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Adversarial examples have the property of transferring across models, which has created a great threat for deep learning models. To
reveal the shortcomings in the existing deep learning models, the method of the ensemble has been introduced to the generating of
transferable adversarial examples. However, most of the model ensemble attacks directly combine the different models’ output but
ignore the large differences in optimization direction of them, which severely limits the transfer attack ability. In this work, we
propose a new kind of ensemble attack method called stochastic average ensemble attack. Unlike the existing approach of averaging
the outputs of each model as an integrated output, we continuously optimize the ensemble gradient in an internal loop using the
model history gradient and the average gradient of different models. In this way, the adversarial examples can be updated in a more
appropriate direction and make the crafted adversarial examples more transferable. Experimental results on ImageNet show that
our method generates highly transferable adversarial examples and outperforms existing methods.

1. Introduction

Deep neural networks (DNNs) have made promising break-
throughs in the field of computer vision (CV), such as auto-
matic driving [1], face recognition [2], image classification
[3], and many others [4, 5]. However, DNNs are proven to be
vulnerable to adversarial attacks; the well-designed perturbed
examples (adversarial examples) can often mislead CV mod-
els while keeping the imperception at the same time [6, 7].
This has drawn much attention to the research on adversarial
attacks, because it can help us to identify model flaws [8] and
improve the robustness of them [7]. In practice, it is hard to
get specific information about the victim’s model. Therefore,
more practical black-box attacks are beginning to be studied
extensively.

In general, there are two paradigms for Black-box attacks:
query-based and transfer-based. Among them, query-based
attacks have poor practical usability, because they typically
require a lot of querying of the victim’s model outputs, which
tends to attract the victim’s attention. Therefore, we concen-
trate on the transfer-based attacks. The principle behind
transfer attacks is that adversarial examples have cross-model

transferability [9]; the adversarial examples crafted on surro-
gate models often can mislead other models, even these mod-
els use different structures [9]. This kind of transferability
provides feasibility for strictly black box attacks. In recent
years, the idea of an ensemble started to be used to improve
the transferability of the adversarial examples [10, 11]. The
model ensemble uses the outputs of multiple models instead
of a singlemodel tominimize the bias of a singlemodel.When
combined with adversarial attacks, it can help adversarial
examples find an ensemble optimization direction, reducing
overfitting to individual models and enhancing their transfer-
ability [10].

However, the optimization directions among different
models may have significant variance due to the different
model architectures [12]. Existing approaches ignore this
kind of variance. They simply combine the outputs of differ-
ent models and use it as the ensemble optimization direction,
which leads to a variance between the average ensemble
output and the individual model outputs and limits the
transferability of the adversarial examples. In this work, we
notice the optimization algorithm stochastic average gradi-
ent (SAG) [13] for stochastic gradient descent (SGD), which
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reduces the stochastic gradient variance caused by randomly
selecting samples in SGD. In the SGD algorithm, the variance
between the gradient of randomly selected samples and the
average gradient of all samples is similar with the variance
encountered in model ensemble attacks. Both of these varia-
tions can be categorized as variances between the mean value
and the individual values. Therefore, we plan to address it
using the principles of SAG.

Based on the analyses above, we propose a novel method
called stochastic average ensemble attack (SAEA). In our
method, we use an internal loop to reduce the variance
between the ensemble output and the multiple models’ out-
put. Then, we use this ensemble output in the external loop
to generate adversarial examples. Specifically, at the external
loop, we compute the outputs of the input image across
multiple models and maintain them in memory. In the inter-
nal loop, similar with SAG, we randomly select one model
and update the corresponding model output through the
input images. Then, we fuze this updated output with the
maintained output to obtain an ensemble output. Alterna-
tively, we will update the internal loop image at the end of the
internal loop using the ensemble output and feed it into the
next internal loop. After multiple rounds of internal loop
updates, the differences between the ensemble output and
the multiple model outputs will be reduced. Finally, we use
this ensemble output to perform iterative model ensemble
attacks. In this way, SAEA can yield a more accurate update
direction of the adversarial examples across multiple models
to generate adversarial with higher transferability.

We have conducted extensive experiments to evaluate
our method on the ImageNet dataset [14], and the results
have indicated our SAEA can achieve better results in trans-
fer attack scenarios compared to existing model ensemble
attack methods.

