Hindawi

IET Software

Volume 2023, Article ID 6631967, 17 pages
https://doi.org/10.1049/2023/6631967

Research Article

|
I — I The Institution of) .
— Engineering and Technology Hindawi

VdaBSC: A Novel Vulnerability Detection Approach for
Blockchain Smart Contract by Dynamic Analysis

Rexford Nii Ayitey Sosu
Zikang Zhang ®'

,12 Jinfu Chen

,! Edward Kwadwo Boahen (,? and

ISchool of Computer Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
2Faculty of Computing and Information Systems, Ghana Communication Technology University, Accra, Ghana

Correspondence should be addressed to Jinfu Chen; jinfuchen@ujs.edu.cn

Received 6 June 2023; Revised 1 December 2023; Accepted 12 December 2023; Published 29 December 2023

Academic Editor: Alessandro Marchetto

Copyright © 2023 Rexford Nii Ayitey Sosu et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Smart contracts have gained immense popularity in recent years as self-executing programs that operate on a blockchain. However,
they are not immune to security flaws, which can result in significant financial losses. These flaws can be detected using dynamic
analysis methods that extract various aspects from smart contract bytecode. Methods currently used for identifying vulnerabilities
in smart contracts mostly rely on static analysis methods that search for predefined vulnerability patterns. However, these patterns
often fail to capture complex vulnerabilities, leading to a high rate of false negatives. To overcome this limitation, researchers have
explored machine learning-based methods. However, the accurate interpretation of complex logic and structural information in
smart contract code remains a challenge. In this study, we present a technique that combines real-time runtime batch normaliza-
tion and data augmentation for data preprocessing, along with n-grams and one-hot encoding for feature extraction of opcode
sequence information from the bytecode. We then combined bidirectional long short-term memory (BiLSTM), convolutional
neural network, and the attention mechanism for vulnerability detection and classification. Additionally, our model includes a
gated recurrent units memory module that enhances efficiency using historical execution data from the contract. Our results

demonstrate that our proposed model effectively identifies smart contract vulnerabilities.

1. Introduction

Blockchain technology has gained significant traction in
recent years, leading to the widespread adoption of smart
contracts [1]. However, the increasing utilization of these
self-executing programs has also exposed their vulnerability
to security flaws, potentially resulting in substantial financial
losses. This study aims to address the detection of vulner-
abilities in smart contracts written in Solidity, the primary
programing language for such contracts.

Existing methods for identifying vulnerabilities in smart
contracts predominantly rely on static analysis techniques,
which search for predefined vulnerability patterns [2-5].
These manual patterns often fall short of capturing complex
vulnerabilities, leading to a high rate of false negatives. To
mitigate this limitation, machine learning-based approaches
have been explored. However, these methods face challenges

in accurately interpreting smart contract code’s intricate
logic and structural information [6].

Dynamic analysis techniques, which analyze the actual exe-
cution of a smart contract, offer a promising alternative for
identifying potential security issues. This approach addresses
the limitations of static analysis by capturing runtime behavior
and anomalies [7]. Nevertheless, effective data preprocessing
and feature extraction techniques are crucial for successfully
applying dynamic analysis.

In this research, we introduce a technique that employs
real-time runtime batch normalization (RT-RBN) and data
augmentation for data preprocessing. We also utilize n-
grams and one-hot encoding for feature extraction. Our pro-
posed model integrates the strengths of bidirectional long
short-term memory (BiLSTM) [8], convolutional neural net-
work (CNN) [9], and the attention mechanism [10] for vul-
nerability detection and classification. BILSTM effectively
captures temporal dynamics, CNN excels in identifying local

https://orcid.org/0000-0001-5527-5114
https://orcid.org/0000-0002-3124-5452
https://orcid.org/0000-0002-2911-8112
https://orcid.org/0009-0002-5695-6426
mailto:jinfuchen@ujs.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2023/6631967

features, and the attention mechanism helps to focus on
important parts of the input. Additionally, we incorporate
a gated recurrent units (GRU) memory module to enhance
the computational efficiency [11].

Our main contributions are as follows:

(1) We introduce runtime batch normalization (RBN) and
data augmentation techniques to mitigate overfitting
and adapt to changing runtime conditions, thereby
enhancing vulnerability detection performance.

(2) We employ n-grams and one-hot encoding for fea-
ture extraction, capturing essential opcode sequence
information to improve vulnerability detection. This
approach allows us to represent complex opcode
sequences effectively.

(3) Our proposed model integrates BILSTM, CNN, and
the attention mechanism, effectively capturing both
local and long-range dependencies within opcode
sequences, thereby enhancing the model’s ability to
understand smart contract code’s complex logic and
structure.

(4) We introduce a memory module that stores classifi-
cation output data, reducing the need for feature
reselection and improving computational efficiency.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews related works on smart contract vulnerability
detection methods. Section 3 details our approach. Section 4
outlines the experimental settings. Sections 5 and 6 discuss
the experimental results and ablation study, respectively.
Section 7 expains the threats to validity. Section 8 provides
the brief discussion. Section 9 concludes the paper and sug-
gests avenues for the future research.

2. Related Works

The smart contract vulnerability detection field has seen sig-
nificant advancements, over the past 2 years. This section
aims to comprehensively review these developments, catego-
rizing them into deep learning methods, machine learning
methods, and dynamic analysis techniques.

2.1. Deep Learning Methods. The employment of deep learn-
ing techniques for smart contract vulnerability detection has
increased recently. For instance, Li et al. [5, 12-16]] have
focused on detecting reentrancy problems. While these meth-
ods offer rapid and accurate vulnerability detection, they often
lack a comprehensive comparison with the existing techni-
ques. More recent works, such as by Li et al. [17, 18], have
started addressing this gap by offering extensive evaluations
and comparisons, enriching the field.

2.2. Machine Learning Methods. There have also been nota-
ble advancements in machine learning techniques. Random
forest and support vector machines have been applied to
smart contract vulnerability detection [19-21]. Recent works
like [22-24] have expanded the scope by focusing on

IET Software

multiple types of vulnerabilities, offering a more comprehen-
sive vulnerability detection mechanism.

2.3. Dynamic Analysis of Smart Contracts. Dynamic analysis
methods are gaining traction due to their ability to capture
runtime behavior and anomalies with works like [25-27]
making significant contributions in this area. Recent advance-
ments, such as by Kour and Gupta [28, 29], have started to
employ machine learning techniques in conjunction with
dynamic analysis, offering a more robust vulnerability detec-
tion approach.

2.4. Conclusion. The field of smart contract vulnerability detec-
tion has seen advancements across deep learning, machine learn-
ing, and dynamic analysis methods. Each approach has its merits
but also limitations. Our proposed model aims to integrate the
strengths of these diverse methodologies. It employs a hybrid of
deep learning and machine learning techniques, specifically
BiLSTM, CNN, and the attention mechanism, for nuanced fea-
ture extraction and classification. Additionally, the model incor-
porates dynamic taint analysis to capture real-time behavior,
thereby providing a more comprehensive vulnerability detection
mechanism. A GRU memory module is also included to enhance
computational efficiency. The proposed model is further opti-
mized through a carefully selected set of hyperparameters. Our
proposed model offers a holistic, efficient, and robust approach,
pushing the boundaries of what is currently achievable in smart
contract vulnerability detection.

3. Proposed Method

3.1. Overview. This section delineates a comprehensive frame-
work for detecting vulnerabilities in smart contracts through
dynamic analysis of Opcode sequences. The proposed method
integrates advanced feature selection techniques, machine
learning algorithms, and a GRU memory module. The pri-
mary contributions of our proposed method are its novel
integration of BiLSTM to handle sequence dependencies in
the Opcode data, CNN captures local features through its
convolutional layers, and the attention mechanism weighs
these features according to their relevance, all working in
tandem to achieve superior vulnerability detection perfor-
mance, as well as the incorporation of a GRU memory mod-
ule for enhanced efficiency by storing classification output
data, which is then fed back into the input stage. This elim-
inates the need for redundant feature reselection, optimizing
computational time, and resources.

This section provides an overview of the proposed model
with each subsection providing an in-depth discussion of the
individual components and methods incorporated in the
proposed model, as illustrated in Figure 1.

The smart contracts dataset used in this study was sourced
from SmartBugs [30] and verified using Etherscan [31]:

(1) The dataset undergoes RT-RBN and data augmentation.

(2) The RBN and data augmentation stage explores the
preprocessed data in real-time using RF and RBN to
resolve issues such as imbalanced data and overfit-
ting to enhance feature selection.

IET Software

Data preprocessing

Dataset

Classification module
Bi-LSTM and CNN with

A 4

Ethereum

RRBN and RFDA

attention mechanism
Feature selection

o
N
o~ ® O ®

Vulnerable

1

n-Grams and one-
B=
3:

1
1
1 P)
hot encoding |
:
1
1
! Nonvulnerable

Classification

Memory
output

module P

GRU

FiGUre 1: Proposed framework.

(3) Under feature selection, we employed combined tech-
niques such as n-grams and one-hot encoding for
feature extraction.

(4) BiLSTM, CNN, and the attention mechanism are
integrated and utilized for classification for a better
detection output.

