
Research Article
An Empirical Study on Downstream Dependency Package
Groups in Software Packaging Ecosystems

Qing Qi and Jian Cao

Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 201100, China

Correspondence should be addressed to Jian Cao; cao-jian@sjtu.edu.cn

Received 29 May 2023; Revised 4 March 2024; Accepted 30 March 2024; Published 30 April 2024

Academic Editor: Shariq Hussain

Copyright© 2024 Qing Qi and Jian Cao. This is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The role of focal packages in packaging ecosystems is crucial for the development of the entire ecosystem, as they are the packages
on which other packages depend. However, the evolution of dependency groups in packaging ecosystems has not been systemati-
cally investigated. In this study, we examine the downstream dependency package groups (DDGs) in three typical packaging
ecosystems—Cargo for Rust, Comprehensive Perl Archive Network for Perl, and RubyGems for Ruby—to identify their features
and evolution. We also identify and analyze a special type of DDG, the collaborative downstream dependency package group
(CDDG), which requires shared contributors. Our findings show that the overall development of DDGs, particularly CDDGs, is
consistent with the status of the whole ecosystem, and the size of DDGs and CDDGs follows a power law distribution. Further-
more, the interaction mechanisms between focal packages and downstream packages differ between ecosystems, but focal packages
always play a leading role in the development of DDGs and CDDGs. Finally, we investigate predictive models for the development
of CDDGs in the next stage based on their features, and our results show that random forest and Gradient Boosting Regression
Tree achieve acceptable prediction accuracy. We provide the raw data and scripts used for our analysis at https://github.com/
onion616/DDG.

1. Introduction

As software systems become increasingly complex, they often
rely on multiple other software systems and evolve in tandem
with them. Open collaboration platforms like GitHub have
facilitated the development of many open-source software
(OSS) projects that require internal dependencies [1]. These
projects are now frequently managed by communities com-
prised of diverse contributors. This phenomenon has led to
the emergence of the concept of the OSS ecosystem, which
describes how a set of actors interact on a shared technological
platform to create various software solutions or services [2].
Given its growing impact, the health of the OSS ecosystem has
become an active research topic [3].

Software packages distributed by package managers form
large software ecosystems. Packaging ecosystems contain a
large number of package releases that are updated regularly,
and there are many dependencies between package releases.
Researchers have studied the issues relating to dependencies
in various packaging ecosystems. For example, Wittern et al.

[4] studied the dependency evolution of JavaScript packages
in npm, and the dependency network of the R ecosystem has
also been studied previously [5]. Mora-Cantallops et al. [6]
recently used complex network analysis tools to assess the
CRAN software package ecosystem. Valiev et al. [7] studied
the likelihood of project development entering a period of
dormancy as a function of the project’s position in their
dependency networks, organizational support, and other fac-
tors in the PyPI ecosystem. Decan et al. [8] evaluated the
dependency networks in seven packaging systems, namely
Cargo for Rust, Comprehensive Perl Archive Network
(CPAN) for Perl, CRAN for R, npm for JavaScript, NuGet
for the .NET development platform, Packagist for PHP, and
RubyGems for Ruby. These studies reveal the overall trends
of the dependencies among packages or the whole depen-
dency network in different packaging systems.

When many packages are dependent on one particular
package, the latter is called the focal package, and all the
dependency packages are called downstream packages [7].
It has been proven that less than 30% of packages are

Hindawi
IET Software
Volume 2024, Article ID 4488412, 23 pages
https://doi.org/10.1049/2024/4488412

https://orcid.org/0000-0003-4169-3977
https://orcid.org/0000-0002-0036-9436
mailto:cao-jian@sjtu.edu.cn
https://github.com/onion616/DDG
https://github.com/onion616/DDG
https://github.com/onion616/DDG
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

required by other packages, and less than 17% of all focal
packages concentrate more than 80% of all dependencies
[8]. This shows that focal packages and their downstream
dependency packages play a vital role in the packaging eco-
system. Therefore, in this paper, we investigate the down-
stream dependency package group (DDG), which consists
of the focal package together with its downstream packages,
to understand the interaction of dependencies between
packages at a micro level (e.g., the behavior of the focal
packages will lead to the feedback of its downstream depen-
dency packages) andmore importantly, understand its impact
on the entire packaging ecosystem at a macro level. Specifi-
cally, to verify the influence of developers on the dependency
package group, a special DDG, the collaborative downstream
dependency package group (CDDG), which only includes the
focal package and its downstream packages with common
contributors, is also studied and compared with its corre-
sponding DDGs. Section 3 provides further details on the
construction of DDGs and CDDGs.

