½ � icð Þ;
si ¼ RF k; nc ctrk ; 1½ � si−1ð Þ
¼ARK k; nc ctrk ; i½ � ∘ Cube ∘MR ∘MC si−1ð Þ;
    for i¼ 1;…; r − 1;

zctr ¼ sr ¼ Fin k; nc ctrk ; r½ � sr−1ð Þ
¼ARK k; nc ctrk ; r½ � ∘MR ∘MC ∘ Cube ∘MR ∘MC sr−1ð Þ:

ð6Þ

The round function of HERA is shown in Figure 2.
Given a sequence rc¼ðrc0;…; rcrÞ : 2 ðZ16

t Þrþ1 of the out-
puts from XOF, which can be instantiated with a hash func-
tion like SHAKE256 [54], ARK is defined as follows:

ARK k; nc ctrk ; i½ � xð Þ ¼ x þ k ∙ rci; ð7Þ

for i¼ 0; 1;…; r, and x2Z16
t , where ∙ (resp. þ ) denotes

component-wise multiplication (resp. addition) modulo t.
Each linear layer is composed of MC and then MR,

where MC (resp. MR) multiplies a certain 4× 4 matrix:

2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

266664
377775; ð8Þ

with entries in Zt to each column (resp. row) of the internal
state. The matrix results in MDS matrix over Zt when the
integer t is prime and larger than 17.

The nonlinear map Cube is defined as follows:

Cube xð Þ ¼ x30;…; x315ð Þ; ð9Þ

for x¼ðx0;…; x15Þ : 2Z16
t . For the bijectivity, it is required

that gcdð3; t − 1Þ : ¼ 1.
The designer presents two instances of HERAðr; tÞ:,

HERA (4, 65537) for 80-bit security, and HERA (5, 65537)
for 128-bit security, where r and t, respectively, denote the
number of rounds and the modulus.

TABLE 1: Concrete instances of RAIN.

Security Field Reduction polynomial

128-bit F2128 X128 þX7 þX2 þXþ 1
192-bit F2192 X192 þX7 þX2 þXþ 1
256-bit F2256 X256 þX10 þX5 þX2 þ 1

nc

k

t

. . .MC MR

X3

X3

XOF

FIGURE 2: The round function of HERA.
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3. DFA on RAIN

This section describes our DFA on RAIN.
Since our target primitive RAIN is defined over a finite

field F, there is an isomorphism between, so we focus only on
Boolean equations.

In simple terms, DFAmodel is a fault analysismodel based
on specific assumptions, which is used to analyze the security
of cryptographic algorithms. In this model, the attacker has the
ability to restart cryptographic algorithms, inject transient
faults, and observe the results of failures and normal opera-
tions. However, the attacker cannot precisely control where the
fault occurs. Since the target primitive is defined over a specific
finite field and there is an isomorphism between this field and
another space, this allows us to transform the problem into the
form of a Boolean equation for study. This transformation
helps to simplify the analysis process and may reveal potential
weaknesses of cryptographic algorithms in the face of fault
attacks.

3.1. Underlying Assumptions for DFA. Our DFA model relies
on the specific assumptions as follows:

(1) The attacker has the ability to restart the cipher with
the same key and other public parameters as inputs.

(2) The attacker can inject a transient fault at a specific time
instant during the course of the encryption/decryption
of the cipher and monitor pairings of normal and fault
ciphertexts.

(3) The attacker has tools needed to perform the fault
injection of single-bit flip (e.g., laser-FI, RHA, etc.).

(4) The attacker cannot precisely specify the location of the
fault injection, i.e., the fault occurs in a randomposition.

Our target primitive RAIN is defined over the finite field
F2n . Since there is an isomorphism between the field of F2n

and the vector space of Fn
2 , we only focus on the Boolean

equations. Moreover, since the internal state stored in mem-
ory is actually in the binary form, we inject a single-bit fault
in the internal state before the last round. Since the fault
injected position is unknown, we should exhaustive search
the n differences ei for i¼ 1;…; n, which denote the n-dimen-
sional unit vector.

