
Research Article
Balanced Adversarial Tight Matching for Cross-Project
Defect Prediction

Siyu Jiang ,1 Jiapeng Zhang ,1 Feng Guo ,1 Teng Ouyang ,1 and Jing Li 2

1School of Information Science and Technology, Guangdong University of Foreign Studies, Guangzhou, China
2Guangzhou City University of Technology, Guangzhou, China

Correspondence should be addressed to Jing Li; lijing1@gcu.edu.cn

Received 13 February 2024; Revised 15 April 2024; Accepted 2 May 2024; Published 16 May 2024

Academic Editor: Manuel Angel Serrano

Copyright © 2024 Siyu Jiang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Cross-project defect prediction (CPDP) is an attractive research area in software testing. It identifies defects in projects with limited
labeled data (target projects) by utilizing predictive models from data-rich projects (source projects). Existing CPDP methods
based on transfer learning mainly rely on the assumption of a unimodal distribution and consider the case where the feature
distribution has one obvious peak. However, in actual situations, the feature distribution of project samples often exhibits multiple
peaks that cannot be ignored. It manifests as a multimodal distribution, making it challenging to align distributions between
different projects. To address this issue, we propose a balanced adversarial tight-matching model for CPDP. Specifically, this
method employs multilinear conditioning to obtain the cross-covariance of both features and classifier predictions, capturing the
multimodal distribution of the feature. When reducing the captured multimodal distribution differences, pseudo-labels are needed,
but pseudo-labels have uncertainty. Therefore, we additionally add an auxiliary classifier and attempt to generate pseudo-labels
using a pseudo-label strategy with less uncertainty. Finally, the feature generator and two classifiers undergo adversarial training to
align the multimodal distributions of different projects. This method outperforms the state-of-the-art CPDP model used on the
benchmark dataset.

1. Introduction

Software defect prediction (SDP) [1] aims to enhance the
efficiency of resource allocation by predicting program mod-
ules that are likely to have defects before the software enters
the testing phase. This allows for a targeted allocation of
resources for code inspection based on the prediction out-
comes. SDP commonly relies on historical project data to
construct predictive models. However, in the initial stages
of developing a new project, historical data are often scarce.

To tackle this challenge, researchers [2, 3] proposed
cross-project defect prediction (CPDP) technology. This
technology makes use of defect data from projects originat-
ing from different sources, enabling the application of SDP in
the early phases of new projects. In CPDP, a prominent issue
arises from the differing sources of various projects, resulting
in distribution disparities. If the classification boundary
learnt from the source project probability distribution is
applied directly to the target project, it may underperform

on the target project. This is primarily due to the distinct
probability distributions between the source and target pro-
jects. Applying the knowledge learned from the probability
distribution of the source project directly to the target project
can significantly degrade the prediction performance [4].

To mitigate this, researchers have suggested employing
transfer learning methods. These methods aim to reduce the
distribution disparity between different projects, thereby
addressing the issue of disparate distributions. For instance,
Qiu et al. [5] utilized both semantic features and handcrafted
features as joint features [6]. Simultaneously, they incorpo-
rate the maximum mean discrepancy (MMD) [7] to mini-
mize the feature distribution gap between the source and
target project. Similarly, Xing et al. [8] propounded an adver-
sarial long short-term memory neural network (G-LSTM),
incorporating joint features and employing adversarial train-
ing to mitigate distribution disparities. These methods take
into account the reduction of differences in the distribution
of features between source and target items, which is

Hindawi
IET Software
Volume 2024, Article ID 1561351, 19 pages
https://doi.org/10.1049/2024/1561351

https://orcid.org/0000-0002-4763-5762
https://orcid.org/0009-0000-1835-9888
https://orcid.org/0009-0009-9933-2462
https://orcid.org/0009-0000-3306-5618
https://orcid.org/0009-0007-7340-5251
mailto:lijing1@gcu.edu.cn
https://creativecommons.org/licenses/by/4.0/

essential to improve the effectiveness of CPDP. They [5, 8]
attempt distribution alignment based on the assumption that
the features of the project have a unimodal distribution.
However, in practice, software projects are often codeve-
loped by multiple developers, each with their own coding
style. Additionally, modules with different functions vary
greatly in complexity. Particularly, handcrafted features are
typically extracted based on software metrics, code analysis,
and other methods, which have different statistical proper-
ties compared to those extracted by deep learning. These
differences result in the feature distribution of the project
not exhibiting a single ideal peak but rather multiple distinct
peaks. In other words, project features actually display a
multimodal distribution. Each of these peaks typically repre-
sents a pattern or cluster within the project, and the different
peaks indicate a higher concentration of the frequency or
value of the feature in different regions [9]. Traditional
methods can only align a portion of the peaks and fail to
achieve complete alignment (as illustrated in Figure 1(a)).
This still results in significant distribution disparities, subse-
quently diminishing the accuracy of the cross-project
predictor.

To address the challenge, we propose the balanced adversar-
ial tight matching (BATM) method. For program features
extracted from projects, we obtain the cross-covariance between
features and classifier predictions using multilinear conditioning
to capture the multimodal distribution of features. Based on the
captured distribution, we need to further know the distribution
differences between projects so as to reduce it. Therefore, we
measure the distribution differences between different projects
by extending the maximum density divergence (MDD). When
calculating MDD, the label information is needed, but the target
project does not have the label information, so we introduced
pseudo-labels. Due to the distribution gap between projects,

there is a certain deviation between the pseudo-labels and the
real labels. To solve this problem, we additionally add an auxil-
iary classifier to correct the pseudo-labels by minimizing the
prediction bias between the main classifier and the auxiliary
classifier. The intuitive effect of the BATM method is shown
in Figure 1(b). It continuously “pulls” unaligned peaks over
during training and eventually achieves the alignment of multi-
modal distributions. Additionally, we conducted specific experi-
mental verification in Section 6.3.

This paper’s primary contributions are outlined below:

(i) We propose an adversarial defect prediction frame-
work based on multilinear conditioning. It achieves
a closer alignment between the distributions of dif-
ferent projects by capturing the multimodal distri-
bution of data.

(ii) There will inevitably be noise in pseudo-labels, leading
to uncertainty.We reduce pseudo-label uncertainty by
minimizing the prediction bias. Specifically, it acts as a
regularization term to correct the learning of noisy
pseudo-labels, making the MDDmeasure of distribu-
tion differences more reliable and effective.

(iii) We conducted comparative experiments between our
method and 9 baseline methods on 11 common open-
source projects. The experimental results show that
our method achieves state-of-the-art results in F1
measure, balanced accuracy, and AUC.

The residual content of this paper is relevant in the fol-
lowing: Section 2 reports the related work. Section 3 narrates
the specifics of our proposed method. Sections 4 and 5 cover
the experimental setup and present the experimental results.
Section 6 presents the experimental discussion. Finally,
Section 7 offers a summary of our contributions.

Source project
Target project

ðaÞ

Source project
Target project

ðbÞ
FIGURE 1: Schematic representation of the multimodal distribution of software project features: (a) shows the effect of other researchers’
methods, only considering the alignment of single peaks; (b) shows the effect of our method, which achieves multipeak alignment by
capturing multiple peaks.

2 IET Software

2. Related Work

In CPDP, several methods have been proposed to exploit the
features of the program. Nguyen and Nguyen [10] propounded
a source code semantic model called abstract syntax trees
(ASTs). Further, based on AST, Wang et al. [6] employed a
deep Bayes network (DBN) model to acquire semantic features
fromASTs, bridging the semantic gap between different project
features and defect prediction. Inspired by the ability of con-
volutional neural network (CNN) to effectively extract seman-
tic features from text [11], Li et al. [12] investigated the
application of CNN for generating semantic features of pro-
grams. Recognizing the significance of code context semantics,
Xing et al. [8] presented G-LSTM learning model to autono-
mously extract program semantics and context-dependent
features.

To enhance prediction across diverse projects, researchers
have explored transfer learning methods to align feature dis-
tributions between source and target projects. Ma et al. [13]
propounded the transfer naive Bayes (TNB) model to address
the CPDP problem. Pan et al. [14] investigated the use of
transfer component analysis (TCA), a transfer learning tech-
nology, in the context of CPDP. TCA involves mapping the
source dataset and the target dataset into a latent space, facili-
tating data migration by minimizing the distance between
them. Subsequently, they proposed an enhanced transfer defect
learningmethod called TCA+ [15], which employs customized
normalized extended TCA. The findings revealed that TCA+
significantly outperformed other comparative models in cer-
tain projects in terms of performance. Given that joint features
can more effectively capture the distinctive features of project
defects, Zou et al. [16] devised a joint feature representation
learning method. They implemented a repeated pseudo-label
strategy to narrow down the feature distribution gap among
different projects. In order to extract transferable features, Qiu
et al. [5] propounded a transfer convolutional neural network
(TCNN) model. They added a matching layer based on CNN
for feature mapping and utilized MMD [7] to mitigate the
differences between various projects. Additionally, Huang
et al. [17] utilized serialized ASTs and handcrafted feature
generation vectors, employing multicore MMD to align the
feature distribution of different projects. Given the substantial
imbalance in class within the project, Tang et al. [18] presented
an algorithm for transfer learning, named TsboostDF. This
algorithm specifically addresses both the knowledge transfer
and class imbalance challenges inherent in CPDP. Recognizing
the effectiveness of adversarial generation, Cheng et al. [19]
applied kernel-based principal component analysis to trans-
form instances, mapping them to a high-dimensional feature
space. Subsequently, they employed adversarial learning to
acquire representative features for model construction. Song
et al. [20] employed two classifiers for detecting target samples
that are distant from the source sample support vector through
adversarial training. They also utilized a generator to minimize
the difference in the target samples, aligning the distribution.

