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Machine learning-based software defect prediction (SDP) approaches have been commonly proposed to help to deliver high-quality
software. Unfortunately, all the previous research conducted without effective feature reduction suffers from high-dimensional data,
leading to unsatisfactory prediction performance measures. Moreover, without proper feature reduction, the interpretability and
generalization ability of machine learning models in SDP may be compromised, hindering their practical utility in diverse software
development environments. In this paper, an SDP approach using deep Q-learning network (DQN)-based feature extraction is
proposed to eliminate irrelevant, redundant, and noisy features and improve the classification performance. In the data preproces-
sing phase, the undersampling method of BalanceCascade is applied to divide the original datasets. As the first step of feature
extraction, the weight ranking of all the metric elements is calculated according to the expected cross-entropy. Then, the relation
matrix is constructed by applying random matrix theory. After that, the reward principle is defined for computing the Q value of
Q-learning based on weight ranking, relation matrix, and the number of errors, according to which a convolutional neural network
model is trained on datasets until the sequences of metric pairs are generated for all datasets acting as the revised feature set. Various
experiments have been conducted on 11 NASA and 11 PROMISE repository datasets. Sensitive analysis experiments show that
binary classification algorithms based on SDP approaches using the DQN-based feature extraction outperform those without using
it. We also conducted experiments to compare our approach with four state-of-the-art approaches on common datasets, which show
that our approach is superior to these methods in precision, F-measure, area under receiver operating characteristics curve, and
Matthews correlation coefficient values.

1. Introduction

Software quality has become a critical issue in the software
engineering life cycle due to the increasing scale and com-
plexity of modern software. Software defect prediction (SDP)
is a technique used to anticipate which parts of a software
system are likely to contain faults or errors [1], plays a vital
role in minimizing extensive testing efforts and contributes
to the delivery of a top-notch software system by pinpointing
potential areas for improvement and error reduction [2, 3, 4].

Among various technologies of SDP, statistical techni-
ques, machine learning methods, and DL architecture-based
[5] approaches are absorbing more and more attention of

researchers. Many researchers have formed training samples
by extracting the software metrics and used Naive Bayes [6],
support vector machine (SVM) [7], expectation-maximization
clustering techniques [8], regression trees [9], and so on to
conduct SDP. However, too many introductions of complexity
metric attributes suffer from high-dimensional data. Further-
more, neglecting adequate feature reduction can weaken the
interpretability and generalization capacity of machine learning
models employed in SDP tasks. Therefore, effective feature
reduction has now become one of the most prominent research
areas of machine learning and DL-based SDP approaches.

Feature selection and feature extraction [10] are two
typical approaches for addressing the high-dimensionality
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problem and achieving a more accurate and robust perfor-
mance when analyzing large and highly dimensional defect
data. Feature extraction is a technique to eliminate redun-
dant and irrelevant features by developing a transformation
from a high-dimensionality space to another space, preserving
most of the relevant information between different features.

On the other hand, deep reinforcement learning (RL)
[11] combines the representational learning power of DL
[12] with existing RL [13] methods and has played a crucial
role in various fields, such as autonomous vehicle control,
natural language processing, healthcare, and so on in the past
decade. Deep RL fundamentally revolves around the concept
of agents learning to make decisions through trial-and-error
interactions within their environment, guided by a system of
rewards. In particular, the deep Q-learning network (DQN)
[14, 15], as a typical deep RL algorithm, constructs a Q-value
table to select the optimal strategy, enabling the resolution of
large-scale and intricate real-world challenges, such as the
refinement of noisy data and the enhancement of features for
classification problems.

DL has the ability of successfully processing high-
dimensional information, while RL is good at performing
continuous decision tasks in complex environments. Effective
feature extraction needs to continuously select the most impor-
tant feature subset for classification tasks according to data
samples. This requirement is consistent to the application
background of DL and RL. So, we try to apply DQN, a typical
deep RL model, to conduct feature extraction and further
cross-project SDP. The experimental results show the effec-
tiveness of SDP using DQN-based feature extraction (see
Sections 6.4 and 6.5).

With the consideration of preserving the relationship among
the features, revealing dependence between one another of
each metric pair, and leverage the capability of deep RL, this
paper proposes an SDP approach using DQN-based feature
extraction. In our approach, instead of selecting a subset of the
original feature set, we construct a sequence of metric pairs
(SMP) acting as the revised feature set to improve the perfor-
mance of the SDP. As the first step of feature extraction, the
weight ranking of all the metric elements is calculated accord-
ing to the expected cross-entropy (ECE) for solving the over-
fitting problem. Then, the relation matrix is constructed by
applying random matrix theory (RMT) [16] to explore the
relation degree of metric elements. After that, the reward
principle is defined for computing Q value of Q-learning
based on weight rank, relationmatrix, and error label, accord-
ing to which a convolutional neural network (CNN) [17]
model is trained on data sets in order to optimize the param-
eters of the CNN. The DQN algorithm integrates CNNs to
construct a Q-value network, facilitating effective RL in com-
plex, high-dimensional, and continuous state and action spaces.
This network serves as the foundation for DQN’s objective
function, optimizing the CNN model iteratively to achieve
efficient Q-learning. As the output of CNN, the SMP acts as
the revised feature set, which is used by binary classification
classifiers to predict software defects.

In addition, class imbalance [18], happening when the
distribution of software defect data is highly skewed, widely

influences the performance of SDP and always leads to unsat-
isfied results. In our study, we have used 11 NASA and 11
PROMISE repository datasets [19] in our experiments. In
most of these defect datasets, the total number of positive
classes (defective module) of data is far less than the total
number of negative classes (nondefective module) of data.
The most prevalent method to overcome imbalanced data-
sets of the software projects is sampling, in which the sam-
ples from majority classes are reduced (undersampling) or
some synthetic samples are added to minority classes (over-
sampling). In this paper, the undersampling algorithm Bal-
anceCascade [20], dividing majority classes into groups, is
applied to address this problem. BalanceCascade is a method
for handling imbalanced datasets by repeatedly performing
random undersampling and training to balance the dataset.
This approach can help alleviate training issues with DQN on
imbalanced datasets. By dynamically adjusting the balance of
the dataset in each training iteration, BalanceCascade ensures
that each class’s samples are adequately represented, thereby
preventing the model from overly relying on minority class
samples.

To assess the proposed DQN-based feature extraction
(DQN-FE-SDP) approach, we explore the following four
research questions (RQs):

RQ-1. How does feature ordering based on ECE remove
nonphasic features?

RQ-2. How can we find the interrelated features and
leverage the relation between features to generate
the SMP?

RQ-3. Does the binary classification algorithm-based SDP
using DQN have better performance comparing
with those without using DQN?

RQ-4. Does the DQN-FE-SDP approach have better per-
formance comparing with other state-of-the-art
SDP approaches?

RQ-5. Does the feature extraction algorithm based on
DQN outperform four state-of-the-art feature selec-
tion approaches in SDP?

The main contributions of this paper include the follow-
ing aspects:

(1) We have proposed a binary classification algorithm-
basedmachine learning approach using a DQN-based
feature extraction framework for software defects
prediction.

(2) A weight ranking algorithm based on ECE is provided
to calculate the importance of different metrics and
remove various redundant and irrelevant features.

(3) An RMT-based relation matrix construction model is
presented to obtain the relationship between each of
two different metric elements.

(4) A deep RL model, DQN, combining Q-learning and
CNN is suggested to intelligently and dynamically
generate the SMP for each dataset acting as a revised
feature set, so that the precision, F-measure, the area
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under the receiver operating characteristics curve
(AUC), and Matthews correlation coefficient (MCC)
values of SDP are obviously improved when binary
classification classifiers work on it.

(5) The proposed work outperforms three state-of-the-
art SDP methods in terms of the performance of pre-
cision, F-measure, AUC, and MCC values.

The structure of this paper is as follows: In Section 2, we
summarize the related work. In Section 3, the datasets of
NASA and PROMISE repository, and software metric ele-
ments used as features are introduced. In Section 4, the whole
methodology is illustrated. In Section 5, the performance
measures of SDP are introduced. In Section 6, experiment
results are discussed. In Section 8, we conclude this work
and indicate future work.

2. Related Work

A large body of research has been conducted to turn learning-
based SDP into a practical approach and described in the
literature. Most of the approaches follow the procedure of
sampling, optimizing datasets, and training and classification.
Besides, many public datasets are created to train, predict, and
evaluate the performance of SDP. In this section, we describe
the most relevant research from five areas.

2.1. Machine Learning-Based SDP Methods. Many successful
algorithms on SDP have been designed by applying machine
learning algorithms, such as Naive Bayes [6], SVM [7], ran-
dom forest [21], and so on. Bouguila et al. [22] introduced an
unsupervised Bayesian algorithm based on finite Dirichlet
mixtures employed to software prediction by categorizing
modules into fault-prone and non-fault-prone. Kumar et al.
[23] developed a fault prediction model by employing the
least squares SVM (LSSVM) learning approach, which utilizes
linear, polynomial, and radial basis function kernel functions.
Khoshgoftaar and Seliya [9] presented a case study from their
comprehensive evaluation of available regression-tree algorithms
for software fault prediction. Wang et al. [24] conducted a
comparative study of various ensemble methods with the
perspective of taxonomy and concluded that voting and
random forest have obvious performance superiority than
others in all seven ensemble methods evolved. Zheng [25]
studied three cost-sensitive boosting algorithms, one based
on threshold-moving and two based on weight-updating,
to boost neural networks for SDP. Owhadi-Kareshk et al. [26]
suggested implementing a pretraining approach for an artificial
neural network with a shallower architecture, which involves
fewer hidden layers. Mahaweerawat et al. [27] introduced
a fault prediction model employing supervised learning
through a multilayer perceptron neural network. Following
the classification results, classes with faults underwent in-
depth analysis and were categorized based on specific fault
types. This classification model was built upon clustering
techniques utilizing the radial-basis function neural network.

Although the aforementioned methods have achieved
some success in SDP, they exhibit certain limitations and
shortcomings that warrant further consideration in ongoing

research. First, certain traditional machine learning algo-
rithms, such as Naive Bayes, SVMs, and random forest, while
widely applied, may encounter performance bottlenecks when
dealing with large-scale and high-dimensional data. Addi-
tionally, the effectiveness and accuracy of the unsupervised
Bayesian algorithm introduced by Nizar Bouguila, based on
finite Dirichlet mixtures for module classification, require
further validation in practical applications. In the case of
the LSSVM, as studied by Kumar [23], the impact of kernel
function selection on the model’s performance is highlighted.
Furthermore, the evaluation of regression tree algorithms in
the literature indicates that, despite their achievements in
SDP, their adaptability to different datasets and features
remains a subject requiring in-depth investigation. Concern-
ing ensemblemethods, althoughWang’s research suggests the
superiority of voting and random forest among seven ensemble
methods, the optimal choice for specific problems still merits
further exploration. Additionally, Jun’s three cost-sensitive
boosting algorithms demand more empirical research to
ascertain their robustness and performance across diverse
application scenarios. In summary, despite significant prog-
ress, current SDP methods face challenges in handling large-
scale, high-dimensional data and achieving generalization
across diverse problem domains. Addressing these challenges
necessitates further in-depth research and refinement of exist-
ing approaches.

2.2. DL in SDP. In response to the limitations of handcrafted
features in achieving accurate SDP, several DL-based approaches
have emerged. These methods aim to uncover intricate semantic
and structural characteristics embedded within source code.
They achieve this by extracting features from token vectors
derived from program abstract syntax trees (ASTs), which are
then utilized by classifiers to build robust SDP models. Viet
Phan et al. [28] propose a novel approach that harnesses
precise graphs representing program execution flows, leverag-
ing deep neural networks to automatically capture defect-
related features. Lu et al. [29] employ a deep belief network
SDP model, utilizing deep belief nets composed of multilayer
restricted Boltzmann machines to extract data features in a
comprehensive manner. Albahli [30] devises an ensemble
classifier that combines the outputs of three individual classifiers
(random forest, XGBoost, multilayer perceptron) to create an
efficient and state-of-the-art prediction model. However, it is
worth noting that less emphasis is placed on examining the
relationships between different software metrics in this
approach.

In addressing the limitations associated with handcrafted
features for accurate SDP, several DL-based approaches have
been introduced. These methodologies strive to unveil intri-
cate semantic and structural characteristics embedded within
source code, primarily by extracting features from token
vectors derived from program ASTs. While these techniques
have shown promise, they are not without their shortcom-
ings. One notable limitation lies in the method proposed by
Viet Phan et al. [28], which utilizes precise graphs represent-
ing program execution flows [31]. Although this approach
leverages deep neural networks to automatically capture
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defect-related features, it may face challenges in scalability
and generalization across diverse codebases due to the intri-
cacies involved in accurately representing program execution
flows. The approach employed by Lu et al. [29], utilizing a
deep belief network for SDP, relies on multilayer restricted
Boltzmann machines to comprehensively extract data fea-
tures. However, the effectiveness of this model may be hin-
dered by the potential overfitting to specific datasets and the
inherent complexity of interpreting the learned representa-
tions, which could impede the model’s transparency and
interpretability. Albahli [30] ensemble classifier, combining
outputs from random forest, XGBoost, and multilayer percep-
tron, represents a state-of-the-art prediction model. Neverthe-
less, the approach exhibits a notable drawback in its relative
neglect of exploring the relationships between different soft-
ware metrics. This omission may limit the model’s ability to
discern nuanced interdependencies among various metrics,
potentially hindering its capacity to provide comprehensive
defect predictions. In conclusion, while these DL-based
approaches demonstrate advancements in SDP, they are not
immune to challenges. Addressing these limitations is crucial
for enhancing the robustness, scalability, and interpretability
of such models, ultimately contributing to the continued evo-
lution of effective SDP methodologies.

