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Background and Objectives. Ionizing radiation is widely used in medical imaging for diagnosis and in radiotherapy for the
treatment of various medical conditions. However, ionizing radiation can cause damage to healthy cells and tissues, leading to
side effects and an increased risk of cancer and other diseases over time. This study aimed to evaluate the possible radioprotective
effect of selenium nanoparticles against the damage caused by ionizing radiation. Materials and Methods. This study followed the
PRISMA reporting guidelines to present the results. A comprehensive search was performed on electronic databases such as
PubMed, Scopus, Web of Sciences, and Science Direct. Initially, 413 articles were retrieved. After removing duplicates and applying
specific inclusion and exclusion criteria, 10 articles were finally included in this systematic review. Results. The reviewed studies
showed that selenium nanoparticles had anti-inflammatory and antioxidant properties. They effectively protected the kidneys,
liver, and testicles from damage. Furthermore, there was evidence of efficient radioprotection for the organs examined without
significant side effects. Conclusions. This systematic review emphasizes the potential advantages of using selenium nanoparticles to
prevent the negative effects of ionizing radiation. Importantly, these protective effects were achieved without causing noticeable
side effects. These findings suggest the potential role of selenium nanoparticles as radioprotective agents, offering possible
therapeutic applications to reduce the risks related to ionizing radiation exposure in medical imaging and radiotherapy procedures.

1. Introduction

Ionizing radiation (IR) is widely used in modern medicine
for both diagnosis and treatment. Radiotherapy (RT) is a
highly effective and common method for cancer treatment
[1–4]. However, this treatment method has a major draw-
back: it can damage healthy cells and tissues [5]. IR affects
cells through direct and indirect mechanisms, causing phys-
iological and pathological changes that may endanger bio-
logical tissues [6, 7]. Protecting normal tissues from IR is a
vital concern in clinical and environmental radiobiology [8].
The main cause of radiation-induced side effects is the pro-
duction of free radicals within cells [9].

Over the past decades, many studies have explored the use of
radioprotectors to mitigate the detrimental effects of ionizing
radiation [9]. Radioprotective agents, or radioprotectors, have
been suggested to avoid or reduce IR side effects [10]. The ideal
radioprotector provides optimal protection for healthy tissues
and organs, while minimizing toxicity and targeting healthy

cells rather than the cancer cells [11]. Radioprotectors function
through various mechanisms such as antioxidant and anti-
inflammatory activities, prevention ofDNAdamage, elimination
of free radicals, and activation of the body’s repair mechan-
isms [12–15].

Selenium, a crucial natural element that participates in
important biological processes such as immune function,
thyroid hormone regulation, and antioxidant defenses, has
shown its ability to protect cells from the oxidative damage
and lower inflammation [16–18].

Nanoparticles have various applications in medicine, such
as enhancing radiation sensitivity and protection, improving
diagnostic imaging, treating cancer, and delivering drugs
[19–22]. Selenium nanoparticles (SeNPs) are of particular
interest for their possible protective properties [23, 24]. SeNPs
have very small dimensions, ranging from 1 to 500nm [25].
Many studies have demonstrated the potential of SeNPs to
shield healthy cells and tissues from the harmful effects of
radiation and to increase the effectiveness of radiation therapy.
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Moreover, selenium nanoparticles are biocompatible and have
low toxicity, which makes them suitable candidates for radio-
protection [26].

2. Materials and Methods

2.1. Search Strategy. The Statement of Priority Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) was
followed to report this systematic review [27]. In March 2023,
a comprehensive computerized search of relevant English-
language studies was conducted. The databases such as
PubMed, Scopus, Science Direct, and Web of Science were
used and they did not limit the publication years. The terms
“radiation,” “Selenium,” and any of the following: “nano-
particle,” “nanoparticle,” or “nano particle” were searched. The
references of the selected studies to find more related
publications were also manually checked.

2.2. Inclusion Criteria. Certain criteria were applied to select
the articles for this review, as follows:

(i) The studies had to examine the radioprotective
effects of SeNPs and be written in English.

(ii) The studies had to use ionizing radiation.
(iii) The studies had to contain the keywords we speci-

fied earlier and provide sufficient information.
(iv) The studies could be of any publication type, such as

clinical, in vivo, or in vitro research.
(v) These criteria ensured that the articles we chose for

our review were relevant and met the necessary
standards.