The remainder of this paper is structured as follows: in
Section 2, we summarize the relatedwork on adversarial attacks
and defenses. In Section 3, we first introduce our motivation
and then introduce our attack algorithm. In Section 4, we
demonstrate the effectiveness of our attack through extensive
experiments and highlight its superiority over two other model
ensemble attacks. Finally, Section 5 concludes this work.

2. Related Works

Since the concept of adversarial examples was proposed, a lot
of attack algorithms have been subsequently designed, such
as gradient-based attacks, input transformation attacks, and
model ensemble attacks.

2.1. Gradient-Based Attacks. The fast gradient sign method
(FGSM) [7] is the most representative attack method, which
adding perturbations in the direction of the gradient to
benign samples as follows:

xadv ¼ xclean þ ε ⋅ sign rxJ x; ytrueð Þð Þ; ð1Þ

where ε denote the magnitude of adversarial perturbations,
and Jð⋅Þ : denote the loss function.

The iterative fast gradient sign method (I-FGSM) [15]
proposed an iterative version of FGSM. It increases the trans-
ferability of adversarial samples by repeatedly adding small
perturbations to the images as follows:

xadvtþ1 ¼ Clipεx xadvt þ α ⋅ sign rxadvt
J xadvt ; ytrue
À Á� �n o

; ð2Þ

where Clipεxð⋅Þ : limits the perturbation within the ε-ball of the
benign input x; t denote the iteration number and α denote
the step size.

The momentum iterative method (MIM) [11] intro-
duced momentum into the I-FGSM to make the updating
direction of the adversarial examples more stable. Nesterov
iterative method [16] accelerated the craft speed of adversar-
ial examples by applying accelerated gradients into the attack
algorithm. The lookahead iterative method [17] tuned the
update direction by recording the gradient in multiple pre-
vious steps to get rid of suboptimal regions during the update
of the adversarial examples. These gradient-based attacks
make the generated adversarial perturbations more accurate
by optimizing the gradient, which is highly effective in both
white-box and black-box attacks.

2.2. Input Transformation Attacks. Iterative gradient-based
attacks require to update the adversarial examples multiple
times on the local surrogate model, which can lead crafted
examples overfit to the surrogate model and affect the ability
to transfer to other models. To address this issue, input
transformation attacks use the idea of data augmentation
to reduce the risk of overfitting. Diverse input method
(DIM) [18] proposed using the ideas of data augmentation,
which adding random transformations to benign inputs to
reduce the effect of overfitting. The translation invariant
method (TIM) [19] proposed using translation invariant to
generate a series of transformed copies to make the pertur-
bations more accurate and used an optimized method to
reduce computation. The scale invariant method (SIM)
[16] proposed a method that performs a gradient attack by
scaling the input image and averaging the gradients com-
puted on the resulting copies. Admix [20] implements data
augmentation by combining images from different categories
in a small ratio. SSA [21] transforms the input samples in the
spatial frequency domain for input augmentation to reduce
the overfitting of the adversarial examples. PAM [22] intro-
duces a semantic discriminator to prevent the difference
between the semantics of the augmented samples and the
original samples from being too large and generating inac-
curate adversarial perturbations.

2.3. Model Ensemble Attacks. To further improve the robust-
ness and eliminating bias in a single model, model ensemble
methods have been widely studied and applied in the model
training process. Such methods of improving the accuracy of
model outputs can also be used to adversarial attacks. Liu
et al. [10] first proposed the model ensemble attack, which
increases the transferability by combing the prediction of
different models. Dong et al. [11] proposed different ensem-
ble methods to implement ensemble attacks by combing
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logits and losses of different models. To further improve the
transferability of the adversarial examples, Xiong et al. [12]
proposed a stochastic variance-reduced method to improve
the accuracy of ensemble output.

2.4. Adversarial Defenses. If it is possible to successfully
attack a model with added defense mechanisms, it can sig-
nificantly demonstrate the effectiveness of the attack method.
In recent years, many methods have been proposed to
improve the robustness of models. In general, there are three
kinds of defense methods, including adversarial training
[15, 23–25], adversarial detection [26–28], and input trans-
formation defenses [29–34].