3.2. Transformation from Univariate Polynomials over Finite
Fields into Boolean Equations. For an object system of equations
defined over a field of F2n , we first convert them into a system
of Boolean equations with certain known algebraic degree
according to the isomorphism. This transformation allows
us to solve them and then taking advantage of generic solving
techniques already well-established for Boolean equations.

Let:

F xð Þ ¼ ∑
2n−1

j¼0
μjxj; ð10Þ

be a univariate polynomial in F2n ½x� :, where μj 2F2n is the
coefficients. Given an irreducible polynomial qðαÞ: with

degree n in F2½x� :, we have a basis of f1; α;…; αn−1g: for
F2n . Then:

x ¼ ∑
n−1

i¼0
xiαi; xi 2 F2;  and μj ¼ ∑

n−1

i¼0
uj;iαi; uj;i 2 F2: ð11Þ

Let j¼Σn−1
s¼0 js2

s in the binary form. Thus:

F xð Þ ¼ ∑
2n−1

j¼0
∑
n−1

i¼0
uj;iαi

� �
∑
n−1

i¼0
xiαi

� �
Σn−1
s¼0 js2

s

  mod  q αð Þ

¼ ∑
2n−1

j¼0
∑
n−1

i¼0
uj;iαi

� �
∏
n−1

s¼0
∑
n−1

i¼0
xiα2

s

� �
js
  mod  q αð Þ

¼ ∑
n−1

j¼0
fjαj

:

ð12Þ

This polynomial F can be equivalently given by its n vec-
torial Boolean polynomials f1;…; fn with respect to n Boolean
variables x1;…; xn. Each Boolean polynomial fj has an alge-
braic degree of maxfwtðjÞ : uj ≠ 0g:, where wtðjÞ : denotes the
number of ones in the binary representation of the integer j.

Thus, an exponential function of x→ x2
i
; for i≥ 0 over

F2n corresponds to a linear vectorial Boolean function in
terms of x for the isomorphism. In other words, this opera-
tion introduces no multiplication between Boolean variables.

3.3. DFA on RAIN. For mounting the DFA on RAIN, we
inject a fault of single-bit flip in the internate state sr−1, but
the exact location of the fault injection is unknown. There-
fore, all possible fault locations should be exhaustively tried.
The attack process shown in Algorithm 1 requires only one
block.

Given the guessed 1-bit fault location, known normal and
faulty ciphertexts, we can set up a system of linear equations
only in k. First, we consider whether k¼ sr , and it can be
trivially verified by if Fsr ¼ sr . Thus, we always assume that
k⊕ sr ≠ 0 in the following context. Thus, we can derive the
following equation:

sr−1 ⊕ k⊕ c3 ¼
1

k⊕ sr
: ð13Þ

Then according to the guessed difference fault, we have
the following equation:

Δsr−1 ¼
1

k⊕ sr
⊕

1
k⊕ s0r

¼ sr ⊕ s0r
k2 ⊕ sr ⊕ s0rð Þ ⋅ k⊕ sr ⋅ s0r

;

ð14Þ

i.e.

k2 ⊕ sr ⊕ s0rð Þ ⋅ k¼ sr ⊕ s0rð Þ ⋅ Δs−1r−1 ⊕ sr ⋅ s0r: ð15Þ

Since the exponential function of x→ x2
i
; for i≥ 0 over

F2n corresponds to a linear vectorial Boolean function with
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respect to x, the above equation over F2n in k can be equiva-
lently represented as n linear Boolean equations in k, named
as follows:

L xð Þ ¼ τ; ð16Þ

where τ¼ððsr ⊕ s0rÞ ⋅ Δs−1r−1 ⊕ sr ⋅ s0rÞ : is known.
Next, we can solve for the solution k̃ by Gaussian elimi-

nation, an algorithm used to solve systems of linear equations,
with a complexity of nω. In the naive implementation, its time
complexity is ω¼ 3. In 1969, due to Strassen’s divide and
conquer algorithm by recursively factoring large matrices into
smaller matrices and combining their results in a more effi-
cient way [55], the upper bound on ω is updated to ω, and
such an algorithm has a practical implementation in library
[56]. Although there exists a more efficient algorithm [57],
that further reduces the upper bound of to ω to less than 2.37,
but this algorithmmay not be useful in practice due to its large
hidden constant factor.