(5) The proposed GRU memory module receives data
from the classification output. The classification out-
put data transferred to the memory module are then
stored and sent to the input module to prevent fea-
ture reselection, improving the algorithm’s comput-
ing time and resources.

Figure 1 provides a schematic representation of the
study’s workflow. The proposed algorithm, detailed in Algo-
rithm 1, employs dynamic taint analysis techniques for effec-
tive vulnerability detection in the smart contracts.

In Algorithm 1, we present a dynamic analysis-based
approach for smart contract vulnerability detection based
on our proposed model. It incorporates dynamic taint anal-
ysis to capture the behavior of smart contracts during run-
time and identify potential vulnerabilities based on tainted
data. The algorithm follows a step-by-step process that
involves preprocessing, feature extraction, model training,
and evaluation.

We utilized random flipping (RF) and RT-RBN during
preprocessing to improve the dataset’s quality. RF introduces
variations in the bytecode, while RT-RBN standardizes the
execution data. These techniques help address limitations
and enhance the overall quality of the contracts’ bytecode
and execution data.

During the feature extraction phase, the preprocessed byte-
code is converted into feature vectors using n-grams or one-hot
encoding techniques. The feature vectors also include dynamic
features derived from the identified tainted values through
dynamic taint analysis. Incorporating dynamic features offers

a more comprehensive representation of the smart contract’s
behavior and possible vulnerabilities.

When training the proposed model, the dataset is split
into two phases: training and testing. The proposed model
is trained using the training set to identify patterns and fea-
tures associated with both vulnerable and nonvulnerable
contracts.

After training the model, it goes through a phase of eval-
uation where its ability to detect vulnerabilities is measured
using the testing set. This step helps determine how effective
the algorithm is in identifying vulnerable contracts.

This subsection introduces the overall architecture and
components of the proposed model.

3.2. Data Preprocessing. We utilize the SmartBugs [30] data-
set, comprising real-world Ethereum smart contracts, for
vulnerability detection. This dataset has been employed in
prior research for similar purposes [30, 32]. However, it is
imperative to acknowledge the dataset’s limitations, such as
limited representativeness and selection bias, and to apply
appropriate data preprocessing techniques [21, 33].

We apply data preprocessing techniques like RF data
augmentation and RT-RBN to mitigate these limitations
[34]. The mathematical representation of these techniques
is provided in Equations (1) and (2).

Here is the representation of the RF function:

flx) =x® m. (1)

The input data, represented by x, is subjected to the bit-
wise XOR operator denoted by oplus. Randomly selected bits
in the binary mask m are flipped.

RT-RBN is utilized to standardize the dynamic execution
data of smart contracts. This process standardizes the data
and reduces the impact of variations caused by various execu-
tion environments. As a result, the vulnerability detection

IET Software

Require: Preprocessed dataset
Ensure: Vulnerability detection model
1: function DYNAMICTAINTANALYSIS(x)

2: Perform dynamic taint analysis to track data flow and
identify tainted values in bytecode x

3: return Set of tainted values
4: end function
5: function FEATUREEXTRACTION(x, T')

6: Apply n-grams with one-hot encoding to convert byte-
code x into feature vectors

7: Incorporate dynamic features derived from tainted
values T into the feature vectors

8: return feature vectors
9: end function
10: Load preprocessed dataset
11: Feature Extraction Phase:
12: for each contract ¢ in the dataset do
13: Extract bytecode b from contract ¢
14: Apply RandomFlipping function using Equation (1) to
b: b’ « RandomFlipping(b)
15: Extract execution data e from contract ¢

16: Apply RealTimeBatchNormalization function to e:
¢’ < RealTimeBatchNormalization(e)

17: Perform dynamic taint analysis on b’ and ¢: T «
DynamicTaintAnalysis(b' U ¢')

18: Extract features f from b’ and ¢ using FeatureExtrac-
tion function eqn (3) and eqn (4) with tainted values T

19: Replace the original bytecode and execution data in
contract ¢ with f

20: end for

21: Model Training Phase:

22: Split the dataset into training and testing sets using
Equation (5)

23: Initialize the BILSTM-CNN-Attention model

24: Train the model using the training set using Equation (5)

25: Model Evaluation Phase:

26: Evaluate the model using the testing set using Equation (9)
for classification

27: Return classification output

ArGoritHM 1: Proposed Smart Contract Vulnerability Detection.

model can be better generalized across different contracts
[35]. Here is the definition of the function for RT-RBN:

glx) =2"£. 2)

The variable x stands for the input data, also known as
execution data. y symbolizes the mean of the data, while ¢
represents its standard deviation.

Algorithm 2 explains how to use random flipping data
augmentation (RFDA) and RT-RBN to improve the quality
of smart contract data. RF modifies the bytecode by flipping
random bits, while RT-RBN adjusts the execution data by

Require: Dataset (bytecode)
Ensure: Preprocessed dataset
1: function RANDOMFLIPPING(X)

2: Generate a binary mask m with randomly selected
flipped bits

3 f(x)exdm
4: return f(x)
5: end function

> Apply bitwise XOR

6: function REALTIMEBATCHNORMALIZATION(X)
7: Calculate the mean u and standard deviation o of the
execution data
glx)<=F
9: return g(x)
10: end function
11: Load dataset
12: Initiate the GRU memory model.

o

> Apply normalization

13: Preprocessing Phase:

14: for each contract ¢ in the dataset do

15: Extract bytecode b from contract ¢

16: Apply RandomFlipping function using eqn (1) to b:
b« RandomFlipping(b)

17: Extract execution data e from contract ¢

18: Apply RealTimeBatchNormalization function using
eqn (2) to e: € « RealTimeBatchNormalization(e)

19: Replace the original bytecode and execution data in
contract ¢ with b’ and ¢

20: end for
21: Return Preprocessed dataset

Algorithm 2: Data Preprocessing Algorithm using REDA and RRBN.

subtracting the mean and dividing by the standard deviation.
These steps help researchers overcome limitations in the
dataset and improve smart contract vulnerability detec-
tion [3, 4].

First, in the Algorithm 2, we load the dataset and proceed
to the preprocessing phase. For every contract in the dataset,
the algorithm retrieves the bytecode and execution data.
Afterward, it applies the RF and RT-RBN functions to
them. Finally, the preprocessed versions replace the original
bytecode and execution data.

During the above processes, the RF function uses the
XOR operator on input bytecode with a binary mask that
RFs bits. The RT-RBN function takes the input execution
data, subtracts the mean, and divides it by the standard
deviation.

Using data preprocessing techniques, this research
effectively mitigates the limitations of the Etherscan dataset,
thereby enhancing its quality for model training and evalu-
ation in the context of smart contract vulnerability detec-
tion. Therefore, the preprocessed dataset’s output becomes
more varied, resilient, and appropriate for vulnerability
detection.

This subsection details the data preprocessing techniques
employed, including RF and RT-RBN.

IET Software

3.3. Feature Selection. After preprocessing, the dataset is par-
titioned into training, validation, and testing sets. We employ
n-grams and one-hot encoding for feature extraction. These
techniques are further elaborated in Equations (3) and (4).

This study employs feature selection techniques that sur-
pass conventional methods’ [23, 36] scope, adeptly assimilat-
ing local and global features to construct a more resilient
model.

The function for extracting n-gram features, denoted as
h(x), can be defined as follows:

h(x)le,xz,...,xn. (3)

The variable x represents the input data, and the variable
n represents the number of opcodes in each n-gram.

The function for extracting one-hot encoding features,
denoted as h(x), is defined as follows:

h(x) = [x1, X3, vvy Xy (4)

The variable x represents the input data, while m refers to the
total number of opcodes in the dataset.

The dataset, named D, has been preprocessed and con-
tains N samples that include input features and correspond-
ing labels. These pairs are shown as: D= (s1, ¥1), (S2, ¥2), «--»
(sn»¥n)- The input features of the i-th sample are repre-
sented by s;, while its corresponding label is represented
by yi.

Researchers then split the dataset into training, valida-
tion, and test sets as follows:

Dy, (train), Dy (val), Dy, (test)
= S(split) (D, train o, valiyio, teStratio)

(5)

where S(split) is the function that performs the dataset split,
and train,,,, val ., and test,,, represent the desired pro-
portions of the dataset allocated to the training, validation,
and test sets, respectively.

The authors prepared the dataset to train deep learning
models for detecting smart contract vulnerabilities. We care-
tully selected a real-world dataset and applied RT-RBN [37]
and random flipping approach (RFDA) [38] for preproces-
sing. The dataset was divided into separate subsets for train-
ing, validation, and testing, which ensured an impartial
evaluation of the proposed technique. The authors employed
feature extraction methods such as n-grams and one-hot
encoding to extract meaningful information from the opcode
sequence.

We utilized the binary cross-entropy loss function and
the Adam optimizer to train the proposed classification
model. We train the model using the binary cross-entropy
loss function denoted as . The ground truth label for the
i-th training example is y;, and p; is the predicted probability
of the i-th training example being a vulnerable contract. The
learning rate at time step ¢ is #;, the model parameters at
time step t are #,, and the mini-batch size is m. To optimize
the model, we use the gradient of the loss function concern-
ing the model parameters, denoted as V<. The total num-
ber of training examples is denoted as N.

