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The performance of software defect prediction (SDP) models determines the priority of test resource allocation. Researchers also
use interpretability techniques to gain empirical knowledge about software quality from SDP models. However, SDP methods
designed in the past research rarely consider the impact of data transformation methods, simple but commonly used preprocessing
techniques, on the performance and interpretability of SDP models. Therefore, in this paper, we investigate the impact of three data
transformation methods (Log, Minmax, and Z-score) on the performance and interpretability of SDP models. Through empirical
research on (i) six classification techniques (random forest, decision tree, logistic regression, Naive Bayes, K-nearest neighbors, and
multilayer perceptron), (ii) six performance evaluation indicators (Accuracy, Precision, Recall, F1, MCC, and AUC), (iii) two
interpretable methods (permutation and SHAP), (iv) two feature importance measures (Top-k feature rank overlap and differ-
ence), and (v) three datasets (Promise, Relink, and AEEEM), our results show that the data transformation methods can signifi-
cantly improve the performance of the SDP models and greatly affect the variation of the most important features. Specifically, the
impact of data transformation methods on the performance and interpretability of SDP models depends on the classification
techniques and evaluation indicators. We observe that log transformation improves NB model performance by 7%—61% on the
other five indicators with a 5% drop in Precision. Minmax and Z-score transformation improves NB model performance by 2%-9%
across all indicators. However, all three transformation methods lead to substantial changes in the Top-5 important feature ranks,
with differences exceeding 2 in 40%-80% of cases (detailed results available in the main content). Based on our findings, we
recommend that (1) considering the impact of data transformation methods on model performance and interpretability when
designing SDP approaches as transformations can improve model accuracy, and potentially obscure important features, which lead
to challenges in interpretation, (2) conducting comparative experiments with and without the transformations to validate the
effectiveness of proposed methods which are designed to improve the prediction performance, and (3) tracking changes in the most
important features before and after applying data transformation methods to ensure precise and traceable interpretability con-
clusions to gain insights. Our study reminds researchers and practitioners of the need for comprehensive considerations even when
using other similar simple data processing methods.

1. Introduction

Recently, intelligent software development methods have
received extensive attention from researchers in the software
engineering community. Software defect prediction (SDP)
research is an important part of intelligent software develop-
ment methods and an important application scenario of

Artificial Intelligence for Software Engineering (AI4SE)
[1, 2]. Software defect prediction combines machine learning
with defect datasets to train models, predicting defects in the
target software modules [3-5]. In the past, much research
has been dedicated to enhancing the performance of SDP
models. This aims to assist testers in effectively allocating
their limited testing resources and crafting efficient,
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resource-saving software quality assurance (SQA) plans
[6, 7]. However, recent researches [8—10] pointed out that
improving the prediction performance of SDP models to
formulate SQA is only one of the multiple goals of software
defect prediction. The SDP model should also have the capa-
bility to offer practitioners profound insights. This includes
comprehending the features, especially the most crucial ones,
associated with past software defects. Additionally, it should
provide an explanation for the rationale behind a specific
prediction made by the SDP model. Then that can help the
software development team to design software development
activities scientifically.

The performance of the SDP model is directly contingent
on the quality of the training dataset. Consequently, in order to
enhance the model’s performance, for the phenomenon of
non-normal data distribution and dimensional differences in
the training datasets, researchers use various simple data trans-
formation methods to eliminate the dimensional differences of
the data or incline the data to normal distribution to eliminate
the distribution difference of data [11, 12]. Recent research on
defect prediction has examined the influence of data transfor-
mation methods on the performance of SDP models. Menzies
et al. [13] observed an enhancement in the performance of the
Naive Bayes (NB) model when applying the log transformation
method to NASA datasets. However, Adnan et al. [14] experi-
ments on Just-In-Time (JIT) datasets and Hao et al. [15] on
Eclipse datasets yielded contrasting results, showing that the
log transformation method not only failed to improve the AUC
value of the NB model but even led to a slight decrease. These
conflicting findings in the previous studies make it challenging
to establish definitive guidelines regarding the application of
data transformation methods in preprocessing training data-
sets for model construction. In particular, it is unknown, which
indicators of which SDP models will be affected by the data
transformation method.

When we review the previous studies on building inter-
pretable SDP models, we find that most of the studies did not
consider the impact of data transformation methods on
model interpretability [16-18]. Recent studies point out
that the performance and interpretability of defect prediction
models are the inverse effects of each other [19]. The
improvement of model performance may cause a decline
in interpretation, and the improvement of interpretation
will cause a decline in performance. Currently, the data
transformation method has become a conventional proces-
sing step in the field of defect prediction research. However,
it remains uncertain whether certain existing research endea-
vors, focused on developing interpretable defect prediction
model methods and enhancing the performance of SDP
models [20-22], have incorporated data transformation
methods or directly analyzed the original datasets. Consider
that previous empirical studies on the impact of data trans-
formation methods on SDP model were conducted on prob-
lematic datasets (e.g, NASA dataset) and insufficient
classifiers and evaluation metrics. This also threatens the
validity and reproducibility of existing work. Therefore, it
is necessary to explore the impact of data transformation
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methods on the performance and interpretability of SDP
models.

In this paper, we set out to investigate the impact of three
commonly used data transformation methods (i.e., log trans-
formation, Minmax transformation, and Z-score transforma-
tion) on the performance and interpretability of SDP models.
We use six commonly used classification techniques to train
SDP models, including Random Forest (RF ), Logistic Regres-
sion (LR), Naive Bayes (NB), Decision Tree (DT), K-Nearest
Neighbors (KNN), and Multilayer Perceptron (MLP). We use
six commonly used performance evaluation indicators,
including Accuracy, Precision, Recall, F1, MCC, and AUC,
to evaluate the performance of the SDP model built on the
datasets before and after applying the data transformation
method. We use Top-k feature rank overlap and Top-k fea-
ture rank difference to evaluate the change of the most impor-
tant features of SDP models built on the datasets before and
after applying the data transformation method. Through an
empirical study of 16 software projects in three open-source
software datasets, we draw the following conclusions.

Compared to the SDP model constructed using the orig-
inal datasets, SDP models constructed using datasets trans-
formed by log transformation, Minmax transformation, and
Z-score transformation can yield significant improvements
in the performance evaluation metrics for most models. Even
in cases where certain classification models or evaluation
metrics do not show significant improvement, it will hardly
cause a decline in model performance (details in Section 4.1).

Compared to the SDP model constructed using the orig-
inal datasets, the SDP models constructed using datasets
transformed by log transformation, Minmax transformation,
and Z-score transformation exhibit notable changes in fea-
ture importance for most models. This shift in feature
importance directly impacts the interpretability of the SDP
models. In other words, whether the application of data
transformation methods affects the interpretability of SDP
models depends on the classification techniques utilized in
the study (details in Section 4.2).

There is indeed a tradeoff between the performance and
interpretability of SDP models. The decision to employ data
transformation methods for preprocessing the datasets
before constructing the SDP model should be based on a
careful analysis of the specific goals (details in Section 5).

Our contributions include:

(i) We revisit whether data transformation methods
can improve the performance of SDP models. Using
six classification techniques on a more extensive and
reasonable dataset to conduct qualitative analysis,
quantitative analysis, and significance analysis on
whether the three data transformation methods
can improve the six performance evaluation indica-
tors of the SDP model.

(if) We conduct an empirical study on whether and how
the use of three data transformation methods affects

the importance rank of the most important features
of SDP models.
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(iii) We discuss the relationship between defect predic-
tion model performance and interpretability and
give suggestions on whether data transformation
methods should be used for data preprocessing in
defect datasets according to the different goals of
defect prediction.

(iv) We release a repository containing experimental
data, experimental code, and experimental processes
to enhance the persuasiveness and generalizability of
experimental conclusions and promote replicable
and sustainable research in the community (https://
github.com/OpenSELab/IET-Software-2023).

The rest of this paper is organized as follows.

Section 2 introduces related work and research motiva-
tions. Section 3 presents the detailed experimental design
that addresses the questions posed. Section 4 analyzes the
experimental results from a holistic and partial perspective
and answers the two research questions posed. In Section 5,
we give suggestions based on the conclusions of experimental
results according to the different objectives of defect predic-
tion. Section 6 analyzes the threats to the validity of the
research conclusions. Finally, we conclude our study in Sec-
tion 7.

2. Related Work and Research Motivation

Agrawal and Menzies [23] emphasized the significance of
data preprocessing as a crucial step in the experiments. In
the design of defect prediction methods, data preprocessing
is more important than classifier selection. Data transforma-
tion is a commonly employed technique for data preproces-
sing. Numerous prior studies have introduced diverse
methods aimed at enhancing the performance of SDP mod-
els, with some studies explicitly outlining the steps involved
in the data transformation. For example, Liu et al. [24] pro-
posed a two-phase transfer learning model for cross-project
defect prediction, which clearly pointed out that they used
the log transformation method to process training datasets in
the data preprocessing stage. Zhou et al. [25] and Li et al. [26]
also clearly stated that they used the Z-score transformation
method to standardize the feature values in the datasets
before building the SDP model.

However, much more research on defect prediction do
not specify whether data transformation methods are used or
not and what kind of data transformation methods are used
for data preprocessing in detail. For example, Wei et al. [27]
proposed the SDP model with effective dimension reduction.
Wu et al. [28] proposed a cost-sensitive kernelized semi-
supervised dictionary learning defect prediction method.
The above methods, including some other similar SDP meth-
ods [29-31], do not indicate whether they used data trans-
formation methods to preprocess the datasets and which
method they used to preprocess the dataset, or whether their
methods directly experimented on the original datasets.
Since, it is not clear how effective the data transformation
method is in improving the performance of the model.
Therefore, the repeatability of the previous experiments

and the validity of experimental conclusions may pose
threats. That is to say, if the data transformation method
can significantly improve the performance of the SDP model,
it is difficult to know what factors are responsible for the
improvement of the performance of the SDP model by
some existing methods.