Adversarial training improving robustness by retraining
on adversarial examples. Adversarial detection and input
transformation defense detects and cleans samples before
they are input into the model to reduce the threat of potential
adversarial examples. In this paper, we will verify our method
using some advanced defense models, including reducing the
resolution of the adversarial examples (JPEG) [29], randomly
resizing and padding the images (randomly resize and pad
(R&P)) [30], using denoising to eliminate the perturbation
(high-level representation-guided denoiser (HGD)) [31],
using feature distillation (FD) [32] to purify the perturbation
by redesigning the image compression framework JPEG, end-
to-end image compression model to defend against adversar-
ial examples (ComDefend) [33], randomized smoothing (RS)
[34] technique to make the target model more robust.

3. Materials and Methods

3.1. Preliminary. Let x denote the benign input and y denote
the corresponding ground-truth label of x. Given a classifier
f with parameters θ that outputs a label as the prediction of
the input image. The task of the adversarial attack is to craft
an example xadv, which is indistinguishable to human eyes
with benign input x but can mislead the classifier f . Formally,
the optimization function of this task can be defined as fol-
lows:

f xadv; θ
À Á

≠ ytrue&d xadv; x
À Á

≤ ε; ð3Þ

where dðxadv; xÞ : represents the discrepancy between the per-
turbed images and the benign images, and we consider it as
the l1 constraint in this paper.

The idea of ensembling has been widely used to improve
model robustness [25]. It can also be applied to adversarial
attacks because ensemble methods can diminish biases of
individual models; they can yield an adversarial example
update direction that is suitable for the majority of models.
The existing model ensemble methods can be classified into
three categories: (1) ensemble on predictions, (2) ensemble
on logits, and (3) ensemble on losses.

Liu et al. [10] proposed a model ensemble attack through
combining predictions of different models. The loss function
for K models can be ensembled as follows:

J x; yð Þ ¼ −1y ⋅ log ∑
K

k¼1
ωkpk xð Þ

� �
; ð4Þ

where pð⋅Þ: denote prediction output, ωk denote the combine
weight with ωk ≥ 0 and ∑K

k¼1ωk ¼ 1. Dong et al. [11] pro-
posed using logits and losses to implement model ensemble
attacks. The logits of K models can be ensembled as follows:

l x; yð Þ ¼ ∑
K

k¼1
ωklk x; ytrueð Þ; ð5Þ

where lk denote the logits output of the kth model. The losses
of K models can be ensembled as follows:

J x; yð Þ ¼ ∑
K

k¼1
ωkJk x; ytrueð Þ; ð6Þ

where Jk denote the loss of the kth model.
In this work, we select the I-FGSM to craft adversarial

examples, which craft adversarial examples by adding small
perturbations multiple times. Adding perturbations multiple
times can help prevent adversarial examples from getting
stuck in the local optimum, thus increasing the transferabil-
ity. In addition, we use the ensemble gradient to implement
the model ensemble attack as follows:

Gens ¼ ∑
K

k¼1
ωkgk x; ytrueð Þ; ð7Þ

where Gensdenote the ensemble gradient.

3.2. Motivation. Lin et al. [16] link the training of the models
to the generation of adversarial examples. When generating
adversarial examples, the parameters of the model are fixed,
and the adversarial examples are updated by adjusting the
added perturbations. This seems similar with the training
process of the model, which fixes the training samples and
seeks appropriate parameters to improve model perfor-
mance. As a result, many methods for optimizing model
training are beginning to be used to optimize adversarial
examples [16].

To further improve the quality of the adversarial exam-
ple, the idea of model ensemble optimization algorithms has
been widely applied in the generation of adversarial examples
[10, 11]. The principle of model ensemble attacks is that if an
adversarial example can mislead multiple models simulta-
neously, it may have the ability to mislead more black-box
models [11]. Additionally, by combining the outputs of mul-
tiple models, it is possible to reduce individual model biases
and improve the accuracy of attacks. However, most ensem-
ble attack methods directly add the outputs (predictions,
logits, and losses) of different models with equal weights,
and there is no additional processing applied to the obtained
average result. Since adversarial examples have different
optimization directions on different models, directly averag-
ing the outputs of multiple models may limit the quality of
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adversarial examples. This is similar to the issue of the large
variance between the stochastic gradient and the ground-
truth gradient in SGD, which can lead to getting trapped
in local optima [35]. To solve the problem of gradient vari-
ance in SGD, algorithms such as SAG [13] and stochastic
variance-reduced gradient [36] have been proposed. These
kinds of algorithms aim to prevent getting stuck in local
optima by reducing the stochastic variance introduced by
randomly selecting samples. Based on the analysis above,
we propose to combine model ensemble attacks with the
optimization algorithms of SGD. This combination aims to
reduce the stochastic variance in model ensemble attacks to
improve the transferability of crafted adversarial examples;
the overall structure of the SAEA can be seen in Figure 1.

