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The use of floating-point numbers inevitably leads to inaccurate results and, in certain cases, significant program failures. Detecting
floating-point errors is critical to ensuring that floating-point programs outputs are proper. However, due to the sparsity of
floating-point errors, only a limited number of inputs can cause significant floating-point errors, and determining how to detect
these inputs and to selecting the appropriate search technique is critical to detecting significant errors. This paper proposes
characteristic particle swarm optimization (CPSO) algorithm based on particle swarm optimization (PSO) algorithm. The
floating-point expression error detection tool PSOED is implemented, which can detect significant errors in floating-point
arithmetic expressions and provide corresponding input. The method presented in this paper is based on two insights: (1) treating
floating-point error detection as a search problem and selecting reliable heuristic search strategies to solve the problem; (2) fully
utilizing the error distribution laws of expressions and the distribution characteristics of floating-point numbers to guide the search
space generation and improve the search efficiency. This paper selects 28 expressions from the FPBench standard set as test cases,
uses PSOED to detect the maximum error of the expressions, and compares them to the current dynamic error detection tools
S3FP and Herbie. PSOED detects the maximum error 100% better than S3FP, 68% better than Herbie, and 14% equivalent to
Herbie. The results of the experiments indicate that PSOED can detect significant floating-point expression errors.

1. Introduction

A large number of floating-point programs are used in key
areas such as aerospace, defense, and military, where high reli-
ability is required, so ensuring the accuracy of floating-point
program results is critical. However, rounding errors exist
between the numerical values used in computer floating-point
operations and real values, and the accumulation rounding
errors can affect the accuracy of floating-point programs. Cur-
rently, most floating-point computing programs use the
floating-point precision defined by the IEEE 754 [1] arithmetic
standard. When the precision employed does not meet the
numerical criteria, the computer will round the value to obtain
an estimated value and it is this treatment introduces rounding
errors. At the same time, rounding errors will accrue as the
operation progresses, and these rounding errors may accumu-
late to such an extent that they are difficult to ignore, ultimately
impacting the correctness of floating-point program calcula-
tion outputs. Therefore, error detection techniques are required

to detect significant errors in programs and offer input for error
triggering, which serves as the foundation for further program
optimization. However, it is difficult and inefficient to analyze
the error of floating-point program directly. The core numeric
operations of a floating-point program can often be abstracted
as floating-point expressions, so most methods and tools per-
form error detection on floating-point expressions.

A lot of research has been done on error detection in
floating-point expression, but there are still two areas that
can to be improved.

First, prior work does not fully utilized the features of
expression error distribution. Consider NMSE problem 336
in FPBench [2], the standard floating-point benchmark. Its
expression is log xð þ 1Þ − log xð Þ. There are 998,768,527
64-bit floating-point numbers in the expression definition
field (0.01, 1,000). This is a huge search space, and testing all
of the points in it takes time and effort. If we evenly sample the
expression on a small scale and calculate the sampling point
error, we can find that the input that causes the large error of
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the expression is mainly concentrated on the right side of the
interval, such as the interval (900, 1,000), as shown in Figure 1.
By focusing attention on the right side of the interval during
the search, the effectiveness of detecting the largest error can
be considerably enhanced. With the same number of sample
points, the largest errors found using random search in the
intervals (0.01, 1,000) and (900, 1,000) were 3.28E-13 and
4.41E-13, respectively. It can be seen that using the error
distribution features to guide the search increased the detec-
tion impact by 34.5%. The above example shows that it is not
necessary to perform a global search on the domain of the
floating-point expression every time, but can be searched in
some specific intervals to achieve the purpose of reducing the
search space and improving the search efficiency. However,
current tools fail to take full advantage of this information to
aid the search.

Second, existing work which treats floating-point expres-
sion error detection as a search problem, using search strategies
such as binary search or Monte Carlo Markov to find the
maximum error. However, instead of fully exploiting the char-
acteristic floating-point numbers and floating-point errors, the
majority of these efforts concentrate on improving the search
strategy itself. To produce satisfactory detection results, the
algorithm itself should be paired with the properties of the
problem. For example, one of the characteristic of floating-
point numbers is that they are not evenly distributed along
the number line. The closer the floating-point numbers are
to the origin, the more concentrated they are. For 64-bit
floating-point numbers, the number between (−1, 1) accounts
for 49.95% of all 64-bit floating-point numbers. Suppose we use
the particle swarm optimization (PSO) algorithm to search for
the maximum error. According to the distribution character-
istics of floating-point numbers, when the PSO algorithm

initializes the population, 50% of the individuals in the popu-
lation can be initialized outside (−1, 1). Therefore, when
improving the existing algorithm and designing the new algo-
rithm, it is necessary to consider how to combine the floating-
point number and floating-point error characteristic with the
search algorithm for error detection.

To address the aforementioned issues, this paper suggests
an error detection method based on the PSO algorithm [3]
and implements the error detection tool PSOED. First, the
expression is sampled, the error at the sampling point is
calculated, and an image is returned to the user. The peak
value extraction algorithm is then used to extract the peak
points of the image that indicate the potential large error
margin. The extracted peak points are then screened for
anomalies using the boxplot evaluation index. If outliers
can be filtered out, a large error search interval is generated
based on the outliers. Finally, the characteristic particle
swarm optimization (CPSO) algorithm is applied to gener-
ated search interval to perform a maximum error search.
This paper makes the following contributions:

(i) A method of constructing detection intervals based
on the characteristic of the distribution of expression
errors and the distribution of floating-point numbers
is proposed, which can effectively assist search algo-
rithm in identifying the significant errors.

(ii) A CPSO algorithm based on the PSO algorithm is
proposed, which employs a number of strategies to
help the algorithm breaking out of the local optimal
solution and can dynamically pick parameters accord-
ing to the expression.

(iii) PSOED, a floating-point error detection tool, was
conceived and built.

(iv) The 28 expressions in FPBench are selected as test
cases to validate the effectiveness of the error detec-
tion tool.