However, the previously mentioned CPDP methods all
operate under the assumption of unimodal distribution. It
may potentially hinder performance improvement as they

overlook the presence of multimodal data distributions. In
this paper, we propose a novel BATM model. It not only
considers the multimodal distribution but also enhances
the effectiveness of MDD using a pseudo-label marking
method with lower uncertainty. This approach leads to a
more significant improvement in performance.

3. Methodology

In this section, we initially provide a formal description of
the CPDP problem. Then, the overall process of the BATM
method is presented, and the specific modules of the method
are reported in order.

3.1. Problem Definition. This paper defines the source project
as the source domainDS, comprising the feature space XS of
the source project data along with its corresponding proba-
bility distribution P. The sample set from the source domain
is denoted as XS ¼fxS1 ;…; xSng: 2XS. Similarly, the target
project is considered the target domain DT , consisting of
the feature space XT of the target project data and its corre-
sponding probability distributionQ. The sample set from the
target domain is represented as XT ¼fxT1

;…; xTn
g : 2XT .

Typically, while two software projects from different
sources may share some common metric elements, the dis-
tributions to which thesemetric elements adhere are generally
distinct, i.e., P ≠ Q. The objective of CPDP is to train a classi-
fier dependent on the data from the source project and apply
it to the target project. To achieve this cross-domain migra-
tion between two projects from different sources, it is often
necessary to minimize the distribution disparity between the
source project and the target project, a process known as
domain adaptation. In the model training process, CPDP
researchers also utilize some unlabeled target domain data
as auxiliary information to construct the final prediction
model, achieving more effective transfer results.

3.2. Overall Workflow. The overall workflow of our proposed
CPDPmethod is depicted in Figure 2. Specifically, our frame-
work consists of the following steps: We begin by parsing the
project source file into an AST and traversing the AST to
acquire the token vector. The token vector is then trans-
formed into an integer vector through predefined mapping
rules. Next, the integer vector is input into the transformer,
which acts as a generator to extract semantic features. These
semantic features are subsequently combined with hand-
crafted features to form joint features. After data preproces-
sing, we first train a main classifier F1 and an auxiliary
classifier F2 based on the source project and then use the
main classifier F1 to generate pseudo-labels for the target
project. Next, the joint features and classifier predictions are
performed in multilinear conditioning in order to capture the
multimodal distribution of the data. Subsequently, we utilize
MDD to train a generator and two classifiers based on the
adversarial learning method. In this process, the pseudo-
labels are continuously corrected, and the purpose of reducing
the multimodal distribution difference between the two pro-
jects is achieved. Finally, the constructed model is deployed
on the target project to predict instances where defects may

IET Software 3

occur. Below, we provide details about the algorithm of our
proposed method.

3.3. Generating Input Vectors. The AST is a semantic struc-
ture extracted from the source code, represented as a multi-
branch tree. It serves to depict the syntax structure of the
source code. The AST offers a high level of information
compression and comprises a limited set of node types. Its
structure aligns well with the semantic information of the
program code. These advantages enable ASTs to be initially
used in defect prediction [6].

In Figure 2(a), we employ the open-source compilation tool
Javalang to process Java source files and create the correspond-
ing AST. While the AST contains various types of nodes, a
significant portion of them are redundant, with only a small
portion highly related to code defects. Building on prior
research [6], we thoughtfully select four types of nodes: method
invocation, declaration, control flow, and other essential node
types. Then, the AST is traversed through depth-first after the
filtered node is obtained to obtain the mark sequence. As these
tag sequences are string representations and cannot be directly
fed into the transformer network, we establish a one-to-one
mapping rule between nodes and positive integers. The map-
ping enables the node label sequence to be transformed into the
corresponding integer vector, which can then serve as input for
the transformer network.

3.4. Generator. Considering that the source code of a software
project is also a special form of text, it follows certain gram-
matical rules, with keywords, etc., holding specific semantic
meanings. Therefore, CPDP tasks share significantly related
to natural language processing (NLP) tasks [21, 22]. The
transformer network [23], known for its proficiency in learn-
ing long-term dependencies through complex computations,
is especially well-suited for handlingNLP tasks.We argue that
the transformer network, with its self-attentionmechanism, is
effective at extracting contextual and semantic features from
software projects. Therefore, the BATM method utilizes this
technique to extract semantic features from the program,
serving as a feature generator for the entire model.

The structural diagram of the transformer is illustrated in
Figure 3. In the initial step, position encoding is applied to each
integer vector within the input sequence data X. In this manner,
words at different positions will be assigned varying importance
as they pass through the self-attention mechanism. This enables
the model to comprehend the order of words in the input
sequence. Here, we utilize PEðpos;2iÞ and PEðpos;2iþ1Þ to represent
the position encoding at indices 2i and 2iþ 1 of the given posi-
tioning pos in the sequence, respectively. The corresponding
formula is described as follows:

PE pos;2ið Þ ¼ sin pos=10;0002i=dmodel
À Á

PE pos;2iþ1ð Þ ¼ cos pos=10;0002i=dmodel
À Á

:
ð1Þ

Program ASTs AST token vectorsSource fles

Parse Traverse Map

5

5

7

7

2 9 4

4

68

3

2

Integer vectors

ðaÞ

Handcrafed
features

Transformer
G

Generator

Source input vectors

Target input vectors

Handcrafed
features

Semantic
features

Semantic
features

Labelfs

Pseudo-label

F1

LF1F2 loss

F2

Predict

MDD loss Buggy or clean

ft

ðbÞ
FIGURE 2: Overall workflow: (a) project data preprocessing; (b) defect prediction model construction.

4 IET Software

Among them, dmodel represents the embedding dimen-
sion of the model, which is the dimension of word embed-
ding. The constant 10,000 is used to adjust the periodicity of
the sine function sin and the cosine function cos.

Subsequently, the integer vector with added position
encoding undergoes processing in the self-attention layer.
The weight matrices WQnWKnWV learned by the three
models are multiplied by the i element xi in the input
sequence to obtain the QnKnV vectors. Then, calculate their
self-attention values as shown in Formula (2):

Self -attention Q;K;Vð Þ ¼ softmax
QKTffiffiffiffiffi

dk
p !

V : ð2Þ

In the formula, QKT represents the inner product of the
transpose of the query vector Q and the key vector K .

ffiffiffiffiffi
dk

p
is

a normalization factor, typically the square root of the
dimension of the K matrix. This normalization operation
ensures that the input dimensionality is not affected in the
attention calculation. The softmax operation is employed to
normalize the attention score into a probability distribution.
Finally, when multiplied by the attention weight V , the self-
attention output is obtained. As depicted in Figure 3,
Z represents the resulting self-attention output.

Following this, the output of the self-attention layer per-
forms standardization through the layer normalization layer
to ensure model stability. In the feed-forward layer, features

are mapped to a higher-dimensional space using an activa-
tion function. This increases the model’s representational
capacity and enables it to capture richer semantic informa-
tion. It serves to further process the normalized representa-
tion for extracting higher-level semantic features. Finally,
normalization occurs through the add and normalize layer
to ensure a stable model output.

To enhance feature transferability and separability, we
combine the semantic features acquired by the transformer
with traditional handcrafted features to form joint features.

3.5. Adversarial Training. The adversarial training objective
of the BATM model is to effectively capture the multimodal
distribution of data through multilinear conditioning. This is
achieved by integrating it with MDD to provide a more
accurate measure of distribution disparities between differ-
ent projects. Ultimately, this process aligns the distributions
and enhances the prediction accuracy.

Initially, the model trains the generator G and classifiers
F1 and F2 using the source projects. Due to the ample labeled
samples available for source projects, the classifier is able to
classify them correctly after training.

In detail, BATM engages in adversarial training on the
generator and classifier using source project samples. This
ensures that the model can effectively classify the source
project samples. This article chooses the logistic regression
(LR) classifier as the foundational classifier. Given that the
CPDP problem entails a binary classification task, we employ
binary cross-entropy loss in this step, as depicted below:

Lbce ¼ −E yS logp y xSjð Þ þ 1 − ySð Þ log 1 − p y xSjð Þð Þ½ �
p y xSjð Þ ¼ p1 y xSjð Þ þ p2 y xSjð Þ

2
:

ð3Þ

Here, p1ðyjxSÞ : and p2ðyjxSÞ : denote the outputs of classi-
fiers F1 and F2, respectively. Unless stated otherwise, the
classifier outputs refer to the average result produced by both
classifiers F1 and F2.