2.3. Exclusion Criteria. This review excluded studies based on
these criteria:

(i) Studies that did not relate to SeNPs.
(ii) Research that used other kinds of radiation, such as

RF-EMF, ultraviolet (UV), fluorescence, or cosmic
radiation.

(iii) Studies that assessed the effects of SeNPs with che-
motherapy instead of radiation therapy.

(iv) Review articles, case reports, conference abstracts,
simulation studies, letters to editors, unpublished
data, editorials, articles without full texts, and arti-
cles that were not in English.

To maintain the focus and relevance of this research, the
mentioned criteria was used to select articles that explicitly
discussed the use of SeNPs for radiation therapy.

2.4. Study Selection. The articles from electronic and manual
searches were imported into Endnote software for organiza-
tion and duplicate articles from the dataset were removed.
Only the studies that met the predefined inclusion criteria for
further analysis were chosen.

2.5. Data Extraction. The following details from each article
were extracted after two researchers independently reviewed

them: the first author’s name, publication year, subject, organ
or tissue of interest, radiation type and dose, dosage, and find-
ings. Also, the key findings were synthesized and analyzed.

3. Results

To assess the radioprotective effect of SeNPs and synthesize
the existing evidence, a systematic review was conducted.
The established guidelines to perform a systematic literature
search were followed. Relevant studies that investigated the
radioprotective effect of SeNPs were included. The results
from eligible studies were pooled after conducting quality
assessment and data extraction.

3.1. Literature Search and Screening. Figure 1 illustrates the
process of selecting studies and the results of this work. Num-
ber of 413 articles was collected from the electronic databases
mentioned through an extensive search. These articles were
published from 2013 to 2022. Duplicate articles (n= 25) were
excluded and evaluated the remaining articles (n= 388) by
their article type, title, and abstract. Then, 352 irrelevant arti-
cles were excluded. Finally, 16 articles were examined in their
full text and included 10 articles in the systematic review
based on inclusion and exclusion criteria.

3.2. Study Characteristics. The characteristics of the studies
included in our analysis are summarized in Table 1. Eight
studies used rats and mice as in vivo experimental models,
while two studies used lymphocyte and CHO cells as in vitro
models. Gamma rays were the radiation type in seven stud-
ies, and X-rays were the radiation type in three studies. The
radiation doses ranged from 0.04 to 8Gy.

The in vivo studies administered SeNPs orally in five
studies and intraperitoneally (IP) in three studies. The routes
of administration depended on the experimental setup and
objectives of each study.

3.3. Various Methods of SeNPs Synthesis and Advantages in
the Radioprotective Application. Elemental selenium in the
form of nanoscale particles (SeNPs) has drawn the attention
of many researchers for its biocompatibility, bioavailability,
and low toxicity. Various synthesis methods, such as physi-
cal, chemical, and biological methods, can be used to pro-
duce SeNPs, each with its own merits and drawbacks.
Physical methods, such as laser ablation and gamma irradia-
tion, can yield SeNPs with high purity and uniform size, but
they are costly and require advanced equipment. Chemical
methods, such as reduction and solvothermal synthesis, can
generate SeNPs with different shapes and sizes, but they may
use toxic reagents and produce harmful byproducts. Biological
methods, such as using microorganisms, plants, and biomole-
cules, can create SeNPs with environmentally friendly and eco-
nomical approaches, but they may have low yield and stability
issues [37–39].

The size of SeNPs is a key factor that affects their physi-
cochemical and biological properties, such as solubility, sta-
bility, surface area, cellular uptake, and biodistribution. The
size and the shape of SeNPs depend on the synthesis method
used, and they can range from 1 to 500 nm. Smaller SeNPs
have higher surface-to-volume ratios and more reactive sites,
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which may improve their antioxidant and radioprotective
activities [38, 40–42]. However, the optimal size range of
SeNPs for different biomedical applications remains to be
determined. Selenium nanoparticles have potential applica-
tions in the biomedical field, such as in the treatment of
infections, cancer, diabetes, and inflammation, as well as in
the prevention of oxidative stress. Selenium nanoparticles
have demonstrated promising applications in radiation pro-
tection, as they can act as antioxidants, anti-inflammatory
agents, and chemopreventive agents. Selenium nanoparticles
can scavenge reactive oxygen species (ROS) produced by
ionizing radiation, protect normal cells from DNA damage
and apoptosis, and increase the radiosensitivity of tumor
cells. Selenium nanoparticles can also modulate the immune
system and prevent the inflammation and fibrosis induced by

radiation exposure [31, 34, 43]. Therefore, SeNPs can be used
as potential radioprotectors for the prevention and treatment
of radiation-induced injuries.