So far, it seems difficult to evaluate the development status
of a packaging ecosystem. To address this issue, we propose
using DDGs to model package interdependencies and CDDGs
to capture collaborative contributions. In this way, the major
members of the packaging ecosystem, including packages and
contributors, are effectively connected through their interac-
tions (including dependencies among packages and coopera-
tion among contributors). This approach is crucial for gaining a
deeper understanding of packaging ecosystems. Additionally,
by studying the evolution of DDGs and CDDGs across differ-
ent packaging ecosystems, we can identify the reasons behind
their varying development statuses. Such insights will help
guide regulation efforts and maintain the stable growth of
packaging ecosystems.

To comprehensively study all packaging ecosystems poses a
challenge. Therefore, we have identified several ecosystems with
distinct developmental trends to conduct comparative analyses.
Through this approach, we aim to establish the impact of DDGs
and CDDGs on their development. Following a rigorous screen-
ing process, we selected three widely used packaging ecosystems
with comparable total package numbers but exhibiting contrast-
ing developmental patterns. These include Cargo for Rust,
CPAN for Perl, and RubyGems for Ruby.

To understand the formation and evolution of DDGs, it
is important to understand the sustainability of focal
packages and their downstream packages. In addition, it
also benefits our understanding of the evolution of the whole
packaging ecosystem. Unfortunately, most research only
investigates the relationships between the total number of
dependencies and the status of the packaging system.

Different from previous work, in our study, by treating
DDGs as subecosystems in which all components have com-
plex internal interactions, we answer the following three
research questions:

(1) RQ1: What kind of roles do DDGs and CDDGs play
in the packaging ecosystem? How do the features of
DDGs evolve with the development of the ecosystem
over time?

(2) RQ2: How does the focal package influence the
development of the DDG and CDDG? Are the fea-
tures of downstream dependency packages relevant
to the development of the focal package?

(3) RQ3: Can we predict the development of DDGs and
CDDGs?

By answering RQ1, we aim to uncover the positions and
influence of DDGs within evolving packaging ecosystems.
Answering RQ2 will help us identify the factors that impact
the development of both DDGs and CDDGs. Through
answering RQ3, we intend not only to provide prediction
methods for the development of individual CDDGs but
also a way to predict the evolution of the entire ecosystem.

The rest of the paper is organized as follows: Section 2
introduces the related work and compares our research with
the existing research. Section 3 explains the definition, selec-
tion of packaging ecosystems, extraction of features, and
prediction methods. Section 4 presents the research process,
results, and summaries for three RQs. A discussion is pre-
sented in Section 5, and some threats to validity are detailed
in Section 6. Finally, we conclude the paper in Section 7.

2. Related Work

The term ecosystem was first proposed by British ecologist
Tansley [9] in 1935. An ecosystem refers to any area in
nature where living organisms and nonliving environmental
components interact to establish a relatively stable, dynamic
equilibrium over a defined period. As a flexible, open system
with variable boundaries, an ecosystem represents a funda-
mental structural and functional unit in ecology.

Similarly, a software ecosystem can also be regarded as a
major structural and functional unit in the field of software
engineering [2, 10], in which a group of participants interacts
with each other to form a large number of software solutions
or services on a common technological platform [11]. For a
software ecosystem, the environment can be a software com-
pany, a research group, or a virtual open-source community
[12]. It has been recognized that the software ecosystem is
now an effective way to build large software systems on
software platforms by combining components developed
by internal and external participants [10]. Software ecosys-
tems are active research topics, as shown by the increase in
the number of publications in this area since 2007 [13].
Software ecosystems incorporate a wide range of research
areas, including software engineering, social networking,
and technology management [2].