The model’s performance on the test set is evaluated using
accuracy, precision, recall, F1-score, and computational time
metrics. These metrics were chosen for their relevance in
assessing classification models. These measurements helped
to determine the proposed model’s effectiveness.

This subsection elaborates on the feature selection tech-
niques, including n-grams and one-hot encoding.

3.4. Classification. We integrate BiLSTM, CNN, and the
attention mechanism to enhance the classification accuracy.
This integration leverages the strengths of each model, pro-
viding a more comprehensive analysis of smart contract vul-
nerabilities. The BiLSTM model effectively captures long-
term dependencies in sequential data, while the CNN model
excels at learning local patterns in the input. We then utilized
the attention mechanism to highlight important features in
the input data, improving the model’s focus on relevant
opcode sequences that contribute to more comprehensive
vulnerability detection [34, 39]. The subsequent equations
detail the mathematical foundations of the BiLSTM, CNN,
and attention mechanisms employed in the proposed model.

The mathematical foundations for these techniques are
detailed in Equations (6-8):

oc(Wix, + Uh,_, + b)) f;

a(fot + Ushyy + bf) 0,

= U(Woxt + Uoh -1+ bo) (6)
=tanh(Wx, + Uht — 14+ b,.) ¢,

=fic,_1 +i/c; hy = o, tanh(c,).

In the CNN model, the formula for a 1D convolutional
layer is as follows:

k-1
j=

Here is the equation for the attention mechanism:

_ exple)
a; Z?:1exp(ej), (8)

where @; is the attention weight for feature i, e; is the rele-
vance score for feature i, and # is the number of features.

In this study, we suggest an integrated model that uses
the benefits of BILSTM, CNN, and the attention mechanism
during the classification phase, as Shou et al. [9, 11] have
highlighted. Let us denote the input data as X, the output
probabilities as P, and the models’ weights as W. The
equation is expressed as follows:

P = Attention (CNN (BILSTM (X, WBiLSTM) B WCNN) B WAttention) .

)

In Equation (9), BILSTM(X, Wi grv) represents the
BiLSTM model applied to the input data X with weights

Wiirstm- The output of the BILSTM model then passes unto
the CNN model, CNN(-, Weyy), using weights Wy
Finally, the output of the CNN model is passed unto the
attention mechanism, Attention(-, W ayention)> With weights
W Attention» t0 obtain the final output probabilities P. Our pro-
posed approach comprehensively analyzes smart contract
vulnerabilities, enhancing classification accuracy.

This subsection discusses the integration of BiLSTM,
CNN, and the attention mechanism in the classification
phase.

3.5. Memory Module. In this research, we integrated a GRU
memory module with our proposed model to improve the detec-
tion of smart contract vulnerabilities. The GRU is a Recurrent
Neural Network (RNN) type that captures long-term dependen-
cies and enhances the representation of sequential data.

The conditional expression for the GRU module is pro-
vided below:

If (U=P),then M = reject

Else

If (U#P) then M = accept.

In this expression, U represents unprocessed data, P is
processed data, and M is the output of GRU. The conditional
expression checks whether the unprocessed data U is equal
to the processed data P. If they are equal, the GRU output M
is set to “reject”. Otherwise, if U is not equal to P, the GRU
output M is set to “Accept”.

To utilize the memory module, researchers input classifi-
cation results from the output of the proposed classification
model to a GRU memory module layer. The classification
output data transferred to the memory module is then stored
and sent to the input module to prevent feature reselection,
improving the algorithm’s computational time and resources.

By integrating a GRU memory model, we have enhanced
the performance of our proposed model in detecting vulner-
abilities in the smart contracts. Our findings show that this
integration has resulted in high accuracy and Fl-score
achievements, which sets this work apart from the existing
methods [40].

This subsection discusses the GRU memory module’s
role in enhancing the proposed model’s efficiency.

3.6. Hyperparameter Tuning. The selection of hyperpara-
meters is crucial for the proposed model’s performance. Spe-
cific choices, such as the learning rate and activation functions,
are empirically validated to ensure optimal results. This sub-
section elucidates the rationale behind selecting specific hyper-
parameters, including activation functions, learning rates, and
batch sizes.

We employed the rectified linear unit (ReLU) activation
function in the convolutional layers. The choice is motivated
by ReLU’s computational efficiency and its ability to mitigate
the vanishing gradient problem. We employed the Sigmoid
function for the output layer to ensure that the output prob-
abilities lie within the range of [0, 1], making it suitable for
the binary classification task.

The learning rate of our proposed model is initially set at
0.001 and dynamically adjusted using the Adam optimizer.
The selection of Adam is backed by its adaptive learning rate

IET Software

capabilities, which offer a balanced tradeoff between conver-
gence speed and model accuracy. Empirical evaluations cor-
roborate that this learning rate setting ensures a stable and
efficient training process.

We employed a batch size of 32, which offers a compro-
mise between computational efficiency and the stability of
the gradient during backpropagation. We observed that
smaller batch sizes are computationally expensive and prone
to noisy gradients, while larger batch sizes risk overfitting.

Therefore, we employ a RBN technique and incorporate
it into our proposed model’s architecture. This contributes to
faster convergence and mitigates the risk of overfitting,
thereby enhancing the proposed model’s generalizability.

This subsection discussed the selection and rationale
behind the hyperparameters used in the proposed model.

In summary, this study proposes a comprehensive model
for detecting vulnerabilities in the smart contracts. The pro-
posed model employs advanced feature selection techniques,
integrated machine learning algorithms, and a GRU memory
module to improve efficiency and accuracy. The hyperpara-
meters were carefully selected and empirically validated. Our
findings indicate that the proposed model offers high accu-
racy and Fl-scores, making it a robust smart contract vul-
nerability detection approach.

4. Experiment and Evaluation

The proposed research addresses several questions related to
dynamic analysis-based smart contract vulnerability detection
with interpretability. Researchers aim to comprehensively
understand the algorithm’s strengths, limitations, and perfor-
mance characteristics by investigating these research questions
in the context of smart contract vulnerability detection. The
research questions encompass various aspects of the algorithm,
examining the effectiveness of dynamic taint analysis in identi-
tying tainted values, evaluating the advantages and limitations
of n-grams and one-hot encoding for feature extraction, asses-
sing the impact of incorporating dynamic features derived from
tainted values, investigating the influence of the RF function on
bytecode and model performance, examining the contribution
of RT-RBN to accuracy and robustness, analyzing the perfor-
mance metrics of the BILSTM-CNN-attention-model, explor-
ing and evaluating the detection accuracy for different
vulnerability types, and assessing the computational cost and
scalability of the algorithm.

4.1. Dataset Description. Our proposed model was meticu-
lously integrated with Remix IDE to automate the detection
of vulnerabilities in smart contracts in the SmartBugs [30]
dataset. The proposed model is deployed as a web-based API
within Remix IDE, synergizing with existing static analysis
tools and adding a layer of dynamic analysis. Automated
invocation of suspect smart contract functions is executed
through the JavaScript VM in Remix IDE, which emulates
the Ethereum virtual machine (EVM). The dataset comprises
37,035 smart contracts, of which 8,543 were found to contain
vulnerabilities. These vulnerabilities were categorized into
1,100 instances of Integer Underflow, 1,880 instances of Reen-
trancy, 2,403 instances of transaction ordering dependency

IET Software 7
TABLE 1: Smart contract samples distribution. TasLE 2: The vulnerability detection using diverse methods.

Category Test set Train set Total samples Approach Precision Recall ~ Accuracy Fl-Measure
Vulnerable 1,752 6,791 8,543 Opyente 40.9 47.6 60.8 43.6
Nonvulnerable 16,853 3,122 19,975 Maian 63.2 32.5 61.8 48.7
Reentrancy 1,608 272 1,880 SmartCheck 57.5 52.7 53.8 56.7
TOD 1,521 882 2,403 Manticore 58.8 428 58.5 60.6
Integer overflow 1,696 423 2,119 ContractGurard 63.7 59.5 80.5 753
Integer underflow 680 420 1,100 ContractFuzzer 82.6 63.8 86.6 80.7
Unchecked return values 721 320 1,041 Proposed 89.8 93.6 91.5 92.5
(TOD), 1,041 instances of unchecked return values, and 2,119
instances of integer overflow. To create the training and test- 50 4
ing sets, 80% of the samples were randomly selected for train-
ing, and the remaining 20% were allocated for testing, as &
illustrated in Table 1. % 60

Preprocessing steps: we applied the preprocessing steps 8
described in detail in Algorithm 2 before the data were uti-
lized for model training. These included RT-RBN to stan- 40 1
dardize the features and data augmentation techniques like . . :
RF to enhance the dataset’s robustness. 5 kS g g 2 3 e

The dataset used in this study was compared with other E 3 s = éﬂ 2. 5
commonly used datasets in the field, such as the smart con- g g ‘E" & §
tract weakness classification and test dataset (SWC-CTD) g g 4
and the Vyper dataset. The dataset from Ethereum’s official o ©
website and Etherscan was found to be more representative Approach
of real-world smart contracts, given its diverse range of vul- —+ Accuracy e Precision
nerability types. —+— Fl-measure —+— Recall

Uniqueness and representativeness: this research provides
a unique dataset in its comprehensiveness and diversity of
smart contract vulnerabilities. It includes commonly occur-
ring and less frequent vulnerabilities, thereby providing a
more rounded view of the smart contract vulnerability land-
scape, making the dataset highly representative, and ensuring
that the model trained on it is robust and generalizable.