In past research on SDP models using data transforma-
tion methods, Menzies et al. [13] found that building NB
models on NASA datasets transformed by the log transfor-
mation can significantly improve performance. However,
Jiang et al. [32] found that the log transformation rarely
improved the performance of the SDP model on NASA
datasets. The experimental results of Amin et al. [14] on
JIT datasets and Jia et al. [15] on Eclipse datasets are also
contrary to the conclusions of Menzies et al. [13]. They
found that the log transformation method not only failed
to improve the AUC of the NB model but even decreased
slightly. These studies produced inconsistent and even con-
flicting conclusions, which made it difficult to derive practi-
cal guidelines on whether data transformation methods
should be applied to dataset preprocessing and building
SDP models. Furthermore, previous empirical studies on
the impact of data transformation methods on the perfor-
mance of SDP models were analyzed on the problematic
datasets (e.g., NASA datasets were proved to have noise
data [33], and other datasets were also unbalanced) and on
fewer than three performance evaluation indicators (e.g.,
some only selected one single AUC indicator). This threatens
the validity of previous research conclusions. Because the
conclusions may not generalize to the other datasets and
other indicators. If we want to build an SDP model on a
new dataset and hope to get better AUC and F1, we cannot
get effective guidance from the conclusions of existing works.
Therefore, in order to solve the inconsistency and effective-
ness threats of the previous studies, we propose the first
research question:

RQ1: How do the data transformation methods affect the
performance of the defect prediction model?

Recently, many research focused on the interpretability of
SDP models. Jiarpakdee et al. [34] pointed out that the three
goals of defect prediction technology are equally important.
That is, it is equally important for developers to understand
the features related to the past software defects and explain
why a specific file is predicted to be defective as well as to
predict whether a file will be defective in the future. Wan et al.
[35] conducted a quantitative and qualitative study on the
value of defect prediction in practice. They conducted inter-
views and surveys on practitioners’ thoughts, behaviors, and
expectations, and found that more than 90% of respondents
were willing to adopt defect prediction techniques.

The interpretability of the defect prediction model makes
the prediction results of the model easier to understand and
trust. When decision-makers or stakeholders can understand
the basis for the model’s judgments, they are more likely to
accept and trust the model’s predictions. Additionally,
interpretability can provide important insights into why a
particular prediction was made. This helps developers
quickly locate and fix defects in software, rather than relying
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mation methods, original models mean the models built using the datasets without transformed).

solely on the model predictions. However, the existing defect
prediction technology does not give an explanation for mak-
ing a certain prediction, which hinders practitioners from
applying defect prediction technology in practice.

Many researchers start from feature importance to study
the interpretability of SDP models. They use model-specific
feature importance methods to gain insights from SDP mod-
els. For example, the analysis of variance (ANOVA) method
of the LR model is used to analyze the defect prediction
model [36, 37], and the feature importance method of the
RF model [38, 39] and DT model [40, 41] is used to acquire
useful knowledge for the development process. Similarly,
researchers also use model-agnostic methods to study the
most important features that contribute to the classification
of SDP models. For example, Qiu et al. [22] use the partial
dependence plots (PDP) method to calculate the feature
importance of the RF model for the experimental compari-
son. Esteves et al. [42] use the SHapley Additive exPlanations
(SHAP) method to interpret the predictions of their designed
defect model. Jiarpakdee et al. [43] use local interpretable
model-agnostic explanations (LIME), breakdown, and their
proposed method to analyze the most contributing features
of prediction for a given instance.

Similar to the research on defect prediction performance,
it is also unclear whether some existing works investigating
the interpretability of SDP models applied data transforma-
tion methods or directly performed on the original datasets.
For example, Tantithamthavorn et al. [44] pointed out
clearly that the log transformation is used to process the
original datasets when studying the impact of mislabeling
on the interpretability of the SDP model. However, some
of the above research on the interpretability of SDP models
did not indicate whether they were empirical studies on the
datasets after data transformation. Data transformation
appears to be a conventional data preprocessing step but
its impact on interpretability is understudied. Therefore,
this phenomenon may pose threats to the validity and
repeatability of the conclusions of the existing interpretabil-
ity work, because it is not yet clear whether the data trans-
formation method will affect the interpretability of the SDP
model. So when repeating the previous work, whether to use
data transformation to process the dataset may lead to

conclusions that are inconsistent with the previous work. If
the existing research uses the data transformation method to
deal with the datasets, it is more necessary to further explore
what is the reason for the conclusion. In addition, recent
work pointed out that there is a certain balance between
the performance and interpretability of the SDP model
[22]. That is, the improvement of performance may cause
a decrease in interpretability, and the enhancement of
interpretability will reduce the performance of the model.
Therefore, if the data transformation method affects the per-
formance of the SDP model, it may also affect the interpret-
ability of the model. So, we propose the second research
question:

RQ2: How do data transformation methods affect the
interpretability of defect prediction models?

To address the above research questions, we use six com-
prehensive performance evaluation metrics and two feature
importance metrics to study the impact of three data trans-
formation methods on the performance and interpretability
of six commonly used SDP classification models on 16 soft-
ware projects. The next section will introduce the technology
involved in detail.

3. Case Study Design

In this section, we describe the case study designed to address
the above two research questions, and the framework of the
entire case design is shown in Figure 1. For each part of the
framework, we will introduce in following subsections in
detail, including data transformation methods, classification
techniques, datasets, feature importance methods, evaluation
indicators, and experimental implementation, etc.

3.1. Data Transformation Methods. Appropriate transforma-
tion of data has become one of the basic steps before the
construction of defect prediction model. This paper studies
three data transformation methods commonly used by
researchers in the past. We first choose the log transforma-
tion, which is a method used by the previous researchers that
led to inconsistent conclusions as mentioned earlier
[13, 14, 16, 32, 45]. Then we choose Minmax transformation
and Z-score transformation, which are two data transforma-
tion methods frequently used by researchers in the field of
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defect prediction [6, 46—48]. Below, we briefly introduce
these three data transformation methods.

Log transformation [49] is a mathematical technique that
converts the original data values of software features into
their corresponding logarithmic values. This method is
widely employed in the field of software defect prediction.
Before building the SDP model, the dataset is preprocessed to
make the data distribution closer to the normal distribution.
Log transformation is essentially a mathematical function
transformation. Due to the rules of mathematical functions,
it can only process values greater than 0. However, in practi-
cal applications, it is common to add a constant to the value
being transformed to handle 0 values [50]. Therefore, For-
mula (1) is generally used for log transformation in practice.

Xpew = In(X + 1). (1)

Minmax transformation [48] is a linear data transforma-
tion method that scales the original data to a range between 0
and 1. Max and Min are the maximum and minimum values
of a feature column in the dataset, respectively. The objective
is to convert the original feature values into dimensionless
pure values, enabling comparison and weighting of features
with the different units or magnitudes. This helps eliminate
the influence of dimensional differences on the final results.
We use Formula (2) to perform Minmax transformation on
the dataset.

X — X
Xpew =0 (2)
Xmax - Xmin

Z-score transformation [51], also known as standard
score transformation, is a technique that performs standard-
ization based on the mean and standard deviation of the
original data. It ensures that the processed feature values
have a mean of 0 and a standard deviation of 1. The trans-
formation calculates the standard deviation between each
original feature value and the mean value. This results in
relative values that remove dimensional effects while pre-
serving the relationship between the data points. We use
Formula (3) to perform Z-score transformation.

X=X = X . (3)

In order to feel the difference in data transformation
more intuitively, we draw a diagram to display the trans-
formed data and the original data. It can be clearly seen
from Figure 2 that Minmax transformation and Z-score
transformation can retain the distribution information of
the original data and only transform the value of the data;
log transformation not only changes the value of the data but
also transforms the original data into a normal distribution.
These three transformation methods can be automatically
called and executed in the scikit-learn machine learning
package and the Weka tool platform.

3.2. Datasets. In all publicly available datasets, NASA datasets
have been commonly used by the researchers in the field of
defect prediction over the past few years [52-54]. However,
recent studies have shown that there are noisy data in NASA
datasets [33, 55], and the cleared NASA datasets still have quality
problems [56, 57]. Therefore, we did not use the NASA datasets,
because datasets with quality problems may threaten the validity
of the experimental conclusions. We selected some software
projects of three datasets, Promise, Relink, and AEEEM. The
Promise dataset is provided by Jureckzo and Madeyski [58],
each project in the Promise is characterized by 20 different
metrics. These 20 metrics all focus on the code complexity.
These metrics take into account the inherent characteristics of
object-oriented programs such as encapsulation, inheritance,
and polymorphism. The Relink dataset is provided by Wu
et al. [59], which contains 26 features, which can be divided
into two categories: complexity indicators and count indicators.
These indicators are usually defined from the perspective of code
complexity such as line of codes, cycloramic complexity, number
of classes and abstract syntax trees such as number of blocks,
number of statements, and method references. And the AEEEM
dataset is provided by D’Ambros et al. [60], each project in
AEEEM contains 61 features. Among them, 17 features are
related to source code, 5 features are related to previous
predictions, 5 features are related to code change entropy, 17
features are related to source code entropy, and 17 features are
related to source code decay. To the best of our knowledge, these
three datasets do not expose quality issues, and they contain a
large number of software projects of the different types and
domains and are widely used by the researchers in the field of
defect prediction. At the same time, these three datasets are also
available as open source. From the selected datasets, we
excluded certain software projects that exhibited highly
imbalanced classes. This decision was based on a previous
research, which has demonstrated that building a defect
prediction model on imbalanced datasets can introduce biases
[61, 62]. Additionally, using class rebalancing techniques to
address the imbalance can impact the performance and
interpretability of the final model [63, 64]. Therefore, these
projects were excluded to ensure the integrity and fairness of
the analysis. The summary information of the 16 software
projects used in the final experiment is shown in Table 1.