The rest of the paper is organized as follows. We first
introduce the basics of floating-point representation, the def-
inition of the floating-point error, PSO algorithm and box-
plot algorithm in Section 2. We then give an overview of our
approach in Section 3 and detail our approach in Section 4.
We provide the experimental results in Section 5. In Section 6,
we summarize related work. We end the paper with con-
clusion, the limitations of our work, and future work in
Section 7.

2. Preliminaries

The basic concepts used in this paper are floating-point
number, floating-point error, PSO algorithm, and boxplot.
The basic concepts are presented blow.

2.1. Floating-Point Representation. The IEEE 754 standard
defines the structure of floating-point numbers and the num-
ber of bits in each component of floating-point numbers.
Figure 2 shows the number of bits in single and double
precision floating point numbers for each component of
floating-point numbers.
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FIGURE 1: The expression NMSE problem 336 error image.
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2.2. Floating-Point Error.When the floating-point expression
is a real number, the error caused by the rounding operation
can be defined as the difference between the real value x and
the floating-point value bx : x¼bx þ η, where η is the error in
representing real numbers as floating-point number.

For floating-point programs P :by ¼ df xð Þ;by 2 F, errors
are introduced and accumulated in each floating-point oper-
ation of the program. The accumulation of errors in the
operation process leads to the final result containing errors.
Relative error (Errorrel) and Absolute error (Errorabs) are two
widely used metrics for measuring the magnitude of errors.
For the ideal exact result (i.e., the result of a real number
operation) f xð Þ and floating-point program results df xð Þ, the
formulae for calculating the relative and absolute errors are
as follows:

Errorrel f xð Þ;bf xð Þ
� �

¼ f xð Þ − bf xð Þ
f xð Þ

�����
�����; ð1Þ

Errorabs f xð Þ;bf xð Þ
� �

¼ f xð Þ − bf xð Þ
��� ���: ð2Þ

Unit in the last place (ULP) is a unit of measurement of
relative error. For a floating-point expression and its corre-
sponding real value: z¼ −1ð ÞS × d0d1…dn × 2E, ULP and
ULP error (ErrorULP) can be expressed as follows:

ULP zð Þ ¼ d0d1…dn −
z
2E
À Á�� ��

2n−1
; ð3Þ

ErrorULP f xð Þ;bf xð Þ
� �

¼ f xð Þ − bf xð Þ
ULP f xð Þð Þ

�����
�����: ð4Þ

2.3. Particle Swarm Optimization Algorithm. PSO is an intel-
ligent search algorithm based on the group cooperation It is
suitable for nonlinear and multipolar problems, and the code
is relatively easy to implement with fewer adjustable param-
eters, so it is widely used in the optimization of parameter
rectification. The specific algorithms are:

In the M-dimensional search space, N random particles
form a particle swarm, and the position and velocity vectors
of each particle are ~xl ¼ xi1;ð xi2;…; xiMÞ and ~vl ¼ vi1;ð vi2;…;
viMÞ. Set the position vector ~xl ¼ xi1;ð xi2;…; xiMÞ into the
fitness function to calculate the fitness value of the individual
particle. The global optimal solution is obtained by judging
the magnitude of the fitness value to measure the superiority

of the solution and going through successive iterations. Let
pbesti ¼ pi1;ð pi2;…; piNÞ be the i-th particle history search to
the optimal position. The optimal position searched by the
particle swarm history is gbesti ¼ g1;ð g2;…;gNÞ. During
each iteration, the current velocity and position are updated
by the following equation:

vkþ1
im ¼ ωvkim þ c1r1 pbestim − xkim

À Áþ c2r2 gbesti − xkim
À Á

;

ð5Þ

xkþ1
im ¼ xkim þ vkim; ð6Þ

where i¼ 1 :M½ �, c1 and c2 are the learning factors, indicating
the degree of learning of the particle to its own optimal
solution and the population optimal solution; r1 and r2 are
random numbers on (0,1) and obey a uniform distribution;
ω is the inertia weight, indicating the maintenance of the
original motion trend of the particle.

2.4. Boxplot. A boxplot is a mathematical algorithm that
calculates the dispersion of a data set and is also used to
reflect the characteristics of the data distribution. The advan-
tage of the boxplot algorithm is that it relies only on the
actual data and does not require the assumption that the
data sample set follows a particular distribution shape. On
the other hand, the criterion for judging outliers in the box-
plot is based on quartiles and interquartile distances. The
quartiles are resistant to perturbations, and up to 25% of
the data can be arbitrarily far away without perturbing the
quartiles significantly, so the outliers do not affect this crite-
rion, which makes the results of anomalous data identifica-
tion relatively more objective. The principle of the boxplot
outlier detection algorithm is shown in the Figure 3.

Q1 is the first quartile of a data set,M is the median, Q3 is
the third quartile, and the interquartile range IQR is the
difference between the two numbers of Q3 and Q1. If
the detected value is less than Q1 – 3IQR or greater than
Q3+ 3IQR, the value is considered an extreme outlier; if
the detected value is less than Q1 – 1.5IQR or greater than
Q3+ 1.5IQR and does not reach the extreme outlier thresh-
old, the value is considered a mild outlier.

3. Overview

The workflow of PSOED, an error detection tool for floating-
point expressions, is shown in Figure 4, which consists of an
error distribution generation module, an interval generation
module and a search module.
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FIGURE 2: Single and double precision floating-point number representation.
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3.1. Error Distribution Generation Module. The error distri-
bution generation module performs small-scale uniform
sampling of the expressions in the respective intervals based
on the user input expressions and intervals. We convert the
expressions into a low-precision (64-bit) version of the func-
tion and a high-precision (128-bit) version of the function
based on the MPFR library [4], then calculates the high-
precision and low-precision function values according to
the sampling points, and the difference between the two is
the error result, which is presented to the user in the form of
an image.

3.2. Interval Generation Module. Based on error information
generated by the error distribution module, the interval
generation module will use the AMPD algorithm [5] (see
Section 4.2 for details) to extract the error peaks (large error
points) in the sampling points, and then calculate the dis-
persion degree of these error peak points using the boxplot
indicator [6] to screen out the outlier error peaks. For any
expression, we first generate the interval Sf according to the
law of floating-point distribution, and then examine if the
error distribution module can extract the outlier peaks from
the peak points of the floating-point expression in the sam-
ple points. If we can extract the extreme outliers, we apply
the bitwise increment/decrement algorithm procedure to

produce the big error interval Se by obtaining the left and
right neighborhoods of the extreme outliers.