4.2. Experimental Setup. We used a high-performance com-
puting system with specific hardware and software config-
urations to research smart contract vulnerability detection.
Our system had an Intel Core i7 processor and 16 GB of
RAM and was operating on macOS Big Sur version 11.7.6.
We utilized the R programing language and installed relevant
packages such as TensorFlow, Keras, and Caret to support
the implementation of our algorithms and models. Our R
version was 4.0 or above. This setup provided a reliable and
flexible environment for our experiments.

5. Performance Evaluation

5.1. Comparison with Exiting Methods. Our experiment is
shown in Table 2, and Figure 2 provides a detailed compari-
son of different methods to detect vulnerabilities in smart
contracts, including our proposed algorithm. We evaluated
each technique’s effectiveness and efficiency by analyzing
precision, recall, accuracy, and F1-measure.

Among the existing tools, Oyente [41] exhibited a preci-
sion of 40.9%, recall of 47.6%, accuracy of 60.8%, and an F1-
measure of 43.6%, while Maian [41] displayed a precision of

FIGURE 2: Accuracy, F1-measure, precision, and recall using diverse
methods.

63.2%, recall of 32.5%, accuracy of 61.8%, and an F1-measure
of 48.7%. SmartCheck demonstrated a precision of 57.5%,
recall of 52.7%, accuracy of 53.8%, and an Fl-measure of
56.7%. Conversely, Mossberg et al. [42] yielded a precision
of 58.8%, recall of 42.8%, accuracy of 58.5%, and an FI-
measure of 60.6%. Notably, ContractGuard [43] showed a
precision of 63.7%, recall of 59.5%, accuracy of 80.5%, and an
Fl-measure of 75.3%. Finally, ContractFuzzer [44] displayed
an impressive precision of 82.6%, recall of 63.8%, accuracy of
86.6%, and an F1-measure of 80.7%.

However, our proposed algorithm excelled against all
existing methods with an impressive precision of 89.8%,
recall of 93.6%, accuracy of 91.5%, and an Fl-measure of
92.5%. These findings suggest that the newly introduced
algorithm is more effective and efficient in detecting vulner-
abilities than the other approaches. The high values of preci-
sion and recall indicate that the algorithm can accurately
detect vulnerabilities while minimizing false positives and
false negatives. The overall high accuracy and F1-measure
further prove the effectiveness and reliability of the new
algorithm in detecting vulnerabilities in smart contracts.

We experimented with different methods of detecting
vulnerabilities in smart contracts. Table 3 and Figure 3 pre-
sents the accuracy of vulnerability detection for various types
and the duration it took for each method to identify them.

IET Software

TasLE 3: Comparison of detection accuracy and time of smart contract vulnerability detection methods.

Reentrancy Integer overflow Integer underflow TOD URV
Approach %) DT(s) %) DT (s) %) DT (s) %) DT (s) %) DT (s)
Oyente 63.24 130 65.29 128 66.4 125 68.56 120 71.98 130
Maian 60.76 30 62.81 32 63.92 28 66.08 25 69.5 20
SmartCheck 56.37 15 58.42 17 59.53 15 61.69 15 65.11 15
Manticore 73.75 330 75.8 324 76.91 320 79.07 230 82.49 330
ContractGuard 75.68 10 77.73 12 78.84 11 81 10 84.42 10
ContractFuzzer 78.37 3 80.42 2 81.53 5 83.69 2 87.11 3
Proposed 84.51 86.56 87.67 2 89.83 93.25
%1 S 300
L
g
B 200
85 g
9 g 100
g O
oy A
g 75 -
g 0
8 L L Q QL L
< £ £ £ £ £
65 A > z z on 2
= o 3} el >
55 = & 5 g 5
5 s g © 2 9 4 2 5o ! B
& o = E S & 2 £ 2
2 s S & E H S
= b=} = =)
= g 52)
S o Vulnerability type
Approach E ContractFuzzer E Opyente
—— 1O —— T_O B ContractGuard M Proposed
—— 1 U U_R_V B Maian B SmartCheck
—— RA B Manticore

FiGURE 3: Vulnerability detection accuracy using diverse methods.

Out of all the approaches evaluated, our proposed algo-
rithm exhibited the highest accuracy rate across all vulnera-
bility types. It achieved an accuracy rate of 84.51% for
reentrancy vulnerabilities, 86.56% for integer overflow vul-
nerabilities, 87.67% for integer underflow vulnerabilities,
89.83% for TOD vulnerabilities, and an impressive 93.25%
for unchecked return values (URV) vulnerabilities. Based on
the results, the proposed algorithm is exceptionally efficient
in accurately detecting various vulnerabilities.

Moreover, in Figure 4, our proposed algorithm demon-
strated superior efficiency in terms of detection time com-
pared to the other approaches. It achieved detection times of
only 2 s for reentrancy, integer overflow, and integer under-
flow vulnerabilities and 1s for TOD, and URV vulnerabil-
ities. These short detection times indicate the computational
efficiency of the proposed algorithm. Compared to the other
approaches, as shown in Table 3 and Figure 3, our proposed
algorithm excelled against them in accuracy and detection
time for all vulnerability types. For instance, Oyente, Maian,
and SmartCheck achieved lower accuracy rates ranging
from 56.37% to 63.24%, across the different vulnerability
types, while Manticore, ContractGuard, and ContractFuzzer

FIGURE 4: Vulnerability detection time using diverse methods.

exhibited intermediate accuracy rates ranging from 73.75% to
82.49%. Additionally, the detection times of these approaches
varied, with some showing considerably longer detection times
compared to our proposed algorithm.

Overall, our experiment results highlight our proposed
algorithm’s effectiveness and efficiency in detecting vulner-
abilities in smart contracts. Its ability to achieve high-accuracy
rates and short-detection times makes it a promising solution
for identifying vulnerabilities in the smart contracts.

Table 4 and Figure 5 summarize the outcomes of an
experiment that assessed the effectiveness of various models
in identifying vulnerable and nonvulnerable smart contracts.
The experiment evaluated the models based on F1-measure,
accuracy, precision, and recall, concentrating on vulnerabil-
ities such as reentrancy, integer overflow, integer underflow,
TOD, and URV. The models tested against our proposed
model were Oyente [45], Maian [41], SmartCheck [46], Con-
tractGuard [43], and ContractFuzzer [44].

Overall, the models displayed an impressive performance
in detecting smart contract vulnerabilities. The F1-measure,
which considers precision and recall, ranged from 62.81% to
70.57%, indicating that the models can balance identifying

IET Software 9
TasLE 4: Comparing the existing methods with the proposed model on 60% training data.
Models Measures Reentrancy Integer overflow Integer underflow TOD URV
Oyente F1-measure 62.81 63.44 63.57 63.66 63.78
Opyente Accuracy 97.16 97.79 97.92 98.01 98.13
Oyente Precision 83.51 84.14 84.27 84.36 84.48
Oyente Recall 70.58 71.21 71.34 71.43 71.55
Maian F1-measure 63.51 64.14 64.27 64.36 64.48
Maian Accuracy 96.98 97.61 97.74 97.83 97.95
Maian Precision 84.41 85.04 85.17 85.26 85.38
Maian Recall 71.17 71.8 71.93 72.02 72.14
SmartCheck Fl-measure 63.91 64.54 64.67 64.76 64.88
SmartCheck Accuracy 97.01 97.64 97.77 97.86 97.98
SmartCheck Precision 83.51 84.14 84.27 84.36 84.48
SmartCheck Recall 71.41 72.04 72.17 72.26 72.38
ContractGuard F1-measure 65.24 65.87 66 66.09 66.21
ContractGuard Accuracy 97.56 98.19 98.32 98.41 98.53
ContractGuard Precision 84.51 85.14 85.27 85.36 85.48
ContractGuard Recall 72.62 73.25 73.38 73.47 73.59
ContractFuzzer F1-measure 65.52 66.15 66.28 66.37 66.49
ContractFuzzer Accuracy 97.32 97.95 98.08 98.17 98.29
ContractFuzzer Precision 85.29 85.92 86.05 86.14 86.26
ContractFuzzer Recall 73.32 73.95 74.08 74.17 74.29
Proposed F1-measure 70.57 71.2 71.33 71.42 71.54
Proposed Accuracy 98.46 99.09 99.22 99.31 99.43
Proposed Precision 88.48 89.11 89.24 89.33 89.45
Proposed Recall 79.17 79.8 79.93 80.02 80.14
100 A
OIF\./.——///*\.
85 4
90 4 o
g ® w0
“é 80 ¥
& NG
\/\ N
707 \A
- - - : - - g = g 8 3 %
& 2 = 5 & g g g & 5
- = 2 E 5
5 é < O O
Models
Models
—— Accuracy —=— Precision
—=— Accuracy —=— Precision .+ Fl-measure . Recall
—+— Fl-measure —+— Recall

Ficure 5: Comparing the existing methods with the proposed model
on 60% training data.

true positives while minimizing false positives and false
negatives. Accuracy values varied from 96.98% to 98.46%,
demonstrating that the models’ classification of smart con-
tracts was mostly correct. Precision values ranged from
83.51% to 88.48%, showing that the models could accurately
identify true positives. Recall values ranged from 70.58% to

FiGure 6: Comparing the existing methods with the proposed model
on 75% training data.