As the location of the injected fault is unknown, we need
to simulate this process for all n possible fault locations.
Next, we need to filter out the secret key by confirming the
following equation:

Fek s0ð Þ ¼ sr: ð17Þ

Since the time required to check the consistency of the key-
stream generated by the candidate keys is negligible, the DFA on
full-round RAIN takes about nωþ1 bit operations in total.

Thus for the full-round concrete instances with 128/192/
256-bit key, our attacks are practical with the complexity of
226:6=228:8=230:4 with ω¼ 2:8. We have tested our attacks and
made the experimental verification.

We have performed our DFA attack simulations on RAIN
with a 128-bit block size.We first collect the normal ciphertext
sr for an unknown key k on s0 ¼ 0. Next, we inject a single-bit
fault at a random location in the state sr−1 by the tool such as
laser-FI, RHA, etc. After that, we collect the faulty ciphertext s0r
for the same key and other public parameters. We assume the
fault occurs in one bit of the internal state sr−1. We then
generate a system of equations involving the unknown key

k from the normal and faulty ciphertexts as Equation (15).
We can use NTL library/SageMath software to generate these
equations as follows. To transform a linearized polynomial
LðXÞ : in F2n ½x� : into a matrixM in Fn×n

2 . We first compute the
basis of the fieldF2n with ordered power fβ1; β2;…; βng : ¼fβ;
β2;…; βn−1g: and its dual basis β01; β02;…; β0n such that trðβiβ0jÞ

: ¼ δi; j for i in ½0; n� :, j in ½0; n� :. Here, tr :F2n → F2 denotes the
trace function over F2n and δi; j denotes the Kronecker delta.
Then, the element Mi; j at the jth column and the ith row of
the matrix M is defined as follows:

Mi; j¼ tr β0iL βj
À ÁÀ Á

: ð18Þ

The cost of this transformation is approximately n2 þ n3

operations of field. For example, we can construct the 128-bit
matrix in only a few seconds on our ordinary computer.
After generating these systems of equations, we use Gaussian
elimination to find the solution of the key.

4. DFA on HERA

This section presents our DFA on HERA cipher.

4.1. Underlying Assumptions for DFA. Our DFA model relies
on the first assumptions in Section 3.1 and the following
assumptions:

(1) The attacker is able to change a single word to a ran-
dom value with some EM-FI tools.

(2) The attacker cannot precisely specify the location of
the fault injection, i.e., the fault occurs in a random
word.

4.2. DFA onHERA. For mounting the DFA onHERA, we inject
a fault in the internal state sr−1 and change a single word into a
random unknown value, also the injected word location of the
fault is unknown. Therefore, all 16 words of the internal state
should be exhaustively tried. The attack process shown in
Algorithm 2 requires only one block.

Given the guessed one-word fault location i and the value
of the faulty word s0r−1; i 2Zt , we have Δsr−1 with an only non-
zero component as follows:

1: Collect the normal ciphertext sr for an unknown key k on s0.