2.1. Dependency in Software Ecosystems. With the rapid
growth in OSS development platforms, the number of avail-
able OSS projects has increased dramatically [14]. A key
feature of a software ecosystem is that software projects or
components have internal dependencies and teamwork [15].
Therefore, some researchers have studied dependency types
and dependency identification approaches [16]. Generally,
dependencies can be divided into technical and social depen-
dencies [17]. In most work, technical dependency informa-
tion can be obtained from a project’s configuration files.

2 IET Software

More accurate technical dependency information can be
identified from a project’s source code [18], but they require
large amounts of memory and computation time [19]. A new
approach is proposed in [20], which identifies technical
dependency through reference coupling. However, this
approach can only be applied to GitHub. Social dependen-
cies are often based on the degree of participation and con-
tribution of the same members between different projects
[3]. On the contrary, we want to carefully study the internal
development of the project from the micro level of depen-
dency packages in packaging ecosystems.

2.2. Dependency in Packaging Ecosystems. Package managers
play a crucial role in managing and distributing software
packages, creating distinct packaging ecosystems for differ-
ent programing languages. The focus of research on depen-
dencies in these ecosystems is primarily on technical
dependencies, as social dependency information is often
unavailable. Technical dependencies can be extracted from
configuration files, allowing for their study in most cases.
The proliferation of OSS development has led to a large
number of available software packages, which greatly reduces
the development cost and time [21].

However, some confusion caused by the need for two or
more incompatible package versions in one software artifact
is often referred to as “dependency hell” [22]. Many works
have tried to escape from “dependency hell.” Therefore,
researchers have been actively studying the dynamic evolu-
tion of the packaging dependency network to solve this prob-
lem [23, 24]. Fan et al. [25] proposed a unified dependency
graph to find dependency errors. Tanabe et al. [26] consid-
ered context-oriented programing as a solution. In previous
work [27], it is found that 41% of the errors in CRAN
packages are caused by backward incompatible changes in
one of its dependencies. In previous work [28], the npm
software ecosystem topology is generated to uncover insights
and extract patterns of existing libraries by studying its
localities.

Packages that are more likely to be used within an ecosys-
tem are located separately from packages meant for applica-
tion usage outside the ecosystem. Studies on open-source
package-based software ecosystems such as Debian and R
[29] have highlighted common dependency issues. Moreover,
research conducted in [30] revealed that changes in depen-
dencies affect only a small percentage (around 5%) of the
source code of client projects. Nevertheless, frameworks or
libraries with broadly applicable services may impact client
project source code significantly when their dependencies are
upgraded.

While examining a single packaging ecosystem may yield
some fundamental principles, previous research [31] has indi-
cated that when exploring the dependency network structure
and evolution of JavaScript, Ruby, and Rust ecosystems, sig-
nificant differences emerge across language ecosystems.

To take social dependencies into consideration, social
information can be obtained from GitHub if the projects of
these packages are hosted in GitHub. For example, in previ-
ous research [32], the relationships between the developer

coordination activities and the project dependency structure
in the Ruby ecosystem have been studied by collecting data
from https://RubyGems.org and GitHub. The study shows
that the collaboration pattern among developers in the Ruby
ecosystem is not necessarily shaped by the communication
needs indicated by the dependencies among its ecosystem
projects.

It can be seen that although the dependencies of packages
have been explored in recent years, most studies are carried out
from a global view. However, it is also necessary to pay atten-
tion to the local context of a package to understand the factors
behind the development trends of packages or the evolution of
ecosystems, which has attracted the attention of academia. For
example, in previous work [7], the relationships between the
dormancy risk of a package and the upstream dependencies or
downstream dependency packages are studied. Our paper
focuses on the downstream dependency packages. In particu-
lar, we treat all downstream dependencies of a package as a
group and explore the general characteristics of the group and
the interrelationships of group members.