Subsequently, the trained classifier is employed to classify the
target projects and assign corresponding pseudo-labels. Next,
multilinear conditioning comes into play to grasp themultimodal
distribution of sample features. Considering that uncertainty in
discriminative information can introduce prediction noise, we
aim to minimize this uncertainty by reducing the prediction
bias between two classifiers.

In this paper, multilinear conditioning is achieved
through the use of a multilinear map. A multilinear map is
determined by the outer product of numerous random vec-
tors [24]. For two random vectors x and y, the joint distri-
bution Pðx; yÞ: can be represented by the cross-covariance
Exy½φðxÞ ⨂ φðyÞ� :, where φ is the feature map generated by
a specific reproducing kernel [25, 26]. Suppose there are n
feature vectors xi; i2 ½1; n� :, their joint feature vector x, label
vector y, then the formal representation of the cross-covari-
ance Exy½φðxÞ ⨂ φðyÞ� : is as follows:

Add and normalize

Output: Semantic features

Feed forward

Z1

Z

ZX

X

Self-attention

Input: Integer sequence

LayerNorm ()+

FIGURE 3: The transformer model architecture.

IET Software 5

Exy φ xð Þ⊗ φ yð Þ½ � ¼ Ex1y φ x1ð Þ⊗ φ yð Þ½ �⊕…

⊕ Exny φ xnð Þ⊗ φ yð Þ½ �: ð4Þ

Therefore, the multilinear map x ⨂ y can capture the
cross-covariance between feature representations and labels,
thereby capturing the multimodal distribution of complex
features. The representation of the multilinear map M⊗ of
features and predicted labels is as follows:

M⊗ f ;gð Þ ¼ f ⊗ g: ð5Þ

Among the multilinear map M⊗, two notable ones are f
and g. f represents the feature representation, which com-
bines the joint features of the source project and the target
project. Meanwhile, g represents the average value predicted
by classifiers F1 and F2. However, one drawback of a multi-
linear map is dimensionality explosion. Here, let df and dg
denote the dimensions of vectors f and g, respectively. The
dimension of the multilinear map f ⨂ g is given by df × dg. If
this dimension becomes too high, parameter explosion will
occur when embedding a deep network. To tackle this prob-
lem, the paper suggests a resolution using the random multi-
linear map to mitigate the dimension explosion. Since the
inner product on M⊗ can be accurately estimated by the
inner product on M⊙ [27], in order to enhance the compu-
tational efficiency, we use M⊙ð f ;gÞ: to represent a random
multilinear map. Its formulaic description is as follows:

M⊙ f ;gð Þ ¼ 1ffiffiffi
d

p Rf f
À Á

⊙ Rgg
� �

; ð6Þ

where ⊙ is the element-wise product, dimension d ≪ df ×
dg, Rf , and Rg are random matrices sampled only once and
fixed in training. Each element Rij follows a symmetric dis-
tribution with single variance, that is E½Rij� : ¼ 0; E½R2

i j� : ¼ 1.
Furthermore, we require a metric to quantify this distri-

bution disparity, which is addressed by MDD in this context.
MDD [28] serves a dual purpose: not only does it gauge the
distribution difference between two distinct multimodal dis-
tributions, but it also diminishes the divergence between
domains. This leads to an increase in intraclass density, ren-
dering the discriminative information of defective and non-
defective samples on the target project more discernible.
Thereby, it benefits the classifier’s prediction of the target
project. We denote the difference between P and Q as
MDDðP;QÞ : and aim to harmonize the source and target
domain distributions by minimizing MDDðP;QÞ:. The for-
mal description of MDD is as follows:

MDD P;Qð Þ ¼ EXs∼P;Xt∼Q j jXs − Xtj j22½ �
þEXs;X

0
s ∼P

j jXs − X
0
s j j22

Â Ã
þEXt ;X

0
t ∼Q

j jXt − X
0
t j j22

Â Ã
:

ð7Þ

Among these, X 0
s and X0

t represent independent and iden-
tically distributed copies of Xt and Xt , respectively. In the

first term of MDD, we utilize the squared Euclidean norm
distance to minimize the distribution difference between P
and Q. The subsequent two terms serve to maximize the
within-project density of P and Q, respectively. This method
not only aligns the distribution differences between the
source and target projects but also brings the two projects
themselves closer together. In practice, we calculate the
MDD loss by the following formula:

Lmdd ¼
1
nb

∑
nb

i
fs;i − ft;i

2

2 þ
1
ms

∑
ys;i¼y

0
s; j

fs;i − f
0
s;j

2
2

þ 1
mt

∑
yt;i¼y

0
t; j

ft;i − f
0
t;j

2
2
:

ð8Þ

In this context, f represents the generated sample feature,
nb denotes half of the batch size. Additionally, ms and mt ,
respectively, signify the number of categories in the source
domain and target domain within the batch. These quantities
can be determined by examining the label of each instance in
the present batch. ys;i ¼ y0s; j represents xs;i and x0s; i have the
same label, where xs;i represents the i sample of the source
project, x0s; i is a copy of xs;i.

From the above description of MDD, we can observe that
one of its objectives is to maximize intraclass density. To
achieve this goal, the label information of the project samples
must be utilized. In the case of the target project, obtaining
its label information is not feasible, so pseudo-labels are
employed instead. However, it is important to note that
the pseudo-labels assigned to target project samples are uncer-
tain, as these labels may contain prediction noise [29]. While
most pseudo-labels are accurate, some incorrect labels might be
present. Fine-tuning the model on noisy labels could transfer
the error to the adapted model. This transfer may potentially
exacerbate the adaptation process, especially for samples with
uncertain predictions [30]. The auxiliary classifier F2 added in
this paper differs from the classifier F1 solely in terms of the
initialization method. Both are capable of classifying project
samples. By minimizing the prediction deviation between the
two classifiers, target projects can be more accurately labeled
with corresponding pseudo-labels in the training process.

To account for label noise, we measure pseudo-label
uncertainty by prediction bias. In practice, we utilize the
KL divergence DKL predicted by classifiers F1 and F2 as an
estimate of the bias as follows:

Dkl ¼ E F1 x j
t θtj

� �
log

F1 x j
t θtj

� �
F2 x j

t θtj
� �

0@ 1A24 35: ð9Þ

In this context, F1ðx j
t jθtÞ : signifies the output of the main

classifier F1, while F2ðx j
t jθtÞ : denotes the output of the auxil-

iary classifier F2. When these two classifiers offer divergent
class predictions, the prediction deviation will yield a sub-
stantial value. This highlights the model’s uncertainty in its
predictions. We attempt to reduce this prediction bias to

6 IET Software

achieve a “balance” between classifiers, thereby reducing the
uncertainty of prediction.

Additionally, it is important to assess the disparity between
the predictions and labels of the main classifier F1. For this
purpose, the binary cross-entropy loss is employed and formal-
ized as follows:

Lce ¼ E −bp j
t log2F1 x j

t θtj
� �h i

: ð10Þ

Given that the target project has no actual label, bp j
t is

considered a pseudo-label in this context. The paper incor-
porates a bias regularization term to enhance learning from
potentially noisy labels. This regularization term can be for-
mulated as follows:

LF1F2 ¼ E exp −Dklf gLce þ Dkl½ �: ð11Þ

For the average output of classifiers F1 and F2, we confuse
the classifier by maximizing the entropy of this output. Our
expectation is for the classifier to not accurately identify the
generated samples and real samples, thus aligning the distri-
bution. We calculate the entropy loss of the classifier output
using the following formula:

LH ¼ E −p y xSjð Þ log2p y xSjð Þ½ �: ð12Þ

Based on the above adjusted adversarial training [31] gen-
erator and classifier, we construct a total loss function to
perform backpropagation to update parameters. Specifically,

the comprehensive, objective function of our BATM method
can be formulated as follows:

minG maxF1;F2Lall
Lall ¼ Lbce þ λLmdd þ LF1F2 − LH :

ð13Þ

In the formula, λ is used to find the optimal parameters
through cross-validation. After a certain number of itera-
tions, the multimodal distributions between source and tar-
get projects are effectively aligned. Algorithm 1 describes the
pseudocode of BATM. We repeat these two steps during the
training phase. We use a variance regularization term to
correct learning from noisy labels (Step 1), and then adver-
sarially train the classifiers and generator after pseudo-
labeling the target projects (Step 2).

4. Experiment Settings

This paper employs the machine learning framework
PyTorch for the implementation of the BATM model. Spe-
cifically, the number of heads in the multihead attention
model of the transformer network is configured to be 16.
Throughout the training process, a batch size of 32 is utilized.
The training process utilizes a stochastic gradient descent,
and the Adam optimizer [32] is employed to update param-
eters. The default momentum parameter (0.9) in Adam and
the initial learning rate is set to 0.001.