3.3. Out-of-Sample Bootstrap Validation. Tantithamthavorn
et al. [65] conducted an empirical study of the various model
validation techniques. They found that the holdout family
validation method is consistently the most biased and least
stable model validation technique and cross-validation tech-
niques can only produce stable performance on part models
and datasets. Irrespective of the type of classifier and data-
sets, the out-of-sample bootstrap validation produced the
best balance between estimated bias and variance compared
to holdout validation and cross-validation techniques and
even if the validation experiment is repeated, this conclusion
remains unchanged. Therefore, in order to ensure that the
conclusions we draw about the defect prediction model are
reliable, we also use the out-of-sample bootstrap valida-
tion [66, 67].
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The basic principles and steps are as follows. If dataset D
TasLE 1: Experimental datasets. contains d instances, then the goal is to sample D to produce
- : dataset D * with the same number of instances and the same
Project Features  Modules  Defects  Ratio (%) gjstribution of data. Then we select an instance from dataset
Camel-1.2 20 608 216 36 D each time and put the instance back into dataset D so that
Ivy-1.1 20 111 63 57 the instance may still be selected in the next selection. This
Jedit-3.2 20 272 90 33 process is repeated for d times, and finally, dataset D* with
Logdj-1.1 20 109 37 34 the same size as dataset D is generated. In the whole instance
Lucene-2.0 20 195 91 47 selection process, 36.8% of the instances in dataset D are
Lucene-2.2 20 247 144 58 actually not selected into D *. Therefore, we use the sampled
Lucene-2.4 20 340 203 60 dataset D* as the training set, and 36.8% of the instances in
Poi-1.5 20 237 141 59 dataset D that do not appear in D* as the testing set. The
Poi-2.5 20 385 248 64 above process is repeated 25 times.
Poi-3.0 20 442 281 64
Xalan-2.5 20 303 387 48 3.4. Classification Techniques. In the field of software defect
Xalan-2.6 20 885 411 46 predi.ction, there are many r'nachine learning classifiers us'ed
Apache 2% 194 98 51 to l?ulld SI}?P mode;s. It is dgﬁcult for us to study all cl;silﬁ—
Safe 2 56 ” 39 cation techniques because there are too many types of clas-
ZXing 2 399 118 30 sifiers. Therefore, we selected six classifiers of different types
EQ N 15 129 10 that are frequently used by researchers, including NB, LR,

DT, RF, KNN, and MLP.
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NB is a simple and efficient classification model based on
Bayes’ theorem and feature condition independence assump-
tion. Although the characteristics of the SDP dataset do not
satisty the conditional independence assumption, it still
achieves good defect prediction performance.

KNN is a classification model based on the distance mea-
sure of instances. The basic idea is that an instance should
belong to the same category as most of the instances of its
nearest neighbors in the feature space.

LR introduces sigmoid transformation on the basis of
linear regression to map continuous values into probability
values. New instances are classified by training the parameter
matrix and bias values of the features based on instances of
known categories.

The essence of DT is to summarize a set of classification
rules from the training dataset by calculating the information
gain of features and using the rules to classify a new instance.

RF is an ensemble learning model based on DTs, and its
final classification of a new instance is obtained by voting
from all DTs.

MLP is a feedforward artificial neural network model,
which usually consists of three parts: input layer, hidden
layer, and output layer, and has good nonlinear fitting ability.
New instances are classified by training the parameters of the
hidden layer on the training set.

The above six models are widely used in the field of
defect prediction due to their simplicity, convenience, and
good performance. However, it is worth noting that the RF
and MLP require more time to train. These six classifiers take
into account both quantity and type and can draw general
conclusions from the perspective of the model. Similar to the
data transformation method, these six models can be auto-
matically called and executed in the scikit-learn machine
learning package and the Weka platform.

3.5. Feature Importance

3.5.1. Model-Agnostic Feature Importance Methods. Model-
agnostic feature importance methods possess the ability to
calculate the importance of features without requiring
knowledge about the specific model’s details, such as the
neural network structure. These methods treat the model
to be explained as a black-box and determine feature impor-
tance accordingly. The key advantage of model-agnostic fea-
ture importance methods lies in their flexibility, as they can
provide explanations for any type of model. This characteris-
tic makes them particularly well-suited for the six different
model types selected in this paper. While some of the classi-
fiers chosen in this paper may have their own model-specific
methods for calculating feature importance, previous research
[68] has shown inconsistencies in determining the most
important features when using such model-specific methods.
Hence, we decided not to adopt the model-specific feature
importance method. Additionally, Rajbahadur et al. [68]
highlighted the risk of relying solely on one particular feature
importance method, which could compromise the validity of
the results. Consequently, we opt for two model-agnostic
methods to calculate the feature importance of the SDP
model. Since, it is uncertain whether removing feature

interactions affects the impact of data transformation meth-
ods on model performance. Therefore, we do not remove the
correlation and interaction between features in the data-
sets [10].

We choose permutation [69, 70] and SHAP [71, 72] to
calculate the characteristic importance of the SDP model.
First, permutation is one of the oldest and most commonly
utilized methods in the software engineering communities
[18, 73]. Second, SHAP is a recently developed global feature
importance method, which is theoretically proven to gener-
ate optimal feature importance rankings, whose adoption is
growing within the software engineering community
[41, 71, 74]. Finally, previous research [68] has found that
both of these two methods do not require additional steps for
hyperparameter optimization and demonstrate high consis-
tency in computing feature importance. However, the cur-
rent popular LIME [43, 75] benefits from a complex
hyperparameter optimization process, which will affect the
validity of the experimental results. Moreover, both permu-
tation and SHAP are not affected by feature interactions and
correlations.

3.5.2. Generate Feature Importance Scores and Ranks. The
permutation feature importance method [70] measures fea-
ture importance by calculating the increase in model predic-
tion error after randomly permuting a column of feature
values. A feature is considered important if permuting its
values increases the model error. Because in this case, the
model relies on this feature to make predictions. A feature
is considered unimportant if the model error remains
unchanged after permuting its values. Because in this case,
the model will ignore the feature. For this reason, we ran-
domly arrange each feature column on the test data of each
out-of-sample bootstrap validation and set the attenuation
value of the AUC predicted by the model before and after
the arrangement as the importance score of the feature. Since
the arrangement of the feature column values is random, in
order to reduce the randomness, we perform 25 random pro-
cesses and take the average value of the attenuation value to
obtain the importance score of each feature.

The SHAP feature importance method [71] is a method
to explain individual prediction. The goal is to explain the
prediction of an instance by calculating the contribution of
each feature to the prediction. This contribution is described
as the Shapley value in SHAP, and features with large abso-
lute Shapley values are more important. We can use this
value as the importance score of each feature for each
instance prediction. To calculate the global feature impor-
tance score, we average the absolute Shapley values of each
feature on the test data for each out-of-sample bootstrap
validation to obtain the global feature importance score for
each feature.

After calculating the importance scores of each feature
using permutation and SHAP, we rank these feature impor-
tance scores and corresponding features. Since the value of
the feature importance score calculated by the two methods
is larger, the feature is more important, so we can sort it in
descending order. If there are multiple features with the same



importance score, then those features are ranked the same.
For example, if the importance scores of the three features
are (f1=0.2, 2=0.2, f3=0.1), then their ranks are (f1 =1,
f2=1, f3=2). Note that when using permutation and SHAP,
there is a problem of computational efficiency. The advan-
tage of SHAP is that, it allows for direct calculation of feature
importance scores. However, it is important to notice that
the computational complexity of SHAP increases exponen-
tially with the number of features. Although permutation has
a relatively low-calculation complexity when compared with
SHAP, it depends on the evaluation indicators to get the
feature importance score, which requires increased compu-
tational time to repeat the experiment multiple times thus
avoiding randomness in the importance scores.

3.6. Evaluation Indicators

3.6.1. Performance Evaluation Indicators. Software defect pre-
diction is a classification problem, and there are many binary
performance evaluation indicators available in the machine
learning field. Although we hope to obtain a more compre-
hensive and objective evaluation of the model, it is time-
consuming and laborious to use all classification indicators
to evaluate the performance of the SDP model. Agrawal and
Menzies [23] pointed out that there are many evaluation
criteria. Therefore, it is not necessary to use all evaluation
indicators when evaluating the performance of the SDP
model, but more than one evaluation indicator should be
used. And the indicators used should be those widely used
by researchers in the field, rather than other evaluation indi-
cators that have not been widely accepted. Following this
recommendation, we utilize six evaluation indicators that
are widely used by researchers, including Accuracy, Precision,
Recall, F1, MCC, and AUC.