2.3. Feature Selection in SDP. Feature selection is also called
feature subset selection or attribute selection. It refers to the
selection of N features from the existing M features to opti-
mize the performance of the system. At present, feature
selection methods include term frequency [32], information
gain (IG) [33], mutual information (MI) [34], statistics [35],
cross-entropy [36], text weight of evidence [37], and so on.
Khoshgoftaar and Seliya [9] used 16 software datasets to
examine seven filter-based feature selection techniques for
comparison, including chi-square (CS), IG, gain ratio, sym-
metric uncertainty (SU), Relief with two variables (RF and
RFW) and signal-to-noise ratio [18]. In the research con-
ducted by Ali et al. [38], they employed a predictive model
that combines cost-sensitive logistic regression and decision
tree ensemble methods. Their objective was to identify the
most effective features for achieving precise defect prediction
in software components. Meanwhile, Priyadarshini et al. [39]
conducted a systematic examination of 12 automated feature
selection techniques, considering factors such as consistency,
correlation, performance, computational cost, and their impact
on interpretability. The experimental outcomes revealed var-
iations in the results across different feature selectionmethods
and highlighted that the resulting subset of metrics included
highly correlated measures [40].

Feature selection is crucial in SDP, but current methods
have limitations. Fixed filter methods, lack of diversity due
to feature correlation, high computational costs, inadequate
handling of nonlinear relationships, and sensitivity to noise
restrict their practical effectiveness [39]. Future research
should focus on overcoming these limitations by combining
methods, incorporating domain knowledge, or developing
new algorithms to enhance robustness and applicability.

Careful consideration of method performance in specific
contexts is crucial when selecting feature selection methods.

2.4. Feature Extraction in SDP. Few feature extraction studies
have been conducted on SDP over the past two decades.
Pandey et al. [41] applied K-PCA to remove various redun-
dant and irrelevant features and achieved satisfactory results.
Linear discriminant analysis (LDA) [42] is a feature extrac-
tion method based on class label information of training
samples aiming at maximizing the between-class scatter
while simultaneously minimizing the within-class scatter.
Malhotra and Khan [43] combined the principal component
analysis (PCA), LDA, and kernel-based PCA with SVM to
build a SDP model. Mahalanobis distance metric learning
(MDML) is another feature extraction method based on
pairwise cannot-link constraints (CC) and must-link con-
straints. The CC set is composed of the pairwise data that
belong to the same class, and the must-link constraint set
consists of pairwise data with heterogeneous class labels.
Based on MDML, Xiang et al. [44] took advantage of the
Mahalanobis learning matrix to maximize total distance in
CC’s pairwise and minimize total distance in must-link con-
straint’s pairwise. MDML was also utilized in the works of
NezhadShokouhi et al. [45] over the NASA datasets to over-
come high-dimensional imbalanced problems. In a recent
study conducted by Zhang et al. [46], they utilized an inno-
vative deep neural network known as SSDAE. This network
was employed to extract a set of novel combined features that
excel in capturing robust deep semantic feature representations
while eliminating irrelevant or redundant features within
software projects.

However, despite the achievements of these feature extrac-
tion methods in SDP, there are still some limitations. First,
the computational complexity of methods like K-PCA and
MDML may increase with the scale of the dataset, limiting
their practical application in large-scale software projects.
Second, some methods rely on specific constraint condi-
tions, which may make them less flexible for different types
of data or problems. Additionally, although SSDAE has
proven to be effective in extracting deep semantic features,
its computational overhead may be relatively high, necessitat-
ing consideration in resource-constrained environments.
Future research could focus on optimizing these feature extrac-
tion methods to improve their efficiency and applicability,
taking into account the requirements of different application
scenarios.

3. Datasets and Metrics

To predict software defects and evaluate the proposed DQN-
FE-SDP, we selected 22 datasets from different open projects
in the PROMISE repository and the NASA Metrics Data
Program (MDP). The NASAMDP dataset used in this article
is a cleaned version, from which all noise and dirty data have
been removed. This data-cleaning process consists of two
main parts: case handling and feature handling. In case han-
dling, implausible or conflicting feature value cases are first
identified and removed, followed by the elimination of
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identical or inconsistent cases that may pose problems due to
cross-validation strategies. In feature handling, cases with
missing values are removed, and features that are constant
or identical across the dataset are eliminated to improve the
predictive performance of the model [47]. They are exten-
sively adopted in previous empirical studies, and more than
20 studies show the representative and diversity of these two
datasets [43].

3.1. Datasets. We have used 11 NASA MDP and 11 PROMISE
repository datasets in our experiments listed in Table 1, in which
CM1, JM1, KC1, MC1, MC2, MW1, PC1, PC2, PC3, PC4, and
PC5 are from NASA MDP repository, and ant-1.7, tomcat,
xalan-2.4, xalan-2.5, xalan-2.6, camel, synampe, velocity1.6,
xerces-1.4, prop-6, and poi-3.0 are from PROMISE repository.
It is obvious that the defect rates of most datasets are rather low,
especially those of MC1, PC1, PC2, tomcat, and camel, which
could cause a class imbalance problem. The strategy for
optimizing class-imbalanced datasets will be described in
Section 4.2.

3.2. The Software Metrics of NASA and PROMISE. A large
amount of original software complexity measurements are
adapted as features of SDP datasets, such as Chidamber and
Kemerer’s object-oriented metrics, McCabe metrics, Halstead’s
complexity metrics, and lines of code (LOC). The datasets of
NASA consist of a total of 40 features such as the LOC, counts of
a blank line, number of operators and operands, design com-
plexity, essential complexity, etc., shown in Table 2. Following
the traditional learning-based SDP, we adapt software complex-
ity measurements as features and call them metric elements in

this paper. We assigned a number to each metric element for
reference when we explored the interrelation of them based on
specific datasets in experiments (see Section 6.3).

The datasets of PROMISE include 20 metric elements
such as depth of inheritance tree, cohesion among methods
of class, and number of publicmethods, etc., shown in Table 3.
We also assigned an order number to each metric element for
reference when we explored the interrelation between them
based on specific datasets in experiments (see Section 6.3).

4. Methodology

4.1. Approach Overview. Figure 1 depicts a high-level over-
view of DQN-FE, which is comprised of five major compo-
nents, including preprocessing of datasets, ranking of metric
elements, relation matrix construction, SMP determination,
and training and classification, which are listed as follows:

(i) Preprocessing of datasets: BalanceCascade sampling
technique is applied to split the majority class into
smaller modules so that the optimal datasets are
obtained and the positive classes and negative clas-
ses have equal quantity.

(ii) Metric elements ranking: ECE is adapted to calculate
and rank the weight of metric elements in order to
solve the overfitting problem.

(iii) Relationmatrix construction: relationmatrix is defined
based on RMT to explore the relation degree of metric
elements expressed as relation coefficient.

(iv) SMP determination: the combination of ranking of
each individual metric elements and relation matrix
representing the relation degree among them is used
as a reward to optimize a CNN for obtaining SMP.

(v) Training and classification: decision tree, SVM, and
K-nearest neighbor (KNN) are utilized on 11 NASA
and 11 PROMISE datasets to train and classify, which
are separated into two categories: train set (80%) and
test set (20%).

4.2. Class Imbalance-Oriented Preprocessing of Datasets. The
fact that the positive data in many datasets is less than 10% of
the total data, such as PC2 and MC1, leads to a class imbal-
ance problem, which could result in the unsatisfactory out-
put of the training model.

We apply the BalanceCascade [20], which is a supervised
learning method based on the Adaboost [48] algorithm and
takes it as the base classifier. BalanceCascade is an under-
sampling method that divides a dataset into several subda-
tasets so that the number of positive classes is equal to that of
negative classes in each subdatasets.

In each round of the loop, an AdaBoost classifier is
trained by using the training set with the same number of
majority classes and minority classes. Then, the classifier is
used to decide the subdataset of majority classes, which could
combine with minority classes as a new dataset, by control-
ling the false positive (FP) rate. After deleting the subdataset
from majority classes, BalanceCascade reduces the quantity

TABLE 1: NASA and PROMISE datasets.

Datasets No. of metrics No. of data Defect rate (%)

CM1 38 344 12.209
JM1 22 9,591 18.340
KC1 22 2,095 15.513
MC1 39 8,737 2.778
MC2 40 125 35.2
MW1 38 263 10.266
PC1 38 735 8.299
PC2 37 1,493 1.072
PC3 38 1,099 12.557
PC4 39 1,378 12.980
PC5 39 16,962 2.960
ant-1.7 20 745 22.28
tomcat 20 848 8.97
xalan-2.4 20 723 12.21
xalan-2.5 20 803 48.19
xalan-2.6 20 885 46.44
camel 20 339 3.8
synampe 20 256 33.59
velocity-1.6 20 229 34.06
xerces-1.4 20 588 74.31
prop-6 20 660 10
poi-3.0 20 442 63.57
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TABLE 2: Software metrics of NASA datasets.

1. LOC BLANK 2. DESIGN DENSITY 3. HALSTEAD LEVEL
4. BRANCH COUNT 5. DESIGN COMPLEXITY 6. HALSTEAD PROG TIME
7. CALL PAIRS 8. EDGN COUNT 9. HALSTEAD VOLUME
10. LOC CODE AND COMMENT 11. ESSENTIAL COMPLEXITY 12. MAINTENANCE SEVERITY
13. LOC COMMENTS 14. ESSENTIAL DENSITY 15. DEFECTIVE
16. CONDITION COUNT 17. LOC EXECUTABLE 18. MULTIPLE CONDITION COUNT
19. HALSTEAD EFFORT 20. PARAMETER COUNT 21. NUM OPERATORS
22. CYCLONATIC DENSITY 23. GLOBAL DATA COMPLEXITY 24. NUM UNIQUE OPERANDS
25. DECISION COUNT 26. GLOBAL DATA DENSITY 27. NUM UNIQUE OPERTORS
28. DECISION DENSITY 29. HALSTEAD EFFORT 30. NUMBER OF LINES
31. HALSTEAD DIFFICULTY 32. NODE COUNT 33. PERCENT COMMENTS
34. CYCLONATIC COMPLEXITY 35. NORMALIZED CYLOMATIC COMPLEXITY 36. LOC TOTAL
37. HALSTEAD ERROR EST 38. NUM OPERANDS 39. MODIFIED CONDITION COUNT
40. HALSTEAD LENGTH

TABLE 3: Software metrics of PROMISE datasets.

1. Afferent couplings 2. Coupling between methods 3. Inheritance coupling
4. Measure of functional abstraction 5. LOCM3 6. Data access metric
7. Arithmetic mean value of cyclomatic complexity 8. Lines of code 9. Number of children
10. Cohesion among methods of class 11. Lack of cohesion in methods 12. Number of public methods
13. Depth of inheritance tree 14. Efferent couplings 15. Average method complexity
16. Coupling between object classes 17. Response for a class 18. Measure of aggregation
19. Greatest value of CC (Max_CC) 20. Weighted methods per class
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FIGURE 1: A high-level overview of DQN-FE-SDP.

6 IET Software



of data in majority classes. At the same time, the classifier is
optimized. By repeating the above procedure, the quantity of
data in majority classes is kept being decreased until it equals
to the quantity of data of minority classes, and the goal
classifier is obtained. Algorithm 1 shows the detailed process
of BalanceCascade.

The mathematical model of BalanceCascade is shown in
Formula (1):

H xð Þ ¼ sgn ∑
T

i¼1
∑
si

j¼1
αi;jhi;j xð Þ − ∑

T

i¼1
θi

 !
; ð1Þ

where T is the number of subsets extracted frommajority class,
hi;j (x) is the based classifier, the parameter θi is the coefficient
for controlling the FP rate, αi;j is the weight of hi;j (x).

The datasets preprocessing algorithm based on Balance-
Cascade is described in Algorithm 1. Based on the Balance-
Cascade, we have divided 22 datasets into 209 datasets, each
of which includes positive classes and negative classes with
equal quantity. We have also considered oversampling meth-
ods, such as Random oversampling [49] and so on. However,
experiments show that oversampling methods generate low-
quality classes, leading to unsatisfactory performance on
practical datasets.

4.3. Ranking of Metric Elements Based on ECE. ECE [50],
which is also called KL distance, has been widely used in
feature selection of text classification. Compared with the
IG, ECE improves the efficiency of classification by ignoring
the seldom-appearing features and eliminating their interfer-
ence. It measures the importance of a metric element in a
software defect dataset. In the feature selection of SDP, the
ECE can be used to reflect the probability distribution of
whether there is a defect. The mathematical model of ECE
is shown in Formula (2):

ECE tð Þ ¼ P tð Þ∑
cj j

i¼1
P ci∣tð Þ log P ci∣tð Þ

P cið Þ : ð2Þ

We define P(t) as the probability associated with a metric
element, where P(ci) represents the probability that a data
point belongs to class ci (which includes both positive and
negative classes). P(ci|t) denotes the probability that metric
element t is associated with class ci. The symbol |c| is used to
denote the total number of classes across both categories.
When P(ci|t) is significantly higher than the corresponding
P(ci), it indicates a strong correlation between metric ele-
ment t and the specific category ci.

As shown in Tables 2 and 3, each dataset contains more
than 20metric elements, and the degree of correlation between
some of the metric elements is relatively high. Suppose that the
setC is the metric element set of a dataset, expressed asC= {c1,
c2,…, ck}. F indicates the candidate feature subset, denoted as
F= {f1, f2,…, fm} and S represents the feature set that has been
selected or determined, denoted as S= {s1, s2,…, sn}, f and s are
the elements in the set F and S, respectively. For each candidate
metric element f in F, the ECE ( f ) value is calculated, according
to which a sequence is constructed in descending order.

4.4. RMT-Based Relation Matrix Construction. The ECE con-
siders the relationship between feature and category, but it
ignores the relationship between features. Therefore, we cal-
culate the relation matrix based on the RMT to express the
relationship between different metrics elements. First, the
sample covariance is calculated as follows. Suppose X and
Y are two metric elements; then, the covariance of X and Y is
calculated as Formula (3).

Cov X;Yð Þ ¼
∑
n

i¼1
Xi − X̄ð Þ Yi − Ȳð Þ

n − 1
;

ð3Þ

Input: D, one dataset from NASA and PROMISE, such as PC1

P, a training set containing defective modules

N, a training set containing nondefective modules

T, the number of subsets to be sampled from N

Si, the number of weak learners Hi

Output: A combined classifier H (x)

1. f ¼ ffiffiffiffiffiffiffiffiffiffiffi
T − 1

p ffiffiffiffiffi
jpj
jNj

q
 ==f is the FP rate (the error rate of misclassifying a nondefective

module to the defective module) that Hi should achieve

2. For i= 0 to T do{

3. Randomly sample a subset Ni from N; jNij : ¼ jPj :.

4. Learn Hi using P and Ni. Hi is an Adaboost ensemble with weak learners Hi;j and corresponding

weights αi;j;θi is the adjustment parameter of Hi.