3.3. Search Module. The search module searches for the max-
imum error of a floating-point expression in the specified
interval using CPSO algorithm (see Section 4.3 for details
of the algorithm flow) under the conditions that the user
specifies the number of particles and the number of itera-
tions. Finally, the user is given the maximum erro as well as
the input that triggered the error.

This tool supports error detection for 28 single-parameter
floating-point expressions in FPBench, see Section 5.1 for
details of the expressions.

4. Approach

4.1. Obtaining the Error Distribution and Error Peak Points.
The error distribution module allows us to obtain the error
distribution and peak points of a user input expression over a
particular interval. To better describe how this module works,
we illustrated its steps.

After obtaining a floating-point expression and the cor-
responding interval, we first perform a small-scale uniform
sampling of the expression to obtain the expression’s initial
error distribution information. Figures 5–10 depict the error
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FIGURE 3: Boxplot evaluation index.
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FIGURE 4: PSOED workflow diagram.
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FIGURE 5: The expression Bsplines3 error image with 10 sampling
points.
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FIGURE 6: The expression Bsplines3 error image with 100 sampling
points.
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FIGURE 7: The expression Bsplines3 error image with 1,000 sampling
points.
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FIGURE 8: The expression Bsplines3 error image with 10,000 sam-
pling points.
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FIGURE 9: The expression Bsplines3 error image with 100,000 sam-
pling points.
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FIGURE 10: The expression Bsplines3 error image with 1,000,000
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plots for sampling points of 10, 100, 1,000, 10,000, and
1,000,000 on the interval (0, 1,000) using the Bsplines3
expression as an example, respectively.

As shown in Figure 5, when the sampling point is
100,000, the error distribution of the Bsplines3 expression
is basically the same as when the sampling point is 1,000,000.
Despite the fact that the more sampling points there are, the
more accurate the error distribution is. We set the default
sampling point to 100,000 for the performance and accuracy
reasons, and all expressions adhere to this standard. Of
course, the number of sampling points can be adjusted by
the user.

After obtaining the error distribution of the expression,
we focus on the image’s local maxima, which are referred to
as error peak points. In order to obtain the peak points on the
image more accurately and quickly, we introduce the
multiscale-based automatic peak detection (AMPD) algo-
rithm in the field of signal processing. This algorithm was
proposed by Scholkmann et al. [5]. It is a noise and signal
peak detection algorithm based on local maxima. In this
paper, we can think of the error image as a noise (or signal)
image and apply the AMPD algorithm to get the noise (or
signal) peak points, i.e., the desired error peak points. In this
paper, we will use it directly without going into the details of
the AMPD algorithm. The error image peak point extraction
based on the AMPD algorithm is described in Algotithm 1.

As shown in Figure 11, after the AMPD algorithm
extracts the peak points, we label the peak points on the error
image to reflect the detection effect: the black points on the
image are the error peak points found by the error distribu-
tion module.

4.2. Generating Large Error Intervals Based on Error Peaks.
After the processing of the error distribution module, we get
the peak points, the interval generation module will process
the peak points to generate the interval, the workflow is
divided into two steps. First, the peak points are filtered
and sorted to generate outlier peak points. Then, large error
intervals are generated based on the presence or absence of
outlier peaks.

Since the peak points selected by the AMPD algorithm
are local maxima, but the local maxima can be large or small,
and the error of two peak points can be several orders of
magnitude different, the first step we need to do in this
module is to eliminate the peak points with small errors

and keep only the peak points with relatively large errors.
To eliminate the smaller peaks, we need to use an evaluation
index to evaluate the degree of anomaly of each peak in the
set of peaks.

The error data samples are discrete data that have the
characteristics of strong randomness and do not obey spe-
cific distribution laws. Among the mature algorithms com-
monly used for data outlier detection, the 3σ rule or z-score
method based on normal distribution have the prerequisite
of assuming that the data obey normal distribution, but the
error data samples do not obey normal distribution, and the
criteria for determining the outliers of the above methods are
based on calculating the mean and standard deviation of the
full set of samples, and the mean and standard deviation have
very little interference resistance, so the outliers themselves
will have a large impact on the performance of the algorithm.
Therefore, the outliers themselves have a significant impact
on the performance of the algorithm. Taking the 3σ rule as
an example, σ represents the standard deviation and μ repre-
sents the mean, the normal interval of values is considered to
be (μ − 3σ, μ þ 3σ), and the probability that the values are
distributed in this interval is 99.7%, that is, the number of
outliers obtained by this algorithm is not more than 0.3% of
the total number of sample sets. Therefore, this algorithm is
obviously not the optimal solution. The boxplot algorithm is
a good solution to this problem.

The standard given in the boxplot is used to evaluate the
degree of dispersion of each peak point. Extreme outliers and
mild outliers are considered as outlier peak points. We can
obtain two results:A, there is no outlier peak (normal value)
and B, there is an outlier peak (extreme outlier). These two
results correspond to two characteristics of the error distri-
bution: uniform distribution and nonuniform distribution.
In both cases, we must first generate the interval Sf according
to the floating-point distribution law. The existence of outlier

Require: expression f xð Þ, a;½ b�
1: Us ⇐ Uniform_sample(a, b, 100,000)

2: for xi of Us do

3: temp_error ⇐fMPFR xið Þ − fdouble xið Þ
4: error_list.append(temp_error)

5: end for

6: peak_list ⇐ AMPD(error_list)

7: return peak_list, error_list

ALGORITHM 1: Extracting peak points based on AMPD algorithm.
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FIGURE 11: Error peaks image.
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peaks reflects whether the error distribution is uniform. In
case A, the absence of outlier peaks indicates that the differ-
ence between each peak is small, which means that the error
of the expression is uniformly distributed in the given inter-
val. The error distribution of the expression verhulst in the
interval (0, 1,000) is shown in Figure 12.