There are four situations when making decisions in the
defect prediction model, namely TP, TN, FN, and FP.
Among them, TP and TN are the cases where the prediction
is correct, indicating that defective instances are predicted to
be defective and non-defective instances are predicted to be
nondefective, respectively. FP and FN are two cases of the
prediction errors, which, respectively, indicate that defect-
free instances are predicted to be defective and defective
instances are predicted to be defect-free. The evaluation indi-
cators of this paper are derived from these four situations.
Accuracy, Precision, and Recall are three commonly used
evaluation indicators. Accuracy is the simplest and most
intuitive evaluation indicator, which measures the propor-
tion of correctly classified instances to the total number of
instances. Precision and Recall correspond to the capabilities
of model precision and recall, respectively, but these two
indicators are conflicting. F1 is calculated by the harmonic
mean of Precision and Recall. It comprehensively considers
the overall performance of the model on Recall and Preci-
sion, which can fully reflect the actual performance of the
model. AUC is the coverage area of the ROC curve, which is
a threshold-independent performance indicator used to
measure the ability of a classifier to distinguish between
defective modules and clean modules and is widely used in
the field of software defect prediction. Recently, MCC has
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also been widely used by the researchers [76-78]. MCC also
considers the four situations that appear in the actual pre-
diction, i.e., TP, TN, FN, and FP, which is a more balanced
indicator. The closer these evaluation indicators are to 1, the
better the performance of the model. Among them, Accu-
racy, Precision, Recall, F1, and MCC can be expressed by the
following Formulas (4)—(8).

R TP + TN
racy = ,
CUAY =P TN + FP + EN

(4)

P P TP (5)
recision = —————,
TP + FP
TP
Recall = —— . 6
T TP EN (6)

Fl— 2 X Precision X Recall

Precision + Recall
TP x TN — FP X FN
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN) )
(8)

MCC =

3.6.2. Top-k Feature Rank Overlap. Top-k feature rank over-
lap [68, 79] is a straightforward indicator that calculates the
ratio of the number of Top-k feature rank overlaps to the
total number in all feature rank lists. This indicator does not
take into account the order of features in the Top-k feature
rank list. Instead, it simply checks whether a given feature
appears in the Top-k feature rank of all feature rank lists. In
this paper, we calculate the feature rank overlap of Top-1,
Top-3, and Top-5. The following example illustrates the cal-
culation method of this indicator. After getting two feature
rank lists 11 and 12, if the Top-3 feature of the 11 is (f1=1,
f2=2, f3=3), and the Top-3 feature of the 12 is (f4=1,
fl=2, f5=3), then the Top-3 feature rank overlap is 1/5,
and the Top-1 feature rank overlap is 0.

In order to make the Top-k feature rank overlap easier to
understand, the result of the Top-k feature rank overlap is
defined as consistency, and we adopt a consistency interpre-
tation scheme defined in previous research [68], which is
shown in Formulas 9 and 10. For Top-1 feature rank overlap,
if the Top-1 feature rank overlap value is less than or equal to
0.5, the consistency is considered as “low”; otherwise, the
consistency is considered as “high”. For Top-3 and Top-5
feature rank overlap, if the value of the Top-3 or Top-5
feature rank overlap is greater than or equal to 0 and less
than or equal to 0.25, the consistency is considered to be
“negligible”. If the value of the Top-3 or Top-5 feature
rank overlap is greater than 0.25 and less than or equal to
0.5, the consistency is considered to be “small”. If the value of
the Top-3 or Top-5 feature rank overlap is greater than 0.5
and less than or equal to 0.75, the consistency is considered
to be “moderate”. If the value of the Top-3 or Top-5 feature
rank overlap is greater than 0.75 and less than or equal to 1,
the consistency is considered to be “large”.
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Top—1 feature rank overlap consistency
low, 0.00 < consistency < 0.50

high, 0.50<consistency < 1.00

Top—3, 5 feature rank overlap consistency

negligible, 0.00 < consistency < 0.25

small, 0.25<consistency <0.50 . (10)
B moderate, 0.50<consistency < 0.75

large, 0.75<consistency < 1.00

3.6.3. Top-k Feature Rank Difference. The consistency of the
most important features of the SDP model built before and
after applying the data transformation method can be
obtained through the results of the Top-k feature rank over-
lap, but the specific changes in the rank of the most impor-
tant features cannot be displayed in detail. Therefore, we also
compute the Top-k feature rank difference. The Top-k fea-
ture rank difference [63, 64] is defined as the absolute value
of the rank offset Top-k feature in the different feature rank
lists. In this paper, we calculate the rank difference of the
most important top five features, i.e., k=1, 2, 3,4, and 5. The
following example illustrates the calculation method of this
indicator. After getting two feature rank lists 11 and 12, if the
Top-3 feature of the 11 is (f1 =1, f2=2, f3 =3), and the Top-
3 feature of the 12 is (f4=1, fl =2, f5=23), then the Top-1
feature rank difference is [2-1|=1.

The larger the value of the Top-k feature rank difference,
the greater the change in the most important feature. For
example, in the above case, rfc was originally the Top-1
feature. But after the transformation method, rfc became
the Top-2 feature on the SDP model constructed by the
transformed dataset. The rfc has a rank difference of 1.
Top-1 to Top-2 does not particularly affect the importance
of rfc, but if the original rfc rank is 1, and then the rank
becomes 7, then it means that rfc is not important to the
latter. Therefore, for the Top-k feature rank difference, we
believe that if the difference value exceeds 2, indicating that
the importance of the feature changes significantly.

3.7. Experimental Implementation. All experiments involved
in this paper were conducted on the Jupyter notebook run-
ning on a machine with the following configuration: Intel(R)
Xeon(R) CPU E5-2620 v4 @2.10GHz RAM 64G. We only
need the CPU to perform experiments, which means
repeated experiments are computationally cheap. All experi-
mental codes rely on Python language implementation.
Among all the steps, steps such as data processing, model
training, performance collection, and feature importance cal-
culation rely on machine-learning packages such as scikit-
learn, pandas, numpy, ELI5, and SHAP.

As explained before, when performing out-of-sample
bootstrap validation, 36.8% of the instances in a whole data-
set are not sampled, therefore the remaining 36.8% serve as

the test dataset and the sampled instances constitute the train-
ing dataset. The ratio of an entire dataset divided into training
and testing is roughly close to 6:4. It is clear that the experi-
mental scenario actually belongs to within-project defect
prediction. In order to ensure the replicability of data segmen-
tation, we set the random seed to 0—24 and save the corre-
sponding data. Then, we apply three data transformation
methods on the saved training data and test data to obtain
the transformed dataset and save it to the hard disk.

To ensure consistency during model training and repli-
cability of training, we set the random state of the model to 0
and set other parameters to default values when we train the
models. In this way, training the same model on the same
dataset will get the same internal parameters, and thus we
will get consistent performance when testing.

When collecting performance, we rely on the scikit-learn
package, and when collecting feature importance scores, we
rely on the ELI5 and SHAP packages. The calculation of
performance values and feature importance scores starts on
the test dataset after the model is trained on each training set.
This operation ensures that changes in performance values
and feature importance scores are caused by transformation
operations on the dataset rather than being caused by the
model inconsistencies.

4. Case Study Results

This section introduces the details and results of the experi-
mental research. Through the following experimental results,
we answer the above two research questions.

4.1. How Do the Data Transformation Methods Affect the
Performance of the Defect Prediction Model?

4.1.1. Approach. We first use six classification techniques
(i.e., RF, LR, NB, DT, KNN, and MLP) to build SDP models
(i.e., original model) on the 16 software projects such as
Camel, Ivy, and Jedit, in the three datasets introduced in
Section 3.2 (i.e., Promise, AEEEM, and Relink). We then
apply the three data transformation methods of Log, Minmax,
and Z-score to these datasets and use the same classification
techniques to build SDP models (i.e., transformed model).
Finally, we calculate the values of six performance evaluation
indicators (i.e., Accuracy, Precision, Recall, F1, MCC, and
AUC) of the original model and transformed model. Note that
in the experiment, we utilize out-of-sample bootstrap validation.
This involves generating 25 groups of performance values for
each classification model and evaluation indicator across all
datasets. Subsequently, we calculated the average performance
values from these groups.

We experimentally investigate the impact of data trans-
formation methods on model performance from two per-
spectives. The first is to calculate the absolute value of the
differences between the transformed models and the original
models in all six performance evaluation indicators from the
overall point of view. Due to a large number of performance
indicators, the overall perspective can provide the overall
impact of data transformation methods on each performance
evaluation indicator. The second is to calculate the
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FiGure 3: The overall performance differences on all six performance evaluation indicators across all datasets between all transformed models
and original models. E.g., Abscissa L-O represents the difference between the performance indicators of the SDP model constructed by the
transformed datasets using the log transformation method minus the performance indicators of the SDP model constructed by the original

datasets.

comparison of the performance evaluation indicators of each
transformed model and original model from the partial point
of view. From the perspective of comparing the performance
indicators of each classification model, it can be clarified
which transformation method has an impact on a certain
classification model on which performance evaluation
indicators.

Result Overall, the Log transformation method
can significantly improve Accuracy, Recall, FI,
AUC, and MCC. The Minmax transformation
method can significantly improve Accuracy, Pre-
cision, AUC, and MCC. The Z-score transforma-
tion method can significantly improve all six
performance evaluation indicators. Therefore,
the data transformation methods can generally
improve the performance of SDP models.

From Figure 3, we can see that the log transformation
method improves the Recall, F1, and MCC of the SDP model
at a relatively high level. In these indicators, the performance
difference is generally between 0.1 and 0.2, and there are still
many performance differences exceeding 0.3. It can also
improve the performance of Accuracy and AUC since the

performance difference is generally within 0.1, and some are
around 0.2. However, the log transformation method cannot
improve the Precision of the SDP mode because the perfor-
mance difference is basically evenly distributed between pos-
itive and negative values. Therefore, using log transformation
to process datasets in the SDP field can significantly improve
the performance of multiple indicators of the SDP model.