Hi ¼ sgnð∑si
j¼1αi;jhi;jðxÞ− θiÞ :

5. Adjust θi such that Hi’s false positive ðFPÞ rate is f
6. Remove from N all examples (the number is jPj : × ð1− f Þ :) that are correctly classified by Hi

7. }

ALGORITHM 1: Datasets preprocessing algorithm based on BalanceCascade.
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where Xi and Yi are the ith values of metric elements X and Y,
respectively. Then combined with the standard deviation,
Pearson’s correlation coefficient r is calculated as Formula (4).

r X;Yð Þ ¼ n − 1ð ÞCov X;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 Xi − X̄ð Þ2∑n
i¼1 Yi − Ȳð Þ2

p : ð4Þ

When the correlation coefficients are filled into an n × n
matrix, we obtain the relation matrix of metric elements. The
value of each element in it ranges from −1 to 1. The higher
the value is, the closer the metric elements are.

4.5. SMP Determination Based on DQN. In this section, we
explain the procedure of the SMP determination based on
DQN using ranking of metric elements (see Section 4.3) and
relation matrix (see Section 4.4). After defining critical compo-
nents of DQN, such as state space, action space, reward func-
tion, and so on, we illustrate the proposed algorithm in detail.
Four definitions are given as follows for further explanation.

Definition 1. Revised Feature Set. Give an original feature set
X including feature x1, x2,…, xn, a feature set Y= {yk = (xi, xj)
—xi 2X∧xj 2X} is called a revised feature set of X.

Definition 2. Metric Pair. Each element in feature set Y, yi =
(xm, xn), is called a metric pair when xm and xn both belong
to metrics listed in Tables 2 and 3.

It is obvious that Y is X × X, and feature set X could have
many different revised feature sets. In order to improve the
performances of SDP, such as precision, to the greatest extent,
we present the goal feature set selection strategy in Algorithm 2.

Definition 3. Larger than Relation ⩾. Suppose Y is a revised
feature set, (xi, xj)2Y and (xs, xt)2Y. If correlation coeffi-
cient of (xs, xt) is larger than or equal to (xs, xt), i.e., r
(xi, xj)⩾ r (xs, xt), then we call (xi, xj)⩾ (xs, xt).

Definition 4. SMP. An ordered list of metric pairs is called a
sequence of metric pairs when it satisfies the following con-
dition: for any yi = (xs, xt) and yj = (xm, xn), if i< j, then (xs,
xt) ⩾ (xm, xn).

4.5.1. Essential Elements of DQN for SMP. RL algorithms
enriched with DL capabilities have achieved victories over
world champions in the game of Go and have outperformed

Input: A set of datasets with K elements, each of which is expressed as

Di ¼fðx1;1;000;…; x1;n; s1Þ; ðx2;1;…; x2;n; s2Þ;…; ðxm;1;…; xm;n; smÞg :

An ranked feature set F¼f f1; f2;…; fng: from the ECE (see Section 4.3)

A N ×N relationship matrix from RMT (see Section 4.4)

Episode number K which is the number of datasets after BalanceCascade (see Section 4.2)

Output: The SMC of datasets, optimize the policy network, and updating

1 For episode i¼ 1 toK do f
2 Randomly initialize the parameters φ and Θ of CNN

3 Initialize experience reply memory M

4 Shuffle the training data D

5 Initialize state s1 ¼fðx1; x2Þg :; x1 2 F and x2 2 F

6 Initialize action a1 ¼Aðs1; agentÞ: represents feeding s1 to agent

7 For t¼ 1 to n do f
8 The reward principle rt= sigmoid (Rt), the Rt is determined by the

{f1, f2,…, fn} and the n× n relationship matrix (see Formula (7))

9 Set at ¼Aðst ; agent Þ:

10 Select a greedy policy to update the current state: stþ1 ¼ πθðstÞ:

11 Store ðst ; at ; rt ; stþ1Þ: toM and update theQ network

12 Select ðsj; aj; rj; sjþ1Þ: fromM using

13 Set yj ¼
rj if episodetermi nates at sjþ1

rj þ γmaxa Qπðsjþ1; a0; φÞ otherwise

�
14 Perform a gradient descent step on LðθÞ:

15 θ : LðθÞ : ¼ðy − Qðsj; aj; θÞÞ2
16 If at appeared inM and at ¼ argmaxa Q∗ðs; a; θÞ : then break

17 Update parameters φ

18 g
19 g

ALGORITHM 2: The algorithm of training DQN for DQN-based feature extraction.

8 IET Software



human experts in various Atari video games. Today, we view
the challenge of feature extraction as akin to a guessing game
[11]. In this context, an agent utilizes a CNN to construct the
policy network, transforming the problem into an exciting
and effective approach. The state of the environment is acted
by a sequence of metric pairs, which are also the input of the
CNN; the reward is determined by calculating the ranking of
metric elements, relation matrix, and the number of defects;
the Q-value is calculated from the SMP, i.e., output of the
CNN; action is directed by Q-value for deciding a new SMP
as an input of the CNN in the new loop.

Assume that one of the software defect dataset is D=
{(x1;1,…, x1;n, s1), (x2;1,…, x2;n, s2),…,(xm;1,…, xm;n, sm)}
where xi;j is the value of metric elements and si is the label
of the class, indicating the number of the defect. In DQN-FE,
a trained CNN acts as an agent to fulfill the task of feature
extraction. The detailed concepts are illustrated as follows:

(A) State S: The state of the environment is determined
by the training sample. At the beginning of training,
the agent receives the first sample x1 as initial state s1.
The state st of the environment corresponds to the
sample xt . When a new loop begins, the state of the
environment, i.e., training samples in the training
dataset, is updated. The state of the environment in
the context is a sequence of metric pair St = {(metrici,
metricj),…, (metricm, metricn)}, where each metric
element of metric pairs is the feature of the original
datasets.

(B) Action A: An action is the behavior of delivering a
sequence of metric pairs to the agent. The results of
actions are cataloged into two sets, one of which
involves those abandoning the current metric pairs
and another of which involves those preserving the
current metric pairs.

(C) Policy π: The policy π (s|a) is a mapping: S × A→ S ×
A, where S is a set of states, and A is a set of actions. π
(st|at) leads to a new state and responding a new action.
The policy π in DQN-FE is determined by comparing
the Q-value with that outputted in the previous loop.
The detailed procedure is shown in Algorithm 2.

(D) Discount factor γ: γ 2 [0, 1] is to balance the imme-
diate and future reward.

(E) Reward R: A reward rt is the feedback from the envi-
ronment through which we measure the success or
failure of an agent’s actions. In order to guide the
agent to train CNN for obtaining the optimal policy,
the absolute reward value of a metric pair is deter-
mined by its relation degree, the ranking of each
metric element of themetric pair, and the label (num-
ber of errors) of current class.

The Q-learning algorithm constructs an objective func-
tion, the CNN model in our approach, for DL. It generates
the sequence of metric pairs, according to which Q-value is
calculated. TheQ-value is compared with that in the last loop
for determining the new sequence of metric pairs. In our
approach, a function Q (s, a, ω) is defined for calculating

the Q-value instead of Q (s, a) in the original Q-learning
algorithm, where is the current state, is the action and is
the parameter of CNN. Q (s, a, ω) takes state as the inputs
and outputs the Q-value of each action with new ω0. In
essence, the fundamental concept behind the DQN (deep
Q-network) algorithm is to address RL problems when deal-
ing with complex, high-dimensional, and continuous state
and action spaces. To achieve this, DQN employs CNNs to
construct a Q-value network. This network is crucial for solv-
ing the RL tasks effectively. As the Q-value network is devel-
oped, the loss function of the CNN is iteratively determined.
This process leads to the formulation of the mathematical
model for Q-learning, which is expressed in Formula (5).

Q St;At ; θð Þ ¼ Q St ;At; θð Þ
þ α Rtþ1 þ γmaxQ Stþ1;Atþ1; θð Þ − Q St ;At; θð Þ½ �:

ð5Þ

The loss function is defined as Formula (6).

L θð Þ ¼ E Rtþ1 þ γmaxQ Stþ1;Atþ1;ω−ð Þ½
−Q St;At;ωð Þ2�; ð6Þ

where network parameter θ denotes the loss of mean square
error. During the training of the CNN using random gradi-
ent descent methods, historical data, i.e., sequence of metric
pairs, are continuously collected and stored in the experience
pool of DQN. When CNN is finished being optimized on a
small batch of the data in the experience pool, the Q-value
network is finished being constructed.

4.5.2. The Selection of Sequence of Metric Pairs Based on the
Improved DQN Algorithm
(1) Reward Principle. The reward principle of our DQN-
based feature extraction is established according to the rank-
ing of the weight of metric elements (see Section 4.3) and
relationship matrix (see Section 4.4). In order to obtain a
revised feature set expressed as a sequence of metric pairs,
we defined the reward function as Formula (7).

Ri ¼ Sigmoid ∑
n

t¼0
Rank xtð Þ

�

þ ∑
m

i¼0;j¼0
Rel xi; xj
À Áþ ∣ Label ∣

!
;

ð7Þ

where the Rank function gives the weight of different metrics
obtained by ECE, the Rel function returns the correlation
coefficient of different metrics obtained by RMT, and ∣Label∣
indicates the number of errors in the current class, the Sig-
moid function normalizes the sum of the three components
so that the computing results are ranged from 0 to 1 which
makes it convenient to compare the value of them.

(2) Deep Network Application. In our DQN-based feature
extraction, the policy π receives a sequence of metric pairs
and returns a new one with the highest possibility of being
selected as input for the next loop. The policy can be obtained
by Formula (8).
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πθ si; aið Þ ¼ P si∣aið Þ: ð8Þ

The agent can get a positive reward when it correctly recog-
nizes a metric pair. Rewards from different loops have to be
accumulated so as to correctly generate the sequence of metric
pairs. The cumulative rewardsgt can be obtained by Formula (9).

gt ¼ ∑
1

k¼0
γkrt þ k: ð9Þ

In RL, the Q function is responsible for calculating the
quality of a state-action combination, which is shown in
Formula (10).

Qπ s; a; θð Þ ¼ Eπ gt∣st ¼ s; at ¼ a½ �ð Þ: ð10Þ

According to Formula (5), the Q function can be obtained by
Formula (11).

Qπ s; a; θð Þ ¼ Eπ rt þ γQπ stþ1; atþ1; θð Þ½ �: ð11Þ

The agent can maximize the cumulative rewards by the
Q∗ function in which the greedy policy is applied. Optimal
policy π∗ is obtained according to cumulative rewards shown
in Formula (12).

π∗ s∣að Þ ¼ 1; if a¼ argmaxaQ
∗ s; a; θð Þ

0; else

(
: ð12Þ

In our DQN-based feature extraction, the tuples (s, a, r, s; )
involving temporary data generated during each loop are
stored in the experience poolM. The agent randomly samples
a mini-batch of set B composed of those tuples from M and
performs a gradient descent method according to the loss
function. The mathematical model is shown in Formula (13).

L θkð Þ ¼ ∑
s;a;r;s0ð Þ2B

y − Q s; a; θkð Þð Þ2; ð13Þ

where y is the target estimate of the Q function. The mathe-
matical model of y is shown in Formula (14).

y ¼ r þ 1 − tð Þγ maxQ s0; a0; θk−1ð Þ; ð14Þ

where s0 is the state of environment after s, a0 is the action
performed by agent in state s0. The optimal Q∗ function is
obtained by minimizing the loss function. The maximum
cumulative rewards are obtained by the greedy policy
adapted in the optimal Q∗ function. So the optimal policy
π∗: S→ S for DQN-based feature extraction is achieved. The
procedure is shown in Figure 2.

(3) Training Details. The training process based on DQN
feature extraction includes several steps: experience replay,
target network update, and policy network update. During

experience replay, the DQN algorithm saves the information
(current state-action pair, next state-action pair, current state
reward, and next state) in an experienced pool and randomly
selects a batch of samples from the pool for the training of
the policy network. This process is mainly to reduce the cor-
relation between data and improve the efficiency of training.

In the target network update process, after every four
iterations of selecting state-action pairs, the parameters of
the current network are copied to the target network to obtain
a set of updated target Q-values. Then, these target Q-values
are used to calculate the error and update the parameters of
the current network during training. In this way, the parame-
ters of the target network remain unchanged during the train-
ing process, while the parameters of the current network are
updated after each iteration, allowing DQN to learn a more
accurate Q-value function.

The policy network of DQN adoptsQ-learning for updates.
During each decision-making process, the policy network
estimates the value function of each possible action based
on the current state and selects the action with the highest
value as the current policy. The policy network is updated
by minimizing the mean square error between the policy
network and the target network. Specifically, every time the
agent executes an action and observes a new state and
reward, it stores this experience tuple in an experience
replay buffer. Then, the agent randomly selects a certain number
of experience tuples from the replay buffer to update the policy
network.

The DQN feature extraction network structure is trained
with an initial learning rate of 0.001, a reward discount factor
of 0.99, and an experience pool size of 10,000. Meanwhile,
the greedy epsilon value decreases from 1 to 0.01 during the
training process. The purpose of choosing an initial learning
rate of 0.001 is to make the loss function decrease faster in
the initial stage of training. As training proceeds, the learning
rate gradually decreases until the model converges to a smal-
ler loss. The change in the greedy epsilon value is to facilitate
more exploration in the initial stage of training and gradually
increase the probability of utilizing the optimal policy. The
DQN feature extraction process uses the NASAMDP storage
library dataset and PROMISE storage library dataset as input
and outputs an optimal state-action pair sequence to replace
all state-action pairs. More precisely, the Q network is a
neural network model that excludes a final softmax layer.
We configure its architecture and hyperparameters, such as
the quantity of convolution layers, the dimensions of convo-
lution kernels, the number of hidden layers, and the neuron
count, with the goal of enhancing the model’s capacity for
generalization and fitting.