79.17%, indicating that the models could detect actual
positives.

Figure 6 and Table 5 provided displays the findings of an
experiment that analyzed different models’ ability to classify
smart contracts according to various vulnerabilities. The
evaluation focused on measures such as Fl-measure,

10 IET Software
TasLE 5: Comparing the existing methods with the proposed model on 75% training data.
Models Measures Reentrancy Integer overflow Integer underflow TOD URV
Oyente F1-measure 71.82 72.45 72.58 72.67 72.79
Opyente Accuracy 73.15 73.78 73.91 74 74.12
Oyente Precision 7491 75.54 75.67 75.76 75.88
Oyente Recall 74.83 75.46 75.59 75.68 75.8
Maian F1-measure 73.33 73.96 74.09 74.18 74.3
Maian Accuracy 77.24 77.87 78 78.09 78.21
Maian Precision 76.86 77.49 77.62 77.71 77.83
Maian Recall 76.51 77.14 77.27 77.36 77.48
SmartCheck Fl-measure 77.88 78.51 78.64 78.73 78.85
SmartCheck Accuracy 80.91 81.54 81.67 81.76 81.88
SmartCheck Precision 79.43 80.06 80.19 80.28 80.4
SmartCheck Recall 76.98 77.61 77.74 77.83 77.95
ContractGuard F1-measure 83.59 84.22 84.35 84.44 84.56
ContractGuard Accuracy 85.36 85.99 86.12 86.21 86.33
ContractGuard Precision 82.12 82.75 82.88 82.97 83.09
ContractGuard Recall 83.61 84.24 84.37 84.46 84.58
ContractFuzzer F1-measure 86.91 87.54 87.67 87.76 87.88
ContractFuzzer Accuracy 88.48 89.11 89.24 89.33 89.45
ContractFuzzer Precision 85.73 86.36 86.49 86.58 86.7
ContractFuzzer Recall 84.38 85.01 85.14 85.23 85.35
Proposed F1-measure 86.58 87.21 87.34 87.43 87.55
Proposed Accuracy 88.57 89.2 89.33 89.42 89.54
Proposed Precision 88.73 89.36 89.49 89.58 89.7
Proposed Recall 85.73 86.36 86.49 86.58 86.7

accuracy, precision, and recall, honing in on vulnerabilities
like Reentrancy, Integer Overflow, Integer Underflow, TOD,
and URV. The models tested were Oyente, Maian, SmartCh-
eck, ContractGuard, ContractFuzzer, and a proposed model.

The results revealed that all models performed well in
identifying smart contract vulnerabilities. The F1-measure,
which combines precision and recall, ranged from 71.82% to
86.91%, indicating each model’s ability to recognize positive
and negative instances. Accuracy values ranged from 73.15%
to 89.20%, demonstrating the models’ overall accuracy in
identifying smart contracts. Precision values ranged from
74.91% to 88.73%, indicating the models” accuracy in detect-
ing true positives. Recall values ranged from 74.83% to
86.49%, showing each model’s ability to capture actual posi-
tive instances.

The ContractFuzzer model and Proposed model consis-
tently exhibited the best performance across most measures.
They achieved the highest Fl-measure, accuracy, precision,
and recall values among all the models, indicating their
effectiveness in detecting vulnerabilities. ContractGuard and
SmartCheck also demonstrated competitive performance, con-
sistently achieving high scores across the measures. Despite still
performing well, Oyente and Maian exhibited relatively lower
values than the other models. The Proposed model outper-
formed the other models across all measures, achieving the
highest F1-measure, accuracy, precision, and recall values.
ContractGuard also demonstrated competitive performance,
closely following the proposed model. Oyente, Maian,

SmartCheck, and ContractFuzzer performed relatively lower
but still satisfactorily compared to the proposed and Contrac-
tGuard models.

Table 6 shows the results of an experiment that tested
different models’ ability to classify vulnerabilities in smart
contracts. The experiment used a training dataset that com-
prised 90% of the total data and evaluated models such as
Oyente, Maian, SmartCheck, ContractGuard, ContractFuz-
zer, and a proposed model. The evaluation measures focused
on vulnerabilities like reentrancy, integer overflow, integer
underflow, TOD, and URV and included F1-measure, accu-
racy, precision, and recall.

Figure 7 results show that all models correctly classified
smart contract vulnerabilities when trained with 90% of the
data. The Fl-measure ranged from 88.21% to 94.37%, indi-
cating the models’ ability to identify positive and negative
instances accurately. The accuracy values ranged from
98.56% to 98.98%, indicating the models’ overall correctness
in classifying smart contracts. The precision values ranged
from 96.26% to 98.23%, reflecting the models’ accuracy in
identifying true positives, and recall values ranged from
92.77% to 96.81%, indicating the models’ ability to capture
the actual positive instances.

The proposed model consistently demonstrated the high-
est performance across most measures, achieving the highest
Fl-measure, accuracy, precision, and recall values when
trained with 90% of the data. ContractGuard, ContractFuz-
zer, and SmartCheck also performed well, achieving high

IET Software 11
TasLE 6: Comparing the existing methods with the proposed model on 90% training data.

Models Measures Reentrancy Integer overflow Integer underflow TOD URV
Oyente F1-measure 88.21 88.84 88.97 89.06 89.18
Opyente Accuracy 98.63 99.26 99.39 99.48 99.6
Oyente Precision 96.26 96.89 97.02 97.11 97.23
Oyente Recall 92.77 93.4 93.53 93.62 93.74
Maian F1l-measure 90.21 90.84 90.97 91.06 91.18
Maian Accuracy 98.62 99.25 99.38 99.47 99.59
Maian Precision 96.53 97.16 97.29 97.38 97.5
Maian Recall 93.53 94.16 94.29 94.38 94.5
SmartCheck Fl-measure 90.16 90.79 90.92 91.01 91.13
SmartCheck Accuracy 98.68 99.31 99.44 99.53 99.65
SmartCheck Precision 96.64 97.27 97.4 97.49 97.61
SmartCheck Recall 93.69 94.32 94.45 94.54 94.66
ContractGuard F1-measure 91.45 92.08 92.21 92.3 92.42
ContractGuard Accuracy 98.56 99.19 99.32 99.41 99.53

ContractGuard Precision 97.03 97.66 97.79 97.88 98
ContractGuard Recall 94.38 95.01 95.14 95.23 95.35
ContractFuzzer F1-measure 91.45 92.08 92.21 92.3 92.42
ContractFuzzer Accuracy 98.7 99.33 99.46 99.55 99.67
ContractFuzzer Precision 97.01 97.64 97.77 97.86 97.98
ContractFuzzer Recall 94.41 95.04 95.17 95.26 95.38
Proposed F1-measure 94.37 95 95.13 95.22 95.34
Proposed Accuracy 98.98 99.61 99.74 99.83 99.95
Proposed Precision 98.23 98.86 98.99 99.08 99.2
Proposed Recall 96.18 96.81 96.94 97.03 97.15
e smart contracts. The analysis helped us determine the best
I A size for the training data and showed that the model could
97:5 1 »-4\\/\ work well with different data distributions. We also tested the
R R model’s performance with smaller training data to see how it
& 95.0 handles resource constraints and found that it could efficiently
E allocate resources. We also assessed the model’s scalability and
E 925 efficiency and found it maintains high performance even with
larger training data sizes. Our proposed model has proven
90,0 effective in. det'ecting vulnerabilities 11'1 smart contracts apd
can be applied in the real-world scenarios. These results guide

practical use.

ContractFuzzer -
ContractGuard -
Maian -

Oyente -
Proposed -
SmartCheck -

Models

—— Accuracy —=— Precision

—+— Fl-measure —+— Recall

FiGure 7: Comparing the existing methods with the proposed model
on 90% training data.

scores across the measures. Oyente and Maian performed
well but had relatively lower values than the other models.
To sum up, our experiments on different amounts of train-
ing data 60%, 75%, and 90% have given us valuable insights
into how our proposed model can detect vulnerabilities in

5.2. Comparison with Deep Learning Baselines. Table 7 and
Figure 8 provide a rigorous evaluation framework that scru-
tinizes the proposed model against six state-of-the-art deep
learning techniques for smart contract vulnerability detec-
tion. The evaluation is grounded in key performance metrics:
accuracy, precision, recall, F1-score, and computational time,
providing a comprehensive view of each model’s capabilities
and limitations.

A hybrid attention mechanism (HAM) model employs
attention mechanisms to improve interpretability but falls
short in accuracy 88.2% and computational time 12s. The
proposed model outperforms HAM with an accuracy of
96.5% and a computational time of 8s. The proposed mod-
el's RT-RBN and data augmentation techniques offer super-
ior adaptability, contributing to its higher accuracy.

BiLSTM-ATT [13] is proficient in capturing long-range
dependencies but is less comprehensive, with an accuracy of

12

IET Software

TasLE 7: Comparative analysis of proposed model with state-of-the-art deep learning techniques.