At this point, it can be seen that the error information is
not very meaningful here because the error is uniformly
distributed and there are many peaks. For such expressions,
no special interval generation is done, and the interval Sf is
used as the search band.

Floating-point numbers are not evenly distributed along
the number line. The closer you get to the origin, the denser the
distribution. For floating-point numbers of type double, the
numbers between (−1,1) make up 49.95% of all floating-point
numbers, or about half. For this distribution property, two
cases are considered when initializing the particle population:
above (−1,1) and outside (−1,1).

For case B, the presence of outlier peaks indicates that
the errors are prominent. For example, the errors of the
expressopm logexp, NMSE problem 341, and exp1x_log
are shown in Figures 13–15, respectively. Their errors do
not have a uniform distribution.

For expressions with nonuniform error distribution, a
series of outlier peaks can be obtained by calculating accord-
ing to the boxplot method. The peaks set Sp and the corre-
sponding error set Ep can be obtained by sorting. According
to the points in the outlier peak point set Sp, the size of the
left and right neighborhoods can be determined according to
the bit increment/decrement search algorithm. Taking p0 as
an example, to determine the size of the left neighborhood,
point p0 is decremented by bit, and the error size of the

inputs is calculated after each decrement. If it is less than
e1, the iteration is stopped. The determination of the right
neighborhood is similar to that of the left neighborhood.

Note that the last peak point is discarded. Two factors are

taken into account. One is that there is no reference thresh-

old when searching by bit for the last peak point. According

to this search method, the left and right neighborhood inter-

vals SI
z}|{

and SI|{z} are generated, respectively, and the final

large error interval SI = SI
z}|{

⋃ SI
z}|{

. It is worth noting that
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if there are two intervals Im and In, and Im ⋂ In, the two need

to be merged into I0 = Im ⋃ In. Here is an example:
Through calculation, a peak point set Sp and correspond-

ing error set can be obtained as follows:

Sp :

p0 → 0:2312

p1 → 0:2634

p2 → 53:4564

p3 → 348:3242

p4 → 72:9586

Ep :

e0 → 7:32e−14

e1 → 7:11e−14

e2 → 7:33e−15

e3 → 3:41e−15

e4 → 1:17e−15

8>>>>>><>>>>>>:

8>>>>>><>>>>>>:
: ð7Þ

Using a bit search for each point in Sp, you can obtain the

left interval SE
z}|{

and the right interval SE|{z}.

Se
z}|{

:

I0 → 0:1324; 0:2312ð Þ
I1 → 0:1906; 0:2634ð Þ
I2 → 49:2189; 53:4563ð Þ
I3 → 321:3423; 348:3242ð Þ

Se|{z} :
I0 → 0:2312; 1:3172ð Þ
I1 → 0:2634; 1:7503ð Þ
I2 → 53:4564; 60:1231ð Þ
I3 → 348:3242; 362:2131ð Þ:

8>>>><>>>>:

8>>>><>>>>: ð8Þ

Combine SE
z}|{

and SE|{z} to obtain the final large error
interval set SE .

SE :

I0 → 0:1324; 1:7503ð Þ
I1 → 49:2189; 60:4564ð Þ
I2 → 321:3423; 348:3242ð Þ

8><>: : ð9Þ

These intervals will divide the number of particles
equally, assuming that the resulting set of large error

intervals SE contains n intervals, and we calculate the number
of CPSO initialization particles on each interval using Equa-
tion (6).

Finally, SE and SF form SI as the search interval for the
CPSO algorithm. The overall process of the algorithm is
shown in Algorithm 2.

4.3. Searching Using CPSO Algorithm. The main disadvan-
tages of the standard PSO algorithm are: (1) it is easy to fall
into local optimal solutions; (2) it is highly dependent on the
problem.
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FIGURE 15: The expression exp1x_log error image.

Require: peak_list, error_list

Ensure: SI
1: if peak list:length ≠ 0 then

2: for index<peak list:length do

3: if index¼ ¼ peak list; length − 1 then

4: break

5: else

6: left, right ⇐ peak_list[i]

7: while Cal error leftð Þ>error list index½ þ 1� do
8: left ⇐ left-0x1

9: end while

10: while Cal error rightð Þ>error list index½ þ 1� do
11: right ⇐ right+ 0x1

12: end while

13: SI[index] ⇐ [left, right]

14: end if

15: index ⇐ index+ 1

16: end for

17: SE ⇐ merge_intervals(SI)

18: else

19: SF ⇐ float_distribution(a, b)

20: end if

21: if SE then

22: SI ⇐ SE ⋃ SF
23: else

24: SI ⇐ SF
25: end if

26: return SI

ALGORITHM 2: Generating large error intervals based on outlier
peaks.
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In this paper, the standard PSO algorithm is improved,
and the new algorithm is call CPSO algorithm, and the spe-
cific improvement strategies and reasons are as follows:

4.3.1. The Perturbation Parameter τ Is Added. In the standard
PSO algorithm, the particle will only move to the position
with a better fitness value than itself, which is easy to fall into
the local optimal solution. To help the particles jump out of
the local optimal solution, we borrow the idea from the
Annealing algorithm [7] and set a perturbation parameter
τ, which represents the probability that the particle will move
to the position with a fitness value lower than its own. In
order not to affect the convergence of the algorithm, this
parameter decrease linearly with the increase of the number
of iterations. In the early iterations, the parameter increases
the global search ability of the particle, and in the late itera-
tions, it does not affect the normal convergence of the algo-
rithm. As shown in Equation (10).

τ ¼ τmax − τmax − τminð Þ × Itermax − Iternow
Itermax

: ð10Þ

4.3.2. Each Particle Will Be Followed by Associated. Given the
sparsity of errors in floating-point expressions, even small
changes can produce large error results, so we introduce the
concept of associated particles, as shown in Figure 16. The
associated particles are all points in the space with a particle
at the center of the circle, let’s call it the central particle, of
radius x. After the associated particles are captured, we com-
pare the fitness value of the central particle with that of the
associated particles, one by one. If the fitness value of an
associated particle is greater than that of the central particle,
the associated particle will replace the central particle and
inherit a number of attributes from the central particle. Each
time the central particle moves, it creates a new batch of
companion particles. Of course, we will not select all of a

particle’s associated particles. The initial value designed by
this algorithm is 1,000, which can be adjusted by the user.