The architecture of the CNN utilized in our study is
meticulously tailored to address the unique challenges posed
by the dataset’s diverse feature dimensions across various
projects. In particular, the PROMISE dataset, with its 20-
dimensional feature vectors, required a thoughtful approach
to ensure the effective application of convolutional opera-
tions. Our methodology involved expanding these features
to a 25-dimensional space by adding five columns of zeros.
This process, detailed in Figure 3, is designed to maintain
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spatial resolution post-convolution [51]. The augmented fea-
tures are then restructured into a 5× 5 matrix format, a
decision influenced by our comprehension of feature space
and guided by successful precedents in the literature for
handling similar data structures [52]. This restructuring is
crucial as it allows the network to be more aligned with two-
dimensional convolutional operations, thereby enhancing
feature extraction capabilities.

The mentioned reshaping process enhances the net-
work’s ability to extract and represent features more effec-
tively. Then, we start with a single-channel feature matrix,
and the first convolutional layer has an input channel of 1
and an output channel of 64. The role of this layer is not a
typical convolution operation but rather introduces nonline-
arity through pointwise convolution, transforming the input
5× 5 matrix into a 64-channel feature map, with each

channel having a spatial size of 5× 5. Dropout is not applied
in this layer, and its main purpose is to introduce nonlinear-
ity. The second convolutional layer takes the 64-channel
input from the previous layer and reduces it to 32 channels
using a 3× 3 convolutional kernel, further compressing the
feature map to a size of 3× 3. A Dropout layer is added to
mitigate overfitting. The third convolutional layer further
reduces the 32-channel input to 16 channels with a 4× 4
convolutional kernel, forming a 4× 4 feature map. Another
Dropout layer is added for regularization.

Our CNN comprises an input layer followed by two con-
volutional layers, each paired with the ReLU activation func-
tion, a choice substantiated by extensive empirical evidence.
The ReLU function is widely recognized for its performance
benefits and computational efficiency across various network
architectures [53].

Relation matrix Ranked features

0.1, 0.9, 2.4, 7.8 3
0.7, 1.9, 2.8, 5.7 0
0.8, 3.4, 4.4, 5.4 1

0.3, 0.7, 2.5, 7.7 6

Class 1
Class 2
Class 3

...
Class n

Dataset i

Label

Label

Reward R
determination

Q value
calculation

CNN

Initializing SMP,
including one
pair of metrics

Generating
new SMP by
greedy policy

Initial SMP

{(Fi, Fj)}

Experience reply memory M

Q1(S1, R1, a1)
Q2(S2, R2, a2)

.

.

.
Qn(Sn, Rn, an)

Sequence of metric pairs

Sequence of metric pairs

L(θk) = ∑(s, a, r, s′)∈B(y – Q(s, a, θk))2

{(Fi, Fj), (Fs, Ft), … (Fx, Fy)}

{(Fi, Fj), (Fs, Ft), … (Fx, Fy)}

F1
F2
.
.

 .,
Fn

Metric i
Metric j

.

.

.
Metric m

Label s
Label t

.

.

.
Label k

f11, f12, …, f1n
f21, f22, …, f2n

.

.
fm1, fm2, …, fmn

FIGURE 2: Sequence of metric pairs determination based on DQN.

20-dimension 25-dimension 5 × 5 matrix
ReLUConv Conv

Conv
ReLU

ReLU

Dropout

Flatten

Dropout
...
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FC
SVM classifier

Dropout

FIGURE 3: CNN parameter details in feature extraction based on DQN.

IET Software 11



The selection of convolutional layers is based on a bal-
ance between model complexity and computational expense,
reflecting common configurations for analogous tasks [54].
This setup is adept at capturing the intricate inter-feature
relationships, providing a nuanced understanding of the data-
set, which is vital due to the variable dimensionality of fea-
tures across projects. The dual-layer configuration was chosen
not only for its empirical success in delineating spatial hierar-
chies within the data [55] but also because it represents a
strategic balance. There is substantial evidence to suggest
that additional layers may not consistently yield performance
improvements and could potentially lead to overfitting or
unnecessary computational complexity without commensu-
rate accuracy gains, especially in datasets with a certain level
of intricacy. Therefore, our selection of a two-layer model is a
deliberate compromise to leverage depth while preserving
computational efficiency andmitigating the risk of overfitting.

By providing these additional details, we aim to offer a
thorough understanding of our CNN architecture, specifi-
cally the in and out channels of each convolution layer, the
shape of the input and output of these layers, and the incor-
poration of dropout, thereby enhancing the clarity and rep-
licability of our proposed method.

Algorithm 2 depicts the procedure of transforming the
metric elements into a sequence of metric pairs.

4.6. Training and Classification through Binary Classification
Algorithms. In essence, DQN-FE is a binary classification
algorithm-based machine learning model applied in SDP,
whose prominent difference with other SDPs is the applica-
tion of DQN-based feature extraction. So, it is unavoidable to
apply some binary classification classifier to train and classify
over special datasets. In our approach, a simple but widely
adopted classifier, decision tree, is chosen to accomplish our
goals. On the other hand, in order to further verify the effec-
tiveness of DQN-based feature extraction, another two clas-
sifiers, SVM and KNN, are also chosen in experiments for
sensitive analysis in Section 6.4.

SVM: SVM transforms the classification problem into the
problem of finding the classification plane and realizes the
classification by maximizing the distance between the classi-
fication boundary point and the classification plane.

K-Nearest Neighbor: The KNN classification algorithm
is one of the most straightforward techniques in data mining
for classification. It categorizes each sample based on the
values of its k closest neighbors.

Decision Tree: In this classification algorithm, we create a
decision tree using training data to categorize unknown data.
Within the decision tree structure, each internal node sig-
nifies a test conducted on an attribute; each branch signifies
the outcome of that test, and each leaf node stores a class
label.

5. Experimental Setup

5.1. Effectiveness Validation Measures of the SDP. To com-
prehensively demonstrate the effectiveness of our proposed
feature extraction method based on DQN, we consider four
widely adopted performance metrics commonly used in the

field of SDP to evaluate the model’s capabilities: the AUC
[56], precision [57], F-measure [58], and MCC [59]. We use
the abovementioned confusion matrix to describe predic-
tions as true positives (TP), FPs, true negatives (TN), or false
negatives (FN) (Table 4).

“Precision,” also referred to as “positive predictive value,”
is a metric primarily focused on determining the proportion
of relevant instances among the retrieved instances. The
fundamental formula for precision is as follows:

Precision¼ TP
TPþ FP

: ð15Þ

Recall, also known as true positive rate or sensitivity, is
an evaluation metric commonly used in machine learning
and statistics to measure the ability of a model to correctly
identify positive instances from a dataset. It is defined as the
ratio of TP (i.e., the number of positive instances correctly
predicted by the model) to the sum of TP and FN (i.e., the
number of positive instances incorrectly predicted as nega-
tive by the model). Mathematically, recall can be expressed as
follows:

Recall¼ TP
TPþ FN

: ð16Þ

The F-measure, sometimes referred to as the F1 score,
provides a balanced assessment by combining precision and
recall into a single metric. It offers insights into both preci-
sion and recall simultaneously and yields values within the
range of [0, 1]. A value of 0 indicates all incorrect predictions,
while a value of 1 represents all correct predictions. The basic
formula for calculating the F-measure is as follows:

F −measure¼ 2 ×
recall × precision
recall þ precision

; ð17Þ

MCC is a binary classification metric that accounts for true
and FPs and negatives. It ranges from −1 to 1, with higher
values indicating better prediction performance:

MCC¼ TP × TNð Þ − FP × FNð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp :

ð18Þ

5.2. Statistical Analysis: Scott-Knott Effect Size Difference
(ESD) Test. In this paper, we initially utilized the Scott-Knott
ESD test to rank multiple feature selection or feature

TABLE 4: Confusion matrix.

Predicted

Positive Negative

Real results
True TP TN
False FP FN
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extraction methods, as well as multiple defect predictors,
based on four evaluation indicators. Subsequently, we pre-
sented boxplots with the Scott-Knott ESD test to visually
illustrate the performance differences among these feature
selection or feature extraction methods and defect predictors.
The Scott-Knott ESD test is a statistical approach that extends
the Scott-Knott test, which is a mean comparison approach
that employs hierarchical clustering to partition multiple
methods into statistically distinct groups with significant dif-
ferences, taking into consideration the effect size (i.e., magni-
tude of difference) among multiple methods within a group
and between groups.

5.3. Configuration of DQN Training. In our experiment, we
utilized the DQN algorithm and configured its hyperpara-
meters, as depicted in Table 5. These hyperparameter set-
tings play a crucial role in determining the performance and
training efficacy of the DQN algorithm. Specifically, we set
the learning rate to 0.0005, which governs the step size taken
by the model during each update. The discount factor was set
to 0.98, influencing the model’s emphasis on future rewards.
The replay buffer size was configured as 10,000, determining
the capacity for storing experience replay data during train-
ing. A batch size of 64 was employed, indicating the number
of samples drawn from the replay buffer for each update. The
target network update frequency was established as 5,000,
representing the interval at which the target network is updated.
Furthermore, the initial ɛ value for the ɛ-Greedy policy was set
to 1.0, affecting the degree of exploration by the model in the
early stages of training. The decay rate for the ɛ-Greedy policy
was defined as 0.995, determining the rate at which the ɛ value
decreases over training steps. The rational selection of these
hyperparameters is critical for achieving optimal performance
in the experiment.

6. Experiment

Each of our experiments runs on the 16 GB RAM of the
NVIDIA GPU server repeatedly for 10 times, and we took
the mean value of the results as the final result. In this sec-
tion, we will present comprehensive results from our experi-
ments and assess the model’s performance by addressing the
following five RQs. We will show the results of the ranking of
metric elements (see Section 6.2), the interrelation of metric
elements, and the sequence of metric pairs (see Section 6.3).
In order to verify the effectiveness of the DQN-based feature
extraction, we use the three binary classification algorithms

(SVM, KNN, and decision tree) without the DQN-based
feature extraction as the baseline for comparison. The sensitivity
analysis shows that the performances (precision, F-measure,
AUC, andMCC) are sensitive to the DQN-based feature extrac-
tion in that they have been improved, respectively, comparing
the binary classification algorithms based on SDPs using the
DQN-based feature extraction and those without using it (see
Section 6.4). At the same time, we conduct experiments to com-
pare our approach with four state-of-the-art methods (K-PCA-
ELM [41], CFIW-TNB [60], MDA-O [61], and weighted ensem-
ble model (WEM) [62]), and experimental results show that the
SDP approach using the proposed DQN-based feature extraction
is superior to the state-of-the-art methods in the aspects of
precision, F-measure, AUC, andMCC (see Section 6.5). Finally,
we compared four state-of-the-art feature selection algorithms
on four metrics.

6.1. Parameter Settings. Following the identical practice prin-
ciple with Zhu et al.’s [63] research, our feature extraction is
exclusively performed on the training dataset. To ensure
consistent feature dimensions between them, we adjust the
test dataset based on the features extracted from the training
dataset, thereby achieving dimensional uniformity.

6.2. RQ−1: How Feature Ordering Based on ECE Removes
Nonphasic Features? As we have discussed in Section 4.3, we
use ECE to obtain the importance of metric elements and
remove irrelevant, redundant, and noisy features in 22 data-
sets. In order to compare the weight of various metric ele-
ments, this section compared the results of the 22 datasets.
The statistical distribution of each group of data is shown in
Figures 4 and 5: The weight of various metric elements of
PROMISE datasets is shown in Figure 4, and the weight of
various metric elements of NASA datasets is shown in Figure 5.
Table 6 shows the irrelevant, redundant, and noisy features of
the NASA dataset.

In Figure 4, we have aggregated the bar graph over the
weight of the top six metric elements in PROMISE datasets.
The x-axis indicates the various metric elements concerning
PROMISE datasets, whereas the y-axis indicates various weight
values of corresponding metric elements. In the datasets of ant-
1.7, tomcat, xalan-2.4, xalan-2.5, xalan-2.6, synampe, xerces-1.4,
prop-6, and poi-3.0, the metric element of response for a class
has the highest weight. Especially in the datasets of ant-1.7,
xerces-1.4, and prop-6, the weight of the metric element of
response for a class is higher than 70%. Therefore, when there
is themetric element of response for a class, the SMPwill obtain
a higher reward in our SDP approach. In the dataset of velocity,
the metric element of the lines of code has the highest weight
and the metric element of the response for a class ranks second.
In the dataset of camel, the metric element of coupling between
object classes has the highest weight and the metric of the
response for a class ranks 6th.

In Figure 5, we present the weight of the top six metric
elements in NASA datasets. The x-axis indicates the various
metric elements concerning NASA datasets, whereas the
y-axis indicates various weight values of corresponding met-
ric elements. It shows the weight of various metric elements,

TABLE 5: Settings for DQN hyperparameters.

DQN hyperparameter Setting

Learning rate 0.0005
Discount factor 0.98
Replay buffer size 10,000
Batch size 64
Target network update frequency 5,000
Initial ɛ for ɛ-greedy policy 1.0
Decay rate for ɛ-greedy policy 0.995
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and the most important of the different datasets are LOC
EXECUTABLE (CM1), ESSENTIAL DENSITY (MC1), LOC
TOTAL (JM1), NUMUNIQUEOPERANDS (KC1), GLOBAL
DATA COMPLEXITY (MC2), NODE COUNT (MW1),
HALSTEAD CONTENT (PC1), CYCLOMATIC DENSITY

(PC2), LOC BLANK (PC3), LOC CODE AND COMMENT
(PC4), and DESIGN COMPLEXITY (PC5). In most datasets
of NASA, the LOC type ofmetric elements have higher weight
than others. Table 6 lists the irrelevant, redundant, and noisy
features of the NASA dataset.
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FIGURE 4: The weight of metric elements PROMISE datasets.
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FIGURE 5: The weight of metric elements NASA datasets.
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6.3. RQ-2: How Can We Find the Interrelated Features and
Leverage the Interrelation between Features to Generate
the Sequence of Metric Pairs?

6.3.1. Experiment on Feature Interrelation. As we have dis-
cussed in Section 4.4, we use RMT to obtain the relation
degree between two metric elements in 22 datasets. Since it
is not the research focus of this paper, we only represent the
results of the various metric elements relationship for the
ant-1.7 dataset in PROMISE and KC1 dataset in NASA in
Tables 7 and 8. Table 7 lists the results of the relationship of
various metric elements for the dataset ant-1.7. The numbers
in the first row and the first column indicate the order
number of the measure element (see Table 3). The relation
degree value between twometric elements ranges from−1 to 1.
Table 8 lists the results of the relationship of various metric
elements for the dataset KC1. The numbers in the first row and
the first column indicate the order number of the measure
element (see Table 2).