In a natural ecosystem, a subecosystem is often used to
divide a large ecosystem into several smaller parts that have a
common dividing property. However, this has only been
mentioned very briefly in software ecosystem research [33].
The DDGs studied in this paper are a type of subecosystem.

3. Methodology

In this section, we provide definitions for DDGs and CDDGs
and proceed to analyze these structures in three representative
packaging ecosystems. Our focus is on understanding the
roles of DDGs and CDDGs in packaging ecosystems and
identifying key features that characterize their development.
To address RQ1, we investigate the correlations between focal
packages and downstream dependency packages and manu-
ally select features to describe their development. We also
measure the impact of packages by examining these correla-
tions to answer RQ2. Additionally, we employ 16 features to
predict the size of CDDGs to answer RQ3.

3.1. Definition of DDGs and CDDGs. Before introducing
DDGs and CDDGs, we start with an introduction to the
concepts of upstream and downstream dependencies. Here,
we only consider direct dependencies.

Figure 1 is an example. We can observe that packages
fC1;C2;…;Cng: depend on package B, which in turn depends
on packages fA1;A2;…;Amg:. Here, package B is regarded as
the focal package. Packages fA1;A2;…;Amg: are the
upstream dependencies of B, while packages fC1;C2;…;Cng:

are the downstream dependencies.
In this paper, we mainly focus on downstream depen-

dencies. As previously mentioned, we identify the DDGs,
each of which is composed of a focal package and its down-
stream dependency packages. Moreover, to verify the impact
of developers on packaging ecosystems, we further define the
CDDG, whose dependencies and focal package should have
common contributors. Here, we take Figure 2 as an example.
Package B has a list of contributors fa; b; c;…g:, which has
three downstream dependency packages C1, C2, and C3, all of

IET Software 3

https://RubyGems.org
https://RubyGems.org

which are members of the DDG. Of these, packages C1 and
C2 have common contributors with package B, so the CDDG
can be constructed according to our definition.

3.2. Selection of Packaging Ecosystems. We conducted an
empirical study on the DDGs and CDDGs in packaging
ecosystems using data from libraries.io (https://libraries.io/),
which monitors over 4 million open-source packages across
32 popular package managers for specific programing lan-
guages. As of December 1, 2021, Table 1 summarizes the
top 12 package managers based on their number of packages,
which account for more than 88% of the total. These man-
agers are at different stages of development, reflecting the
evolution of packaging ecosystems over time. Some, like
Maven, PyPI, and RubyGems, emerged early and are now
mature and stable, while others, such as npm and Cargo,
are relatively young and still growing. Finally, some older
package managers, like CPAN, have become stagnant.

To investigate the development trend of different pack-
aging ecosystems, we calculate the growth rates of 12 popular
package managers with time, as shown in Figure 3. The

growth rate of the packaging ecosystem p is calculated using
the following formula:

Gp
i ¼

Pp
i − Pp

i−1

Pp
i−1

; ð1Þ

where Gi is the growth rate of the packaging ecosystem p in
year i, Pi is the number of the packages in the packaging
ecosystem p in year i.

We can observe that the growth rate of packaging eco-
systems can be broadly categorized into three patterns:
steady growth, fluctuating growth, and almost no growth.
The steady growth pattern applies to larger packaging eco-
systems whose growth rate remains stable (with a difference
of less than 0.2 between maximum and minimum rates). The
fluctuating growth pattern is characterized by a relatively
high growth rate, which may vary over time (with a differ-
ence of more than 0.2 between maximum and minimum
rates). The no-growth pattern pertains to cases where the
number of packages is small and remains almost constant
(with a growth rate consistently below 0.1). Table 2 illustrates
the distribution of these growth patterns across different
packaging ecosystems.

For our study, we selected three widely used package
managers that have comparable numbers of packages but
exhibit distinct growth patterns. These package managers
are Cargo, CPAN, and RubyGems. We chose Cargo due to
its highly variable growth rate, RubyGems due to its minimal
difference in growth rate, and CPAN because its growth rate
has consistently remained below 0.1.