3.3. SAEA Method. In this work, we view the process of
model ensemble attack as the model training process, like
Liu et al. [10]. We attempt to optimize the update direction
of adversarial examples on ensembled models by reducing
the difference between the ensemble gradient and individual
gradients in the model ensemble attacks. This issue is similar
to reducing the variance between the randomly selected sam-
ple gradients and actual gradients in the SGD algorithm.
Therefore, we notice the SAG [13]. SAG retains the average
of historical gradients and uses these averages to estimate the
variance of the gradient, which can reduce the stochastic
variance in the SGD algorithm. Additionally, by using the
average gradient with lower random variance, SAG exhibits
much faster convergence compared to the traditional SGD. If
combined with adversarial attacks, it can also enhance the
speed and quality of generating adversarial examples.

Inspired by SAG, we propose SAEA. Specifically, we used
two loops, internal and external, to implement the attack
algorithm. The internal loop obtains an ensemble gradient
Gens with a smaller variance, and the external loop is used to

combine with the iterative gradient attack algorithm to craft
higher transferability adversarial examples.

The integration of SAEA with I-FGSM [15] can be sum-
marized as Algorithm 1. At the beginning of the algorithm,
we treat clean image x as the initial adversarial examples xadv0 .
In each external loop, we input the adversarial examples
crafted in the previous loop into K models to obtain their
respective gradients and maintain them in memory, denoted
as Gk. After that, we utilize the idea of SAG in the internal
loop to obtain an ensemble gradient Gens with the minimum
variance among these k gradients. The internal loop that
obtains the ensemble gradient is the crucial part of our algo-
rithm. Specifically, at the beginning of each internal loop, we
treat the image input from the external loop as the initial
internal adversarial examples x̃0adv. We randomly select one
model from kmodels and input the internal adversarial exam-
ples into this selected model to update Gkðx̃mÞ :. After that, we
use this updated Gkðx̃mÞ : and others model gradient to obtain
the new Gens by Equation (7). Then, we use the ensemble
gradient from each internal loop to update the internal adver-
sarial examples. In order to maintain the semantic informa-
tion of the internal adversarial examples, we apply a Clip
function to them to ensure the accuracy of the ensemble
gradient obtained in the internal loop. The crafted internal
adversarial examples will be used in the next internal loop to
continue update the Gk and Gens by Equation (7). After M
rounds of internal loop updates, Gens will have a smaller ran-
dom variance compared to the ground-truth gradients of each
model, andwe treat it as the ensemble gradient. This ensemble
gradient can better represent the direction of example updates
on the model set and craft adversarial examples with higher
transferability.

In short, SAEA uses an ensemble gradient with smaller
gradient differences among models to craft adversarial exam-
ples. This enables adversarial examples to achieve better
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FIGURE 1: Overview of the stochastic average ensemble attack (SAEA). We use an internal loop to obtain an ensemble gradient with lower
gradient variance, then use this ensemble gradient in an external loop to implement the iteration model ensemble attacks.
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results on multiple surrogate models, and the capability to
transfer to other models is also improved. Additionally,
SAEA can combine with other advanced input transforma-
tion methods (e.g., SI [16], DI [18], TI [19], and Admix [20])
to show better results.

3.4. Relationships between Different Attacks. SAEA, SVRE,
and ENS are all model ensemble attacks and belong to Itera-
tion FGSM; their relationships are shown in Figure 2, where
p is the probability of the random transformation, k is the
size representing the Gaussian kernel, andm is the scale copy
numbers. The differences and transformations between them
can be summarized as follows:

(i) If the internal iteration M is set to 0, the SAEA and
SVRE will become Ens.

(ii) SVRE and Ens use different methods to obtain
ensemble outputs with SAEA.

(iii) If the internal iteration M, the external iteration T
and the surrogate model numbers K is set to 1, ENS,
SVRE, and SAEA will degrade to the FGSM.