As we can see from Tables 7 and 8, the stronger the
relation degree of metric elements, the larger the value is.
These results provide an important data foundation for the
selection of the sequence of metric pairs.

6.3.2. Experiment on the Sequence of Metric Pairs. Following
the algorithm described in Section 4.5, the sequences of
metric pairs generated from all 22 datasets of NASA and
PROMISE repositories are shown in Table 9. The numbers
in Table 9 are the order numbers of metric elements (see
Tables 2 and 3). In Table 9, the first column represents the
datasets from NASA and PROMISE, and the number in
the second column (where the first 11 rows of metric
elements are from Table 2, and the last 11 rows of metric
elements are from Table 3) represents the sequences of
metric pairs of the corresponding dataset. These sequences of
metric pairs will be used as newmetrics for SDP.We used three
typical binary machine learning algorithms (SVM, KNN,
decision tree) to verify our feature selection results. The

TABLE 6: The irrelevant, redundant, and noisy features of the NASA
dataset.

Datasets Metric

CM1

LOC_CODE_AND_COMMEN
HALSTEAD_LEVEL
DECISION_DENSITY

MODIFIED_CONDITION_COUNT
MAINTENANCE_SEVERITY
MAINTENANCE_SEVERITY

ESSENTIAL_DENSITY
ESSENTIAL_COMPLEXITY

EDGE_COUNT
DESIGN_DENSITY

HALSTEAD_DIFFICULTY

JM1
ESSENTIAL_COMPLEXITY

LOC_CODE_AND_COMMENT

KC1 LOC_CODE_AND_COMMENT

MC1

BRANCH_COUNT
MODIFIED_CONDITION_COUNT
CYCLOMATIC_COMPLEXITY

ESSENTIAL_DENSITY
DESIGN_DENSITY

DESIGN_COMPLEXITY
GLOBAL_DATA_DENSITY

GLOBAL_DATA_COMPLEXITY
MAINTENANCE_SEVERITY

PARAMETER_COUNT

MC2

DECISION_DENSITY
LOC_CODE_AND_COMMENT

DESIGN_DENSITY
NUM_OPERANDS

HALSTEAD_VOLUME
PARAMETER_COUNT
PERCENT_COMMENTS
HALSTEAD_ERROR_EST
HALSTEAD_LENGTH
HALSTEAD_CONTENT

PC1

CONDITION_COUNT
MULTIPLE_CONDITION_COUNT

DESIGN_DENSITY
DECISION_COUNT
DECISION_DENSITY

MAINTENANCE_SEVERITY
ESSENTIAL_DENSITY

ESSENTIAL_COMPLEXITY
HALSTEAD_DIFFICULTY

PC2

PARAMETER_COUNT
ESSENTIAL_COMPLEXITY

ESSENTIAL_DENSITY
DESIGN_COMPLEXITY

MAINTENANCE_SEVERITY
LOC_EXECUTABLE
DECISION_DENSITY

TABLE 6: Continued.

Datasets Metric

PC3

DECISION_DENSITY
PARAMETER_COUNT

ESSENTIAL_COMPLEXITY
DESIGN_DENSITY

ESSENTIAL_DENSITY

PC4

PARAMETER_COUNT
DESIGN_DENSITY

CALL_PAIRS
ESSENTIAL_COMPLEXITY

ESSENTIAL_DENSITY

PC5
ESSENTIAL_COMPLEXITY

ESSENTIAL_DENSITY
PARAMETER_COUNT
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experimental results show that (see Section 6.4) our feature
selection method is superior to the baseline method (such as
based on correlation or forward/backward selection) and
advanced software defect methods (such as K-PCA-ELM).

As shown in Table 9, when the version of the software is
different (such as the cross-version datasets xalan-2.4, xalan-
2.5, xalan-2.6), the sequences of metric pairs generated by
DQN are also different, and the experimental results show
that the sequences of metric pairs from different versions
[64] have better performance in SDP (see in Section 6.4).

6.4. RQ-3: Does the Binary Classification Algorithm-Based
SDP Using DQN Have Better Performance Comparing with
Those without Using DQN? In this section, we use three
classification algorithms to verify the performance improve-
ment of SDP using DQN against those without using it in
various measures (precision, F-measure, AUC, and MCC).
This paper adopts a 10-fold cross [65] validation method in
order to evaluate the performance of the defect prediction
model. Specifically, this method divides the data set into 10 parts,
taking 8 of them as training data in turn and the remaining 2
as test data. The above process is repeated 10 times to ensure
that each instance has been predicted once, and finally, the
average of the results of these 10 runs is taken as the predic-
tion performance of the model.

In Table 10, the first column lists all 22 datasets. The second
column, fourth column, and sixth column list the precision
values of three typical SDP models based on binary classifica-
tion algorithms, SVM, KNN, and decision tree without using
DQN-based feature extraction [41, 66, 67]. The third column,
fifth column, and seventh column list precision values of cor-
responding three SDP models based on binary classification
algorithms using DQN-based feature extraction (SVM-DQN,
KNN-DQN, and decision tree-DQN).Aswe can see inTable 10,
KNN-DQN approach improved by 5.6% compared with KNN
method in the precision on average, and the decision tree-DQN
classification approach improved by 11.1% compared with the
decision tree method on average. As far as SVM and SVM-
DQN are concerned, SVM-DQN outperforms SVM on 12 of
total of 22 datasets and underperforms SVM on the other 10
datasets. The bold values in Table 10 indicate higher precision
values between typical SDP and corresponding SDP with DQN.

To provide a visual comparison of the difference in pre-
diction performance between the DQN and the three base-
line defect predictors, we present the boxplots using the
Scott-Knott ESD test according to the precision evaluation
metrics. Figure 6 visualizes the results of six Scott-Knott ESD
tests for defect predictors across 22 software projects. The
horizontal bars in each box indicate the median indicator
value for each defect predictor. The x-axis represents the

TABLE 7: The relationship of various metrics for the dataset ant-1.7.

5 7 12 18 19 6 1 13 17 8

5 1 −0.25 0.72 0.66 −0.25 0.12 0.33 0.13 −0.62 0.18
7 −0.25 1 −0.38 0.78 0.72 −0.24 0.77 0.12 0.45 −0.43
12 0.72 −0.38 1 0.55 0.12 0.25 −0.24 0.28 0.72 0.12
18 0.66 0.78 0.55 1 0.13 −0.19 0.72 0.16 0.33 0.12
19 −0.25 0.72 0.12 0.13 1 0.12 0.35 0.18 0.22 −0.25
6 0.12 −0.24 0.25 −0.19 0.12 1 0.15 0.28 0.14 0.33
1 0.33 0.77 −0.24 0.72 0.35 0.15 1 0.11 −0.42 0.12
13 0.13 0.12 0.28 0.16 0.18 0.28 0.11 1 0.13 0.72
17 −0.62 0.45 0.72 0.33 0.22 0.14 −0.42 0.13 1 0.16
8 0.18 −0.43 0.12 0.12 −0.25 0.33 012 0.72 0.16 1

TABLE 8: The relationship of various metrics for the dataset KC1.

1 4 10 13 22 25 11 17 40 3

1 1 0.73 0.28 0.6 0.73 0.69 0.62 0.77 0.63 0.73
4 0.73 1 0.33 0.52 1 0.96 0.82 0.92 0.67 0.87
10 0.28 0.33 1 0.29 0.33 0.31 0.32 0.34 0.26 0.3
13 0.6 0.52 0.29 1 0.52 0.52 0.41 0.61 0.46 0.47
22 0.73 1 0.33 0.52 1 0.97 0.82 0.92 0.67 0.87
25 0.69 0.96 0.31 0.52 0.97 1 0.78 0.92 0.68 0.82
11 0.62 0.82 0.32 0.41 0.82 0.78 1 0.72 0.51 0.7
17 0.77 0.92 0.34 0.61 0.92 0.92 0.72 1 0.81 0.86
40 0.63 0.67 0.26 0.46 0.67 0.68 0.51 0.81 1 0.68
3 0.73 0.87 0.3 0.47 0.87 0.82 0.7 0.86 0.68 1
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TABLE 9: The results of the sequence of metric pairs extraction.

Datasets The sequences of metric pairs

CM1 (17, 28), (36, 17), (10, 19), (17, 9), (9, 33), (22, 7), (5, 32), (6, 25), (9, 6), (26, 9), (12, 36), (22, 19), (25, 33)
JM1 (36, 40), (37, 1), (13, 29), (11, 31), (9, 40), (19, 36), (40, 19)
KC1 (24, 31), (9, 19), (29, 31), (40, 1), (38, 1), (38, 24), (9, 38), (25, 7), (9, 18)
MC1 (11, 28), (14, 1), (9, 8), (19, 9), (31, 5), (40, 5), (7, 19), (19, 35), (9, 36), (26, 5), (17, 29), (36, 35), (40, 36), (7, 25), (33, 29)
MC2 (32, 17), (9, 18), (19, 1), (31, 7), (40, 8), (6, 20), (27, 33), (22, 35), (14, 8), (23, 8), (26, 8), (40, 37), (17, 37), (38, 25), (1, 5), (4, 18), (1, 18)
MW1 (32, 27), (30, 18), (1, 9), (2, 9), (19, 8), (29, 2), (40, 7), (6, 5), (12, 36), (20, 25), (32, 10), (20, 39), (14, 3), (4, 5), (7, 9), (19, 5)
PC1 (30, 22), (38, 17), (1, 28), (19, 25), (9, 3), (28, 9), (32, 7), (40, 6), (27, 3), (29, 18), (30, 25), (27, 20), (34, 40), (8, 12)
PC2 (33, 17), (9, 18), (19, 8), (29, 39), (31, 5), (40, 5), (13, 12), (7, 35), (30, 16), (20, 2), (25, 7), (37, 18), (13, 32), (27, 14)
PC3 (30, 22), (1, 23), (38, 16), (3, 9), (19, 8), (22, 30), (40, 18), (31, 33), (26, 17), (33, 21), (17, 11), (2, 16), (12, 8), (24, 11), (36, 5)
PC4 (13, 35), (33, 6), (39, 7), (11, 9), (19, 25), (11, 37), (35, 11), (20, 29), (36, 17), (30, 20), (2, 31), (38, 40), (14, 17), (13, 29), (21, 28)
PC5 (39, 27), (9, 16), (1, 2), (19, 3), (31, 5), (40, 37), (22, 7), (21, 16), (8, 16), (32, 19), (29, 18), (28, 33), (20, 11), (30, 29), (35, 37)
ant-1.7 (19, 5), (11, 7), (19, 8), (11, 3), (14, 5), (7, 1), (12, 5)
tomcat (7, 4), (12, 7), (17, 7), (7, 15), (12, 4), (12, 3), (15, 12), (12, 1)
xalan-2.5 (13, 6), (13, 11), (1, 8), (13, 1), (12, 11), (1, 7), (11, 7)
xalan-2.4 (11, 7), (13, 11), (13, 8), (11, 9), (9, 5), (11, 5), (5, 12), (7, 5), (9, 6)
xalan-2.6 (15, 13), (15, 9), (9, 19), (13, 7), (15, 1), (9, 1)
camel (2, 7), (5, 7), (7, 13), (2, 13), (13, 6), (13, 1), (5, 8)
synampe (12, 3), (15, 6), (12, 11), (14, 3), (12, 6), (2, 12), (12, 15), (7, 1), (7, 6), (12, 3)
velocity-1.6 (20, 11), (20, 18), (11, 8), (11, 4), (4, 20), (18, 7), (4, 18), (6, 5), (4, 7)
xerces-1.4 (5, 17), (6, 9), (9, 5), (19, 9), (17, 5), (12, 5), (8, 12), (6, 5), (7, 6)
prop-6 (13, 8), (18, 1), (11, 7), (7, 9), (13, 5), (11, 5), (7, 8), (12, 6), (11, 9)
poi-3.0 (5, 7), (2, 1), (15, 8), (15, 2), (7, 1), (4, 5), (7, 16), (7, 13)

TABLE 10: Comparison of precision values.

Datasets SVM SVM-DQN KNN KNN-DQN Decision tree Decision tree-DQN

CM1 0.8 0.87 0.82 0.86 0.86 0.85
JM1 0.71 0.73 0.7 0.84 0.42 0.87
KC1 0.74 0.83 0.72 0.79 0.47 0.85
MC1 0.96 0.82 0.95 0.84 0.93 0.79
MC2 0.76 0.79 0.69 0.79 0.73 0.88
MW1 0.72 0.84 0.78 0.78 0.73 0.79
PC1 0.86 0.78 0.89 0.86 0.76 0.86
PC2 0.82 0.85 0.84 0.87 0.79 0.88
PC3 0.82 0.79 0.69 0.86 0.73 0.87
PC4 0.76 0.81 0.71 0.82 0.74 0.85
PC5 0.81 0.82 0.82 0.84 0.84 0.87
ant-1.7 0.69 0.73 0.52 0.71 0.72 0.81
tomcat 0.79 0.74 0.74 0.76 0.75 0.79
xalan-2.5 0.99 0.76 0.83 0.74 0.87 0.78
xalan-2.4 0.78 0.71 0.75 0.72 0.75 0.75
xalan-2.6 0.85 0.77 0.75 0.78 0.79 0.78
camel 0.72 0.75 0.68 0.79 — 0.76
synampe 0.72 0.73 — 0.73 0.74 0.78
velocity-1.6 0.71 0.75 — 0.78 0.68 0.72
xerces-1.4 0.85 0.79 0.72 0.75 0.69 0.75
prop-6 0.78 0.71 0.66 0.74 0.59 0.77
poi-3.0 0.81 0.76 0.69 0.72 0.72 0.76
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six defect predictors, and the y-axis represents the precision
evaluation index. From Figure 6, we can observe that the
DQN-based predictor ranked the highest, indicating that
the DQN-based predictor had better prediction performance
than the three classical defect methods.