Model Accuracy (%) Precision (%) Recall (%) Fl-score (%) Computational time (s)
HAM 88.2 87.4 88.9 88.1 12
BILSTM-ATT 89.0 88.3 89.5 88.9 15
DR-GCN 87.5 86.8 88.1 87.4 20
TMP 86.9 86.2 87.5 86.8 18
LSTM 85.7 85.0 86.3 85.6 14
Vanilla-RNN 834 82.7 84.0 83.3 10
Proposed model 96.5 96.0 95.8 95.9 8
Accuracy Computational time Fl-score
96 20.0 - 96
: 17.5)
92 15.0 - - 92
[])) []
88 Y 12.5 - 88 'Y
84 - - : 2 84 I
Bz = = 3 & 2Z Bz 5 =2 38 & Z = z 5 = 3 & Z
< 8 £ 5 L2 z < 8 2§ ¢2 7 s 3 2§ ¢ 2z
! g ey — o ' ! T jan) — o | ! T jan) — o '
= 3 = = 2 = = 2 =
= [a) =% = = [a) [= = a =% =
A g A g A g
Y & > & > & >
<
> Precision Recall
- - Ry & 96
94 93'
Zz e 2(7) o0
[] . [B
)))) 'Y 84
E oz =5 =2 3B & Z HE z = = 3 & Z
- A ERRER
: A B - . : A R - .
= o 8 = = o 2 =
=N A~ = = N ey =
A E A E
& > & >
Model

—e— BiLSTM-ATT
—o— DR-GCN
—o— HAM

—o— LSTM

—o— Proposed
—o— TMP
—@— Vanilla-RNN

Ficure 8: Comparative analysis of proposed VdaBSc model with state-of-the-art deep learning techniques.

89.0% and a computational time of 15 s. The proposed model
incorporates CNN along with BiLSTM and Attention Mech-
anism, enabling it to capture both local and long-range
dependencies. This hybrid architecture contributes to its
higher accuracy and lower computational time.

DR-GCN [20] is computationally expensive, requiring
20, and achieves an accuracy of 87.5%. The proposed mod-
el's memory module significantly reduces computational
time to 8s while maintaining high accuracy, making the
proposed model more suitable for real-time applications, a
significant advantage over DR-GCN.

TMP [20] focuses on temporal aspects but lacks gener-
alizability, achieving an accuracy of 86.9% and requiring
computational intensity at 18s. The proposed model’s fea-
ture extraction techniques, such as n-grams and one-hot

encoding, allow for a more generalized approach, contribut-
ing to its higher accuracy and lower computational time.

LSTM [47] is a standard in sequence modeling but is prone
to overfitting, achieving an accuracy of 85.7% and a computa-
tional time of 14s. The proposed model mitigates overfitting
through data augmentation and captures local features through
CNN, offering a more balanced and efficient approach.

The Vanilla-RNN [48] model achieves the lowest accu-
racy of 83.4%, possibly due to its suffering from the vanishing
gradient problem and a computational time of 10s. The
proposed model’s hybrid architecture effectively captures
both local and long-range dependencies, and its RT-RBN
ensures better gradient flow, resulting in its outperformance.

The proposed model’s hybrid architecture and feature
engineering techniques contribute to its outperformance

IET Software

13

TasLE 8: Ablation study for the proposed model.

Configuration Accuracy (%) Precision (%) Recall (%) Fl-score (%)
Full model 96.5 96.0 95.8 95.9
w/o Runtime batch normalization 94.2 93.8 93.6 93.7
w/o Data augmentation 93.5 93.1 92.9 93.0
w/o BiLSTM 92.8 92.4 92.2 92.3
w/o CNN 91.9 91.5 91.3 91.4
w/o Attention mechanism 90.7 90.3 90.1 90.2
w/o Memory module 89.6 89.2 89.0 89.1

across all key metrics. It establishes itself as a robust, efficient,
and advanced smart contract vulnerability detection solution.

5.3. Comparison with Related Works. Several research studies
have focused on smart contract vulnerability detection, aim-
ing to address the security and reliability challenges associ-
ated with these self-executing programs on the blockchain.
This section compares our proposed method for identifying
vulnerabilities to relevant research papers, including deep
learning-based approaches.

First, our proposed approach offers a more comprehen-
sive approach to vulnerability detection compared to the
method presented by Qian et al. [13]. While researchers in
[13] employ a deep learning-based approach using bidirec-
tional long-short-term memory with an attention mecha-
nism (BiLSTM-ATT), their method is specifically tailored
for reentrancy bug detection. This narrow focus limits its
applicability across a broader spectrum of vulnerabilities.
In contrast, our proposed model integrates BILSTM, CNN,
and attention mechanism, offering a more versatile and com-
prehensive framework for detecting multiple types of vulner-
abilities. Furthermore, our model employs dynamic analysis
of Opcode sequences, capturing a richer set of features and
behaviors during runtime, making our proposed model a
more robust vulnerability detection mechanism.

Second, Zhuang et al. [20] employ graph neural networks
(GNNss) for vulnerability detection a significant diverges from
our proposed model in this study, which relies on BiLSTM,
CNN, and the attention mechanism for vulnerability detection.
Zhuang et al.’s [20] model, while innovative, is constrained by
its graph-based representation of smart contracts. Such a repre-
sentation may not effectively capture all types of vulnerabilities,
particularly those better detected through dynamic analysis.
However, the deployment of dynamic taint analysis techniques
within our proposed model, aid in capturing the behavior of
smart contracts during runtime and identify potential vulner-
abilities based on tainted data. Additionally, our proposed
model incorporates a GRU memory module, which enhances
computational efficiency by eliminating the need for redundant
feature reselection. This provides a critical contribution that
can significantly reduce computational time and resources.

Last, the paper in [10] proposes a HAM model for smart
contract vulnerability detection. Similar to our approach, this
research emphasizes the importance of considering semantic
information and code context. However, our method differs
in its specific implementation. While, Wu e al. [10] extract
code fragments focusing on key vulnerability points, we

incorporate RT-RBN, data augmentation, and n-grams for
a more comprehensive analysis.

Our proposed vulnerability detection approach for block-
chain smart contracts uses dynamic analysis, RT-RBN, data
augmentation, n-grams, and an integration of BiLSTM, CNN,
and the attention mechanism. By addressing the limitations of
existing methods, such as fixed expert rules and poor scalabil-
ity, our approach has demonstrated the feasibility of achieving
favorable results, making it effective and efficient in detecting
the smart contract vulnerabilities.

6. Ablation Experiment

In this section, we carefully assess the effectiveness of each
core component in our proposed model by systematically
removing them and measuring the resulting performance
metrics. Table 8 and Figure 9 provide a comprehensive over-
view of how each component contributes to the proposed
model’s overall performance.

The full proposed model, including all design elements,
achieves a high standard with an accuracy rate of 96.5%, a
precision rate of 96.0%, a recall rate of 95.8%, and an F1-
score rate of 95.9%. This complete model is the benchmark
against which the ablated models are compared.

When RBN is removed, all metrics show a noticeable
decline. The accuracy drops to 94.2% and the Fl-score to
93.7%, suggesting that the RBN component plays a pivotal
role in model generalization, preventing overfitting by normal-
izing the input layer by adjusting and scaling the activations.

The absence of data augmentation further reduces the
proposed model’s performance, with accuracy and F1-score
dropping to 93.5% and 93.0%, respectively, indicating that
data augmentation enhances the proposed model’s generali-
zation ability and robustness.

Eliminating BiLSTM in our proposed model resulted in
92.8% accuracy and 92.3% F1-score. BILSTM is responsible
for capturing the temporal dynamics of the data, and its
absence weakens the proposed model’s ability to understand
the sequence and structure of the data, which is critical for
vulnerability detection.

Without the CNN component, the model’s performance
metrics fall further, with an accuracy of 91.9% and an F1-
score of 91.4%, underscoring CNN’s role in capturing local
features and spatial hierarchies, which are essential for fea-
ture representation.

Removing the attention mechanism results in a signifi-
cant performance drop, with accuracy and F1-score falling to

14

IET Software

Accuracy Precision
98 - — — e e
96 —== — e BT e T T e
94 —— R ——— == T e 92.5 = ~e + == - N -
9 oa e — 90.0 —————==———
& : L I = 87.5 ‘ ‘ ‘ ‘ ‘ :
=
§ Recall Fl-score
L
A 975 - - - - - 97.5 - - - - - - - - -
95.0 _ — g ———— _— B0 e
925 —— T _._,-l- — = 92.5 T -‘-—|—— —
900 — g 900 ———E=mm T == ——
‘ ‘ : : ‘ ‘ ‘ 87.5
=1 %} Q < S] =1 %2} Q < o <
E £ 2 ¢ 5 & 2 E £ 4 5 & g 2
R A R T N - -
= =i 2) 5] g = =) < 3 5] g
= E 3 = S = E 3 g S
15) © 5] S 1) « 15) s
b=t s = 5 = £ = 5
= < S 5] < 2
3 A L2 5] 3 a L2 <
= 2 = < 2 =
2 ® £ 2 # £
= = = =
= 2
L Q
E E
E E
~ ~
L2 L2
z z
Configuration
=] Accuracy B3 Recall
' Precision ' Fl-score

FIGURE 9: Ablation experiment

90.7% and 90.2%, respectively, highlighting the attention
mechanism’s importance in weighting different parts of the
input for better context understanding within our proposed
model.