4. Experiments

In this section, we will demonstrate our method with exten-
sive experiments. First, we introduce the parameter settings
about our experiment. Then, we compare the attack success
rate (ASR) of our method on single-representative models
and ensemble-trained models with other SOTA ensemble
methods. In addition, we also validate our methodology on
some advanced defense methods. Finally, we will conduct
ablation experiments to explain the parameters that affect
the experimental results.

4.1. Experiments Setup

4.1.1. Models.We choose four representative models, includ-
ing Inception-v3 (Inc-v3) [36], Inception-v4 (Inc-v4) [37],
Inception-Resnet-v2 (IncRes-v2) [37], Resnet-v2−101 (Res-
v2) [38] to craft adversarial examples. To better evaluate the
transferability of the crafted adversarial examples, we add
three adversarially trained models, including Inc-v3ens3,
Inc-v3ens4, and IncRes-v2ens [25].

In addition, we also choose seven input transformation
defense methods to validate the adversarial examples, which
are: JPEG compression [29], R&P [30], NIPS-r3, HGD [31],
FD [32], ComDefend [33], and RS [34].

4.1.2. Dataset. The dataset we used is the ImageNet-
compatible dataset [14] that is commonly used in adversarial
attack algorithms [12, 19], which contains 100 images
selected from the ImageNet dataset.

4.1.3. Baseline. In the experiment, we compare our method
with SVRE and ENS algorithms on multiple baseline attack
methods, which are I-FGSM [15], MIM [11], SI [16], DI [18],
and TI [19]. The attack type is a nontargeted attack. For all
ensemble attack methods, we set the weight ω of multiple
outputs of the ensemble model to 1=K , where K denotes the
total number of ensembled models.

For better comparison, the hyperparameters in the
experiment remain the same as in previous works [11, 12],
with a maximum perturbation ε value of 16 and pixel values
in the range of 0–255. The attack iterations T is set to 10, the
decay factor μ for all baselines to craft adversarial example
are set to 1. For MIM, the step size α is set to 1.6. For TIM, we
set the kernel size to 7. For DIM, the probability of random
transformation p is set to 0.5. For SIM, we set the scale copy
numbersm to 5. The parameters in the SAEA are the same as

Input: A clean image x and its ground-truth label y;K surrogate models and their gradients fG1;G2;…;Gkg :,

Input: The size of perturbation ε, iterations T , number of internal loops M, external loop step size α, internal loop step size β.

Output: Adversarial example xadv.

1: α¼ ε=T ; G0 ¼ 0

2: Initialize xadv0 ¼ x;

3: for t¼ 0 to T − 1 do

4: Input xadvt and output Gkðxadvt Þ: for

5: Initialize x̃0 ¼ x;

6: for m¼ 0 to M − 1 do:

7: Random choose a model k from f1; 2;…;Kg:;

8: Get the gradient of the chosen model Gkðx̃mÞ:;

9: Update Gens
m by Equation (7);

10: Update x̃mþ1adv¼Clipεxfxadvm þ β ⋅ signðGens
m Þg :;

11: end for

12: Update xadvtþ1 ¼Clipεxfxadvt þ α ⋅ signðGens
M−1Þg :;

13: end for

14: return xadv ¼ xadvT .

ALGORITHM 1: The SAEA-I-FGSM Algorithm.
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in SVRE, where the internal step size β are set to 1.6, and the
number of internal iterations is set to 16.

4.2. Result on Single Representative Model. We first compare
SAEA with Ens and SVRE on four representative models,
including Inc-v3, Inc-v4, IncRes-v2, and Res-101. We test
the effectiveness of the attack with four models ensembled
and with one model excluded, respectively.

Table 1 shows theASR of the threemethods on the ensemble
fourmodels and hold-out correspondingmodels (the best results
are marked in bold).While our method is slightly inferior to Ens
and SVRE in the white box environment, it outperforms both in
the black box environment, indicating higher transferability.
Moreover, transferability will be further improved when com-
bined with other methods.

4.3. Result on Ensemble-Trained Models. We then compare
the ASR of adversarial examples on three models that have
undergone ensemble training, including Inc-v3ens3, Inc-v3ens4,
and IncRes-v2ens. The adversarial examples are crafted on the
representative models, which are Inc-v3, Inc-v4, Res-101, and
IncRes-v2. By combining Ens, SVRE, and SAEA with multiple
attack baseline methods, we test the transferability of the crafted
adversarial examples on these defense models.