In Table 11, the first column lists all the 22 datasets. The
second column, fourth column, and sixth column list the
F-measure values of three typical SDP models based on binary
classification algorithms, SVM, KNN, and decision tree, without
using DQN-based feature extraction. The third column, fifth
column, and seventh column list F-measure values of three
corresponding SDP models based on binary classification
algorithms using DQN-based feature extraction (SVM-DQN,
KNN-DQN, and decision tree-DQN).Aswe can see inTable 11,
SVM-DQN-based SDP improved by 8.2%, KNN-DQN-based
SDP improved by 12.9%, and decision tree-DQN-based SDP
improved by 12.8% in the F-measure values on average com-
pared with three baseline methods. The bold values in Table 11
indicate higher F-measure values between typical SDP and cor-
responding SDP with DQN.

We use boxplots and the Scott-Knott ESD test to compare
the prediction performance of the DQN-based defect predictor
with three classical baseline predictors in terms of F1 evaluation
metrics. Figure 7 displays the results of six Scott-Knott ESD tests
across 22 software projects. The median indicator value of each
defect predictor is shown as a horizontal bar in each box, while
the six defect predictors are represented on the x-axis, and the F1
evaluation index is represented on the y-axis. As depicted in
Figure 7, the DQN-based predictor achieved the highest rank,
indicating that it outperformed the three classical defectmethods
in terms of prediction accuracy.

In Table 12, the first column lists all the 22 datasets. The
second column, fourth column, and sixth column list the

AUC values of three typical SDP models based on binary
classification algorithms, SVM, KNN, and decision tree,
without using DQN-based feature extraction. The third col-
umn, fifth column, and seventh column list AUC values of
corresponding three SDP models based on binary classifica-
tion algorithms using DQN-based feature extraction (SVM-
DQN, KNN-DQN, and decision tree-DQN). As we can see
in Table 12, SVM-DQN-based SDP improved by 17.2%,
KNN-DQN-based SDP improved by 20.1%, and decision
tree-DQN-based SDP improved by 26.1% in the AUC values
on average compared with three corresponding baselinemeth-
ods. The bold values in Table 12 indicate higher AUC values
between typical SDP and corresponding SDP with DQN.

From the results shown in Figure 8, it is evident that the
DQN-based predictor achieved the highest rank, indicating
superior prediction accuracy compared to the three classical
baseline methods.

In Table 13, the first column lists all the 22 datasets. The
second column, fourth column, and sixth column list the
MCC values of three typical SDP models based on binary
classification algorithms, SVM, KNN, and decision tree,
without using DQN-based feature extraction. The third col-
umn, fifth column, and seventh column list MCC values of
corresponding three SDP models based on binary classifica-
tion algorithms using DQN-based feature extraction (SVM-
DQN, KNN-DQN, and decision tree-DQN). As shown in
Table 13, SVM-DQN-based SDP improved by 84.0%, KNN-
DQN-based SDP improved by 69.6%, and decision tree-DQN-
based SDP improved by 51.5% in the MCC values on average
compared with three corresponding baseline methods. The
bold values in Table 13 indicate higher MCC values between
typical SDP and corresponding SDP with DQN.

From the results shown in Figure 9, it is evident that the
DQN-based predictor achieved the highest rank, indicating
superior prediction accuracy compared to the three classical
baseline methods.

6.5. RQ4: Does DQN-FE-SDP Approach Have Better Performance
Comparing withOther State-of-the-Art SDPApproaches? In order
to further verify the effectiveness of our approach, we compare
decision tree-DQN with the state-of-the-art SDP approaches of
K-PCA-ELM [41], CFIW-TNB [60], MDA-O [61], and WEM
[62] on four performance measures (precision, F-measure, AUC,
or MCC) in the common datasets, and the results show that our
SDP approach outperforms the state-of-the-art SDP approaches.

The main objective of K-PCA-ELM is to address two
significant challenges for SDP models: class imbalance and
overfitting. They investigated various kernel functions of
ELM along with K-PCA and found better results compared
with other classical SDP models. We compare our proposed
SPD using DQN-based feature extraction (decision tree-
DQN-based SPD) with it in four performance measures (pre-
cision, F-measure, AUC, and MCC) on the common datasets
of CM1, JM1, KC1, MC1, MC2, PC1, ant-1.7, tomcat, xalan-
2.5, camel, synampe, velocity-1.6, xerces-1.4, prop-6, and
poi-3.0.

Table 14 shows the precision and F-measure values of
K-PCA-ELM and decision tree-DQN SDP on common
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FIGURE 6: The Scott-Knott ESD ranking for DQN compared with
three classic defect predictors in terms of precision evaluation
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datasets. The bold values in Table 14 indicate the higher
precision and F-measure value between the two SDP
approaches across all 15 common datasets. In both precision
and F-measure values, our approach achieves higher results
on 11 of 15 datasets. From Table 14, we can see the decision

tree-DQN-based SDP improves the precision and F-measure
values by 3.5% and 3.7% comparing with K-PCA-ELM on
average.

Table 15 shows the AUC and MCC values of K-PCA-
ELM and decision tree-DQN-based SDP approach on com-
mon datasets. The bold values in Table 15 indicate the higher
AUC or MCC values between the two SDP approaches across
all 15 common datasets. It is shown in Table 15 that our
approach outperforms K-PCA-ELM in MCC values on 11
of all 15 datasets and in AUC on 13 of all 15 datasets. From
Table 15, our approach improves the AUC and MCC values
by 4.1% and 5.7% comparing with K-PCA-ELM on average.

Figure 10 shows the results of precision, F-measure, AUC,
and MCC values of two SDP approaches across 15 common
datasets. On the x-axis, we represent NASA and PROMISE data-
sets, whereas, on the y-axis, we present precision, F-measure,
AUC, or MCC values of the corresponding datasets.

A state-of-the-art SDP approach of CFIW-TNB pro-
posed a cutting-edge SDP approach, CFIW-TNB, has intro-
duced a dual weighting mechanism to enhance the learning
process, taking into account both feature transfer and instance
transfer. In their approach, they determine instance weight
based on the local data interaction between source and target
domains. Additionally, they assign higher feature weight to
features that exhibit a strong correlation with the learning
task, are uncorrelated with other features, and minimize the
domain differences.

The results demonstrate that CFIW-TNB, equipped with
this dual-weighting mechanism, outperforms scenarios with

TABLE 11: Comparison of F-measure values.

Datasets SVM SVM-DQN KNN KNN-DQN Decision tree Decision tree-DQN

CM1 0.8 0.88 0.82 0.86 0.86 0.86
JM1 0.71 0.74 0.7 0.84 0.42 0.87
KC1 0.74 0.82 0.72 0.79 0.47 0.84
MC1 0.96 0.82 0.95 0.84 0.93 0.80
MC2 0.76 0.78 0.69 0.79 0.73 0.87
MW1 0.72 0.84 0.78 0.78 0.73 0.79
PC1 0.86 0.78 0.89 0.86 0.76 0.85
PC2 0.82 0.85 0.84 0.88 0.79 0.88
PC3 0.82 0.79 0.69 0.86 0.73 0.87
PC4 0.76 0.81 0.71 0.82 0.74 0.83
PC5 0.81 0.82 0.82 0.85 0.84 0.89
ant-1.7 0.69 0.73 0.52 0.71 0.72 0.81
tomcat 0.79 0.74 0.74 0.76 0.75 0.79
xalan-2.5 0.99 0.76 0.83 0.74 0.87 0.79
xalan-2.4 0.78 0.71 0.75 0.72 0.75 0.74
xalan-2.6 0.85 0.77 0.75 0.79 0.79 0.79
camel 0.72 0.75 0.68 0.79 — 0.76
synampe 0.72 0.73 — 0.77 0.74 0.78
velocity-1.6 0.71 0.75 — 0.78 0.68 0.75
xerces-1.4 0.85 0.81 0.72 0.75 0.69 0.74
prop-6 0.78 0.71 0.66 0.76 0.59 0.76
poi-3.0 0.81 0.76 0.69 0.72 0.72 0.74
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FIGURE 7: The Scott-Knott ESD ranking for DQN compared with
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a single weight (either instance or feature weight) or noweight-
ing at all.

We also compared our approach with CFIW-TNB in
AUC and F-measure values on the common datasets of ant-
1.7, xalan-2.4, xalan-2.5, xalan-2.6, poi-3.0, and xerces-1.4.

Table 16 shows the AUC and F-measure values of our
approach and CFIW-TNB on common datasets. The bold
values in Table 16 indicate the higher AUC and F-measure
values between the two SDP approaches across all six datasets.
In both AUC and F-measure values, our approach outper-
forms CFIW-TNB on 5 of 6 datasets. From Table 16, we can
observe the decision tree-DQN-based SDP improves the AUC
and F-measure values by 11.4% and 31.8% comparing with
CFIW-TNB on average.

Figure 11 shows the results of AUC and F-measure
values of two SDP approaches across six common datasets.
On the x-axis, we represent PROMISE datasets, whereas we
present AUC or F-measure values of corresponding datasets
in the y-axis.

The advanced SDP method, MDA-O, introduced a novel
approach known as manifold-embedded distribution adap-
tation (MDA). This approach aims to reduce the distribution
gap within the feature subspace of the manifold. To address
the challenge of differing data distributions across various
datasets, MDA-O involves the mapping of source and target
project data into a manifold subspace. Subsequently, it conducts
joint distribution adaptation for both conditional and marginal
distributions within this manifold subspace, as detailed in [61].

We compare decision tree-DQN with MDA-O in AUC
and F-measure values on the common datasets CM1, MW1,
PC1, PC3, PC4, ant-1.7, poi-3.0, velocity-1.6, and xalan-2.6.
Table 17 shows the AUC and F-measure values of MDA-O
and decision tree + DQN SDP approach on common data-
sets, and the bold values in Table 17 indicate the higher AUC
and F-measure values between the two SDP approaches across

TABLE 12: Comparison of AUC values.

Datasets SVM SVM-DQN KNN KNN-DQN Decision tree Decision tree-DQN

CM1 0.51 0.74 0.51 0.82 0.58 0.79
JM1 0.55 0.73 0.49 0.79 0.48 0.75
KC1 0.54 0.74 0.69 0.81 0.40 0.82
MC1 0.53 0.78 0.66 0.82 0.54 0.85
MC2 0.52 0.71 0.69 0.78 0.72 0.82
MW1 0.62 0.78 0.77 0.81 0.58 0.8
PC1 0.57 0.78 0.66 0.81 0.60 0.83
PC2 0.71 0.79 0.66 0.85 0.54 0.87
PC3 0.78 0.81 0.58 0.82 0.72 0.84
PC4 0.82 0.78 0.64 0.81 0.72 0.8
PC5 0.84 0.86 0.82 0.87 0.76 0.82
ant-1.7 0.51 0.72 0.82 0.87 0.81 0.86
tomcat 0.5 0.77 0.83 0.85 0.72 0.85
xalan-2.5 0.8 0.78 — 0.86 — 0.86
xalan-2.4 0.74 0.79 — 0.84 — 0.85
xalan-2.6 0.81 0.81 — 0.84 — 0.85
camel 0.83 0.85 0.81 0.86 0.79 0.81
synampe 0.64 0.75 — 0.84 0.81 0.83
velocity-1.6 0.52 0.78 0.72 0.79 0.78 0.76
xerces-1.4 0.81 0.76 0.66 0.76 0.81 0.83
prop-6 0.56 0.72 — 0.81 0.54 0.82
poi-3.0 0.78 0.78 0.72 0.82 0.69 0.85
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three classic defect predictors in terms of the AUC evaluation
indicator.

20 IET Software



all nine datasets. No matter in AUC values or F-measure
values, our approach completely outperforms MDA-O on all
nine datasets. From Table 17, our approach improves AUC
and F-measure values by 9.3% and 95.5% comparing with
MDA-O on average.

Figure 12 shows the results of AUC and F-measure
values of two SDP approaches on nine common datasets in
bar and line graphs. On the x-axis, we represent NASA and
PROMISE datasets, whereas, on the y-axis, we present AUC
or F-measure values of corresponding datasets.

WEM is an advanced approach to address the challenge
of single-rule limitations in problem-solving. Developed as a
weighted ensemble model under the principles of ensemble
learning, WEM aims to enhance the diversity of rules for
improved predictive accuracy. In contrast to the constraints
posed by individual rules, WEM effectively boosts predictions
by integrating multiple rules, including FWCAR, BR, and DT.
A detailed description of this method can be found in [62].

We compare decision tree-DQN with WEM in MCC and
F-measure values on the common datasets ant-1.7, velocity-
1.6, xalan-2.4, xalan-2.5, and xalan-2.6. Table 18 shows the
MCC and F-measure values of WEM and decision tree+
DQN SDP approach on common datasets, and the bold
values in Table 18 indicate the higher MCC and F-measure
values between the two SDP approaches across all five data-
sets. No matter in MCC values or F-measure values, our
approach completely outperforms WEM on all five datasets.
From Table 18, our approach improves MCC and F-measure
values by 92.6% and 24.8% comparing withWEM on average.

Figure 13 shows the results of MCC and F-measure
values of two SDP approaches on nine common datasets in
bar and line graphs. On the x-axis, we represent NASA and
PROMISE datasets, whereas, on the y-axis, we present MCC
or F-measure values of corresponding datasets.

TABLE 13: Comparison of MCC values.