Below is a brief overview of each of these package
managers:

(1) Cargo is the official Rust package manager. Rust,
released by Mozilla in 2012, is a safer alternative to
existing system programing languages. Cargo is a
multi-functional front end for building, packaging,
and configuring Rust projects. Crates.io (https://cra
tes.io/), maintained by the Rust team, is the default
public registry for the Rust ecosystem. It is the youn-
gest and smallest of the three selected ecosystems.

(2) The CPAN can help programmers find modules and
programs that are not included in the Perl standard
release. CPAN first appeared in 1993 and was offi-
cially introduced to the Perl community in 1995.
CPAN (https://www.cpan.org/) has been active
online since October 1995. It is the oldest of our
selected ecosystems.

(3) RubyGems is a package management framework for
the Ruby programing language, providing a standard
format for distributing Ruby programs and libraries.
It was created during RubyConf 2004 and was
released to the public on March 14, 2004. Ruby-
Gems.org (https://rubygems.org/) is the Gem hosting
service of the Ruby community. It is the largest of the
three packaging ecosystems.

C1(contributors: a, b, d...)

C2(contributors: b, e...)

C3(contributors: f...)

CDDG
(members: B, C1, C2)

DDG
(members: B, C1, C2, C3)

B
(contributors: a, b, c...)

FIGURE 2: Construction of DDG and CDDG.

“ ” = Depends on

A1 C1

C2

Cn

A2

Am

Upstream dependencies Downstream dependencies

B

FIGURE 1: Definition of upstream dependencies and downstream
dependencies.

4 IET Software

https://libraries.io/
https://libraries.io/
https://crates.io/
https://crates.io/
https://crates.io/
https://www.cpan.org/
https://www.cpan.org/
https://www.cpan.org/
https://rubygems.org/
https://rubygems.org/

TABLE 1: Information of the top 12 package managers on December 1, 2021.

Package manager Creation year Language
Number of
packages

Website Top five keywords

npm 2010 JavaScript 2,121k https://www.npmjs.com React, javascript, typescript, nodejs, vue
Go 2007 Go 449k https://pkg.go.dev Golang, go, kubernetes, cli, hacktoberfest
Maven 2004 Java 445k http://maven.org Java, scala, hacktoberfest, kotlin, android
PyPI 2003 Python 409k https://pypi.org/ Python, python3, django, testing, api
Packagist 2012 PHP 339k https://packagist.org Laravel, php, api, yii2, framework
NuGet 2010 .NET 288k https://www.nuget.org Dotnet, csharp, Tag1, Tag2, ios
RubyGems 2004 Ruby 176k https://rubygems.org Ruby, rails, gem, ruby-gem, hacktoberfest
CocoaPods 2011 Objective-C 85k http://cocoapods.org/ Swift, ios, cocoapods, objective-c, carthage
Cargo 2012 Rust 73k https://crates.io Rust, cli, blockchain, async, parser

Bower 2012 JavaScript 70k http://bower.io
Angular, javascript, jquery, css, web-

components

CPAN 1995 Perl 39k https://metacpan.org
Perl, per5, localization, unicode,

hacktoberfest
Pub 2011 Dart 27k https://pub.dartlang.org Flutter, dart, pub, pubspec, flutter-plugin

0

0.2

0.4

0.6

0.8

1

1.2

202120202019201820172016

G
ro

w
th

 ra
te

Year

npm
Go
Maven
PyPI
Packagist
NuGet

RubyGems
CocoaPods
Cargo
Bower
CPAN
Pub

FIGURE 3: Evolution of the growth rate of the packaging ecosystem.

TABLE 2: Packaging ecosystems with different growth patterns.