4.3.3. When the Velocity or Position of the Particle Crosses the
Boundary, the “Collision-Bounce” Strategy Is Used.Due to the
interval limitation of the expression, the situation of position
and velocity overshooting should also be considered in the
particle motion process. In the case of overshooting, this
paper adopts the collection-bounce strategy. If the particle
position overshoot size is equal to the interval length, the
particle is allowed to return; otherwise, the particle position
is regenerated and the velocity is the global optimum. The
calculation method is shown in Equations (11) and (12) as
follows:

xkim ¼ xmin þ xkim − xmin

�� ��; ifxkm<xmin ∧ xkm − xmin

�� ��< xmax − xminð Þ
xmax − xkim − xmax

�� ��; ifxkm>xmax ∧ xkm − xmin

�� ��< xmax − xminð Þ

(
; ð11Þ

vkim ¼ vmin þ vkim − vmin

�� ��; ifvkm<vmin ∧ vkm − vmin

�� ��< vmax − vminð Þ
vmax − vkim − vmax

�� ��; ifvkm>vmax ∧ vkm − vmax

�� ��< vmax − vminð Þ

(
: ð12Þ

4.3.4. Parameters Vary with the Expression. In the standard
PSO algorithm, we need to set a value for each given param-
eter. The idea of this paper is that the parameters should
depend on the problem, while keeping the idea of the algo-
rithm unchanged. For different expressions, different param-
eters should be selected by the algorithm, and the specific
values of the parameters most applicable to the expressions

are shown in the experimental part of the fourth, which will
not be described here.

4.3.5. Fitness Function. This paper provides three fitness
functions–the relative error, ULP error, and bit error of the
expression corresponding to the particle under its value-in
order to be able to compare the tool proposed in this paper

FIGURE 16: Associated particle schematic.
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with other tools. Since different tools use different types of
error, this paper’s tool needs to be compared with other tools,
and different tools use different types of error, too. The fol-
lowing equations provide these three fitness functions.

Fitnessrel f xð Þ;bf xð Þ
� �

¼ f xð Þ − bf xð Þ
f xð Þ

�����
�����; ð13Þ

FitnessULP f xð Þ;bf xð Þ
� �

¼ f xð Þ − bf xð Þ
ULP f xð Þð Þ

�����
�����; ð14Þ

Fitnessbits f xð Þ;bf xð Þ
� �

¼ log2FitnessULPd e: ð15Þ

After processing the interval generation module in the
second step of the tool, we now have a specific search inter-
val. The next work is to use the CPSO algorithm to find the
maximum error on the search interval.

As shown in Algorithm 3, first, the values of each param-
eter are determined by the expression. Then, the particle
population is initialized to the search interval generated in
the second step, the fitness value of each particle is calculated,
and the global optimum is obtained. Meanwhile, the velocity
direction of all particles is set to the global optimum. Lines
6–16 of the algorithm represent an iterative process. As
shown in the algorithm, in an iterative process, the velocity
and position of each particle in the particle swarm must be
updated. In the updating process, it is necessary to judge
whether the velocity and position of each particle are out

of bounds. After updating the particle’s velocity and position,
the particle’s associated particles are generated. According to
the fitness of the associated particles, it is judged whether the
central particle and the global optimum need to be updated.
At this point, an iteration process is completed. After the
maximum number of iterations, the maximum error found
by the algorithm and the point that caused the error are
stored in the global optimum, and the response value is
obtained by the global optimum. Finally, the maximum error
corresponding to the input expression is returned to the user
and the error input is triggered.

5. Evaluation

First, the values of parameters in CPSO algorithm were
determined by experiments. Second, random search, PSO,
and CPSO were used, respectively, to detect and compare
the errors of FPBench test case expressions to verify the
effectiveness of CPSO algorithm. Finally, PSOED was com-
pared with S3FP and Herbie to verify the effectiveness of
PSOED.

5.1. Test Cases and Experimental Environment. The body
code of PSOED was implemented in C++. The body code
was approximately 2,000 lines. We selected 28 single-
parameter expressions from FPBench benchmarks that did
not contain loops and judgments. Instead of using the default
range provided by FPBench, we used a large custom range.
Information about the expressions is shown in Table 1.

The hardware and software environment required for the
experiment is shown in Table 2.

5.2. CPSO Parameter Determination. In this paper, the
parameters of the CPSO algorithm are determined from an
experimental point of view. For example, the expression exp1
with the interval (0, 708) is used.

When other parameters are fixed, the test starts with
parameters c1 ¼ 1:0 and c2 ¼ 1:0. Figure 17 shows the aver-
age error of the expression searched by CPSO algorithm
when c1 and c2 change dynamically. This is paper performs
12 sets of tests for each expression in Table 3, removes the
maximum and minimum values of the experimental results,
and calculates the average value of the remaining data, which
is the obtained results as shown in Equation (16). In
Figure 17, the coordinate representation of the bars (c1, c2)
and the height represent the average maximum error. When
c1 and c2 are different, the bars in statistical graph use differ-
ent colors. As shown in Figure 17 when c1 ¼ 1:4 and c2 ¼ 2:0,
the CPSO algorithm achieves the best effect on the expres-
sion exp1x. Figure 18 shows that when ω takes different
values and there is a graph with ω¼ 0:3, the average error
obtained by CPSO is the largest.

MaxErrorave ¼
∑Times

1 error − errormax − errormin

Times − 2
: ð16Þ

c1, c2, and ω corresponding to different expressions are
shown in Table 4.

Require: expression f xð Þ, SI
1: Particles ⇐ population_initialization(SI)

2: gBest ⇐ getGlobalBest(particles)

3: iter ⇐ 0

4: while iter<maxIteration do

5: for particle of particles do

6: vUpdate(particle)

7: pUpdate(particle)

8: updateLocalBest(particle)

9: UpdateGlobalBest(particle)

10: associatedParticles ⇐ geneAssociatedParticles()

11: end for

12: for aParticle of associatedParticles do

13: if particle:error>gBest error then

14: gBest ⇐ aParticle

15: end if

16: end for

17: iter ⇐ iter+ 1

18: end while

19: MaxError ⇐ gBest.error

20: x ⇐ gBest.x

21: return MaxError, x

ALGORITHM 3: MaxError search based on CPSO.
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5.3. Comparison of Random, PSO, and CPSO Search
Algorithm. In this section, we compare the performance of
PSO algorithm and CPSO algorithm, and the search effect of
random search, PSO algorithm and CPSO algorithm.