Last, the absence of the memory module brings the mod-
el’s performance down to 89.6% accuracy and 89.1% FI-
Score, indicating its role in reducing computational time
and resources.

Therefore, each component in the proposed model serves a
specific, indispensable function that contributes to the model’s
superior performance. The ablation study scientifically vali-
dates the necessity of each component, thereby substantiating
the robustness and efficacy of the complete proposed model.

7. Threats to Validity

This section discusses potential threats to the validity of our
research findings. These threats can be categorized into four
types: construct validity, internal validity, external validity,
and conclusion validity.

7.1. Construct Validity. Our proposed model uses n-grams
and one-hot encoding for feature representation. The choice
of these techniques could influence the proposed model’s
performance and may only be universally optimal for some
types of smart contracts.

7.2. Internal Validity. The performance of our proposed
model is contingent on the hyperparameters used. Although,
we conducted extensive experiments to find optimal settings,
different configurations could yield different results. While,

for the proposed model techniques.

data augmentation has improved our proposed model’s gen-
eralization, the specific techniques used could introduce a
bias in the proposed model, affecting its applicability to the
real-world scenarios.

7.3. External Validity. We conducted experiments on Ethereum-
based smart contracts. The findings may not generalize well to
smart contracts written in languages other than the one we
focused on. While we compared our model with diverse existing
methods, the smart contract vulnerability detection landscape is
rapidly evolving. New methods could outperform our model.

7.4. Conclusion Validity. Although our proposed model out-
performs existing methods regarding various metrics, a more
detailed statistical analysis could provide more robust evidence
for the observed differences. Acknowledging these threats to
validity provides a balanced view of our research findings.
Future work should address these limitations to substantiate
our proposed model’s robustness and generalizability.

8. Discussion

This research proposes a novel approach to detecting vulner-
abilities in smart contracts, a critical area in blockchain tech-
nology. The proposed model, VdaBSC, integrates dynamic
analysis, RBN, data augmentation, n-grams, and a hybrid
architecture combining BiLSTM, CNN, and the attention
mechanism. While this study demonstrates the proposed mod-
el’s effectiveness, discussing its advantages and disadvantages in
the context of smart contract vulnerability detection is essential.

IET Software

8.1. Advantages. Comprehensive approach: the integration of
dynamic analysis with advanced machine learning techniques
(BiLSTM, CNN, attention mechanism) provides a multiface-
ted approach to vulnerability detection. This combination
allows for a more thorough analysis than traditional methods.

High-performance metrics: the model’s superior perfor-
mance in accuracy, precision, recall, and F1-score, as dem-
onstrated in the ablation study, indicates its effectiveness in
identifying vulnerabilities accurately.

Robustness and efficiency: the inclusion of RBN and data
augmentation enhances the model’s generalization capabili-
ties, making it robust against various types of vulnerabilities
and efficient in processing.

Innovative feature representation: the use of n-grams and
one-hot encoding for feature representation is a novel approach
in the context of smart contracts, contributing to the model’s
high performance.

8.2. Disadvantages. Construct validity concerns: the reliance
on n-grams and one-hot encoding may not be universally
optimal for all types of smart contracts. This could limit the
model’s applicability across different blockchain platforms.

Hyperparameter sensitivity: the proposed model’s perfor-
mance depends on the chosen hyperparameters. This sensitivity
could pose challenges in maintaining consistent performance
across different datasets and scenarios.

External validity limitations: the study’s focus on Ethereum-
based smart contracts may not generalize well to other languages
or platforms, limiting its broader applicability.

Evolving landscape of smart contracts: the rapidly chang-
ing nature of smart contract technologies and vulnerability
detection methods could quickly render the model less effec-
tive as new vulnerabilities and techniques emerge.

8.3. Future Directions. To address these disadvantages, future
research should explore:

Alternative feature representation techniques: investigat-
ing other feature representation methods could enhance the
model’s applicability and effectiveness across various smart
contract platforms.

Hyperparameter optimization: developing more adaptive
hyperparameter tuning methods could improve the model’s
robustness and consistency.

Cross-platform applicability: extending the model to
other smart contract languages and blockchain platforms
would increase its utility and relevance.

Statistical analysis for validation: a more detailed statisti-
cal analysis would provide stronger evidence for the model’s
effectiveness compared to existing methods.

Adaptation to evolving threats: continuously updating
the model to adapt to new vulnerabilities and detection tech-
niques is crucial for maintaining its relevance.

While the proposed VdaBSC model marks a significant
advancement in smart contract vulnerability detection, it is
crucial to continually refine and adapt the model in response
to the evolving landscape of blockchain technology and
smart contract vulnerabilities. This study lays a solid foun-
dation for future research in this vital field, offering both a
robust model and a roadmap for further enhancements.

15

9. Conclusion

In this study, we have endeavored to address the critical issue
of smart contract vulnerability by presenting a comprehen-
sive approach to smart contract vulnerability detection. We
introduced a novel model incorporating dynamic analysis,
RT-RBN, data augmentation, n-grams, and a hybrid archi-
tecture combining BiLSTM, CNN, and the attention mecha-
nism. Our proposed model has been rigorously evaluated
against existing methods and state-of-the-art deep learning
techniques, demonstrating superior performance across key
metrics such as accuracy, precision, recall, and F1-score.

To support our claims, we conducted an ablation study.
This study confirmed the effectiveness of each component in
the proposed model and their collective contribution to its
robustness. As per the tenets of scholarly rigor, it is impera-
tive to maintain transparency concerning the constraints of
the research at hand. In this vein, we have acknowledged
conceivable impediments to construct, internal, external,
and conclusion validity.

The findings of this study have several implications for
smart contract vulnerability detection and security. First, we
propose VdaBSC, a robust and efficient vulnerability detec-
tion model that addresses the limitations of existing meth-
ods. Second, this study contributes to understanding feature
representation and model architecture in the context of
smart contract analysis.

Future work should address the identified limitations,
including exploring alternative feature extraction techniques,
hyperparameter optimization, and extending the proposed
model to other smart contract languages and blockchain
platforms. A more detailed statistical analysis could also be
conducted to substantiate the observed differences between
the proposed model and the existing methods.

In summary, this study significantly contributes to the
field of smart contract vulnerability detection by proposing a
model that is both effective and efficient, setting a new stan-
dard for future research.

Data Availability

The data used for the research are publicly available at
https://github.com/niirex1/VdaBSc-project.

Conflicts of Interest

No author associated with this paper has disclosed any
potential or pertinent conflicts that may be perceived to
have an impending conflict with this work.

Acknowledgments

This work was partly supported by the National Natural Sci-
ence Foundation of China (NSFC) (grant nos. 62172194,
62202206, and U1836116), the National Key R&D Program
of China (grant no. 2020YFB1005500), the Leading-edge Tech-
nology Program of Jiangsu Natural Science Foundation (grant
no. BK20202001), the China Postdoctoral Science Foundation

https://github.com/niirex1/VdaBSc-project
https://github.com/niirex1/VdaBSc-project

16

(grant no. 2021M691310), and the Postdoctoral Science Foun-
dation of Jiangsu Province (grant no. 2021K636C).

References

[1] G. S.Ilgi, D. Kayali, P. Olawale, B. D. Erdem, K. Dimililer, and
Y. Kirsal-Ever, “Formal verification for security technologies
in the blockchain with artificial intelligence: a survey,” in 2022
Innovations in Intelligent Systems and Applications Conference
(ASYU), pp. 1-6, IEEE, Antalya, Turkey, September 2022.

[2] C. Batur Sahin and L. Abualigah, “A novel deep learning-
based feature selection model for improving the static analysis
of vulnerability detection,” Neural Computing and Applica-
tions, vol. 33, no. 20, pp. 14049-14067, 2021.

[3] J. Correas, P. Gordillo, and G. Roman-Diez, “Static profiling
and optimization of ethereum smart contracts using resource
analysis,” IEEE Access, vol. 9, pp. 25495-25507, 2021.

[4] D. de silva, P. Samarasekara, and R. Hettiarachchi, “A
comparative analysis of static and dynamic code analysis
techniques,” 2023.

[5] B. Li, Z. Pan, and T. Hu, “Redefender: detecting reentrancy
vulnerabilities in smart contracts automatically,” IEEE Transac-
tions on Reliability, vol. 71, no. 2, pp. 984-999, 2022.

[6] T.Li, Y. Fang, Y. Lu et al., “Smartvm: a smart contract virtual
machine for fast on-chain dnn computations,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33,
no. 12, pp. 4100-4116, 2022.

[7] M. A. Hammami, M. Lahami, and A. J. Maalej, “Towards a
dynamic testing approach for checking the correctness of
ethereum smart contracts,” in Risks and Security of Internet and
Systems: 17th International Conference, CRiSIS 2022, pp. 85-
100, Association for Computing Machinery, Sousse, Tunisia,
Revised Selected Papers. Springer, 2023, December 2022.

[8] W. Gu, G. Wang, P. Li etal, “Detecting unknown
vulnerabilities in smart contracts with multi-label classification
model using CNN-BiLSTM,” Communications in Computer
and Information Science Ubiquitous Security, pp. 52-63, 2023.