Datasets SVM SVM-DQN KNN KNN-DQN Decision tree Decision tree-DQN

CM1 0.09 0.54 0.22 0.68 0.29 0.69
JM1 0.21 0.56 0.43 0.68 0.32 0.55
KC1 0.18 0.61 0.54 0.61 0.42 0.62
MC1 0.23 0.68 0.47 0.32 0.29 0.64
MC2 0.16 0.56 0.22 0.71 0.45 0.63
MW1 0.12 0.50 0.52 0.67 0.33 0.61
PC1 0.29 0.55 0.38 0.58 0.64 0.71
PC2 0.21 0.66 0.42 0.55 0.27 0.49
PC3 0.24 0.62 0.38 0.71 0.22 0.53
PC4 0.21 0.69 0.35 0.44 0.29 0.49
PC5 0.29 0.53 0.26 0.51 0.25 0.60
ant-1.7 0.09 0.61 0.28 0.43 0.37 0.53
tomcat 0.25 0.59 0.54 0.63 0.42 0.69
xalan-2.5 0.65 0.71 — 0.69 — 0.56
xalan-2.4 0.77 0.66 0.44 0.53 0.72 0.68
xalan-2.6 0.65 0.72 — 0.62 — 0.68
camel 0.29 0.64 0.13 0.55 0.37 0.61
synampe 0.64 0.75 — 0.44 0.48 0.63
velocity-1.6 0.15 0.62 0.36 0.66 0.4 0.51
xerces-1.4 0.68 0.59 0.25 0.69 — 0.57
prop-6 0.21 0.42 0.35 0.55 — 0.61
poi-3.0 0.57 0.63 0.29 0.58 — 0.65
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6.6. RQ-5: Does the Feature Extraction AlgorithmBased onDQN
Outperform Four State-of-the-Art Feature Selection Approaches
in SDP? The aim of this research is to validate the performance
of a feature extraction algorithm based on DQN in the tasks of
feature selection and feature extraction, as well as its effect on
improving the performance of ECE. For this purpose, we com-
pared it with four other popular feature selection or feature
extraction algorithms, including CS test, PCA, and IG, where
PCA is a feature extraction algorithm. Before applying these
feature selection algorithms, we also employed corresponding
data preprocessing techniques to better reflect the performance
of the proposed feature extraction algorithm in this study. In
the binary classification machine learning task, we used the

decision tree classifier, as introduced in this paper. Through
the comparison with these four commonly used feature selec-
tion or feature extraction algorithms, our objective is to further
validate the superiority of the DQN-based feature extraction
algorithm proposed in this research in terms of performance
and investigate its effect on improving the performance of ECE.

Table 19 depicts the precision value of all four feature
selection or extraction approaches across a total of 22 soft-
ware projects from three datasets, including 12 projects from
PROMISE and 12 projects from NASA. In Table 19, we
recorded the precision performance indicators of five feature
selection or feature extraction techniques on each dataset.
Please note that the maximum value of each row is marked

TABLE 14: Comparison of precision and F-measure with K-PCA-ELM.

Datasets
Precision F-measure

K-PCA-ELM Decision tree-DQN K-PCA-ELM Decision tree-DQN

CM1 0.81 0.85 0.81 0.86
JM1 0.76 0.87 0.8 0.87
KC1 0.78 0.85 0.76 0.84
MC1 0.73 0.79 0.75 0.80
MC2 0.76 0.88 0.8 0.87
PC1 0.78 0.86 0.79 0.85
ant-1.7 0.75 0.81 0.76 0.81
tomcat 0.77 0.79 0.83 0.79
xalan-2.5 0.78 0.78 0.82 0.79
camel 0.8 0.76 0.79 0.76
synampe 0.74 0.78 0.78 0.78
velocity-1.6 0.79 0.72 0.81 0.75
xerces-1.4 0.8 0.75 0.82 0.78
prop-6 0.75 0.77 0.78 0.76
poi-3.0 0.81 0.76 0.79 0.74

TABLE 15: Comparison of AUC and MCC with K-PCA-ELM.

Datasets
AUC MCC

K-PCA-ELM Decision tree-DQN K-PCA-ELM Decision tree-DQN

CM1 0.8 0.79 0.62 0.69
JM1 0.73 0.75 0.59 0.55
KC1 0.76 0.82 0.52 0.62
MC1 0.75 0.84 0.50 0.64
MC2 0.81 0.81 0.60 0.63
PC1 0.80 0.82 0.59 0.72
ant-1.7 0.76 0.85 0.51 0.53
tomcat 0.84 0.85 0.68 0.68
xalan-2.5 0.81 0.84 0.63 0.56
camel 0.78 0.81 0.55 0.59
synampe 0.75 0.82 0.51 0.61
velocity-1.6 0.79 0.76 0.57 0.48
xerces-1.4 0.82 0.82 0.65 0.55
prop-6 0.78 0.82 0.56 0.64
poi-3.0 0.79 0.84 0.59 0.68

22 IET Software



1.0

0.8

0.6
Pr

ec
isi

on
 v

al
ue

0.4

0.2

0.0

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1

an
t-1

.7

to
m

ca
t

xa
la

n-
2.

5

ca
m

el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4

pr
op

-6

po
i-3

.0

1.0

0.8

0.6

AU
C 

va
lu

e

0.4

0.2

0.0

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1

an
t-1

.7

to
m

ca
t

xa
la

n-
2.

5

ca
m

el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4

pr
op

-6

po
i-3

.0

K-PCA-ELM
Decision tree-DQN

1.0

0.8

0.6

F-
m

ea
su

re
 v

al
ue

0.4

0.2

0.0

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1

an
t-1

.7

to
m

ca
t

xa
la

n-
2.

5

ca
m

el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4

pr
op

-6

po
i-3

.0

1.0

0.8

0.6

M
CC

 v
al

ue

0.4

0.2

0.0

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1

an
t-1

.7

to
m

ca
t

xa
la

n-
2.

5

ca
m

el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4

pr
op

-6

po
i-3

.0

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1
an

t-1
.7

to
m

ca
t

xa
la

n-
2.

5
ca

m
el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4
pr

op
-6

po
i-3

.0

Pr
ec

isi
on

0.88

0.86

0.84

0.82

0.80

0.78

0.76

0.74

0.72

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1
an

t-1
.7

to
m

ca
t

xa
la

n-
2.

5
ca

m
el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4
pr

op
-6

po
i-3

.0

AU
C

0.84

0.82

0.80

0.78

0.76

0.74

K-PCA-ELM
Decision tree-DQN

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1
an

t-1
.7

to
m

ca
t

xa
la

n-
2.

5
ca

m
el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4
pr

op
-6

po
i-3

.0

F-
m

ea
su

re

0.86

0.84

0.82

0.80

0.78

0.76

0.74

CM
1

JM
1

KC
1

M
C1

M
C2 PC

1
an

t-1
.7

to
m

ca
t

xa
la

n-
2.

5
ca

m
el

sy
na

m
pe

ve
lo

ci
ty

-1
.6

xe
rc

es
-1

.4
pr

op
-6

po
i-3

.0

M
CC

0.70

0.65

0.60

0.55

0.50

Dataset

Dataset

Dataset

Dataset Dataset

Dataset

Dataset Dataset

FIGURE 10: Bar and line graphs of precision, F-measure, AUC, and MCC values comparison.
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TABLE 16: Comparison of AUC and F-measure with CFIW-TNB.

Datasets
AUC F-measure

Decision tree-DQN CFIW-TNB Decision tree-DQN CFIW-TNB

ant-1.7 0.85 0.78 0.81 0.758
xalan-2.4 0.85 0.67 0.74 0.32
xalan-2.5 0.84 0.68 0.79 0.57
xalan-2.6 0.85 0.69 0.79 0.63
poi-3.0 0.82 0.8 0.74 0.78
xerces-1.4 0.82 0.85 0.74 0.704
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FIGURE 11: Comparison of AUC and F-measure values for CFIW-TNB and decision tree-DQN.
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in bold. From Table 19, it can be observed that the proposed
feature extraction algorithm based on DQN outperforms the
other four feature selection or feature extraction techniques
in 14 out of 22 datasets. Furthermore, we calculated that the
DQN-based feature extraction technique has higher average
values in terms of precision compared to PCA, ESE, IG, and
CS. Specifically, the DQN-based feature extraction technique
improved the average values by 5.75%, 12.8%, 11.6%, and
8.45%, respectively, compared to PCA, ESE, IG, and CS across
all datasets.

To visually compare the predictive performance differ-
ences between DQN and the four baseline feature selection
or feature extractionmethods, we presented boxplots of Scott-
Knott ESD tests for evaluation metrics. Figure 14 displays the
Scott-Knott ESD test results for all five feature selection or
feature extraction methods across a total of 22 software
projects. The horizontal lines within each box represent the
median values for each feature selection or feature extraction
method. The x-axis represents the five feature selection or
feature extraction methods, while the y-axis represents the
evaluation metrics. From Figure 14, it can be observed that
the DQN algorithm is positioned at the highest level, indicat-
ing that DQN-FE-SDP achieves the best predictive perfor-
mance in terms of precision evaluation metric compared to
the four baseline feature selection or feature extraction meth-
ods. We also observed that the medians obtained by DQN-
FE-SDP for the precision evaluation metric are higher than
those obtained by the four baseline feature selection or feature
extraction methods, providing strong evidence for the superi-
ority of DQN-FE-SDP.

In Table 20, the first column lists all the 22 datasets, the
other columns list five F1 values for feature selection or feature
extraction. As shown in Table 20, in 22 datasets, the DQN-
based feature extraction method proposed in this paper
showed good performance in 15 datasets. In addition, this
paper proposes that the feature extractionmethod has a higher
average value on F1 measures in 22 datasets. Specifically,
DQN-FE-SDP is improved by 10.5%, 6.04%, 6.58%, and
4.82% over PAC, ECE, IG, and CS in F1 measures, respectively.

As can be seen from Figure 15, the DQN-FE-SDP algo-
rithm performs the best in the precision evaluation metrics,
at the highest level, with better performance compared to the

other four baseline feature selection or extraction methods.
Moreover, for the F1 evaluation index, the median DQN-FE-
SDP algorithm was also significantly higher than the median
of the other four baseline feature selection or extraction
methods. This further validates the superiority of the DQN-
FE-SDP algorithm in software project prediction.

Table 21 presents 22 datasets in the first column, with the
other columns listing the AUC values for five feature selec-
tion or extraction methods. The results indicate that the
DQN-based feature extraction method proposed in this
paper demonstrated strong performance in 21 out of 22 data-
sets. Moreover, the paper demonstrated that the proposed
feature extraction method had a higher average AUC value
across all 22 datasets. Specifically, the DQN-FE-SDP method
showed improvements of 13.3%, 11.03%, 11.3%, and 8.55%
over PAC, ECE, IG, and CS, respectively, in terms of AUC
measure.

Figure 16 presents a boxplot where the x-axis represents
five feature selection or extraction methods, and the y-axis
represents the AUC evaluation metric. The results indicate
that the DQN-FE-SDP algorithm outperformed the other
four baseline feature selection or extraction methods in terms
of precision evaluation metrics, with the highest level of per-
formance. Additionally, for the F1 evaluation metric, the
median value of the DQN-FE-SDP algorithm was signifi-
cantly higher than the median values of the other four base-
line feature selection or extraction methods. These findings
further affirm the superiority of the DQN-FE-SDP algorithm
in software project prediction.

Table 22 consists of 22 datasets, with the first column listing
them and the other columns presenting MCC values for five
different feature selection or extraction methods. According to
Table 22, the DQN-based feature extraction method proposed in
this paper demonstrated strong performance in 19 out of the
22 datasets. Furthermore, the paper suggests that the proposed
feature extractionmethod has a higher averageMCC value across
all 22 datasets.More specifically, compared to PAC, ECE, IG, and
CS, the DQN-FE-SDP algorithm improved MCC measures by
14.96%, 15.5%, 10.96%, and 11.17%, respectively.

Figure 17 displays a boxplot where the x-axis represents
five different feature selection or extraction methods, and the
y-axis represents the MCC evaluation metric. The results

TABLE 17: Comparison of AUC and F-measure with MDA-O.

Datasets
AUC F-measure

Decision tree-DQN MDA-O Decision tree-DQN MDA-O

CM1 0.79 0.78 0.86 0.34
MW1 0.84 0.77 0.79 0.23
PC1 0.82 0.74 0.85 0.22
PC3 0.84 0.78 0.87 0.33
PC4 0.80 0.77 0.83 0.35
ant-1.7 0.85 0.76 0.81 0.46
poi-3.0 0.84 0.72 0.74 0.74
velocity-1.6 0.76 0.69 0.75 0.55
xalan-2.6 0.85 0.75 0.79 0.66
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FIGURE 12: Comparison of AUC and F-measure values for MDA-O and decision tree-DQN.
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TABLE 18: Comparison of MCC and F-measure with WEM.

Datasets
MCC F-measure

Decision tree-DQN WEM Decision tree-DQN WEM

ant-1.7 0.85 0.51 0.81 0.46
velocity-1.6 0.76 0.45 0.75 0.65
xalan-2.4 0.85 0.38 0.79 0.68
xalan-2.5 0.85 0.28 0.79 0.65
xalan-2.6 0.85 0.54 0.79 0.71
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indicated that the DQN-FE-SDP algorithm outperformed
the other four baseline feature selection or extractionmethods
in terms of precision evaluation metrics, exhibiting superior
performance at the highest level.

TABLE 19: Comparison of precision with four state-of-the-art feature selection or feature extraction algorithms.

Datasets Decision tree-DQN PCA ECE IG CS

CM1 0.85 0.73 0.78 0.78 0.81
JM1 0.87 0.72 0.78 0.76 0.82
KC1 0.85 0.59 0.68 0.72 0.75
MC1 0.79 0.79 0.85 0.76 0.87
MC2 0.88 0.78 0.72 0.72 0.76
MW1 0.79 0.72 0.69 0.77 0.68
PC1 0.86 0.69 0.78 0.82 0.72
PC2 0.88 0.72 0.78 0.75 0.78
PC3 0.87 0.82 0.79 0.78 0.75
PC4 0.85 0.69 0.78 0.75 0.78
PC5 0.87 0.72 0.77 0.79 0.81
ant-1.7 0.81 0.78 0.79 0.79 0.79
tomcat 0.79 0.68 0.82 0.71 0.72
xalan-2.5 0.78 0.73 0.88 0.82 0.89
xalan-2.4 0.75 0.77 0.78 0.79 0.77
xalan-2.6 0.78 0.79 0.81 0.81 0.82
camel 0.76 0.78 0.83 0.83 0.86
synampe 0.78 0.79 0.79 0.79 0.81
velocity-1.6 0.72 0.77 0.77 0.79 0.8
xerces-1.4 0.75 0.79 0.76 0.79 0.8
prop-6 0.77 0.81 0.77 0.76 0.78
poi-3.0 0.76 0.76 0.72 0.76 0.75
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FIGURE 14: The Scott-Knott ESD ranking for DQN compared with
four classic feature selection algorithms in terms of precision evalu-
ation indicators.

TABLE 20: Comparison of F1 value with four state-of-the-art feature
selection or feature extraction algorithms.