In terms of performance, this paper compares the per-
formance of PSO algorithm with that of CPSO algorithm.
The reason why it is not compared with random search is
that both PSO and CPSO have a series of judgment and

iteration strategies, while random search does not have any
judgment process, so the performance must be better than
the two. In terms of error, we use relative error to describe
the search effect of different algorithms. In order to reflect
the search ability of PSO and CPSO, the random generation
strategy was adopted for the particle population of PSO and
CPSO. After obtaining the error results, in order to show on
a statistical chart that the maximum error detected by differ-
ent expressions is not necessarily in the same order of mag-
nitude, we used a logarithmic scale with a base of 10 for the
error results, as shown in the following formula.

Errordisplay ¼ log10 Errorrelativeð Þ: ð17Þ

As shown in Figure 19, the performance of the CPSO
algorithm is better than that of standard PSO for 18 expres-
sions (64%). Compared with PSO, CPSO has added a series
of judgment and processing strategies, such as regeneration
of particle velocity and position after transgression. After

TABLE 2: Experimental environment.

Name Version

CPU Intel Xeon E5-2630 v4
Clock 2.10GHZ
Memory 64GB
Cache sizes 64 KB L1, 1,024KB L2, 2,816KB L3
OS Ubuntu 20.04.5 LTS
Compiler GCC v9.4.0
Compilation options -lmpfr -lm

TABLE 1: Expressions.

NO. FPBench Expression D

1 Bsplines3 − x ∗ x ∗ x=6 −½ 1000; 1000�
2 Exp1x exp xð Þ −ð 1Þ=x 0:01;½ 708�
3 Exp1x_log exp xð Þ −ð 1Þ= log exp xð Þð Þ 0:01;½ 708�
4 Intro_example t= tð þ 1Þ 0;½ 1000�
5 Logexp log exp xð Þ þð 1Þ 0:01;½ 1000�
6 NMSE example 3.1 sqrt xð þ 1Þ − sqrt xð Þ 0;½ 1000�
7 NMSE example 3.4 1 −ð cos xð ÞÞ=sin xð Þ 0:01;½ 1000�
8 NMSE example 3.5 atan xð þ 1Þ − atan xð Þ −½ 1000; 1000�
9 NMSE example 3.6 1=sqrt xð Þ − 1=sqrt 1ð þ xÞ 0;½ 1000�
10 NMSE example 3.7 exp xð Þ − 1 0:01;½ 10�
11 NMSE example 3.8 xð þ 1Þ∗ log xð þ 1Þ − x ∗ log xð Þ − 1 0:01;½ 1000�
12 NMSE example 3.9 1=x − 1=tan xð Þ 0:01;½ 1000�
13 NMSE problem 331 1= xð þ 1Þ − 1=x −½ 1000; 1000�
14 NMSE problem 333 1= 1ð þ xÞ − 2=x þ 1= x −ð 1Þ −½ 1000; 1000�
15 NMSE problem 336 log xð þ 1Þ= log xð Þ 0:01;½ 1000�
16 NMSE problem 337 exp xð Þ − 2 þ exp −ð xÞ 0:01;½ 100�
17 NMSE problem 341 1 −ð cos xð ÞÞ= x ∗ xð Þ 0:01;½ 1000�
18 NMSE problem 344 sqrt exp 2∗ xð Þ − 1ð Þ= exp xð Þ − 1ð Þð Þ 0:01;½ 304�
19 NMSE problem 345 x −ð sin xð ÞÞ= x −ð tan xð ÞÞ 0:01;½ 1000�
20 NMSE section 3.11 exp xð Þ= exp xð Þ −ð 1Þ 0:01;½ 708�
21 predatorPrey 4∗ x ∗ xð Þ= 1ð þ x=1:11∗ x=1:11Þ −½ 1000; 1000�

x − 1:0=6:0ð Þ∗ x ∗ x ∗ x
22 Sine þ 1:0=120:0ð Þ∗ x ∗ x ∗ x ∗ x ∗ x −½ 1000; 1000�

− 1:0=5040:0ð Þ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x ∗ x
0:954929658551372∗ x

23 Sineorder3 − 0:12900613773279798∗ x ∗ x ∗ x −½ 1000; 1000�
24 sqroot 0:0625∗ x ∗ x ∗ x − 0:0390625∗ x ∗ x ∗ x ∗ x −½ 1000; 1000�
25 Sqrt_add 1= sqrt x þ 1ð Þ þð sqrt xð ÞÞ 0;½ 1000�
26 Test05_nonlin1, r4 x −ð 1Þ= x ∗ x −ð 1Þ −½ 1000; 1000�
27 Test05_nonlin1, test2 1:0= 1ð þ xÞ 0;½ 1000�
28 verhulst 4∗ xð Þ= 1 þð x=1:11Þ −½ 1000; 1000�
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adding a series of judgment and processing strategies, such
performance results are acceptable.

As shown in Figure 20, the search performance of CPSO
algorithm is better than that of random search algorithm in

28 (100%) expression and better than that of PSO algorithm
in 17 (61%) expressions.

5.4. Comparison of PSOED, S3FP, and Herbie. For the 28
expressions selected for the experiment, the PSOED test
results are shown in Table 5.

Since the PSOED tool proposed in this paper is a
dynamic detection tool, it needs to be compared with the
existing dynamic detection tools. We selected S3FP and
Herbie.

S3FP is a binary guided (BGRT) error detection tool, and
the test result is a relative error. Since the test time can be set
for S3FP, we set the same run time for S3FP and PSOED to
ensure the fairness of the test, and compare the maximum
errors found by the two tools. There are 14 expressions that
S3FP does not support and are represented by no answer
(NA) in this paper. The test results are shown in Figure 21.