2: Inject one-bit fault at a random position in the register of the state sr−1
3: Collect the faulty ciphertext s0r for the same key and public parameters

4: for Δsr−1 ¼ ei; i¼ 1;…; n do

5: Construct a system of Boolean equations involving the key k as unknown variables based on the normal ciphertext and the
corresponding faulty ciphertexts

6: Solve this system of equations for solution k̃

7: if Fk̃ðs0Þ: ¼ sr then

8: return k¼ k̃;

9: end if

10: end for

ALGORITHM 1: DFA on RAIN.
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Δsr−1;j ¼
s0r−1;i − sr−1;i; j¼ i

0; j¼ 0;…; 15; j ≠ i

(
: ð19Þ

Let x; x0 and y; y0 be the normal and fault input, the
normal and fault output of the nonlinear map Cube, respec-
tively. Since MR and MC are linear operations, we have the
following equation:

Δx ¼ x0 − x ¼MR ∘MC Δsr−1ð Þ: ð20Þ
Similarly:

Δsr ¼ s0r − sr ¼ARK k; nc ctrk ; r½ � ∘MR ∘MC y0ð Þ
−ARK k; nc ctrk ; r½ � ∘MR ∘MC yð Þ

¼ MR ∘MC y0 − yð Þ:
ð21Þ

Thus:

Δy ¼ y0 − y ¼MC−1 ∘MR−1 Δsrð Þ: ð22Þ

The differential fault propagates as shown in Figure 3.

For each component i¼ 0;…; 15 of the Cube map, we
have the following equation:

Δyi ¼ xi þ Δxið Þ3 − x3i
¼ 3 ⋅ Δxi ⋅ x2i þ 3 ⋅ Δxið Þ2 ⋅ xi þ Δxið Þ3; ð23Þ

which is a quadratic equation over the finite field Zt in the
form of the following equation:

ax2 þ bx þ c ≡ 0  mod  t: ð24Þ

Since the case of t¼ 2 is obvious, it is always assumed
that the t is odd prime in the following. Let t does not divide
a, i.e., t∤a. The solution of Equation (24) is the same as that of
the following equation:

2ax þ bð Þ2 ≡ b2 − 4ac  mod  t; ð25Þ

since t∤4a. Let γ ≡ 2axþ b  mod  t, then Equation (25) is
equivalent to the following equation:

1: Collect the normal ciphertext sr for an unknown key k on ic.

2: Inject only one word fault at a random position in the register of the state sr−1
3: Collect the faulty ciphertext s0r for the same key and same nckc :tr

4: for each word position i¼ 0;…; 15 do

5: for each value of the faulty word s0r−1; i 2Zt do

6: Construct 16 quadratic equations over Zt involving the normal input x of the nonlinear map Cube as unknown from the normal
ciphertexts and the corresponding faulty ciphertexts

7: Solve the equations for x̃

8: Solve for the key k̃ according to k̃¼ðMR ∘MC ∘ Cubeðx̃Þþ srÞ: ∙ rc−1r
9: if HERA½k̃; nckctr� :ðicÞ : ¼ sr then

10: return k¼ k̃;

11: end if

12: end for

13: end for

ALGORITHM 2: DFA on HERA.

ARK [k, nc|ctr, r]

ΔSr ΔSr ΔSr – 1(ΔSr – 1)

MR MC

y.......

.......

x

MR MCMC–1 MR–1 (ΔSr )

MRCube MC

FIGURE 3: The propagation of the differential fault in the DFA on HERA.

IET Information Security 7



γ2 ≡ b2 − 4ac  mod  t: ð26Þ

That is Equations (25) and (26) both have solutions with
the same solution number or no solutions. Therefore, we
only need to discuss the equation in the form of the following
equation:

γ2 ≡ d  mod  t: ð27Þ

When t divides d, i.e., tjd :, Equation (27) only has a solution:

x ≡ 0  mod  t: ð28Þ

Thus, we assume t∤d.

Definition 1. Let prime t>2, d is an integer, t∤d. We call d a
quadratic residue modulo t if the congruence Equation (27)
has a solution, or a quadratic nonresidue modulo t if there is
no solution for Equation (27).

For example, when t¼ 3, d¼ 1 mod 3 is a quadratic resi-
due of modulo 3 with solutions ofÆ1 and d¼ − 1 mod  3 is a
quadratic nonresidue of modulo 3. In general, the following
conclusions are drawn.