Input: Source project and label data XS ¼fxSigni¼1;YS ¼fySigni¼1; target project data XT ¼fxTi
gmi¼1; parameters of classifiers F1 and F2

and generators θF1 ; θF2 , and θG, learning rate α, pseudo-label ρ, output of the generator to the target project pðyjxTÞ:, maximum
iteration T .

Ouput: θF1 ; θF2 , and θG.

1: procedure BATM (θF1 ; θF2 ; θG)
2: Initialize the parameters θF1 ; θF2 , and θG randomly

3: for i : ¼ 1 toT do

4: / ∗ Step 1 ∗/

5: Compute the loss Lbce
6: θF1 ¼ θF1 − α ∂Lbce

∂θF1

7: θF2 ¼ θF2 − α ∂Lbce
∂θF2

8: θG ¼ θG − α ∂Lbce
∂θG

9: / ∗ Step 2 ∗/

10: / ∗ Predicting pseudo-labels for target projects ∗/

11: ρ¼ pðyjxTÞ:>0:5?1 : 0
12: Compute the loss Ls;t

13: θF1 ¼ θF1 − α ∂Ls;t
∂θF1

14: θF2 ¼ θF2 − α ∂Ls;t
∂θF2

15: θG ¼ θG − α ∂Ls;t
∂θG

16: end for

17: end procedure

ALGORITHM 1: BATM training algorithm.

IET Software 7

4.1. Benchmark Datasets. In recent years, researchers [5, 8]
have shown a preference for utilizing open-source software
projects in CPDP research. To evaluate the BATM model
proposed in this paper, 11 Java projects from the PROMISE
[33] benchmark dataset were selected. This particular open-
source software repository is widely utilized in the CPDP field.

This paper carefully chooses 11 open-source software
projects from the PROMISE dataset (refer to Table 1). In
this dataset, researchers carefully enumerated and computed
20 handcrafted features (see Table 2), with a predominant
focus on program complexity [36]. Within the scope of the
CPDP problem, defect prediction necessitates the specifica-
tion of both a source project and a target project. Thus, this
paper initially designates a project as the target. Then, it
utilizes the remaining projects in the dataset as sources to
establish a CPDP task pair originating from the source

project to the target project. Following this approach, 110
sets of CPDP task pairs can be constructed within the
PROMISE dataset, forming the basis for the experiments in
this paper.

4.2. Evaluation Metrics. To assess the reliability and effec-
tiveness of the BATM model, we employ three widely used
evaluation metrics: F1 measure, balanced accuracy, and area
under curve (AUC) [38]. In CPDP, it is customary to utilize
the confusion matrix (Table 3) for evaluating the classifier’s
performance.

The effectiveness of a classifier on positive classes can be
assessed using sensitivity (or recall), while its effectiveness on
negative classes can be evaluated using specificity. Precision
is the metric used to assess the accuracy of a model. Below,
we provide the calculation formulas for these indicators:

TABLE 1: Eleven projects were picked from the PROMISE dataset.

Project title Version # instance Bug rate (%)

Ant 1.7 745 22.3
Camel 1.6 965 19.5
Forrest 0.8 32 6.3
Ivy 2.0 352 11.4
Log4j 1.2 205 92.2
Lucence 2.4 340 59.7
Poi 3.0 442 63.6
Synapse 1.2 256 33.6
Velocity 1.6.1 229 34.1
Xalan 2.7 909 98.8
Xerces 1.4.4 588 74.3

TABLE 2: Twenty handcrafted features.

Metric Description

WMC This measures the average number of weighted methods in a class [34]
DIT It represents the number of direct and indirect parent classes [34]
NOC This feature counts the number of direct subclasses a class has [34]
CBO It indicates the level of association between a class and other classes [34]
RFC It represents the total number of methods a class can respond to [34]
LCOM It indicates the level of relatedness and sharing among methods in a class [34]
LCOM3 An enhanced version of LCOM that calculates the sharing of member variables among methods more accurately [34]
NPM This counts the total number of public methods in a class [35]
LOC It measures the total number of lines of code in a class [35]
DAM It measures the degree to which a class depends on external classes [35]
MOA It measures the degree to which a class aggregates (contains) other classes [35]
MFA It measures the proportion of abstract methods in a class [35]
CAM It measures the level of cohesion among methods in a class [35]
IC It measures the degree to which a class depends on inheritance [33]
CBM It measures the level of method invocation between methods in a class [33]
AMC It represents the average complexity of methods in a class [33]
CA It represents the number of classes referencing a class [36]
CE It represents the number of classes referenced by a class [36]
Max CC It represents the highest complexity of a method within a class [37]
Avg CC It represents the average complexity of all methods in a class [37]

8 IET Software

Sensitivity ¼ TP
TPþ FN

Specificity ¼ TN
TNþ FP

Precision¼ TP
TPþ FP

:

ð14Þ

The F1 measure, being the harmonic mean of sensitivity and
precision, offers a balanced evaluation of these two indicators. It
aims to find the optimal balance between making accurate posi-
tive predictions and capturing all positive instances. The formal
description of F1 measure is as follows:

F1 ¼
2 × Sensitivity × precision
Sensitivity þ precision

¼ 2TP
2TPþ FNþ FP

:

ð15Þ

In CPDP tasks, classifiers that predict all samples as
majority classes can perform well in accuracy (ACC). There-
fore, this paper employs balanced accuracy (BA) to gauge the
validity of the CPDP model. It provides a comprehensive
evaluation considering the classifier’s performance in both
majority and minority classes. The calculation expression for
balanced accuracy is as follows:

Balanced  accuracy¼ Sensitivity × specificity
2

¼ TP × TN
2 TPþ FNð Þ TNþ FPð Þ :

ð16Þ

To comprehensively compare the validity of BATM and
the baseline methods, this chapter employs the AUC evalua-
tion index [38]. AUC stands for the area under the curve. It is
the area of a 2D graph illustrating the connection between
the true positive rate and the false positive rate. The y-axis
denotes the true positive rate, while the x-axis represents the
false positive rate. The ROC curve is generated by adjusting
the classification threshold across all possible value ranges,
thereby distinguishing between instances with defects and
those without. An effective predictor should yield an AUC
value as close to 1 as possible. Additionally, ROC analysis
shows strength, particularly in situations with class imbal-
ance and uneven classification costs. Hence, this metric is
well-suited for applications in CPDP contexts.

4.3. Baseline Methods. We benchmark the BATM method
against the following nine baseline methods:

(i) LR: It relies on handcrafted features as input for the
LR classifier in the prediction process.

(ii) NNFilter [39]: Only handcrafted features are uti-
lized, and similar instances are aggregated to con-
struct a training set.

(iii) TCA [14]: It maps data from different projects
together into a latent space. By minimizing the
distance between them, data migration is accom-
plished while preserving the geometric structure
and data variance intact.

(iv) TCA+ [15]: This is a transferable feature learning
method. TCA is expanded by exclusively incorpo-
rating handcrafted features along with customized
normalization rules.

(v) DBN [6]: This method employs a specific network
to handle serialized AST and generate semantic
features.

(vi) DPCNN [12]: This method utilizes a CNN to pro-
cess serialized AST and extract semantic features. It
also integrates handcrafted features into the
process.

(vii) TCNN [5]: It added a matching layer based on
CNN for feature mapping and utilized MMD to
mitigate differences between various projects.

(viii) MANN [17]: This method employs serialized AST
and handcrafted feature generation vectors. It
implements multicore MMD to align the feature
distributions across different projects.

(ix) ADA [20]: It is based on adversarial training and uses
two classifiers to detect target project samples that are
far away from the support vectors of source project
samples. This is done to obtain the relationship
between these samples and classification boundaries
and perform distribution alignment.

This paper utilizes PyTorch to replicate all baseline mod-
els, excluding TCNN, as its source code is publicly available.
Following that, the paper retrains these baseline models
under approximately similar experimental conditions. Tak-
ing into account the class imbalance challenge in CPDP [40],
ADA actually uses oversampling for both source and target
projects. However, we believe that oversampling the target
project actually uses the label information leaked by the tar-
get project, which is deemed unreasonable. Therefore, we
apply the random oversampling method to source projects
in all models without any manipulation of the target projects.
This is done to ensure the utmost fairness in the comparative
experiments.

4.4. Statistical Analysis Methods. To ascertain the signifi-
cance of the performance comparison results, this chapter
employs theWilcoxon signed-rank test. It is a nonparametric
statistical hypothesis test for the evaluation index. In all test
cases, the null hypothesis posits that there is no statistical
discrepancy in the performance results between the two
compared methods. The chosen statistical significance level
α is set at 0.05. A p-value below 0.05 indicates a noticeable
distinction, while a p-value above 0.05 suggests that the dis-
tinction is not statistically significant.

TABLE 3: Confusion matrix.