[9] D.Shou, C. Li, Z. Wang, K. Zhang, M. Wen, and Y. Wang, “An
intrusion detection method based on attention mechanism to
improve CNN-BILSTM model,” 2023.

[10] H. Wu, H. Dong, Y. He, and Q. Duan, “Smart contract
vulnerability detection based on hybrid attention mechanism
model,” Applied Sciences, vol. 13, no. 2, Article ID 770, 2023.

[11] G. Xu, L. Liu, and J. Dong, “Vulnerability detection of
ethereum smart contract based on solbert-bigru-attention
hybrid neural model,” Computer Modeling in Engineering &
Sciences, vol. 137, no. 1, pp. 903-922, 2023.

[12] C. Qian, T. Hu, and B. Li, “A bilstm-attention model for
detecting smart contract defects more accurately,” in 2022
IEEE 22nd International Conference on Software Quality,
Reliability and Security (QRS), pp. 53-62, IEEE, Guangzhou,
China, December 2022.

[13] P. Qian, Z. Liu, Q. He, R. Zimmermann, and X. Wang,
“Towards automated reentrancy detection for smart contracts
based on sequential models,” IEEE Access, vol. 8, pp. 19685—
19695, 2020.

[14] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: a
framework for wusing deep learning to detect software
vulnerabilities,” IEEE Transactions on Dependable and Secure
Computing, vol. 19, pp- 2244-2258, 2022.

[15] L. Zhang, Y. Li, R. Guo etal, “A novel smart contract
reentrancy vulnerability detection model based on BiGAS,”
Journal of Signal Processing Systems, pp. 1-23, 2023.

IET Software

[16] X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “DeeSCVHunter:
a deep learning-based framework for smart contract vulnerabil-
ity detection,” in 2021 International Joint Conference on Neural
Networks (ITICNN), pp. 1-8, IEEE, July 2021.

[17] D. He, R. Wu, X. Li, S. Chan, and M. Guizani, “Detection of
vulnerabilities of blockchain smart contracts,” IEEE Internet of
Things Journal, vol. 10, no. 14, pp. 12178-12185, 2023.

[18] Y.Li, R. Guo, G. Wang et al., “An efficient detection model for
smart contract reentrancy vulnerabilities,” in Smart Comput-
ing and Communication. SmartCom 2022, M. Qiu, Z. Lu, and
C. Zhang, Eds., vol. 13828 of Lecture Notes in Computer
Science, pp. 350-359, Springer, Cham, 2023.

[19] L. Liu, W.-T. Tsai, M. Z. A. Bhuiyan, H. Peng, and M. Liu,
“Blockchain-enabled fraud discovery through abnormal smart
contract detection on Ethereum,” Future Generation Computer
Systems, vol. 128, pp. 158-166, 2022.

[20] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart
contract vulnerability detection using graph neural networks,”
in Proceedings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intelligence,
pp. 3283-3290, Association for Computing Machinery,
January 2021.

[21] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su,
“Contractward: automated vulnerability detection models for
ethereum smart contracts,” IEEE Transactions on Network
Science and Engineering, vol. 8, no. 2, pp. 1133-1144, 2021.

[22] J.J. Lohith, M. K. Anusree, N. P. Guru, and P. Srinivasan,
“TP-detect: trigram-pixel based vulnerability detection for
ethereum smart contracts,” Multimedia Tools and Applica-
tions, vol. 82, pp. 36379-36393, 2023.

[23] W.Jie, Q. Chen, J. Wang et al., “A novel extended multimodal ai
framework towards vulnerability detection in smart contracts,”
Information Sciences, vol. 636, Article ID 118907, 2023.

[24] S. Qian, H. Ning, Y. He, and M. Chen, “Multi-label
vulnerability detection of smart contracts based on Bi-LSTM
and attention mechanism,” Electronics, vol. 11, no. 19,
Article ID 3260, 2022.

[25] X. Sun, L. Tu, J. Zhang, J. Cai, B. Li, and Y. Wang, “ASSBert:
active and semi-supervised bert for smart contract vulnerabil-
ity detection,” Journal of Information Security and Applica-
tions, vol. 73, Article ID 103423, 2023.

[26] V. Piantadosi, G. Rosa, D. Placella, S. Scalabrino, and
R. Oliveto, “Detecting functional and security-related issues in
smart contracts: a systematic literature review,” Journal of Software:
Practice and Experience, vol. 53, no. 2, pp. 465-495, 2023.

[27] A. A. Krivonogov, Y. N. Philippovich, and S. A. Kesel,
“Application of the method of expert assessments in
determining the level of criticality of the information security
vulnerability of smart contracts,” in Software Engineering
Application in Systems Design. CoMeSySo 2022, R. Silhavy,
P. Silhavy, and Z. Prokopova, Eds., vol. 596 of Lecture Notes in
Networks and Systems, pp. 512-530, Springer, Cham, 2023.

[28] H.Kour and M. K. Gupta, “An hybrid deep learning approach
for depression prediction from user tweets using feature-rich
CNN and bi-directional LSTM,” Multimedia Tools and
Applications, vol. 81, no. 17, pp. 23649-23685, 2022.

[29] M. Eshghie, C. Artho, and D. Gurov, “Dynamic vulnerability
detection on smart contracts using machine learning,” in
Evaluation and Assessment in Software Engineering (EASE
2021), pp- 305-312, ACM, Trondheim, Norway, 2021.

[30] J. F. Ferreira, P. Cruz, T. Durieux, and R. Abreu, “Smartbugs: a
framework to analyze solidity smart contracts,” in 2020 35th
IEEE/ACM International Conference on Automated Software

IET Software

(31]
(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

(43]

(44]

[45]

(46]

Engineering (ASE), pp. 1349-1352, IEEE, Melbourne, VIC,
Australia, September 2020.

“E. official Website. [Online].” Available: https://etherscan.io/.
J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen,
“Defectchecker: automated smart contract defect detection by
analyzing EVM bytecode,” IEEE Transactions on Software
Engineering, 2021.

P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for
bugs in ethereum smart contracts,” in 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME),
pp. 139-150, IEEE, 2020.

Y. Sun and L. Gu, “Attention-based machine learning model
for smart contract vulnerability detection,” Journal of Physics:
Conference Series, vol. 1820, no. 1, Article ID 012004, 2021.
Z. 1i, D. Zou, S. Xu et al., “Vuldeepecker: a deep learning-
based system for vulnerability detection,” arXiv preprint arXiv,
2018.

L. Zhang, J. Wang, W. Wang, Z. Jin, Y. Su, and H. Chen,
“Smart contract vulnerability detection combined with multi-
objective detection,” Computer Networks, vol. 217, Article ID
109289, 2022.

S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep
network training by reducing internal covariate shift,”
Proceedings of the 32nd International Conference on Interna-
tional Conference on Machine Learning, vol. 37, pp. 448-456,
2015.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: a simple way to prevent neural
networks from overfitting,” The Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929-1958, 2014.

M. Méndez, M. G. Merayo, and M. Nuifiez, “Long-term traffic
flow forecasting using a hybrid CNN-BiLSTM model,” Engineering
Applications of Artificial Intelligence, vol. 121, Article ID 106041,
2023.

Z.Feng, Y. Feng, H. He, W. Zhang, and Y. Zhang, A Bytecode-
Based Integrated Detection and Repair Method for Reentrancy
Vulnerabilities in Smart Contracts, IET Blockchain, 2023.

I. Nikoli¢, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor,
“Finding the greedy, prodigal, and suicidal contracts at scale,”
in ACSAC ’18: Proceedings of the 34th Annual Computer
Security Applications Conference, pp. 653-663, Association for
Computing Machinery, December 2018.

M. Mossberg, F. Manzano, E. Hennenfent et al., “Manticore: a
user-friendly symbolic execution framework for binaries and smart
contracts,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1186-1189, IEEE, San
Diego, CA, USA, November 2019.

X. Wang, J. He, Z. Xie, G. Zhao, and S.-C. Cheung,
“Contractguard: defend ethereum smart contracts with
embedded intrusion detection,” IEEE Transactions on Services
Computing, vol. 13, no. 2, pp. 314-328, 2020.

B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: fuzzing
smart contracts for vulnerability detection,” in 2018 33rd
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 259-269, IEEE, Montpellier, France,
September 2018.

L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of the 2016
ACM SIGSAC conference on computer and communications
security, pp. 254-269, Association for Computing Machinery,
October 2016.

S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: static analysis

[47]

17

of ethereum smart contracts,” in 2018 IEEE/ACM Ist International
Workshop on Emerging Trends in Software Engineering for
Blockchain (WETSEB), pp. 9-16, IEEE, Gothenburg, Sweden,
May 2018.

M. Wang, Z. Xie, X. Wen, J. Li, and K. Zhou, “Ethereum smart
contract vulnerability detection model based on triplet loss
and BiLSTM,” Electronics, vol. 12, no. 10, Article ID 2327,
2023.

Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang,
“Combining graph neural networks with expert knowledge for
smart contract vulnerability detection,” IEEE Transactions on
Knowledge and Data Engineering, vol. 35, no. 2, pp. 1296—
1310, 2023.

https://etherscan.io/
https://etherscan.io/