Table 2 shows the ASR of adversarial examples on the
ensemble-trained model when hold out the corresponding
model, Table 3 shows the ASR of adversarial examples

against ensemble-trained models on the four representative
models (the best results are marked in bold). We can see that
our method outperforms Ens and is better than SVRE in
most cases on various baselines. The greatest improvement
is observed when combined with the TIM baseline, where
our method SAEA-TIM achieves a success rate improvement
of 17.6% over Ens-TIM and 3.4% over SVRE-TIM, demon-
strating stronger transferability.

4.4. Result on Advanced Defense Models. In this section, we
select seven advanced input transformation defense meth-
ods, including JPEG [29], RP [30], HGD [31], FD [32], Com-
Defend [33], RS [34], and NIPS-r3 to evaluate our method.
The adversarial examples are crafted on the representative
models, including Inc-v3, Inc-v4, Res-101, and IncRes-v2.
For R&P, ComDefend, and JPEG, we use Inc-v3ens3 as the
verification model. For RS, we set the failure probability to
0.001 and the hyperparameter σ to 0.5. For other methods,
we use the official models proposed in their respective papers.
Table 4 shows the results (the best results are marked in bold).
We can see that, under each combination with the baseline
method, our proposed method achieves the best performance
on most defense methods, especially combined with the TI-
DIM method. For the average success rate on these seven
models, ourmethod is 10.5% higher than Ens and 3.2% higher
than SVRE, demonstrating strong transferability and the abil-
ity to deal with various defense mechanisms.

FGSM I-FGSM
MI-FGSM

Ens

SAEA

NI-FGSM

D (T, S) I-FGSM M (N) I-D (T, S) I-FGSM

SVRE

D (T, S) I-SAEA

T = 1 μ = 0

μ = 0

M = 0
p = 0 (k = 1, m = 1)

Input transformation attacks

Model ensemble attacks A
tta

ck
 p

er
fo

rm
an

ce

Attack performance

FIGURE 2: The relationships among different attack methods, we can achieve different types of attacks by adjusting hyperparameters, particularly
when employing the results of multiple models for attack in input transformation attacks. This attack method will become amodel ensemble attack.
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4.5. Results on Baseline Method. Finally, we validate our
approach on separate baseline methods, including DIM,
TIM, SIM, and Admix. We use four representative models
as surrogate models and both the representative models and
the ensemble-trained models as target models. The results of
the experiments are shown in Table 5 (the best results are
marked in bold). We can find that there is an advantage of
our method over a variety of baseline methods, representing
the effectiveness of our method.

4.6. Ablation Study

4.6.1. Internal Iteration M. The number of internal iterations
M determines the variance between the ensemble gradient

and the individual model gradients. We compare SAEA com-
bined with five baseline methods with internal iteration rounds
that are multiples of 4; when the internal iteration round is 0, the
SAEA becomes the Ens. The ASR on ensemble-trained models is
shown in Figure 3. As internal iterationM increases, the ASR of
the five methods gradually increases. Each method achieves the
best performance at different internal iterations. We can also see
that when the internal iterations exceed a certain value, the adver-
sarial exampleswill cause overfitting on the four surrogatemodels.

4.6.2. Internal Step Size β. The internal step size β determines
the degree of update for each internal image. We integrate
SAG with three different baselines, fixing external step size α
at 1.6, and varied β between 0.1 and 25.6, as shown in

TABLE 1: The ASR (%) on the four representative models, which are Inc-v3, Inc-v4, IncRes-v2, and ResNet-101.

Method
Ensemble (white-box) Hold-out (black-box)

Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3 Inc-v4 IncRes-v2 Res-101

I-FGSM
Ens
SVRE
SAEA

99.9
99.9
99.8

99.7
99.8
99.6

99.8
99.8
98.6

99.8
99.6
98.3

78.1
87.8
85.7

68.0
82.7
78.7

58.0
76.3
73.5

49.3
62.5
65.1

MI-FGSM
Ens
SVRE
SAEA

99.8
99.9
100

99.8
99.6
99.2

99.5
99.3
99.4

99.5
99.8
97.7

90.8
96.6
96.6

85.5
93.2
93.4

81.6
91.2
91.3

77.7
86.6
88.7

TIM
Ens
SVRE
SAEA

99.8
99.5
99.8

99.7
99.5
99.3

99.5
99.0
98.7

99.2
99.7
97.5

91.8
93.9
94.8

88.4
91.9
91.5

83.9
86.8
87.9

78.8
77.4
85.0

TI-DIM
Ens
SVRE
SAEA

99.5
99.9
100

99.4
99.1
99.7

98.9
99.4
99.5

97.6
99.2
98.8

95.3
98.3
98.1

94.2
97.2
97.7

93.7
95.9
96.7

90.3
90.9
95.4

SI-TI-DIM
Ens
SVRE
SAEA

99.8
99.8
99.9

99.5
99.7
99.8

99.5
99.6
99.7

99.2
99.8
99.5

97.6
99.2
99.4

97.1
98.8
98.9

97.1
98.2
98.4

96.3
96.7
98.4

The adversarial examples are also crafted on these models. The adversarial examples on the left are crafted on all of the four models, while those on the right are
crafted on hold-out corresponding models.

TABLE 2: The ASR (%) on ensemble-trained models, with adversarial examples crafted on the other three representative models, excluding the
respective model.

Method
Hold-out model

Inc-v3 Inc-v4 IncRes-v2 Res-101 Average

I-FGSM
Ens
SVRE
SAEA

20.93
29.70
30.90

19.03
28.33
28.43

17.57
27.03
27.13

17.30
22.33
24.47

18.71
26.85
27.73

MI-FGSM
Ens
SVRE
SAEA

42.10
49.27
49.30

38.87
44.40
44.27

42.10
42.30
41.13

36.70
38.47
41.33

38.28
43.61
44.03

TIM
Ens
SVRE
SAEA

63.73
74.70
77.17

60.30
75.10
75.53

63.73
69.90
71.50

59.23
66.13
76.50

59.38
71.46
75.18

TI-DIM
Ens
SVRE
SAEA

79.10
89.50
92.87

77.40
88.70
91.17

79.10
85.60
89.87

76.27
81.83
92.03

77.97
86.41
91.48

SI-TI-DIM
Ens
SVRE
SAEA

92.63
96.13
97.10

98.60
96.13
96.40

92.63
94.20
95.53

92.57
93.57
96.83

92.26
95.06
96.47
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TABLE 3: The ASR (%) on ensemble-trained models and the adversarial examples are crafted on the representative models.

Method
Black-box setting

Inc-v3ens3 Inc-v4ens4 IncRes-v2ens Average

I-FGSM
Ens
SVRE
SAEA

25.8
40.1
42.1

24.2
35.4
40.1

16.0
24.5
26.0

22.00
33.33
36.07

MI-FGSM
Ens
SVRE
SAEA

50.4
64.7
66.1

49.3
59.0
58.8

32.2
38.1
40.1

43.97
53.93
55.00

TIM
Ens
SVRE
SAEA

73.2
84.9
88.0

68.6
82.5
86.2

59.3
76.3
79.7

67.03
81.23
84.63

TI-DIM
Ens
SVRE
SAEA

87.4
94.0
96.5

84.3
93.0
94.6

77.6
88.3
92.4

73.10
91.77
94.50

SI-TI-DIM
Ens
SVRE
SAEA

95.1
98.1
99.0

94.7
97.9
97.9

92.3
95.2
96.3

94.03
97.07
97.73

TABLE 4: The ASR (%) on seven defense models, with adversarial examples crafted on the four representative models.