The Minmax transformation method can improve the
Precision and MCC of the SDP model effectively. Since the
performance difference is generally within 0.1, and some
differences are around 0.3. However, its improvement in
the Accuracy and AUC is relatively weak, and no improve-
ment in Recall and F1 because the performance difference in
Accuracy and AUC is generally within 0.05 and the perfor-
mance difference in Recall and F1 is basically distributed
between positive and negative values. Therefore, using Min-
max transformation to process datasets in the SDP field can
improve the performance of the SDP model, but it is not
stable enough.

The performance differences between the Z-score trans-
formed model and the original model are within 0.1 on each
indicator. This shows that Z-score transformation can
slightly improve the performance of the SDP model.
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TasLE 2: The p-values of the Wilcoxon signed-rank test on all six
performance evaluation indicators across all datasets between the
transformed models and original models.

Wilcoxon p-values Lvs. O Mvs. O Zvs. O
Accuracy p<0.01 p<0.01 p<0.01
Precision p>0.05 p<0.01 p<0.01
Recall p<0.01 p>0.05 p<0.05
F1 p<0.01 p>0.05 p<0.01
AUC p<0.01 p<0.05 p<0.01
MCC p<0.01 p<0.01 p<0.01

In order to verify whether there is a significant difference in
the distribution of the performance evaluation indicators
obtained by the original model and transformed model. We
performed the Wilcoxcon signed rank test (@=0.05) on six
evaluation indicators for all the classification models. The
p-values of the Wilcoxcon signed rank test are shown in Table 2.
The results of the significance test align with the findings of the
performance analysis, supporting the validity, and accuracy of
the previous analysis. Moreover, the significance test reveals
that the log transformation significantly enhances the Accu-
racy, Recall, F1, AUC, and MCC, while the Minmax transfor-
mation improves Accuracy, Precision, AUC, and MCC, and
the Z-score transformation shows significant improvement
across all six indicators. These improvements are not random
fluctuations, but rather meaningful enhancements validated by
the statistical significance.

From the overall perspective, we may miss some detailed
information about the impact of the transformation method on
the performance of the SDP model. For example, we conclude
that the data transformation method can significantly improve
the performance of the SDP model. However, we cannot get
useful information about the classification model when design-
ing the experiment of defect prediction methods. That is to say,
whether the data transformation method can play the role of
improving most performance indicators on all classification
models. For this reason, we calculate the comparison of the
performance evaluation indicators of each transformed model
and the original model from a partial perspective. We want to
know which classification model and which indicator these
data transformation methods can improve.

The Log transformation method significantly
enhances the performance of the SDP model, par-
ticularly in LR, NB, and KNN models.

From Figure 4 and Table 3, we found that for the SDP
model built by the log transformed datasets, compared with
the SDP model built by the original datasets, the RF model
only has a slight improvement by 0.6% in Recall but without
significance, a weak significant decline in Precision by 0.3%
and remain unchanged in other four indicators. Therefore,
log transformation cannot effectively improve the perfor-
mance of the SDP model constructed by RF. The situation
is similar to the DT model and the MLP model. The log
transformed DT model and log transformed MLP model
stay unchanged in Precision and improve the performance
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on the other five indicators, with the average performance
increased by 1%, 5%, 3%, 2%, 8%, and 2%, 7%, 5%, 2%, 8%,
respectively. However, the test results in Table 3 show that
the DT model only has a significant increase of 2% on AUC,
the MLP model only has a significant increase of 5% on
Recall and 2% on FI, and the other indicators have no sig-
nificant increase. The log transformed LR model and log
transformed KNN model improve the performance on all
six indicators, with the average performance increased by
5%, 4%, 7%, 7%, 5%, 22%, and 3%, 3%, 7%, 5%, 4%, 17%,
respectively. However, the test results in Table 3 show that
the 4% improvement of the LR model in Precision is not
significant. Therefore, log transformed LR model and log
transformed KNN model can significantly improve various
performance evaluation indicators, except for Precision.
Finally, Figure 4 shows that the performance of the log trans-
formed NB model has decreased (5%) in Precision, while the
performance of the other five indicators has improved by 7%,
61%, 31%, 7%, and 26%, respectively. But we can see that the
7% improvement of the NB model on Accuracy is not signif-
icant. Therefore, the log transformed NB model can signifi-
cantly increase Recall by 61%, F1 by 31%, AUC by 7%, and
MCC by 26%, but will cause a decrease of Precision by 5%.

For the Minmax transformation, in Figure 4 and Table 3,
we can see that the performance values of the Minmax trans-
formed RF model on all six indicators remain unchanged.
The same situation occurs in the LR model, DT model and
the KNN model. The Minmax transformed LR model only
has a significant improvement of 3% in Accuracy. The Min-
max transformed DT model only significantly improves 0.9%
of AUC and the Minmax transformed KNN model only
significantly improves in Precision. Therefore, Minmax
transformation cannot effectively improve the performance
of the SDP model constructed by RF, LR, DT, and KNN. For
the Minmax transformation, in Figure 4 and Table 3, we can
see that the performance values of the Minmax transformed
RF model on all six indicators remain unchanged. The same
situation occurs in the LR model, DT model, and the KNN
model. The Minmax transformed LR model only has a sig-
nificant improvement of 3% in Accuracy. The Minmax trans-
formed DT model only significantly improves 0.9% of AUC
and the Minmax transformed KNN model only significantly
improves in Precision. Therefore, Minmax transformation
cannot effectively improve the performance of the SDP model
constructed by RF, LR, DT, and KNN. In contrast, both the
Minmax transformed NB model and the Minmax trans-
formed MLP model get performance improvements on all
six indicators. Although the results of the significance test
show that the improvement of the Minmax transformed NB
model in Precision and the Minmax transformed MLP model
in Recall is not significant. But the Minmax transformed NB
model and Minmax transformed MLP model are still the two
models with the most significant improvement effects,
improving the remaining five indicators by 2%, 4%, 5%, 2%,
9%, and 4%, 4%, 4%, 3%, 13%, respectively.

The Minmax transformation method signifi-
cantly improves the performance of the NB model
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Ficure 4: The classifier performance comparison on all six performance evaluation indicators between transformed models and original
models. E.g., Abscissa O and L, respectively, represent the performance of the defect prediction model built on the original dataset and the

datasets transformed using the log transformation method.

and MLP model in the transformed dataset,
while having little impact on other models.

Finally, the SDP model built on the dataset transformed
by the Z-score transformation method in Figure 4 is similar to
the Minmax transformation method. Compared with the
original RF model, the performance values of the Z-score
transformed RF model on all six indicators remain
unchanged. The Z-score transformed DT model only has a
significant improvement of 3% on AUC. The Z-score trans-
formed KNN model only has a significant improvement of 4%
in Precision and has no significant improvement on the other
indicators. Z-score transformed LR model, Z-score

transformed NB model, and Z-score transformed MLP model
have significant improvements on many indicators. Z-score
transformed LR model has significantly improved by 3%, 4%,
4%, 3%, and 15% on the other five indicators except for Recall.
Z-score transformed NB model has significantly improved by
2%, 4%, 5%, 2%, and 9% on the other five indicators except for
Precision. Z-score transformed MLP model has significantly
improved by 4%, 4%, 7%, 7%, 4%, and 17% on all six
indicators.

The Z-score transformation method brings sig-
nificant and consistent improvements to the per-
formance of SDP models created with the LR, NB,



IET Software

and MLP algorithms while having minimal
impact on other models.

4.2. How Do Data Transformation Methods Affect the
Interpretability of Defect Prediction Models?

4.2.1. Approach. We continue experiments on original model
and transformed model obtained in Section 4.1. For each
model, we use the permutation and SHAP importance meth-
ods to calculate the model’s feature importance score and rank.
Then we compute the Top-k feature rank overlap (k=1, 3, 5)
and the Top-k feature rank difference (k=1, 2, 3, 4, 5). Finally,
we still analyze the changes in the importance of model features
from the perspectives of the whole and parts to measure the
changes in the interpretability of the model.

Result Overall, the utilization of any data trans-
formation method significantly affects the feature
importance in the SDP model. This variation can
make it challenging to interpret the model
accurately.

Ideally, all peaks of the density distribution of the Top-k
feature overlap should be between 0.75 and 1, and the values
of the highest peak and the median are all around 1.

For log transformation, the highest peak distribution of
Top-1 overlap is concentrated around 0, and the median of
the distribution of Top-1 overlap is 0. This shows that the
consistency of the most important feature overlap after
applying the log transformation method is negligible, which
means that the most important features have changed basi-
cally. The distribution of the highest peak of Top-3 overlap is
concentrated around 0.5. Two of the three peaks are less than
or equal to 0.5, and the median of the distribution is 0.5. This
shows that after the log transformation method is applied,
the consistency of the Top-3 feature rank overlap is small,
which also indicates that the most important first three fea-
tures have basically changed. The highest peak distribution
of Top-5 overlap is concentrated around 0.25, the highest
two peaks of the four peaks are concentrated below 0.5, and
the median of the distribution is less than 0.5, which indi-
cates that Top-5 important features are inconsistent in at
least half of the experiments.

For Minmax transformation, similar to the above, the
distribution of the highest peak of Top-1 overlap is concen-
trated around 0, and the median of the distribution is 0,
which indicates that the most important features have basi-
cally changed after the Minmax transformation method was
applied. The distribution of Top-3 overlap and Top-5 over-
lap is similar. Although the highest peak value is distributed
around 1, the distribution between 0 and 0.5 is the main body
of the distribution. The median of the Top-3 overlap is 0.5,
while the median of the Top-5 overlap is less than 0.5. This
shows that the consistency of the Top-3 and Top-5 impor-
tant features is small.