Type Steady growth Fluctuating growth No growth

Package manager PyPI, RubyGems

npm, Go,

CPAN
Maven, Packagist,
NuGet, CocoaPods,
Cargo, Bower, Pub

Language Python, ruby

JavaScript, Go,

Perl
Java, PHP,

.NET, Objective-C,
Rust, Javascript, Dart

IET Software 5

https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com
https://pkg.go.dev
https://pkg.go.dev
https://pkg.go.dev
http://maven.org
http://maven.org
https://pypi.org/
https://pypi.org/
https://packagist.org
https://packagist.org
https://www.nuget.org
https://www.nuget.org
https://www.nuget.org
https://rubygems.org
https://rubygems.org
http://cocoapods.org/
http://cocoapods.org/
https://crates.io
https://crates.io
http://bower.io
http://bower.io
https://metacpan.org
https://metacpan.org
https://pub.dartlang.org
https://pub.dartlang.org
https://pub.dartlang.org

We present the evolution of the number of packages and
packages with dependents in the three selected packaging
ecosystems through Figures 4 and 5, respectively. At the
outset, we observe that the RubyGems ecosystem had the
highest number of packages, whereas the Cargo ecosystem
had the fewest. Both ecosystems witnessed rapid growth,
while the CPAN ecosystem demonstrated negligible growth.
Importantly, the Cargo packaging ecosystem has seen a
remarkable surge since 2015 and surpassed the CPAN eco-
system in 2020. In contrast, the RubyGems ecosystem has
been developing steadily over time.

Figure 5 reveals that the RubyGems ecosystem also boasts
the largest number of packages with dependents and con-
tinues to grow consistently. Meanwhile, the Cargo ecosystem
experiences the fastest growth rate in the number of packages
with dependents and exceeded CPAN’s figure in 2017. Nota-
bly, the growth of the number of packages with dependents
correlates with the overall ecosystem’s development trend.
Therefore, this study compares the DDGs of these three pack-
aging systems, given their different growth trends.

We then obtained the packages of different ecosystems
from libraries.io, which covers the data till December 1, 2021.

Our statistical analysis reveals that 20% of packages in
three packaging ecosystems have over 20 dependencies. In
these ecosystems, keywords are utilized to describe package
types, functions, or languages, with a total of 11,715, 653, and

8,235 keywords present in Cargo, CPAN, and RubyGems,
respectively. Interestingly, this subset of packages (compris-
ing 20% of the total), along with their dependent packages,
covers more than 80% of all the ecosystem keywords, specif-
ically 11,255 (96%), 525 (80%), and 7,892 (95%) in Cargo,
CPAN, and RubyGems, respectively.

Therefore, we set the threshold of the number of depen-
dency packages in a DDG to 20 to filter out the DDGs we
study. This resulted in obtaining 705, 730, and 1,526 DDGs
from Cargo, CPAN, and RubyGems, respectively. Accord-
ingly, the number of CDDGs is 185, 178, and 329, respec-
tively. It is worth noting that the number of CDDGs is
notably less than that of DDGs, indicating that collabora-
tions by sharing contributors between packages within the
packaging ecosystem are not so extensive.

3.3. Development Trend Prediction for DDGs and CDDGs.
The emergence and evolution of ecosystems have given rise
to the development of DDGs and CDDGs. Furthermore, a
precise trend prediction model for these entities can aid in
comprehending the fundamental drivers that steer their
growth.

We select features from both the focal package and
dependency packages, as shown in Table 3, to construct
the prediction models. The details of our feature extraction
are listed as follows:

(1) The package age is calculated from its first release
year to 2021.

(2) The numbers of stars and forks are the metrics of the
corresponding repositories on GitHub of the
packages.

(3) The number of keywords of the package is crawled
from the libraries.io platform.

(4) Rank refers to the “SourceRank” on the libraries.io
platform which is the ratings of the packages. Sour-
ceRank is the score for a package based on fourteen
metrics; it is used across the site to boost high-quality
packages.

(5) Dependency packages and repositories count the
number of downstream dependency packages and
repositories, respectively.

(6) Number of releases equals the total number of ver-
sion updates (including major and minor releases).

The features of dependency packages in DDGs and
CDDGs are determined by their mean average values.