Actuality
Forecast results

Classified positive Classified negative

Actual positive TP (true positive) FN (false negative)
Actual negative FP (false positive) TN (true negative)

IET Software 9

To facilitate pairwise comparisons between methods, this
chapter employs a “Win/Tie/Loss” analysis. This analysis of a
specific performance metric between ourmethod and the com-
parison method yields three possible outcomes. These out-
comes indicate the number of instances where our method
outperforms, performs equivalently to, or underperforms com-
pared to the comparison method, respectively.

Additionally, this paper applies a variant of the Scott-
Knott effect size difference (ESD) test [41] to quantify the
effect size of the discrepancy between the two methods. The
Scott-Knott ESD is evaluated based on this measure. All
compared models are arranged in order. The Scott-Knott
ESD test is a mean relative analysis that utilizes hierarchical
clustering to categorize methods with statistically noticeable
distinctions into distinct clusters or groups.

4.5. Research Question. To evaluate the efficacy and perfor-
mance of the proposed BATM method, we discuss the fol-
lowing two research questions (RQs).

RQ1: Has the BATM method achieved better predictive
performance compared to the relevant CPDP methods?
Motivation: Comparison with the CPDP benchmark
model is an intuitive way to prove the effectiveness of
BATM. We selected nine benchmark models for com-
parative experiments with BATM.
RQ2: How do BATM components affect its prediction
performance?
Motivation: The transfer learning method is an important
skill for handlingCPDP tasks.Wemust confirmwhether the
relevant components in the BATM model can effectively
help the model transfer the learned knowledge, thereby
improving the predictive performance of the model.

5. Experimental Results

This section carefully designs and executes a substantial
number of experiments to validate the accuracy and efficacy

of the model put forward in this paper. It also examines the
prediction performance of BATM founded on the obtained
experimental results. For the experimental results Tables 4–9,
each row related to method performance contains a bold
value, indicating the best-performing method in the same
target project.

5.1. RQ1: Has the BATM Method Achieved Better Predictive
Performance Compared to the Relevant CPDP Methods?
Tables 4–6 present the comparative experimental outcomes on
the PROMISE dataset. It is evident that the BATM model put
forward in this paper demonstrates noteworthy performance,
achieving average scores of 0.533, 0.714, and 0.698 in the F1
measure, balanced accuracy, and AUC, respectively. This places
it at the forefront among all compared models. In terms of
Win/Tie/Lose (W/T/L) analysis, BATM outperforms the
baseline method in F1 measure for a minimum of 8 projects, in
balanced accuracy for a minimum of 9 projects, and in AUC for a
minimum of 10 projects. This demonstrates that our proposed
method exhibits superior prediction performance compared to
the baseline method across most projects. To provide a clearer
illustration of how our method surpasses other baseline methods,
we quantify the improvement in model performance.

From the F1 measure, BATM achieves optimal perfor-
mance in most of the projects and improves the performance
by 8.0%–19.8% on average over the benchmark models. Spe-
cifically, BATM improves 14.5% on average over LR, NNFil-
ter, TCA, and TCA+ using only handcrafted features; 16.5%
over DBN using only semantic features; 9.4% over DPCNN
using joint features, and 8.9% over TCNN, MANN, and
ADA using joint features and dealing with the differences
in the distributions among data.

In terms of balanced accuracy, BATM achieves superior
performance in most projects, with an average performance
that is 10.1%–38.3% higher than the baseline model. It is
worth noting that the balanced accuracy of the BATMmodel
on projects Forrest and Log4j only reached 0.403 and 0.380,
respectively. This article believes that it may be because the

TABLE 4: The results of the F1 measure comparison with nine methods.

Target project LR NNFilter TCA TCA+ DBN DPCNN TCNN MANN ADA Ours

Ant 0.445 0.443 0.444 0.418 0.367 0.425 0.410 0.515 0.506 0.547
Camel 0.328 0.325 0.326 0.328 0.310 0.333 0.335 0.405 0.401 0.398
Forrest 0.192 0.167 0.114 0.120 0.131 0.152 0.133 0.229 0.256 0.274
Ivy 0.289 0.274 0.258 0.250 0.229 0.268 0.268 0.254 0.332 0.455
Log4j 0.435 0.637 0.661 0.650 0.654 0.659 0.686 0.467 0.594 0.705
Lucene 0.603 0.597 0.619 0.551 0.584 0.641 0.632 0.605 0.543 0.615
Poi 0.508 0.634 0.605 0.589 0.612 0.622 0.669 0.634 0.512 0.506
Synapse 0.525 0.520 0.522 0.549 0.453 0.520 0.495 0.584 0.569 0.560
Velocity 0.506 0.501 0.496 0.310 0.453 0.517 0.500 0.515 0.461 0.518
Xalan 0.534 0.605 0.647 0.655 0.651 0.625 0.680 0.572 0.588 0.622
Xerces 0.532 0.611 0.607 0.577 0.590 0.605 0.620 0.584 0.587 0.669
Average 0.445 0.483 0.482 0.455 0.458 0.487 0.494 0.488 0.486 0.533
W (T) (L) 10/0/1 10/0/1 8/0/3 9/0/2 9/0/2 8/0/3 8/0/3 8/0/3 8/0/3 —

Improvement 19.8% 10.3% 10.7% 17.3% 16.5% 9.4% 8.0% 9.3% 9.6% —

p-Value 0.004 0.041 0.042 0.026 0.026 0.045 0.048 0.047 0.016 —

10 IET Software

TABLE 5: The results of the balanced accuracy comparison with nine methods.

Target project LR NNFilter TCA TCA+ DBN DPCNN TCNN MANN ADA Ours

Ant 0.547 0.589 0.590 0.562 0.525 0.558 0.543 0.620 0.772 0.873
Camel 0.507 0.531 0.512 0.516 0.509 0.515 0.511 0.606 0.692 0.739
Forrest 0.516 0.484 0.454 0.399 0.469 0.485 0.449 0.561 0.445 0.403
Ivy 0.511 0.562 0.533 0.544 0.508 0.540 0.537 0.586 0.743 0.896
Log4j 0.481 0.486 0.507 0.501 0.503 0.506 0.536 0.461 0.440 0.380
Lucene 0.571 0.564 0.575 0.544 0.536 0.591 0.582 0.536 0.682 0.711
Poi 0.521 0.595 0.554 0.543 0.555 0.604 0.602 0.600 0.704 0.745
Synapse 0.524 0.598 0.584 0.620 0.531 0.574 0.553 0.640 0.753 0.818
Velocity 0.523 0.585 0.560 0.548 0.529 0.571 0.549 0.603 0.626 0.780
Xalan 0.438 0.439 0.481 0.493 0.488 0.514 0.521 0.504 0.651 0.796
Xerces 0.539 0.581 0.563 0.540 0.533 0.581 0.553 0.506 0.634 0.712
Average 0.516 0.547 0.538 0.528 0.517 0.549 0.540 0.566 0.649 0.714
W (T) (L) 9/0/2 9/0/2 9/0/2 10/0/1 9/0/2 9/0/2 9/0/2 9/0/2 9/0/2 —

Improvement 38.3% 30.6% 32.8% 35.2% 38.1% 30.1% 32.3% 26.2% 10.1% —

p-Value 0.008 0.008 0.008 0.006 0.008 0.010 0.013 0.013 0.026 —

TABLE 6: The results of the AUC comparison with nine methods.

Target project LR NNFilter TCA TCA+ DBN DPCNN TCNN MANN ADA Ours

Ant 0.608 0.632 0.635 0.612 0.556 0.616 0.600 0.632 0.742 0.800
Camel 0.528 0.545 0.540 0.543 0.524 0.548 0.549 0.616 0.632 0.678
Forrest 0.457 0.627 0.499 0.540 0.544 0.604 0.552 0.579 0.487 0.480
Ivy 0.619 0.620 0.615 0.611 0.563 0.620 0.621 0.635 0.817 0.869
Log4j 0.422 0.493 0.424 0.450 0.475 0.477 0.449 0.512 0.518 0.526
Lucene 0.477 0.570 0.574 0.560 0.533 0.587 0.579 0.490 0.631 0.672
Poi 0.601 0.599 0.563 0.551 0.553 0.589 0.590 0.616 0.671 0.705
Synapse 0.523 0.610 0.606 0.636 0.543 0.602 0.578 0.630 0.702 0.775
Velocity 0.546 0.591 0.577 0.496 0.541 0.595 0.576 0.607 0.655 0.736
Xalan 0.609 0.669 0.640 0.676 0.654 0.707 0.660 0.624 0.687 0.743
Xerces 0.534 0.594 0.573 0.561 0.531 0.576 0.541 0.631 0.634 0.689
Average 0.539 0.595 0.568 0.567 0.547 0.593 0.572 0.597 0.652 0.698
W (T) (L) 11/0/0 10/0/1 10/0/1 10/0/1 10/0/1 10/0/1 10/0/1 10/0/1 10/0/1 —

Improvement 29.5% 17.3% 22.9% 23.1% 27.6% 17.8% 21.9% 16.8% 7.1% —

p-Value 0.003 0.026 0.004 0.004 0.006 0.016 0.004 0.013 0.004 —

TABLE 7: Ablation study on the metric of F1 measure.