Theorem 1. In a reduced system of residues modular t, i.e.:

−
t − 1
2

;−
t − 1
2

þ 1;…;−1; 1;…;
t − 1
2

− 1;
t − 1
2

� �
;

ð29Þ

there are exactly ðt − 1Þ :=2 quadratic residues modulo t, and
ðt − 1Þ :=2 quadratic nonresidues modulo t. Moreover, if d is a
quadratic residue modulo t, the number of solutions of the
congruence Equation (27) is 2.

Therefore, given some Δyi and Δxi, the probability that
Equation (23) has solutions is as follows:

Pr½one solution� þ Pr½two solution� ¼ 1
t
þ t − 1

2t
¼ t þ 1

2t
:

ð30Þ

Then, it takes a probability about ðtþ1
2t Þ16 ≈ ð1=2Þ16 to have

solutions for the internal state x, by solving each Equation (23)
for the component i¼ 0;…; 15 of the Cube map, respectively.
If there are solutions for x, the number of solutions for x is
Equation (31) on average:

∑
16

i¼0
1 ⋅

2
t þ 1

� �
i
2 ⋅

t − 1
t þ 1

� �
16−i

≈ 216 : ð31Þ

Given each solution x̃ , we solve for the key k̃ according to
the following equation:

ek ¼ MR ∘MC ∘ Cube exð Þ þ srð Þ ∙ rc−1r : ð32Þ

Since the injected word location of the fault is unknown, and
the fault changes a single word in the state sr−1 into a random
value, there are Equation (33) candidates of k̃ should be exhaus-
tively tried:

16 ⋅ t − 1ð Þ ⋅ 1 ⋅
1
t
þ 2 ⋅

t − 1
2t

þ 0 ⋅
t − 1
2t

� �
16
¼ 16 t − 1ð Þ:

ð33Þ

We test if:

HERA ek; nc ctrk
h i

icð Þ ¼ sr; ð34Þ

and filter out the only k.
Next, we analyze the complexity. To solve Equation (23),

we can build a table to store the quadratic residues d modulo
t and their solutions γ according to the reduced system of
residues modular t offline. Then, we only need to look up the
table online according to the following equation:

d ≡ 9 ⋅ Δxið Þ4 − 12 ⋅ Δxi ⋅ Δxið Þ3 − Δyið Þ  mod  t; ð35Þ

for

ex ¼ γ − 3 ⋅ Δxið Þ2
6 ⋅ Δxið Þ ; ð36Þ

over Zt . It needs a number of 16 ⋅ 16 ⋅ ðt − 1Þ : table look-ups,
which is negligible compared with the entire encryptions.
According to the above analysis, there are 16ðt − 1Þ : candi-
dates for x̃ and then for k̃ should be exhaustively tried by the
entire encryption. Only one block of keystream can filter out
the right key. Therefore for the DFA attack on HERA, the time
complexity online is about 16ðt − 1Þ : encryptions, the time com-
plexity offline and the memory complexity to store the table is
about t, and the data complexity is only one keystream block.

Thus for the full-round concrete instances with 80/128-
bit key, our attacks are practical with the complexity of 220

encryptions with about 216 memory and one keystream block.

5. Conclusion

In this paper, we have proposed differential fault analysis on
two recently designed symmetric-key ciphers for MPC and
FHE, namely RAIN and HERA. We have shown that the key
of both ciphers can be easily recovered in practical time just
by injecting a single bit fault or a random word fault into the
state register of the cipher according to a single plaintext–
ciphertext pair. Through the study of these two friendly
symmetric-key ciphers for advanced protocols that we ana-
lyzed, we strongly believe that this class of symmetric ciphers
adapt to privacy-preserving protocols is vulnerable to differ-
ential fault analysis, and therefore, the design criteria and
measures of resistance need to be paid attention to.
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