3.4. SeNPs Dosage. The optimal dose of SeNPs for radiopro-
tection has been investigated in various studies. The studies
that mainly used a dose of 0.5mg/kg body weight of SeNPs to
assess its radioprotective effects were included for analysis.
This dose of SeNPs was effective in preventing kidney and
liver damage caused by IR. This dose also showed potential
in reducing the adverse effects of IR on these organs
[26, 29, 32].

3.5. Radiation Damages and Radioprotective Effect of SeNPs.
IR exposure at different doses can harm various organs and

Total records identified from databases: (n = 413)

PubMed: (n = 7)
Science Direct: (n = 12)
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FIGURE 1: The process of selecting studies and the results.
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cells, both in vitro and in vivo (Figure 2). Pretreatment or
posttreatment with SeNPs can reduce the harmful effects of
radiation on the bone marrow, liver, kidney, and testes.
Many studies showed that SeNPs can protect against
radiation-induced injury and inflammation in animals.

The study by Yazdi et al. [28] found that a single dose of 8
Gy caused various toxicities that affected the bone marrow
and lowered theWBC counts. These toxicities are serious side
effects of radiation exposure. SeNPs enhanced bone marrow
function and raised the number of lymphocytes and neutro-
phils, indicating its potential to prevent radiation-induced
bone marrow damage. Moreover, SeNPs accumulated in the
liver and helped a faster recovery [28].

Fahmy et al. [29] found that Cisplatin and γ-irradiation
increased renin and IL6 levels in the blood and reduced antioxi-
dant activity. These biomarker changes revealed the mechanism
of liver damage. The researchers also showed that SeNPs and fish
oil could lower liver damage from radiation and cisplatin. This
implies that SeNPs could protect the liver [29].

The report showed that nicotine alone or with IR harmed
the kidneys. This was clear from the rise in some markers of
kidney function in the blood, along with oxidative and inflam-
matory changes. Zahran et al. [30] showed that SeNPs pre-
vented kidney damage, lowered inflammation, and removed
free radicals in rats exposed to whole-body irradiation. These
findings emphasize the antioxidant and anti-inflammatory
features of SeNPs, which help to protect the kidneys [30].

In addition, El-Ghazaly et al. [31] showed that SeNPs
treatment decreased inflammation and edema in rats exposed
to radiation, suggesting that SeNPs have anti-inflammatory

and antioxidant effects by suppressing proinflammatory
genes. Karami et al. [26] evaluated the protective role of
SeNPs against nephropathy induced by IR in mice. They
reported that SeNPs, which have strong antioxidant proper-
ties, could prevent nephropathy effectively [26]. Saif-Elnasr
et al. [32] demonstrated that fish oil and/or SeNPs pretreat-
ment lowered kidney damage in rats caused by cisplatin and
radiation. The pretreatment also enhanced renal antioxidant
status, reduced Casp-3 and COX-2 levels, and decreased vari-
ous renal indicators [32]. Furthermore, SeNPs exhibited anti-
oxidant activity, alleviating liver injury, and lowering enzyme
levels related to liver function in rats subjected to gamma-ray
radiation [33]. Jafarpour et al. [34] explored the effect of
melatonin and SeNPs combination and observed that it
reduced DNA double-strand breaks in peripheral lympho-
cytes exposed to ionizing radiation, implying a possible pro-
tective effect.

It is essential to acknowledge that more research is needed
to fully elucidate the mechanisms behind these radioprotec-
tive effects and to identify the best dosages and treatment
regimens. Thorough testing and assessment are vital before
applying these results to the clinical or practical settings
[35, 36]. In summary, the studies reviewed in this collection
highlight the potential of SeNPs in mitigating the adverse
effects of radiation on various organs and tissues. However,
further research is required to confirm these results and deter-
mine the most optimal therapeutic approaches. These useful
insights enhance the growing knowledge of SeNPs as possible
radioprotective agents, opening up new avenues for the future
research in this area.