Target project No-HF No-MC No-MDD BATM

Ant 0.545 0.463 0.474 0.547
Camel 0.333 0.324 0.338 0.398
Forrest 0.262 0.229 0.265 0.274
Ivy 0.438 0.387 0.419 0.455
Log4j 0.649 0.493 0.574 0.705
Lucene 0.607 0.549 0.582 0.615
Poi 0.457 0.435 0.432 0.506
Synapse 0.521 0.498 0.511 0.56
Velocity 0.457 0.411 0.432 0.518
Xalan 0.563 0.552 0.579 0.622
Xerces 0.551 0.432 0.481 0.669
Average 0.489 0.434 0.462 0.533
Improvement 8.99% 22.8% 15.4% —

p-Value 0.003 0.003 0.003 —

IET Software 11

defect rate of Forrest is only 6.3%, and the defect rate of Log4j
is as high as 92.2%. However, they are projects with relatively
small sample sizes in the PROMISE data set used, with only
32 and 205 code instances, respectively. The class imbalance
phenomenon is extremely serious. Even if random oversam-
pling is used for the source project, it will simply repeat the
sample. A minority class that lacks diversity will make
BATM fall into the dilemma of not learning generalization
knowledge and causing overfitting. However, the defect rate
of the Xalan project is as high as 98.8%, with 909 data sam-
ples. This allows BATM to learn enough knowledge in the
project, resulting in a balanced accuracy of up to 0.796,
which is at least 52.8% higher than the baseline model.
This demonstrates that BATM can still perform well even
with imbalanced data distributions, provided there are suffi-
cient samples.

From an AUC perspective, BATM achieves optimal per-
formance in all projects except for Forrest, with an average

performance that is 7.1%–29.5% higher than the baseline
model. In comparison with models employing joint features,
BATM improves DPCNN, TCNN, MANN, and ADA by
17.8%, 21.9%, 16.8%, and 7.1%, respectively.

From the standpoint of statistical hypothesis testing, the
p-values derived from the Wilcoxon signed-rank test for the
three metric indicators of all comparison models are consis-
tently below 0.05. This indicates that the differences between
these models and the BATM method are statistically signifi-
cant at the 95% confidence level.

To visually illustrate the differences between BATM and
the comparative models, this paper employs a box plot based
on the Scott-Knott ESD test. The methods are categorized
and ranked based on the Scott-Knott ESD test results. In
Figure 4, the orange line represents the median of the
method, and the green triangle represents the mean. Meth-
ods toward the front are considered better, and there is not a
significant difference in performance among several methods

TABLE 8: Ablation study on the metric of balanced ACC.

Target project No-HF No-MC No-MDD BATM

Ant 0.864 0.859 0.861 0.873
Camel 0.72 0.705 0.716 0.739
Forrest 0.308 0.253 0.384 0.403
Ivy 0.855 0.828 0.804 0.896
Log4j 0.325 0.322 0.347 0.38
Lucene 0.701 0.664 0.697 0.711
Poi 0.74 0.625 0.655 0.745
Synapse 0.814 0.761 0.796 0.818
Velocity 0.712 0.679 0.686 0.78
Xalan 0.751 0.731 0.745 0.796
Xerces 0.658 0.623 0.705 0.712
Average 0.677 0.641 0.672 0.714
Improvement 5.46% 11.4% 6.25% —

p-Value 0.003 0.003 0.003 —

TABLE 9: Ablation study on the metric of AUC.

Target project No-HF No-MC No-MDD BATM

Ant 0.781 0.736 0.775 0.801
Camel 0.653 0.628 0.639 0.678
Forrest 0.392 0.283 0.437 0.48
Ivy 0.856 0.765 0.817 0.869
Log4j 0.516 0.447 0.496 0.526
Lucene 0.638 0.616 0.639 0.672
Poi 0.676 0.654 0.663 0.705
Synapse 0.728 0.706 0.723 0.775
Velocity 0.648 0.621 0.635 0.736
Xalan 0.699 0.687 0.705 0.743
Xerces 0.618 0.568 0.601 0.689
Average 0.652 0.611 0.648 0.698
Improvement 6.56% 14.2% 7.71% —

p-Value 0.003 0.003 0.003 —

12 IET Software

within the same color box. In terms of rankings, BATM
secures the top position.

Compared to CPDP methods based on unimodal distri-
bution, BATM excels at capturing the multimodal distribu-
tion of code instances. Additionally, employing MDD not
only effectively aligns the distribution but also facilitates bet-
ter differentiation of defective instances. This paper posits
that this is a primary factor contributing to BATM’s superior
predictive performance. Through a detailed and comprehen-
sive observation of the experimental results, we can answer
RQ 1: Compared with the related CPDP method, the BATM
method achieves better prediction performance.

5.2. RQ2: How Do BATM Components Affect Its Prediction
Performance? To gain a deeper understanding of the impact
of various components on the model, we performed ablation

experiments to assess the performance effects of each com-
ponent in BATM. These components include handcrafted
features (HF), multilinear conditioning (MC), and the
MDD method. Specifically, NoHF represents a model that
does not utilize handcrafted features for training; No-MC
represents a model without multilinear conditioning, and
No-MDD represents a model without MDD.

As evident from Tables 7–9, the removal of any of these
components results in a significant drop in the defect predic-
tor’s performance. In terms of the F1 measure, BATM attains
an average performance of 0.533. In contrast, models without
handcrafted features (No-HF), withoutmultilinear condition-
ing (No-MC), and without maximum density divergence
(No-MDD) only achieve average performances of 0.489,
0.434, and 0.462, respectively. This represents perfor-
mance drops of 8.26%, 18.6%, and 13.3%, respectively.

1 2 3
1.0

0.8

0.6

0.4

0.2

0.0

0.534
0.493 0.488 0.488 0.486 0.483 0.482 0.458 0.454 0.445

BA
TM

D
PC

N
N

M
A
N
N

A
D
A

N
N
Fi
lte
r

TC
A

D
BN

TC
A
+ LR

TC
N
N

ðaÞ

1
1.0

0.9

0.8

0.7

0.6

0.5

0.4

2 3 4 5 6 7

0.714

0.649

0.566 0.549 0.547 0.540 0.538 0.528 0.517 0.516

BA
TM

M
A
N
N

D
PC

N
N

N
N
Fi
lte
r

TC
N
N

TC
A

TC
A
+

D
BN LR

A
D
A

ðbÞ

BA
TM

0.698

1 2 3
1.0

0.9

0.8

0.7

0.6

0.5

0.4

4 5

0.652

0.597 0.595 0.593
0.572 0.568 0.567 0.547 0.539

M
A
N
N

D
PC

N
N

N
N
Fi
lte
r

TC
N
N

TC
A

TC
A
+

D
BN LR

A
D
A

ðcÞ
FIGURE 4: Box plot of three evaluation indicators: (a) F1 measure on PROMISE dataset; (b) balanced accuracy on PROMISE dataset; (c) AUC
on PROMISE dataset.

IET Software 13

Concerning balanced accuracy, BATM achieves an average
performance of 0.714, while No-HF, No-MC, and No-
MDD achieve average performances of 0.677, 0.641, and
0.672, respectively. In terms of AUC measurement, BATM
attains an average performance of 0.698, whereas No-HF,
NoMC, and No-MDD only reach average performances of
0.652, 0.611, and 0.648, respectively. Figure 5 illustrates
the outstanding performance of BATM through a box plot.

The absence of handcrafted features leads to the loss of
crucial feature information. This hinders the model’s ability to
comprehensively learn reliable information, thereby impacting
the prediction performance. Without considering the aligned
multimodal distribution, regardless of the amount of informa-
tion the model learns, it may only capture noise. Consequently,
the No-MCmodel experiences themost significant performance
decrease compared to other ablation models. The omission of

the MDD method means that, even if the model captures the
multimodal distribution of the data, it cannot effectivelymeasure
distribution differences. Consequently, the model lacks the abil-
ity to gradually align these differences, resulting in a significant
decline in prediction performance.

Through these experiments, the necessity of combining
handcrafted features and employing a multilinear condition-
ing method based on MDD is verified. Through the above
discussion, we are able to answer RQ2: The components of
BATM contribute to its good prediction performance.

6. Discussions

In this section, we explore diverse issues related to the BATM
approach and discuss potential threats to the validity of
this work.

0.0

BA
TM

N
o-
M
D
D

N
o_

M
C

N
o_

H
F

1.0

0.8

0.6

0.4

0.2

0.533
0.489 0.462 0.434

1 2 3 4

ðaÞ

1.0

0.9

0.8

0.7

0.6

0.5

0.4

BA
TM

N
o-
M
D
D

N
o_

M
C

N
o_

H
F

0.714

1 2

0.677 0.672
0.641

ðbÞ

1.0

0.9

0.8

0.7

0.6

0.5

0.4

BA
TM

N
o-
M
D
D

N
o_

M
C

N
o_

H
F

0.698
0.655 0.648

0.610

1 2 3

ðcÞ
FIGURE 5: Box plot of three evaluation indicators in ablation experiments: (a) F1 measure; (b) balanced accuracy; (c) AUC.