For Z-score transformation, the distribution of Top-3
overlap and Top-5 overlap is similar. It is also similar to
the distribution of the Top-3 overlap and Top-5 overlap of
Minmax transformation, and the median is the same.
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Therefore, for Z-score transformation, the consistency of
the Top-3 and Top-5 important features overlap is also
small. However, the distribution of Top-1 overlap is different
from the above two transformation methods. The highest
peak distribution of Top-1 overlap is concentrated around
1, and the median of the distribution is 1, so the most impor-
tant feature overlap of Z-score transformation has a high
degree of consistency. However, since the value of Top-1
overlap is basically 0 or 1, the peak value at the value of 0
is also not low. By investigating the raw data we found that
the most important features were inconsistent in more than
40% of the experiments.

Applying Log transformation and Minmax
transformation decreases the consistency of the
Top-1, Top-3, and Top-5 features between the
Original Models and Transformed Models. Addi-
tionally, applying Z-score transformation reduces
the consistency of the Top-3 and Top-5 features
between the Original Models and Transformed
Models. This has a significant impact on changes
in feature importance.

The Top-k features rank overlap can only measure the
strength of consistency. In order to observe the changes in
the Top-k feature ranks more clearly, we display the differ-
ences in Top-k feature ranks through bar graphs.

From Figure 5(a), we observe that only about 49%, 49%,
and 54% of the top features remain the most important
features and about 34%, 44%, and 38% of the top features
differ by more than 2 if the data transformation method is
used on the dataset. This means that for the three data trans-
formation methods, at least half of the top features of the
Transformed SDP Model have changed, and more than 30%
of the original Top-1 features are no longer important fea-
tures of Top-3. Similarly, for features with ranks of 2, 3, and
4, only about 35%—45% of them remain unchanged, and
about 30%—40% of feature importance ranks differ by more
than 2. For features with a rank of 5, only about 40% of them
remain in the same rank at most, while about 40% of them
have a difference of more than 2 in importance rank. This
means that in about 40% of the experiments, the rank of
Top-5 important features has a large difference, such as slip-
ping from the first rank to the fourth rank and slipping from
the second rank to the fifth rank.

In order to make the conclusion more generalizable, we
also use SHAP to calculate the feature importance rank overlap
and feature importance rank difference. We can find that the
density distribution of feature overlap shown in Figure 6(b)
is similar to Figure 6(a), and the bar chart distribution of
feature differences shown in Figure 5(b) is also similar to
Figure 5(a). This shows that the Top-k features calculated by
using the SHAP on the Transformed SDP Model also have low
feature rank overlap consistency and large feature rank
differences.

Applying Log transformation, Minmax transfor-
mation, and Z-score transformation causes the
difference in the Top-5 feature importance ranks
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TasLe 3: The p-values of the Wilcoxon signed-rank test and average percentage performance gains on all six performance evaluation
indicators between the transformed models and original models built with different classifiers.

p-Values and percentage Ovs. L O vs. M Ovs. Z
RF-Accuracy p>0.05 0 p>0.05 0 p>0.05 0
REF-Precision p>0.05 -0.3% p>0.05 0 p>0.05 0
RF-Recall p<0.01 0.7% p>0.05 0 p>0.05 0
RE-F1 p>0.05 0.2% p>0.05 0 p>0.05 0
RF-AUC p>0.05 0 p>0.05 0 p>0.05 0
RE-MCC p>0.05 0 p>0.05 0 p>0.05 0
LR-Accuracy p<0.01 5% p<0.05 3% p<0.01 3%
LR-Precision p>0.05 4% p>0.05 6% p<0.05 4%
LR-Recall p<0.01 7% p>0.05 —2% p>0.05 2%
LR-F1 p<0.01 7% p>0.05 0 p<0.01 4%
LR-AUC p<0.01 5% p>0.05 2% p<0.05 3%
LR-MCC p<0.01 2% p>0.05 12% p<0.01 15%
DT-Accuracy p>0.05 1% p>0.05 0.9% p>0.05 0.9%
DT-Precision p>0.05 0.9% p>0.05 0.9% p>0.05 0.9%
DT-Recall p>0.05 5% p>0.05 4% p>0.05 4%
DT-F1 p>0.05 3% p>0.05 3% p>0.05 3%
DT-AUC p<0.05 2% p<0.05 2% p<0.05 2%
DT-MCC p>0.05 8% p>0.05 8% p>0.05 7%
NB-Accuracy p>0.05 7% p<0.05 2% p<0.05 2%
NB-Precision p<0.01 -5% p>0.05 3% p>0.05 3%
NB-Recall p<0.01 61% p<0.05 4% p<0.05 4%
NB-F1 p<0.01 31% p<0.05 5% p<0.05 5%
NB-AUC p<0.01 7% p<0.05 2% p<0.05 2%
NB-MCC p<0.05 26% p<0.05 9% p<0.05 9%
KNN-Accuracy p<0.01 3% p>0.05 1% p>0.05 2%
KNN-Precision p<0.05 3% p<0.05 4% p<0.05 4%
KNN-Recall p<0.01 7% p>0.05 —0.8% p>0.05 0
KNN-F1 p<0.01 5% p>0.05 1% p>0.05 2%
KNN-AUC p<0.01 4% p>0.05 2% p>0.05 2%
KNN-MCC p<0.01 17% p>0.05 9% p>0.05 12%
MLP-Accuracy p>0.05 2% p<0.01 4% p<0.01 4%
MLP-Precision p>0.05 1% p<0.05 4% p<0.01 4%
MLP-Recall p<0.01 7% p>0.05 3% p<0.01 7%
MLP-F1 p<0.05 5% p<0.05 4% p<0.01 7%
MLP-AUC p>0.05 2% p<0.05 3% p<0.01 4%
MLP-MCC p>0.05 8% p<0.05 13% p<0.01 17%

between Original Models and Transformed Mod-
els to exceed 2 in 30%—50% of cases. This indi-
cates a significant change in feature importance
that would threaten correct explanatory models.

Similar to the performance research, we also hope to
obtain more detailed information when designing defect pre-
diction methods, that is, which data transformation method
affects the variation of the most important features on which
models. Therefore, in Figures 7-13, we show the density
distribution of the Top-k feature rank overlap and differ-
ences of the Top-k feature rank across all six classification
models constructed from the transformed datasets and the
original datasets. We can observe the following results.

When using RF and DT techniques to build the
SDP models, there is large consistency in the Top-
5 feature importance rank overlap and small dif-
ferences in the Top-5 feature importance rank
between Original Models and Transformed Mod-
els no matter which data transformation method
is applied.

From Figure 7, we can find that no matter which data
transformation method is used, both the highest peak and
the median of the density plot of the Top-1 feature rank
overlap, and the Top-3 feature rank overlap calculated by
permutation or SHAP are around 1. About the Top-5 feature
rank overlap, no matter which data transformation method



IET Software

2nd rank difference

1st rank difference

Ratio

0 1 2 Other 0 1 2 Other 0

1st rank difference 2nd rank difference

Ratio

0 1 2 Other 0 1 2 Other 0

3rd rank difference

3rd rank difference

15

4th rank difference 5th rank difference

Other 0 1 2 Other

4th rank difference 5th rank difference

Other

Other 0 1 2

FIGURE 5: Bar plot of the overall Top-k feature importance rank difference computed by permutation and SHAP between the (a) transformed

models and (b) original models.

except for log transformation is used, the highest peak and
the median of the density plot are also basically around 1.
And when log transformation is used, the median of the
density plot is around 0.75. Similar to the results of the RF
models, Figure 8 shows that no matter which data transfor-
mation method is used, the highest peak and the median of
the density plot of the Top-k feature rank overlap (k=1, 3, 5)
are all around 1. Therefore, the RF and DT models con-
structed on the dataset transformed by the three data trans-
formation methods have a large consistency in feature
importance rank overlap. The first and fourth rows of
Figure 13 show the feature rank difference of the RF model
and the DT model calculated by permutation and SHAP,
respectively. We can find that no matter which data trans-
formation method is used, the proportion of Top-k feature
rank difference values greater than 2 calculated by permuta-
tion or the SHAP is generally 0, and very few exceed 5%. The
values of the Top-k feature rank difference are concentrated
in 0, 1, 2. This means that the differences in feature impor-
tance rank of SDP models built on the dataset transformed
by the three data transformation methods using RF and DT
techniques are small.

When using LR, KNN, and MLP techniques to
build SDP models, there is small consistency in
the Top-5 feature importance rank overlap and
large differences in the Top-5 feature importance
rank between Original Models and Transformed
Models no matter which data transformation
method is applied.

From Figure 9, we can find that no matter which data
transformation method is used, both the highest peak and
the median of the density plot of the Top-1 feature rank
overlap calculated by permutation or SHAP are around 0.
And the difference between the peak value at 0 and the peak
value at 1 is extremely large. This means that no matter
which data transformation method is used, the degree of
consistency of the LR model on the most important features

is extremely low. On the density plots of the Top-3 feature
rank overlap and Top-5 feature rank overlap, we can find
that there are much more peaks between 0 and 0.25 and
between 0.25 and 0.5. Except that the median of the Top-5
feature rank overlap of the Transformed LR model calculated
by permutation is between 0.25 and 0.5, the rest of the
median is between 0 and 0.25. This means that no matter
which data transformation method is used, the consistency
degree of the LR model on Top-3 feature rank overlap and
Top-5 feature rank overlap is negligible, atmost small.