Datasets Decision tree-DQN PCA ECE IG CS

CM1 0.86 0.84 0.75 0.72 0.79
JM1 0.87 0.82 0.79 0.75 0.69
KC1 0.84 0.72 0.78 0.76 0.78
MC1 0.80 0.78 0.81 0.65 0.87
MC2 0.87 0.73 0.72 0.65 0.86
MW1 0.79 0.81 0.69 0.81 0.72
PC1 0.85 0.76 0.77 0.69 0.63
PC2 0.88 0.77 0.66 0.79 0.78
PC3 0.87 0.88 0.72 0.69 0.81
PC4 0.83 0.86 0.79 0.78 0.79
PC5 0.89 0.79 0.76 0.79 0.82
ant-1.7 0.81 0.76 0.77 0.68 0.72
tomcat 0.79 0.69 0.66 0.72 0.77
xalan-2.5 0.79 0.72 0.75 0.78 0.69
xalan-2.4 0.74 0.81 0.65 0.66 0.72
xalan-2.6 0.79 0.75 0.77 0.69 0.77
camel 0.76 0.75 0.69 0.72 0.69
synampe 0.78 0.66 0.52 0.78 0.65
velocity-1.6 0.75 0.69 0.65 0.82 0.72
xerces-1.4 0.74 0.71 0.71 0.73 0.73
prop-6 0.76 0.76 0.69 0.56 0.69
poi-3.0 0.74 0.79 0.69 0.74 0.74

The bold values indicate the best-performing value among these five meth-
ods on different datasets.
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TABLE 21: Comparison of AUC value with four state-of-the-art fea-
ture selection or feature extraction algorithms.

Datasets Decision tree-DQN PCA ECE IG CS

CM1 0.79 0.74 0.72 0.72 0.72
JM1 0.75 0.71 0.71 0.74 0.73
KC1 0.82 0.61 0.7 0.71 0.76
MC1 0.85 0.69 0.77 0.74 0.79
MC2 0.82 0.72 0.68 0.72 0.75
MW1 0.8 0.78 0.69 0.67 0.69
PC1 0.83 0.72 0.72 0.72 0.76
PC2 0.87 0.71 0.73 0.77 0.74
PC3 0.84 0.79 0.71 0.79 0.78
PC4 0.8 0.72 0.72 0.74 0.74
PC5 0.82 0.78 0.75 0.71 0.79
ant-1.7 0.86 0.67 0.76 0.74 0.75
tomcat 0.85 0.69 0.79 0.75 0.77
xalan-2.5 0.86 0.71 0.81 0.79 0.81
xalan-2.4 0.85 0.73 0.76 0.81 0.79
xalan-2.6 0.85 0.76 0.79 0.76 0.81
camel 0.81 0.77 0.79 0.73 0.79
synampe 0.83 0.72 0.77 0.72 0.77
velocity-1.6 0.76 0.74 0.73 0.77 0.72
xerces-1.4 0.83 0.77 0.75 0.76 0.79
prop-6 0.82 0.79 0.77 0.72 0.78
poi-3.0 0.85 0.71 0.73 0.74 0.76

The bold values indicate the best-performing value among these five meth-
ods on different datasets.
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FIGURE 15: The Scott-Knott ESD ranking for DQN compared with
four classic feature selection algorithms in terms of F1 evaluation
indicators.
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FIGURE 16: The Scott-Knott ESD ranking for DQN compared with
four classic feature selection algorithms in terms of AUC evaluation
indicators.

TABLE 22: Comparison of MCC value with four state-of-the-art
feature selection or feature extraction algorithms.

Datasets Decision tree-DQN PCA ECE IG CS

CM1 0.69 0.61 0.58 0.58 0.61
JM1 0.55 0.51 0.48 0.46 0.52
KC1 0.62 0.55 0.52 0.52 0.55
MC1 0.64 0.55 0.55 0.52 0.57
MC2 0.63 0.53 0.52 0.59 0.56
MW1 0.61 0.69 0.59 0.55 0.59
PC1 0.71 0.65 0.61 0.62 0.68
PC2 0.49 0.43 0.51 0.43 0.44
PC3 0.53 0.42 0.47 0.51 0.51
PC4 0.49 0.41 0.45 0.45 0.44
PC5 0.6 0.58 0.53 0.59 0.59
ant-1.7 0.53 0.52 0.51 0.49 0.51
tomcat 0.69 0.57 0.42 0.61 0.62
xalan-2.5 0.56 0.43 0.58 0.52 0.52
xalan-2.4 0.68 0.59 0.58 0.59 0.57
xalan-2.6 0.68 0.58 0.51 0.61 0.62
camel 0.61 0.54 0.53 0.53 0.56
synampe 0.63 0.55 0.59 0.59 0.51
velocity-1.6 0.51 0.47 0.47 0.45 0.41
xerces-1.4 0.57 0.45 0.46 0.52 0.49
prop-6 0.61 0.42 0.57 0.56 0.45
poi-3.0 0.65 0.51 0.52 0.56 0.59

The bold values indicate the best-performing value among these four meth-
ods on different datasets.
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7. Threats to Validity

In this section, we examine three potential sources of validity
issues that could impact the results of our experiments.

7.1. Implementation of Compared Models. We compared
the various feature selection models with our proposed
DQN-FE-SDPmodel. Since these feature selection algorithms
use different datasets from those used in this paper, we imple-
mented these models using Python. Therefore, the outcomes
of these models might capture all nuances in the comparison
method, and it is possible that the parameters of these models
were not meticulously tuned. To ensure a fair comparison, we
applied uniform decision tree classification techniques and
oversampling methods for SDP. It is worth noting that our
feature selection approach may vary from that presented in
the original paper.

7.2. Integrity and Representativeness of the Software Measures.
Feature extraction is a critical process in SDP. However, when
using predetermined measurement elements, there may be
limitations in fully capturing all the relevant features of a
project. As such, it is essential to leverage DL techniques to
extract additional features from the source code for more
comprehensive and accurate feature extraction. By doing
so, various indicators can be obtained for SDP, leading to
better results in identifying potential defects in software pro-
jects. Overall, integratingDL-based feature extractionmethods
has the potential to enhance the accuracy and effectiveness of
SDP models, providing developers with more reliable tools for
improving software quality.

7.3. Measurement Validity.Measurement validity is a critical
aspect in evaluating the effectiveness of any research study.

In this paper, we utilize four commonly used evaluation
indicators—F1, MCC, precision, and AUC—to assess the
performance of our proposed methodology for SDP. As these
indicators have been widely applied and accepted as reliable
measures in previous studies, we believe that our construct
validity is satisfactory.

7.4. Hyperparameter Validity.However, another critical factor
that could impact the accuracy of our experimental results is
the selection of appropriate parameter settings. Several studies
have shown that different parameter configurations can signif-
icantly influence the outcomes of defect prediction models. To
address this issue, we plan to incorporate advanced automated
parameter optimization techniques in our future experiments.
By leveraging these techniques, our goal is to identify the opti-
mal parameter settings for our proposedmethodology, thereby
reducing potential threats to construct validity and enhancing
the overall reliability of our research.

The choice of hyperparameters plays a vital role in the
performance of machine learning models. Overtuning or
improper selection of hyperparameters may lead to overfit-
ting on the validation set or failure to converge. Hence, dur-
ing hyperparameter tuning, careful consideration of suitable
parameter combinations is crucial to ensure that the result-
ing model exhibits good generalization and practicality.
Through proper hyperparameter selection, we can gain bet-
ter insights and evaluations of the effectiveness of our pro-
posed approach, laying a strong foundation for further
research and practical applications in the field of SDP.

7.5. Ablation Experiment. In our ablation experiments, we
focused on validating the impact of two key design choices
on the performance of our proposed DQN model. First, we
compared the performance across different layers, including
one layer, two layers (our selected configuration), and three
layers, aiming to determine the most effective layer configu-
ration. Second, we examined the effect of various padding
strategies, specifically comparing zero-padding (our selected
configuration) with other methods, such as average, maxi-
mum, and minimum value padding, to identify the superior
strategy in enhancing performance.

Table 23 presents the performance metrics for different
the number of convolution layers. Table 24 presents the per-
formance metrics for different padding processes. Table 25
presents the performance metrics for different combination
configurations. Specifically, our chosen of configuration, two
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FIGURE 17: The Scott-Knott ESD ranking for DQN compared with
four classic feature selection algorithms in terms of MCC evaluation
indicators.

TABLE 23: Performance metrics for different configurations—the
number of convolution layers.

The number of convolution
layers

Metrics

F-score Precision AUC MCC

One layer 0.51 0.53 0.57 0.50
Three layers 0.53 0.55 0.59 0.52
Our approach (two layers) 0.78 0.79 0.83 0.62

The bold values indicate the best-performing value among these four meth-
ods on different datasets.
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convolution layers, and zero-padding demonstrated signifi-
cant superiority across all performance metrics, including
F-score, precision, AUC, and MCC. These findings provide
direct rational for our selection.

8. Conclusion and Future Work

The increasing demand for accurate SDP techniques across
various testing and operational phases has driven the explo-
ration of machine learning-based approaches. This paper
focuses on enhancing the precision, F-measure, AUC, and
MCC values in SDP by introducing a novel deep Q-network-
based feature extraction method. The objective is to eliminate
irrelevant, redundant, and noisy features, thereby improving
the overall effectiveness of SDP.

Our approach begins with the optimization of datasets
through preprocessing using the BalanceCascade algorithm.
Following this, we employ the ECE to calculate the weight
ranking of metric elements, constructing a relation matrix
using RMT to evaluate the interdependence of features. The
final step involves generating a revised feature set, utilizing a
Q-learning algorithm in conjunction with a CNN model.

To validate the efficacy of the DQN-based feature extrac-
tion approach on binary classification algorithm-based SDPs,
extensive experiments were conducted on 11 NASA MDP

repository and 11 PROMISE repository datasets. Compari-
sons between traditional SVM, KNN, and decision tree-based
SDPs and their DQN-enhanced counterparts revealed signif-
icant improvements: SVM-DQN demonstrated an average
enhancement of 8.2%, 17.2%, and 84.0% in F-measure, AUC,
andMCC, respectively; KNN-DQN exhibited improvements of
5.6%, 12.9%, 20.1%, and 69.6%; decision tree-DQN showcased
improvements of 11.1%, 12.8%, 26.1%, and 51.5%.

Additionally, we compared our proposed DQN-FE-SDP
with four state-of-the-art SPD methods using common data-
sets. The results underscored the superiority of our approach,
with average improvements of 3.5%, 3.7%, 4.1%, and 5.7% in
precision, F-measure, AUC, and MCC compared to K-PCA-
ELM; 11.4% and 31.8% improvements in AUC and F-measure
compared to CFIW-TNB; and 9.3% and 95.5% improvements
in AUC and F-measure compared to MDA-O. Moreover, our
approach showed an outstanding improvement of 92.6% in
MCC and 24.8% in F-measure compared to WEM.

In our future research endeavors, we aim to delve deeper
into the intricacies of the reward function within our pro-
posed DQN-based feature extraction approach. Specifically,
we will explore how variations in reward values impact the
prediction performance of the model. This investigation will
involve a meticulous analysis of different reward structures
to identify optimal configurations that maximize the efficacy
of the DQN-FE-SDP system.

Furthermore, our plan includes a substantial expansion
of the research scope by incorporating a more diverse set of
metrics. Currently, our focus has been on specific metrics rel-
evant to the SDP context. However, we recognize the impor-
tance of considering a broader spectrum of metrics that may
provide additional insights into the performance of the DQN-
based approach. This expansion will involve the inclusion of
various software metrics, potentially encompassing different
programing languages and development paradigms.

In addition to diversifying the metrics, we intend to
explore the applicability of our proposed DQN-based feature
extraction approach across a wider range of classifiers. While
our current experiments have demonstrated significant improve-
ments with traditional classifiers such as SVM, KNN, and
decision tree, we acknowledge that different classifiers may
yield varied results. By systematically applying our approach
to an extended set of classifiers, including ensemble methods
and DL models, we aim to assess its versatility and robustness
in diverse SDP scenarios.

To achieve these goals, we plan to leverage an expanded
collection of datasets, covering a more comprehensive range
of software development domains. This will not only enhance
the generalizability of our findings but also allow us to identify
specific nuances and challenges thatmay arise in different appli-
cation contexts. By systematically evaluating the performance of
our DQN-based approach across various datasets, metrics, and
classifiers, we aspire to provide a nuanced understanding of its
strengths and limitations in real-world SDP scenarios.

Looking ahead, our future research endeavors will focus
on a more in-depth exploration of the reward function’s
impact on prediction performance. Additionally, we plan
to expand the scope of our research by incorporating diverse

TABLE 24: Performance metrics for different configurations—
various of padding processes.

Padding data
Metrics

F-score Precision AUC MCC

Average 0.58 0.60 0.64 0.57
Maximum 0.59 0.61 0.65 0.58
Minimum 0.55 0.57 0.61 0.54
Our approach (zero) 0.78 0.79 0.83 0.62

The bold values indicate the best-performing value among these four meth-
ods on different datasets.

TABLE 25: Performancemetrics for different combination configurations.

Configurations
Metrics

F-score Precision AUC MCC

One layer, average 0.59 0.61 0.65 0.57
One layer, maximum 0.57 0.59 0.63 0.56
One layer, minimum 0.54 0.56 0.60 0.53
One layer, zero 0.51 0.53 0.57 0.50
Two layer, average 0.58 0.60 0.64 0.57
Two layer, maximum 0.59 0.61 0.65 0.58
Two layer, minimum 0.55 0.57 0.61 0.54
Three layer, average 0.57 0.59 0.63 0.56
Three layer, maximum 0.60 0.62 0.66 0.59
Three layer, minimum 0.56 0.58 0.62 0.55
Three layer, zero 0.53 0.55 0.59 0.52
Our approach (two layer, zero) 0.78 0.79 0.83 0.62

The bold values indicate the best-performing value among these four meth-
ods on different datasets.
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metrics and employing a broader range of classifiers across
an extended set of datasets. This will contribute to a more
comprehensive understanding of the proposed DQN-based
feature extraction approach and its potential applicability in
various SDP scenarios.

Data Availability

The datasets generated during the current study are available in
the Github repository: https://github.com/asqwq/SDP-using-
DQN-based-feature-extraction.
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