14 IET Software

6.1. How Do the Parameter λ and the Number of Heads of
Attention Affect the Performance of the BATM? In this sec-
tion, we design correlation experiments to explore the effect
of the weight parameter λ of MDD and the number of heads
of the transformer on BATM.

For the weight parameter λ of the MDD, we vary the
value of λ within the range of {0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1, 1.5, 2}. Subsequently, we report the corresponding
experimental results. To achieve this, we perform 30 random
runs and present the average F1 measure, balanced accuracy,
and AUC for 110 CPDP task pairs. This paper selects the
parameter values through a comparison of model perfor-
mance under different values of the parameter λ. As depicted
in Figure 6(a), our proposed BATM method achieves opti-
mal results when λ is set to 0.01. Consequently, we adopt λ¼
0:01 for our experiments. It is noteworthy that 0.01 is a
relatively small value. The significance of MDD with mini-
mal weight may be questioned. In light of this concern, we
can examine cross-entropy or other entropy-related losses
alongside MDD losses. Notably, while entropy involves the
logarithm of the output, MDD loss is the sum of squared
distances. This leads us to guess that the absolute value of the
MDD loss may be considerably larger than the entropy-
related loss. Consequently, assigning a smaller weight to the
MDD loss guarantees that it is reweighted to the matching
magnitude as the entropy-related loss.

For the number of heads of the transformer, we varied it
within the range of {2, 4, 8, 16, 32, 64}. Then, we conducted
experiments on the PROMISE dataset and reported the
experimental results. As displayed in Figure 6(b), the model
performance is optimal when the number of attention heads
in the transformer is set to 16. If the number of attention
heads is too small, each head’s capacity to learn information
is limited, and it may not fully utilize the input sequence’s
information. Conversely, if the number of attention heads is

too large, especially with a small dataset like PROMISE, it
may lead to overfitting the training data and decreased gen-
eralization ability. In this study, setting the number of atten-
tion heads to 16 allows for both comprehensive learning of
the input sequence’s information and good generalization
ability. This is exactly why we decided to set the number of
heads of the transformer to 16.

6.2. Whether the Model Can Learn Useful Knowledge? In
deep learning, fluctuations in loss values signify the model’s
ability to progressively capture essential features and patterns
in the data. As illustrated in Figure 7, the line chart depicting
the change in loss value reveals a gradual decrease until it
plateaus. This observation indicates that our model effec-
tively learns valuable knowledge from the data in a gradual
manner until the algorithm reaches convergence. Hence, this

M
et

ric
s v

al
ue

s

0.50

0.55

0.60

0.65

0.70

0.45

0.40

0.35
0.001 0.005 0.01 0.05 0.1 0.5 1.51 2

Parameter values

F-measure
Balanced accuracy

AUC

ðaÞ

0.50

0.55

0.60

M
et

ric
s v

al
ue

s

0.65

0.70

0.45

0.40

0.35
2 4 8

Number of heads
16 32 64

F-measure
Balanced accuracy

AUC

ðbÞ
FIGURE 6: Model analysis on PROMISE: (a) the performance of BATM under different parameter values; (b) the performance of BATM under
different number of heads.

0 5

Lo
ss

10 15
Epoch

20 25 30

2.4

2.2

2.0

1.8

1.6

1.4

FIGURE 7: The change of loss value.

IET Software 15

article sets the default number of model iterations to 30. This
choice strikes a balance between ensuring that the model
acquires adequate knowledge and minimizing training time.

6.3. How Does BATM Work by Aligning Multimodal
Distributions? Addressing the issue raised concerning fea-
tures with multimodal distributions, we employ t-SNE for
visualizing distribution alignment [42]. t-SNE, a nonlinear
dimensionality reduction technique, aids in visualizing the
intricate structure of high-dimensional data. By observing
the clustering patterns in the t-SNE dimensionality reduction
space, we can gain insights into the approximate distribution
of the data. In the presence of a multimodal distribution, data
points are expected to be distributed across multiple clusters
in the reduced dimension space.

As depicted in Figure 8, the sample features of both the
source and target projects form two distinct irregular strip
clusters, with some less apparent clusters. This suggests that
their probability distribution exhibits at least two clear peaks,
indicating an overall appearance of amultimodal distribution.
Across continuous iterations from the first epoch to the 10th
and then to the 25th epoch, the clusters of source and target
project features gradually converge and overlap. This reflects
the progressive alignment of distributions between them.

By the 25th epoch, the feature clusters of the source and
target projects significantly overlap, signifying that their dis-
tributions have been effectively aligned. This observation
aligns with the conclusion drawn in Figure 7, indicating
that the algorithm reaches convergence after the 25th epoch.
In summary, BATM demonstrates reliability and effective-
ness in aligning the multimodal distributions of features
across different projects.

6.4. How Different Classifiers Affect the Performance of
BATM? In this subsection, we will discuss why the LR classi-
fier is chosen as the base classifier for BTAM. LR is a com-
monly used base classifier in CPDP, which is more stable and
less likely to overfit data when dealing with unbalanced and
small datasets. In order to verify the appropriateness of using
LR as a base classifier for BATM, we evaluate the impact of
different classifiers on the prediction performance of the
model. In addition to LR, we also chose four other classical
classifiers, including random forest (RF), K-nearest neighbor
(KNN), support vector machine (SVM), and naive Bayes
(NB). For RF, KNN, and SVM, we have utilized the common
defaults in CPDP, setting the number of decision trees for RF
to 100, the value of k for KNN to 5, and using the Gaussian
radial basis function as the kernel function for SVM.

In Figure 9, we can observe that the choice of different
base classifiers impacts the performance of BATM. When
comparing the results of the model on three evaluation
metrics using five different base classifiers, we find that LR
achieves the best performance in terms of F1 measure, bal-
anced accuracy, and AUC. SVM comes closest to LR in
terms of F1 measure but significantly lags behind in terms
of balanced accuracy and AUC. Additionally, RF and KNN
produce comparable results across all three evaluation
metrics, while NB is unable to compete with the remaining
four base classifiers on any of the three evaluation metrics.

To summarize, LR is more suitable as a base classifier
for BATM.

6.5. Threats to Validity. While the BATM method proposed
in this paper has shown commendable performance in the
CPDP task, it still exhibits the following limitations:

(i) During the experiment, due to the impracticality of
evaluating all possible parameter values, our explo-
ration was limited to the impact of some values of
the MDD weight parameter on the model perfor-
mance. However, it is conceivable that there might
be more optimal weight parameter values that could
result in improved prediction performance.

(ii) For models lacking open-source code, we meticu-
lously implemented them based on the information
provided in the respective papers. To ensure a fair
comparison, we employed uniform data preproces-
sing methods and an LR-based classifier. We also
took care to select 11 open-source projects from
the public benchmark dataset, retraining the models
for consistency. However, it is important to note
that our implementation may not comprehensively
capture all details of the baseline methods.

(iii) To better reveal the multimodal distribution features
of the joint features formed by semantic features and
handcrafted features, we deliberately chose 11 pro-
jects from the PROMISE benchmark dataset for our
experiments. However, it is crucial to note that the
11 open-source projects are exclusively coded in
Java. Applying our proposed approach to commer-
cial software projects or projects developed in vari-
ous programing languages may lead to diverse
outcomes. The efficacy of our proposed method
requires validation on more diverse datasets in
future investigations.

7. Conclusions

This paper proposes BATM, a novel CPDP model. BATM
effectively addresses the challenge of aligning multimodal
distributions between different projects. Initially, the project
source codes are parsed into ASTs to obtain token vectors,
which are then converted into integer vectors. Next, the trans-
former network is utilized to acquire semantic features, which
are then integrated with handcrafted features to form joint
features. Subsequently, the generator and classifier perform
adversarial training on the source projects. Afterward, the
classifier is used to classify the target projects and assign
pseudo-labels. Additionally, the uncertainty of the pseudo-
label is adjusted to enhance its accuracy. In short, multi-
linear conditioning is employed to capture the multimodal
distribution of sample features, and MDD is used to mea-
sure the distribution differences between projects. This pro-
cess aligns the distributions and maximizes the density
within the same category, ultimately improving the predic-
tion accuracy. Compared to nine other methods, BATM
shows improvements of at least 6.6%, 26.2%, and 14.6%

16 IET Software

in F1 metric, balanced accuracy, and AUC metric, respec-
tively. BATM also outperforms other methods on most
target projects, indicating its exceptional prediction accu-
racy and generalization capability.

While the method we propose has shown effective per-
formance in the CPDP task, there is still potential for
enhancement. Moving forward, we intend to augment the
size and diversity of the dataset to mitigate the influence of

Source
Target

ðaÞ

Source
Target

ðbÞ

Source
Target

ðcÞ
FIGURE 8: Alignment effect of multimodal distributions between projects at the first iteration (a), the 10th iteration (b), and the 25th iteration
(c). Considering the Poi->Camel task pair as an example, with Poi serving as the source project and represented by orange dots, illustrating
the sample features within the project. On the other hand, Camel is designated as the target project, and its sample features are depicted by
green dots.