We can observe the same result in Figures 10 and 11.
Figure 10 shows the consistency of feature rank overlap of
the KNN model calculated by permutation and SHAP,
respectively. Figure 11 shows the consistency of feature
rank overlap of the MLP model calculated by permutation
and SHAP, respectively. Therefore, the LR, KNN, and MLP
models constructed on the dataset transformed by the three
data transformation methods have a small consistency in
feature importance rank overlap. The second, fifth, and sixth
rows of Figure 13 show the feature rank difference of the LR
model, KNN model, and DT model calculated by permuta-
tion and SHAP, respectively. From the figures, we can find
that on the LR model, the proportion of the Top-1 feature
difference of the log transformation and the Z-score trans-
formation calculated by permutation is greater than 2 is close
to 40%. The proportion of Top-2 feature differences greater
than 2 exceeds 40%. The proportion of the Top-3 feature
difference greater than 2 is close to 60%. The proportion of
Top-4 and Top-5 feature differences greater than 2 exceeds
60%. The proportion of the Top-k feature difference of the
Minmax transformation method greater than 2 has always
exceeded 60%. About the MLP model, the proportion of the
Top-1 feature difference of the log transformation calculated
by permutation is greater than 2 is close to 60%, the propor-
tion of Top-2 and Top-3 feature difference greater than 2 is
close to 50%, and the proportion of Top-4 and Top-5 feature
difference greater than 2 is around 60%. The proportion of
the Top-k feature difference of the Minmax transformation
and Z-score transformation greater than 2 has always
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Fiure 6: Density plot of the overall Top-k feature importance rank overlap computed by permutation and SHAP between the (a)

transformed models and (b) original models.

exceeded 60%. The results of the SHAP are more pro-
nounced. Regardless of the transformation method, the pro-
portion of the Top-k feature difference of the LR model and
MLP model greater than 2 is more than 60%. This means
that the proportion of SDP models built on the datasets
transformed by the three data transformation methods using
LR and MLP techniques whose feature importance rank

remains unchanged is very small, and most of them have a
rank difference of more than 2, indicating a large difference
in feature rank. The KNN model using the Minmax trans-
formation and Z-score transformation method is similar to
MLP in terms of feature difference, and the proportion of the
Top-k feature difference greater than 2 is mostly more than
60%. However, in log transformation, the proportion of
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FiGure 7: Density plot of the Top-k feature importance rank overlap computed by permutation and SHAP between the (a) RF transformed

models and (b) original models.

KNN model rank difference of more than 2 on the Top-1 and
Top-2 feature is less than 30%, and the proportion of KNN
model rank difference of more than 2 on the Top-3, Top-4,
and Top-5 feature is between 40% and 60%. This shows that
the log transformation can keep the rank of the KNN model
unchanged on the first two most important features, while
the other features still show a high-rank difference.

In order to more intuitively see the changes in feature
importance caused by the impact of data transformation
methods on the dataset, we use the weighted #-SNE visualiza-
tion method mentioned by Grisci et al. [80] as an additional
experiment to identify the differences between the feature
importance obtained with each data transformation method.
We randomly selected an experiment of the LR model, and
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FiGure 8: Density plot of the Top-k feature importance rank overlap computed by permutation and SHAP between the (a) DT transformed

models and (b) original models.

caused by different data transformation methods. In addition,

plotted on the original dataset and the dataset transformed by

the three methods,

we can also find that the difference in feature importance
between the Minmax transformed dataset and the Original

combining the feature importance scores

as weights. The results are shown in Figure 11(c). It can be

dataset is more significant. This corresponds to the above
analysis, the proportion of the Top-k feature difference of

seen that the original dataset and the dataset transformed by
the three transformation methods combined with the feature
weights show different two-dimensional projections. This
illustrates the significant difference in feature importance

the Minmax transformation method greater than 2 has always

exceeded 60%.
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FiGure 9: Density plot of the Top-k feature importance rank overlap computed by permutation and SHAP between the (a) LR transformed

models and (b

importance rank overlap and large differences

in the Top-5 feature importance rank between
Original Models and Transformed Models using

Log transformation.

there is high consistency in the Top-5 feature
importance rank overlap and small differences
in the Top-5 feature importance rank between
Original Models and Transformed Models using
Minmax and Z-score transformation. However,
there is low consistency in the Top-5 feature

When using NB technique to build SDP models,

Figure 12 shows the consistency of feature rank overlap
of the NB model calculated by permutation and SHAP,
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Figure 10: Density plot of the Top-k feature importance rank overlap computed by permutation and SHAP between the (a) KNN trans-

formed models and (b) original models.

model achieve high consistency on the Top-k feature rank

respectively. We can find that whether Minmax transforma-

overlap. But for log transformation, the highest peak and
median of the density plot of the Top-1 feature rank overlap

tion or Z-score transformation is used, both the highest peak
and the median of the density plot of the Top-k feature rank
overlap calculated by permutation or SHAP are around 1.

are around 0, and the peak at 0 is very different from the peak

at 1. This means that the log transformation makes the con-
sistency of the NB model on the most important features

And the difference between the peak value at 1 and the peak

value at 0 is extremely large. This means that the Minmax
transformation and Z-score transformation make the NB

extremely small. On the density plot of the Top-3 and
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Figure 11: (a) and (b) are density plots of the Top-k feature importance rank overlap computed by permutation and SHAP between the MLP
transformed models and original models, and (c) is weighted t-SNE on the original dataset and transformed datasets.

Top-5 feature rank overlap, we can find that there are more
peaks and medians between 0 and 0.25, and only the median
of Top-5 feature rank overlap calculated by permutation is
between 0.25 and 0.5, which means that the log transforma-
tion makes the consistency of the NB model on the Top-k
features low, at most small. From the perspective of feature
differences (the third row of Figure 13), the rank of the Top-k
(k=1,2,3,4) features of Minmax transformation and Z-score
transformation remains unchanged in a high proportion,
regardless of permutation or SHAP, but the rank of the
Top-5 feature with more than 2 differences is also close to
60%. This means that the NB model built on the transformed
dataset using the Minmax transformation and Z-score trans-
formation methods has a small rank difference on the Top-4
most important features and a large rank difference on the
fifth most important feature. For log transformation, we can
find that the difference of the Top-k feature rank calculated
by permutation and SHAP is between 40% and 80%, which
indicates that log transformation causes the feature impor-
tance rank of the NB model with large differences.

5. Discussion and Implication

This section discusses the experimental results and the impli-
cations drawn from the results. In order to understand the
results of this paper more intuitively, we briefly summarize
the conclusions in Table 4, which shows the models and
indicators with significant performance improvements as
well as changes in the feature importance. Below we will
analyze performance, interpretability, and tradeofts between
the two, and give suggestions.

5.1. Effects on Model Performance. The three data transfor-
mation methods studied in this paper help to improve the
performance of the SDP model overall. More detailed exper-
imental results show that the three data transformation
methods can improve the performance of the multiple mod-
els on various evaluation indicators, which can also be
observed in Table 4. Even if there is no significant perfor-
mance improvement on some models and indicators, it will
rarely cause performance degradation. This shows that it is
helpful to improve the performance of the SDP model by
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FiGure 12: Density plot of the Top-k feature importance rank overlap computed by permutation and SHAP between the (a) NB transformed

models and (b) original models.

dataset can increase AUC by 7%, MCC by 26%, F1 by 31%,

and Recall by 61%.

selecting appropriate techniques and corresponding data

preprocessing methods when designing defect prediction

Previous historical studies proposed many defect predic-
tion methods, and they reported a certain percentage improve-

methods based on the results in Table 4. For example, with-

out elaborately designing the defect prediction method, if the

ment in performance, such as a 20% improvement in AUC.

However, 10% of the 20% performance improvement is likely

NB technique is selected to train the SDP model, simply
using the log transformation method to process the training
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transformed models and (b) original models.
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TaBLE 4: Summary of the impact of the transformation methods studied on the performance and interpretability of different SDP models.

Methods Models Performance increase Importance change
RF Recall None
LR Accuracy, Recall, F1, AUC, MCC Top-1, 3,5
DT AUC None
Log NB Recall, F1, AUC, MCC Top-1, 3,5
KNN Accuracy, Prec1s;zg,c Recall, F1, AUC, Top-1, 3, 5
MLP Recall, F1 Top-1, 3,5
RF None None
LR Accuracy Top-1, 3, 5
. DT AUC None
Minmax
NB Accuracy, Recall, F1, AUC, MCC None
KNN Precision Top-1, 3,5
MLP Accuracy, Precision, F1, AUC, MCC Top-1, 3, 5
RF None None
LR Accuracy, Precision, F1, AUC, MCC Top-1, 3, 5
DT AUC None
Z-score NB Accuracy, Recall, F1, AUC, MCC None
KNN Precision Top-1, 3,5
MLP Accuracy, Precision, Recall, F1, AUC, Top-1, 3, 5

MCC

Note. Only significantly improved indicators are displayed. None indicates that there are no significantly improved indicators or no feature importance

changes.

contributed by the simple data preprocessing step of data trans-
formation. Since it is not known whether defect prediction
methods proposed in historical studies applied this data pre-
processing step, the extent to which these defect prediction
methods are actually effective is questioned. Therefore, we sug-
gest that in the following research on improving the perfor-
mance of design defect prediction methods, the details of the
experimental settings should be described in detail, and the
performance of the SDP model should be compared before
and after applying the data transformation method, so as to
enhance the effectiveness of the method and conclusions.