As shown in the figure above, the maximum error
obtained by PSOED is greater than that obtained by S3FP
for 28 expressions in the experimental case for the same
run time.

Herbie is an error detection and precision adjustment tool
that uses random sampling and heuristic search to estimate
and locate expression errors. Herbie’s error representation is
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FIGURE 17: c1 and c2 of the CPSO for the expression exp1x.

TABLE 3: Init population according to floating-point distribution.

Init population interval

Range Sf Particlenumber

b ≤ −1 [a, b] M
a ≤ −1 < b ≤ 1 a;½ − 1�; −½ 1; b� M/2, M/2
a ≤ −1 < b < 1 a;½ − 1�; −½ 1; 1�; 1;½ b� M/4, M/2, M/4
−1 < a < b < 1 a;½ b� M
−1 < a < 1 ≤ b a;½ 1�; 1;½ b� M/2, M/2
1 ≤ a < 1 a;½ b� M
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FIGURE 18: ω of the CPSO algorithm for the expression exp1x.

TABLE 4: Parameter values for different expressions.

No FPBench c1 c2 ω

1 Bsplines3 1.4 1.6 0.9
2 Exp1x 1.4 2.0 0.3
3 Exp1x_log 1.4 1.8 1.5
4 Intro_example 1.2 1.8 1.9
5 Logexp 1.4 1.0 1.1
6 NMSE example 3.1 1.6 1.6 1.8
7 NMSE example 3.4 1.6 1.4 1.4
8 NMSE example 3.5 1.8 1.2 1.7
9 NMSE example 3.6 1.0 2.0 1.7
10 NMSE example 3.7 1.6 2.0 1.9
11 NMSE example 3.8 1.8 2.0 2.0
12 NMSE example 3.9 1.6 1.4 1.7
13 NMSE problem 331 1.2 1.4 0.9
14 NMSE problem 333 1.0 1.4 1.4
15 NMSE problem 336 1.0 1.0 0.7
16 NMSE problem 337 1.8 1.8 0.7
17 NMSE problem 341 2.0 2.0 0.4
18 NMSE problem 344 1.2 1.4 1.5
19 NMSE problem 345 2.0 1.2 1.8
20 NMSE section 3.11 1.8 1.8 0.6
21 predatorPrey 2.0 1.0 0.8
22 Sine 1.6 1.8 0.3
23 Sineorder3 1.8 1.6 0.5
24 sqroot 1.8 2.0 0.7
25 Sqrt_add 1.6 2.0 1.6
26 Test05_nonlin1,r4 1.0 1.8 1.0
27 Test05_nonlin1, test2 1.8 1.0 1.4
28 verhulst 1.4 1.8 0.9
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ReErrorbits. The two tools use different error measures. For
ease of comparison, Equation (16) was used to convert the
ULP error results measured by PSOED to ReErrorbits. The
sampling points set by Herbie was 8,000, and we the number
of particles of PSOED was set to 8,000.

ReErrorbits ¼
0 ReErrorULP ≤ 0:5

1 0:5<ReErrorULP ≤ 1

log2 ReErrorULPð Þd e ReErrorULP>1

8><>: :

ð18Þ

In terms of detection effect, as shown in Figure 22,
among the 28 expressions used in the experiment, 19
(68%) expressions with PSOED had a better maximum
detection effect than Herbie, 4 (14%) expressions with the
same detection effect, and 5 (18%) expressions with PSOED
had a lower maximum error than Herbie.

In terms of tool performance, as shown in Figure 23, only
11(40%) of the PSOED expressions analyzed had a lower
detection time than Herbie. For the expressions that cost
more time than Herbie, it is because there are many large
error intervals generated in the second step of the tool, and

PSOED performs multiple searches, resulting in high time
cost. As shown in Figure 23, the expression NMSE example
38 has a much larger time overhead than Herbie, we analyze
the error distribution of this expression and find that there
are many peaks in the error image of this expression, so
PSOED generates 174 large error intervals when processing
this expression, which means that PSOED has to search at
least 175 times, and the time cost is obvious.

6. Related Work

6.1. Static Tools. Static analysis tools are based on the source
code analysis and verify the accuracy of numerical operations
by collecting key information from programs. Currently,
there are many mature static analysis tools, such as Gappa
[8], Daisy [9], FPTaylor [10], Fluctuat [11], and Rosa [12].
Static analysis tools are suitable for the specific areas (such as
embedded systems), because programs in these fields do not
have complex and dynamic data structures. Then, they rely
on the program source code, and the detected errors are
larger than the actual errors, so there are false positives.

6.2. Dynamic Tools. In contrast to dynamic analysis tools and
methods, Chiang et al. [13] evaluated the accuracy of static
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analysis and SMT-based methods, and proposed their advan-
tages and disadvantages for the first time. They designed a
binary guided random search algorithm (BGRT), and imple-
mented an S3FP tool to assist parallel developers in practical
fault analysis. Zou et al. [14] and Zou et al. [15] conducted an
empirical analysis and found that the size of the exponential
bit and the composition of the mantissa bit can have a signifi-
cant impact on accuracy, i.e., floating point numbers have
only one index within a cell, which can lead to significant
inaccuracy, while a large portion of the mantissa bit can
lead to significant inaccuracy. They designed a new genetic
algorithm, the locally sensitive genetic algorithm (LSGA) [14].
This algorithm improves the genetic algorithm [16] and com-
bines the original algorithm with floating-point number com-
position. The basic idea is to evolve exponential bits to hit the

cells with significant errors and at the same time randomly
generate mantissa bits. The fitness function value of the algo-
rithm is calculated by the FPDebug [17] tool. Zou et al. [14]
and Zou et al. [15] later proposed to detect floating-point
errors based on atomic conditions. Their view is that atomic
conditions are an important factor in floating-point errors in
atomic operations, and a floating-point error is represented
as: εout¼ εinτ þ μ and τ are the atomic condition, τ refers to
the error introduced by atomic operations. The IEEE754 stan-
dard and theGNUC [18] referencemanual guarantee that the
latter is very small because atomic operations are carefully
implemented and maintained by experts, so only atomic con-
ditions need to be considered. Atomic conditions guide the
search process for significant errors, and the tool Atomu [15]
is implemented. Panchekha et al. [19] proposedHerbie, which

TABLE 5: PSOED test results.