SeNPs

1 -

(i) Antioxidant
(ii) Anti-inflammatory
(iii) Prevention of DNA damage 
(iv) Elimination of free radicals
(v) Activation repair mechanisms

(i) Tissues damages
(ii) Oxidative stress
(iii) Free radicals
(iv) Inflammation
(v) DNA damages
(vi) Apoptosis

Ionizing radiation

Selenium nanoparticles

Size:1–500 nm

FIGURE 2: Selenium nanoparticles attenuate damage induced by ionizing radiation in biological systems.
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4. Discussion

Radiation therapy aims to destroy cancer cells, but it may
also affect the surrounding healthy tissues. Healthcare pro-
fessionals have to weigh the pros and cons of radiation ther-
apy, considering how well it kills cancer cells and how much
damage it causes to nearby tissues [44]. Infrared exposure
can harm the cellular components of living organisms, and
the extent of the harm varies with the radiation dose and the
organ affected [45–47]. Radiobiology is greatly concerned
with safeguarding normal tissues from the adverse effects
of IR [8].

Radioprotectors can help to mitigate radiation hazards.
Nanoparticles are widely used in variousmedical fields, includ-
ing radiation protection [48–52]. This study systematically
reviewed the role of SeNPs as radioprotectors against IR-
induced damage. Selenium is an essential element for the
body’s functions. SeNPs have lower toxicity and better radio-
protective effects than other selenium compounds inmedicine,
suggesting their potential for future biomedical applica-
tions [53–57].

SeNPs can fight cancer when used with immunotherapy,
chemotherapy, or RT [25, 58, 59]. Moreover, studies have
revealed that SeNPs with natural ingredients such as GSE can
benefit diabetic patients who receive RT [60].

The studies in this review have shown that SeNPs can
protect animals, cultured cells, and various tissues from
gamma rays and X-rays (Table 1). In the bonemarrow, SeNPs
improved bone marrow function and raised lymphocyte and
neutrophil counts, suggesting that they can prevent radiation-
induced bone marrow suppression [28]. Likewise, studies on
the liver showed that SeNPs reduced liver damage from IR
and chemical exposure, demonstrating their protective effect
on hepatic tissue [29].

Studies on the kidney showed that SeNPs prevented kid-
ney damage, lowered inflammation, and eliminated free radi-
cals, indicating that their antioxidant and anti-inflammatory
properties enhanced the radioprotective effects on renal tis-
sue [30]. SeNPs also reduced inflammation and edema in irra-
diated rats, revealing their potential anti-inflammatory activities
through the suppression of proinflammatory genes and antioxi-
dant effects [31]. SeNPs protected against nephropathy from IR
exposure due to their strong antioxidant properties [26]. More-
over, SeNPs pretreatment decreased kidney damage from radia-
tion and chemical exposure, boosted renal antioxidant capacity,
and lowered the levels of renal markers, confirming their poten-
tial as radioprotective agents [32].

This review presents strong evidence for the protective role
of SeNPs against radiation-induced harm in various organs and
tissues. The results indicate that SeNPs could be used to prevent
or reduce the damage and inflammation caused by radiation
exposure. The antioxidant activity of SeNPs, which eliminates
free radicals and lowers oxidative stress, may explain the
observed protection. Moreover, the anti-inflammatory effects
and regulation of inflammatory genes by SeNPs also enhance
the overall protection against radiation damage. However, it
should be noted that the findings of this review are not conclu-
sive, and more research is needed to overcome some limitations.

The studies included in this review differed in their methods,
doses, and treatments, which could affect the outcomes. Also, the
studiesmainly used animalmodels, andmore human studies are
required to confirm these results.

5. Conclusions and Future Perspectives

This review article investigated the protective role of SeNPs
against radiation damage. By analyzing relevant studies, it
showed that SeNPs have considerable promise in reducing
the negative effects of radiation on different tissues. Histo-
pathological assessments have repeatedly shown the ability of
SeNPs to lessen pathological alterations and maintain tissue
structure. These results emphasize the radioprotective fea-
tures of SeNPs and may have useful implications for future
research and clinical use. More studies are needed to fine-tune
the dose and delivery of SeNPs, enabling the development of
efficient methods to improve their protective effects. By uti-
lizing the potential of SeNPs, the patient outcomes and lower
the harmful impacts of radiation therapy on healthy tissues
may be enhanced.
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