5.2. Effects on Model Interpretability. The three data trans-
formation methods studied in this paper have a certain
impact on the interpretability of the SDP model overall. It
can be clearly seen from Table 4 that the feature importance
of the SDP model constructed on the dataset transformed by
the three data transformation methods using the RF and DT
techniques is not affected. However, the feature importance
of the LR model, KNN model, and MLP model will change
significantly after the three data transformation methods are
used. The feature importance of the NB model will be seri-
ously affected by the log transformation but the Minmax
transformation and Z-score transformation will not affect
its feature importance. These results illustrate whether the
use of data transformation methods affects the interpretabil-
ity of SDP models depending on the classification technique
used in the research. Therefore, the conclusion about which
features are the most contributing features of the model
prediction obtained in the past research on the interpretabil-
ity of the SDP model should be questioned because simply

using of data transformation methods will result in signifi-
cant changes in the feature importance ranks. However, we
do not know whether this method has been used as the pre-
processing step in the historical research and this effect is not
fixed. For example, Minmax transformation and Z-score trans-
formation will not affect the importance rank of the Top-4
most important features of the NB model, but they affect the
fifth most important feature. These minor changes may also
cause differences in the final interpretability of the SDP model,
or even lead to completely opposite conclusions.

5.3. Tradeoffs between Performance and Interpretability.
There is indeed a tradeoff between the performance and
interpretability of SDP models. Mori and Uchihira [19] ana-
lyzed the interpretability of various SDP models from the
perspective of model transparency. They confirmed the
hypothesis that a generally accepted assumption about the
relationship between the prediction accuracy and interpret-
ability of the SDP is the negative correlation through the
accuracy indicators achieved by the SDP model and the trans-
parency of the model components. That is, the improvement
of model prediction accuracy will lead to the decline of model
interpretability. As can be seen from Table 4, this hypothesis
is also confirmed by the impact of three data transformation
methods on SDP model performance and feature importance
ranks in this paper. For example, although the SDP models
built on the dataset transformed by the data transformation
methods using the RF and DT techniques have achieved per-
formance improvement on some indicators, the improvement
is not significant. Correspondingly, the SDP models built on
the dataset transformed by the three data transformation
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methods using the RF and DT techniques can basically main-
tain the feature importance rank unchanged compared with
the SDP model built on the original dataset, so it will not affect
the interpretability of the SDP model. That is to say, the data
transformation methods do not significantly improve the per-
formance of the RF model and DT model, nor do they affect
the change of their most important feature ranks. A more
obvious example is the NB model built by using the log trans-
formation method, which shows significant performance
improvement on a variety of evaluation indicators (i.e., Recall,
F1, AUC, and MCC). Correspondingly, the most important
feature of the model shows extremely low consistency rank
overlap and great rank difference, which seriously affects the
interpretability of the SDP model.

But Minmax transformation and Z-score transformation
of the dataset and using NB to build the SDP model do
achieve a balance between performance and interpretability
to some extent. As can be seen from Table 4, Minmax trans-
formation and Z-score transformation of the dataset
improve the performance of the NB model on multiple indi-
cators, while the importance of the Top-5 most important
features has not changed. Therefore, a suggestion is to use
Minmax and Z-score transformation to process the dataset
and use the NB algorithm to build the SDP model. This
ensures performance improvement while also ensuring that
feature importance does not change.

In addition, the interpretability of the SDP model needs
to meet certain performance requirements. If the prediction
performance of the SDP model cannot meet the basic
requirements, it is meaningless to pursue such explanations.
However, how to achieve this balance based on actual sce-
narios of defect prediction has not been covered in this
paper, and it is worth focusing on in the future.

5.4. Recommendations for Future Research. When the objec-
tive of designing defect prediction methods is to improve the
performance of SDP models and prioritize plans under the
limited testing resources, data transformation methods can
be used for preprocessing the training dataset to build the
SDP model. However, it is important to clearly indicate this
step and conduct comparative experiments to demonstrate
its effectiveness.

Choose a variety of common evaluation indicators for the
experimental comparisons to enhance the effectiveness of
methods and conclusions. Since we found in the experiment
that the MCC of the SDP model built on the datasets after
applying the data transformation method has an average per-
formance improvement ratio of more than 10% on the five
common models. This means that unreliable conclusions may
be obtained if only MCC is selected as the performance eval-
uation indicator. This is the same as Tim et al. [23], who noted
a flaw in past defect prediction studies that only rely on one or
a few indicators like AUC to evaluate models, which may
potentially introduce bias. This recommendation is not lim-
ited to the field of defect prediction, all classification scenarios
should benefit from comprehensive evaluation metrics.

When the objective of designing defect prediction meth-
ods is to understand the features associated with software
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defects in the past and identify the most influential features
for predicting whether a file is defective, it is not recom-
mended to use data transformation methods. Because it
will affect the change of feature importance and thus affect
the interpretability of the SDP model. It may be difficult to
maintain the high performance and strong interpretability of
SDP models. However, if the data transformation method
must be used to improve the performance of the SDP model,
we suggest that the changes in the most important features of
the SDP model constructed by the dataset before and after
the transformation should be tracked to obtain a more com-
prehensive explanation.

6. Threats to Validity

The following is a brief discussion of the threats to the valid-
ity of conclusions.

6.1. Data Transformation Methods. The First is the data
transformation method of the research object. This paper
only studies the impact of three data transformation meth-
ods, namely log transformation, Minmax transformation,
and Z-score transformation on the performance and
interpretability of the SDP model. Although these three
data transformation methods are commonly used data pre-
processing methods, there are also other data transformation
methods used in past defect prediction research. For exam-
ple, rank transformation [81, 82], Box—Cox transformation
[83, 84], discretization transformation [85, 86], and so on.
These methods, like the three transformation methods stud-
ied in this paper, can also reduce the dimension difference of
features and enhance the normality of data distribution.
Therefore, the research conclusion of this paper may be lim-
ited by the number of data transformation methods and
hinder the validity of the conclusion.

6.2. Datasets. The second is the datasets used in this paper.
We conduct experiments on 16 open-source software pro-
jects in three datasets. Although these datasets and software
projects are often used in the past research, the research
conclusions based on these datasets may not be generalizable
to all datasets, especially some private software projects that
are not open source. In addition, we only conduct research
on software projects with a defect rate of 30%-70% and
exclude extremely unbalanced software projects with a defect
rate lower than 30% and higher than 70%. Since the class
imbalance phenomenon may affect the conclusions about
model performance and interpretability [61, 62], the conclu-
sions of this paper should be revalidated on multiple class-
imbalanced datasets.

6.3. Classification Techniques. Then it is the classification
techniques used in this paper. We use six classification tech-
niques frequently used by the researchers including RF, LR,
NB, DT, KNN, and MLP. These six classifiers take into
account the requirements of quantity and type at the same
time, and the conclusions obtained should be generalizable.
However, there are also many models and types of classifiers,
including composite models with stronger classification
capabilities formed by combining these basic classification
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models. Therefore, the conclusions of this paper may be
limited by this.

6.4. Evaluation Indicators. The next is the evaluation indica-
tors used in this paper. For performance evaluation indica-
tors, we selected six performance evaluation indicators,
including Accuracy, Precision, Recall, F1, MCC, and AUC.
Similar to classification techniques, these indicators also take
into account the requirements of quantity and type, and
these indicators have been widely used in the previous defect
prediction research [86, 87]. Nevertheless, more other types
of indicators are not used in this paper [88-90], such as G-
measure and FPR, etc. Recently effort-aware indicators have
also been proposed to measure the performance of SDP
models [91-93]. For the evaluation of the interpretability
of SDP models, we evaluate model interpretability by com-
puting Top-k feature rank overlap and Top-k feature rank
differences to measure changes in Top-k feature importance
[63, 64]. However, it is also a feasible idea to evaluate the
interpretability of SDP models through the transparency and
complexity of models, components, and algorithms [23]. In
addition, evaluating interpretability from the perspective of
user perception is a suitable evaluation method in line with
the engineering practices. Therefore, the validity of the con-
clusions may also be affected by the different evaluation
indicators.

6.5. Experiment Procedure. Finally is the process implemen-
tation of this paper. In order to enhance the reproducibility
of the experiments and the credibility of the research con-
clusions, we implemented all the experimental steps using
Python on the Anaconda platform. The classification tech-
niques and evaluation indicators involved in the paper come
from the scikit-learn package. In order to enhance the repro-
ducibility of the results, we set the seed to 0 for each model.
For the performance indicators value, we choose the average
value of 25 sampling experiments, and the seeds of these 25
samplings are from 0 to 24, respectively. We also calculated
the average of 25 random permutations when calculating
permutation feature importance. In this way, the possibility
of errors caused by the randomness of the experimental
results is also minimized. However, there may still be manual
errors. We will make all the data and codes during the exper-
iment public and put them in the open-source code reposi-
tory to ensure reproducibility and promote future research.
We hope to attract the interest of relevant researchers and
continue to integrate more in-depth research.

7. Conclusion

In this paper, through empirical research on 16 software
projects in three open-source software datasets, we investi-
gate the impact of three data transformation methods,
namely log transformation, Minmax transformation, and
Z-score transformation, on the performance and interpret-
ability of SDP models. We found that using Log, Minmax,
and Z-score transformation can significantly improve the
performance indicator values of most SDP models. But the
importance of features has also changed greatly in the most
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SDP models. The impact on the performance and interpret-
ability of the SDP model depends on the classification tech-
nique used to design the defect prediction method.

According to the different objectives of defect prediction,
we give the following suggestions. When the goal is to
improve the performance of the SDP model and allocate
limited test resources reasonably, the data transformation
method can be used for data preprocessing of the training
dataset to build the SDP model. But this step should be
indicated and ablation experiments should be performed.
When the goal is to gain knowledge and insights from SDP
models but data transformation methods have to be used to
improve the model performance. We propose that changes
in the most important features of SDP models constructed
from datasets before and after transformation should be
tracked so that more comprehensive, accurate, and traceable
conclusions can be drawn on the interpretability of the SDP
model.
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