Attack JPEG RS HGD FD NIPS-r3 R&P ComDefend Average

I-FGSM
Ens
SVRE
SAEA

40.4
58.6
59.5

23.8
25.4
26.2

26.4
45.4
43.1

26.7
39.7
42.5

15.1
25.3
26.1

29.0
43.9
44.5

34.0
49.5
50.8

27.91
41.11
41.81

MI-FGSM
Ens
SVRE
SAEA

74.4
88.4
87.3

29.6
32.1
32.2

40.6
46.7
43.7

64.2
77.3
78.8

33.5
40.3
41.0

55.9
69.4
69.6

66.8
81.7
81.3

52.14
62.27
61.99

TIM
Ens
SVRE
SAEA

84.4
90.0
91.6

36.4
45.2
46.0

73.1
84.0
85.6

78.3
90.7
91.7

59.3
75.8
79.0

73.6
84.9
86.6

73.7
82.3
85.3

68.4
78.99
79.02

TI-DIM
Ens
SVRE
SAEA

91.7
86.5
97.0

40.8
51.4
56.2

86.6
93.4
95.1

89.0
96.3
97.1

79.8
90.8
92.9

87.4
94.9
95.9

85.9
92.5
94.1

79.22
86.54
89.76

SI-TI-DIM
Ens
SVRE
SAEA

96.8
98.7
99.4

57.9
62.5
66.3

95.9
97.6
98.2

96.8
98.9
99.5

93.0
95.9
96.2

95.9
98.5
98.8

94.9
96.7
97.7

90.17
92.69
93.73

TABLE 5: The ASR (%) when combine with the baselined method.

Method
Representative models (white-box) Ensemble trained models (black-box)

Inc-v3 Inc-v4 IncRes-v2 Res-101 Inc-v3ens3 Inc-v3ens4 IncRes-v2ens

DIM
Ens
SVRE
SAEA

99.5
99.8
99.9

99.5
99.8
99.7

99.1
99.7
99.8

98.1
99.7
98.7

69.2
79.5
85.7

64.6
74.1
80.8

48.3
53.8
62.1

TIM
Ens
SVRE
SAEA

99.8
99.5
99.8

99.7
99.5
99.3

99.5
99.0
98.7

99.2
99.7
97.5

73.2
84.9
88.0

68.6
82.5
86.2

59.3
76.3
79.7

SIM
Ens
SVRE
SAEA

100
99.9
99.9

100
99.9
99.9

99.7
100
99.9

99.7
99.8
99.9

87.3
90.2
90.6

83.2
87.9
88.5

70.6
70.8
72.5

Admix
Ens
SVRE
SAEA

100
99.9
100

100
99.8
99.9

99.8
99.9
99.9

99.9
100
99.7

89.2
91.4
91.2

84.2
88.7
88.8

71.2
72.1
73.5

The adversarial examples are crafted on four representative models.
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Figure 4, the ASR (%) of various methods reaches the maxi-
mum at different step sizes. To make better comparisons
with other methods, we also set β to 1.6.

4.7. The Calculate Times. As SAEA and SVRE both have an
internal loop, they require more computational resources
than ENS when compared at the same number of iterations.

To better assess the effect of the gradient computation times
on the experimental results, we compare SAEA with SVRE
under the same number of computations. In the case of the
MI-FGSM baseline method with 16 internal loops, SVRE
needs to compute the gradient on the ensemble model
once in each external loop, which can be viewed as comput-
ing the gradient of each single model four times. In addition,
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FIGURE 3: The ASR of SAEA combined with five baseline methods at different internal iteration numbers M.
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FIGURE 4: The ASR of SAEA combines with different baselines at different internal step sizes: (a) I-FGSM; (b) MI-FGSM; and (c) SI-TI-DIM.
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32 gradient computations are required in 16 internal loops,
making a total of 36 computations for SVRE. In contrast,
SAEA directly aggregates the gradients without the need for
additional gradient computations and only requires one-
time ensemble gradient computation in the external loop
and one gradient computation per internal loop for a total
of 20 computations. Therefore, the computational cost of
SVRE is 1.8 times that of SAEA. Figure 5 shows the experi-
mental results of the three methods under different compu-
tational expenses; we can see that ENS is able to generate
adversarial examples faster, but it can only exhibit a limited
success rate of transfer attacks. In addition, SAEA requires
less computational resources compared to SVRE, and the
final generated adversarial examples have the highest trans-
ferability among the three methods, which shows the effec-
tiveness of our method.

5. Conclusion

In this work, we propose a new attack method called SAEA,
aiming to craft more transferable adversarial examples.
SAEA generates adversarial examples by reducing the differ-
ence between the average gradient and the gradients of indi-
vidual models. In addition, SAEA can be combined with
other methods to further improve attack capability, and
extensive experiments show that our method crafts more
transferable adversarial examples than existing methods.
However, there are still some limitations in our approach;
for example, the inner loops increase the computational cost
and the time to generate adversarial examples, which per-
forms poorly in some attack scenarios with strict time
requirements. In future work, we will try to optimize this
problem, consider introducing our approach to multimodal
attacks, and try to experiment on more datasets.

Data Availability

The data and code can be found at https://github.com/Le
iZhaoYNU/SAEA.
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