PSOED

No. FPBench Max relative error Max ULP error Max bits error

1 Bsplines3 2.77E-16 1.00E+ 00 1.00
2 Exp1x 1.11E-14 2.00E+ 00 5.67
3 Exp1x_log 2.94E-16 5.00E+ 01 1.58
4 Intro_example 2.2E-16 1.00E+ 00 1.00
5 Logexp 3.16E-16 1.00E+ 00 1.00
6 NMSE example 3.1 2.24E-13 1.36E+ 03 10.43
7 NMSE example 3.4 1.69E-3 1.68E+ 09 30.98
8 NMSE example 3.5 2.21E-10 1.05E+ 06 20.00
9 NMSE example 3.6 6.34E-13 3.58E+ 03 11.79
10 NMSE example 3.7 1.10E-14 6.40E+ 01 6.02
11 NMSE example 3.8 9.83E-09 3.66E+ 07 26.04
12 NMSE example 3.9 1.35E-11 4.57E+ 05 15.63
13 NMSE problem 331 2.16E-13 1.27E+ 03 10.30
14 NMSE problem 333 2.12E-10 1.04E+ 06 20.00
15 NMSE problem 336 8.83E-13 4.59E+ 03 12.15
16 NMSE problem 337 1.62E-12 1.23E+ 04 13.58
17 NMSE problem 341 5.12E-05 1.85E+ 09 30.64
18 NMSE problem 344 8.22E-15 5.10E+ 01 5.73
19 NMSE problem 345 7.47E-12 6.88E+ 04 16.05
20 NMSE section 3.11 1.10E-14 7.70E+ 01 6.29
21 predatorPrey 4.75E-16 3.00E+ 00 1.58
22 Sine 2.03E-11 1.27E+ 05 18.56
23 Sineorder3 8.40E-11 8.99E+ 04 15.80
24 sqroot 5.15E-12 3.41E+ 05 12.85
25 Sqrt_add 3.14E-16 2.00E+ 00 1.58
26 Test05_nonlin1, r4 8.86E-10 4.43E+ 06 21.65
27 Test05_nonlin1, test2 1.66E-16 1.00E+ 00 1.00
28 verhulst 1.33E-12 1.60E+ 04 13.90

1 2 3 4 5 6 7 8 9 10 11 12 13 14
PSOED 2.77E-16 1.11E-14 2.94E-16 2.20E-16 3.16E-16 2.24E-13 1.69E-03 2.21E-10 6.34E-13 1.10E-14 9.83E-09 1.35E-11 2.16E-13 2.12E-10

S3FP 1.66E-16 1.11E-16 NA 1.11E-16 NA NA NA NA NA NA 2.02E-11 4.18E-14 6.21E-15 2.55E-14
15 16 17 18 19 20 21 22 23 24 25 26 27 28

PSOED 8.83E-13 1.62E-12 5.12E-05 8.22E-15 7.46E-12 1.10E-14 4.75E-16 2.03E-11 8.40E-11 5.15E-12 3.14E-16 8.86E-10 1.66E-16 1.33E-12
S3FP NA NA 1.10E-16 NA 3.13E-16 NA 3.91E-16 1.03E-15 3.01E-16 2.91E-16 NA 1.11E-16 1.10E-16 2.03E-16

FIGURE 21: Comparison of detection effect between PSOED and S3FP. NA, no answer.
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is an error detection and accuracy adjustment tool that uses a
random search method to locate areas with large errors, and
then improves accuracy by rewriting the expressions in those
areas. Guo and Rubio-González [20] believe that the loss of
accuracy and the elimination of errors are the key factors
leading to large errors in a program, so they are defined by
the formulas. Using the symbol execution technology in soft-
ware testing, the two conditions are injected into the program,
and then the input that triggers the above two large error
conditions, namely the high-error induced input, is checked.
The FPGen tool is implemented.

7. Conclusion and Future Work

Due to the significant impact of floating-point errors on
floating-point programs, floating-point detection is a funda-
mental work for precision optimization or mixed precision,
and many researchers have conducted research on it. Various
search-based techniques or tools for detecting the maximum
error of floating-point programs or expressions have achieved
good results, but it is still a very challenging problem. In this
paper, the error distribution law of floating-point expression
and the distribution characteristics of floating-point number
are fully considered, and the CPSO algorithm is used to detect

the maximum error of floating-point expression. These work
are all very important, organically combined to form a good
tool PSOED. According to the experimental results, the CPSO
algorithm shows superiority over the random search algo-
rithm and the standard PSO algorithm. The comparison
with S3FP and Herbie tools proves the effectiveness and prac-
ticality of the tool.

It has to be admitted that PSOED tools have a lot of
potential for optimization. For one thing, we are trying to
support error detection for multiparameter expressions with
loops and judgments. On the other hand, we need to opti-
mize the performance of PSOED. Too many large error
intervals lead to excessive processing time. In the future,
we plan to use some strategy to reduce the size of large error
intervals while paralleling the search process.

In order to identify significant errors in floating-point
expressions, our research aims to enhance the PSO algorithm
and apply it to the field of floating-point computing. There
are also many excellent optimization algorithms that are
used in the different areas. For example, using butterfly opti-
mization algorithm (BOA) [21] to solve the problem of the
setting of design parameters of designed ADRC controller,
using gray-wolf optimization (GWO) [22] algorithm to
improve the performances of SMC and STSMC [23] and
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using social spider optimization (SSO) algorithm to tune the
parameters of proportional–derivative (PD) versions of both
IT2FLC and T1FLC [24]. However, our work cannot directly
be compared to the aforementioned work due to the diverse
research areas and methodologies employed, however these
works have strong reference relevance. We will, of course,
continue to research the techniques you proposed in the
future with the goal of coming up with a more effective
solution to the problem of floating-point expression error
detection. On the other hand, in order to verify the practi-
cality of PSOED tools, we will test a large number of exam-
ples in the field of engineering and computer science in the
future.
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