IET Software 17

the model performance. Additionally, we plan to implement
more suitable sampling techniques and data augmentation
strategies, especially for source projects with class imbalance
or small sample sizes. This is to further improve the model’s
predictive accuracy.

Data Availability

The PROMISE dataset we use can be accessed at https://doi.
org/10.1145/1868328.1868342. The implementation of the
proposed BATM model is available from the corresponding
author upon a reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest in
this work.

References

[1] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to
software defect prediction,” IET Software, vol. 12, no. 3,
pp. 161–175, 2018.

[2] L. C. Briand, W. L. Melo, and J. Wust, “Assessing the
applicability of fault-proneness models across object-oriented
software projects,” IEEE Transactions on Software Engineering,
vol. 28, no. 7, pp. 706–720, 2002.

[3] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy, “Cross-project defect prediction: a large scale
experiment on data vs. domain vs. process,” in Proceedings of
the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, pp. 91–100, Association
for Computing Machinery, Amsterdam, The Netherlands,
2009, August.

[4] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE
Transactions on Knowledge and Data Engineering, vol. 22,
no. 10, pp. 1345–1359, 2010.

[5] S. Qiu, H. Xu, J. Deng, S. Jiang, and L. Lu, “Transfer
convolutional neural network for cross-project defect

prediction,” Applied Sciences, vol. 9, no. 13, Article ID 2660,
2019.

[6] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature
learning for software defect prediction,” IEEE Transactions on
Software Engineering, vol. 46, no. 12, pp. 1267–1293, 2020.

[7] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel,
B. Schölkopf, and A. J. Smola, “Integrating structured
biological data by kernel maximum mean discrepancy,”
Bioinformatics, vol. 22, no. 14, pp. e49–e57, 2006.

[8] Y. Xing, X. Qian, Y. Guan, B. Yang, and Y. Zhang, “Cross-
project defect prediction based on G-LSTM model,” Pattern
Recognition Letters, vol. 160, pp. 50–57, 2022.

[9] Z. Zhang, C. Jiang, X. Han, and X. X. Ruan, “A high-precision
probabilistic uncertainty propagation method for problems
involving multimodal distributions,” Mechanical Systems and
Signal Processing, vol. 126, pp. 21–41, 2019.

[10] A. T. Nguyen and T. N. Nguyen, “Graph-based statistical
language model for code,” in 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering, pp. 858–
868, IEEE, Florence, Italy, 2015, May.

[11] C. Liu, W. Sun, W. Chao, and W. Che, “Convolution neural
network for relation extraction,” in International Conference
on Advanced Data Mining and Applications, pp. 231–242,
Springer, Berlin, Heidelberg, 2013, December.

[12] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction
via convolutional neural network,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS),
pp. 318–328, IEEE, Prague, Czech Republic, 2017, July.

[13] Y. Ma, G. Luo, X. Zeng, and A. Chen, “Transfer learning for
cross-company software defect prediction,” Information and
Software Technology, vol. 54, no. 3, pp. 248–256, 2012.

[14] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang, “Domain
adaptation via transfer component analysis,” IEEE Transac-
tions on Neural Networks, vol. 22, no. 2, pp. 199–210, 2011.

[15] J. Nam, S. J. Pan, and S. Kim, “Transfer defect learning,” in 2013
35th International Conference on Software Engineering (ICSE),
pp. 382–391, IEEE, San Francisco, CA, USA, 2013, May.

[16] Q. Zou, L. Lu, Z. Yang, X. Gu, and S. Qiu, “Joint feature
representation learning and progressive distribution matching
for cross-project defect prediction,” Information and Software
Technology, vol. 137, Article ID 106588, 2021.

[17] Q. Huang, L. Ma, S. Jiang et al., “A cross-project defect
prediction method based on multi-adaptation and nuclear
norm,” IET Software, vol. 16, no. 2, pp. 200–213, 2022.

[18] S. Tang, S. Huang, C. Zheng, E. Liu, C. Zong, and Y. Ding, “A
novel cross-project software defect prediction algorithm based
on transfer learning,” Tsinghua Science and Technology,
vol. 27, no. 1, pp. 41–57, 2022.

[19] T. Cheng, K. Zhao, S. Sun, M. Mateen, and J. Wen, “Effort-
aware cross-project just-in-time defect prediction framework
for mobile apps,” Frontiers of Computer Science, vol. 16,
Article ID 166207, 2022.

[20] H. Song, G.Wu, L.Ma, Y. Pan,Q.Huang, and S. Jiang, “Adversarial
domain adaptation for cross-project defect prediction,” Empirical
Software Engineering, vol. 28, Article ID 127, 2023.

[21] J. Deng, L. Lu, and S. Qiu, “Software defect prediction via
LSTM,” IET Software, vol. 14, no. 4, pp. 443–450, 2020.

[22] J. Huang, X. Guan, and S. Li, “Software defect prediction
model based on attention mechanism,” in 2021 International
Conference on Computer Engineering and Application
(ICCEA), pp. 338–345, IEEE, Kunming, China, 2021, June.

[23] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” in Advances in Neural Information Processing Systems,
vol. 30, Curran Associates, Inc., 2017.

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

LR RF KNN SVM NB
F1

BA
AUC

FIGURE 9: Experimental results of BATM using different base classi-
fiers on PROMISE for F1 measure (F1); balanced accuracy (BA) and
AUC.

18 IET Software

https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342
https://doi.org/10.1145/1868328.1868342

[24] L. Song, J. Huang, A. Smola, and K. Fukumizu, “Hilbert space
embeddings of conditional distributions with applications to
dynamical systems,” in Proceedings of the 26th Annual
International Conference on Machine Learning, pp. 961–968,
Association for Computing Machinery, Montreal, Quebec,
Canada, 2009, June.

[25] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” inAdvances in Neural Information Processing Systems,
vol. 20, Curran Associates, Inc., 2007.

[26] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional
adversarial domain adaptation,” in Proceedings of the 32nd
International Conference on Neural Information Processing
Systems, pp. 1647–1657, Curran Associates Inc., 2018,
December.

[27] P. Kar and H. Karnick, “Random feature maps for dot product
kernels,” in Proceedings of the Fifteenth International Conference
on Artificial Intelligence and Statistics, pp. 583–591, PMLR, 2012,
March.

[28] J. Li, E. Chen, Z. Ding, L. Zhu, K. Lu, and H. T. Shen,
“Maximum density divergence for domain adaptation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 11, pp. 3918–3930, 2021.

[29] Y. Ding, L. Sheng, J. Liang, A. Zheng, and R. He, “ProxyMix:
proxy-based mixup training with label refinery for source-free
domain adaptation,” Neural Networks, vol. 167, pp. 92–103,
2023.

[30] Z. Zheng and Y. Yang, “Rectifying pseudo label learning via
uncertainty estimation for domain adaptive semantic segmenta-
tion,” International Journal of Computer Vision, vol. 129, no. 4,
pp. 1106–1120, 2021.

[31] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza et al., “Genera-
tive adversarial nets,” in Advances in Neural Information
Processing Systems, vol. 27, Curran Associates, Inc., 2014.

[32] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” 2014.

[33] M. Jureczko and L. Madeyski, “Towards identifying software
project clusters with regard to defect prediction,” in
Proceedings of the 6th International Conference on Predictive
Models in Software Engineering, pp. 1–10, Association for
Computing Machinery, 2010, September.

[34] S. R. Chidamber and C. F. Kemerer, “Ametrics suite for object
oriented design,” IEEE Transactions on Software Engineering,
vol. 20, no. 6, pp. 476–493, 1994.

[35] J. Bansiya and C. G. Davis, “A hierarchical model for object-
oriented design quality assessment,” IEEE Transactions on
Software Engineering, vol. 28, no. 1, pp. 4–17, 2002.

[36] R. Martin, “OO design quality metrics,” An Analysis of
Dependencies, vol. 12, no. 1, pp. 151–170, 1994.

[37] T. J. McCabe, “A complexity measure,” IEEE Transactions on
Software Engineering, vol. SE-2, no. 4, pp. 308–320, 1976.

[38] J. Huang and C. X. Ling, “Using AUC and accuracy in evaluating
learning algorithms,” IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 3, pp. 299–310, 2005.

[39] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the
relative value of cross-company and within-company data for
defect prediction,” Empirical Software Engineering, vol. 14,
pp. 540–578, 2009.

[40] H. He and E. A. Garcia, “Learning from imbalanced data,”
IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 9, pp. 1263–1284, 2009.

[41] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “An empirical comparison of model validation
techniques for defect prediction models,” IEEE Transactions
on Software Engineering, vol. 43, no. 1, pp. 1–18, 2017.

[42] L. Van der Maaten and G. Hinton, “Visualizing data using
t-SNE,” Journal of Machine Learning Research, vol. 9, no. 11,
2008.

IET Software 19