Multicollinearity is a serious problem in many predictive
modeling approaches, which leads to an inaccurate conclu-
sion in relation to the relationship between predictor vari-
ables and response variables [34]. We apply collinearity
diagnostics to detect multicollinearity. Tolerance and the
variance inflation factor (VIF) are two closely related statis-
tics for the diagnosis of collinearity in multiple regression
[35]. They are based on the R-squared value obtained by
regressing all the other predictors in the analysis. Tolerance
can be defined as follows:

RubyGems

0
2015

N
um

be
r o

f p
ac

ka
ge

s (
k)

2016 2017 2018
Year

2019 2020 2021

20
40
60
80

100
120
140
160
180
200

CPAN
Cargo

FIGURE 4: Evolution of the number of packages in the three packag-
ing ecosystems by year.

Cargo
CPAN

Rubygems

≤2014 2015 2016 2017 2018
Year

2019 2020 2021
0

N
um

be
r o

f p
ac

ka
ge

s

2,000

4,000

6,000

8,000

10,000

12,000

FIGURE 5: Evolution of the number of packages with downstream
dependency packages in three packaging ecosystems by year.

6 IET Software

Tolerance¼ 1 − R2: ð2Þ

According to the previous research, if tolerance is less
than 0.2 [36], the problem of multicollinearity between pre-
dictor variables should be considered.

The VIF is defined as the reciprocal of tolerance:

VIF¼ 1
1 − R2 : ð3Þ

The VIF exceeds its cutoff point, 10 indicates multicolli-
nearity [37]. After analyzing the collinearity statistics for
DDGs and CDDGs, we find that all tolerances are higher
than 0.2 and VIFs are less than 2.5, indicating that the pre-
dictor variables are independent. Therefore, the features we
select will not cause the multicollinearity problem.

We apply in this paper five traditional approaches to pre-
dict the development trend of DDGs and CDDGs, including
linear regression, random forest, K-nearest neighbor (KNN),
AdaBoost, and Gradient Boosting Regression Tree (GBRT).

The performance of the prediction model is evaluated by
comparing the predicted values with the observed values. In
this paper, three evaluation criteria are selected to measure
the performance, i.e., mean absolute error (MAE), root mean
square error (RMSE), and mean absolute percentage error
(MAPE). Their definitions are as follows:

MAE y;byð Þ ¼ 1
n
∑
n

i¼1
yi − byiÞð j;j ð4Þ

RMSE y;byð Þ ¼
ffi
1
n
∑
n

i¼1
yi − byiÞ2;ð

r
ð5Þ

MAPE y;byð Þ ¼ 100%
n

∑
n

i¼1

byi − yið Þ
yi

����
����; ð6Þ

where n is the number of samples, yi is the observed value of
each sample while byi refers to the predicted value. The smal-
ler the MAE, RMSE, and MAPE, the more accurate the pre-
diction results will be.

4. Research Questions and Results

In this section, we present the research process, results, and
summaries for the three research questions.

4.1. RQ1: What Kind of Roles Do DDGs and CDDGs Play in
the Packaging Ecosystem? How Do the Features of DDGs
Evolve with the Development of the Ecosystem over Time?

4.1.1. What Kind of Roles Do DDGs and CDDGs Play in the
Packaging Ecosystem? The DDGs model all the direct inter-
actions between the focal package and dependency packages.
Since packages and their interactions are the premises of
maintaining the development of the ecosystem, DDGs cap-
ture the underlying cooperative relationships among packages
in the ecosystem. CDDGs further model the cooperative rela-
tionships between package contributors. In this way, the par-
ticipants in the packaging ecosystem (including packages and
contributors) and their interactions (including dependencies
among packages and cooperation among developers) are
taken into account. Therefore, DDGs and CDDGs play a vital
role in the packaging ecosystem.

To explore the roles of DDGs and CDDGs in the pack-
aging ecosystem in a quantitative way, we analyze the fea-
tures of DDGs and CDDGs.

The average number of dependency packages in DDGs
for Cargo, CPAN, and RubyGems is 59.34, 21.82, and 30.68,

TABLE 3: Features of focal package and downstream dependency packages.

Label Type Features

f1

Focal package

Age
f2 Number of stars
f3 Number of keywords
f4 Number of forks
f5 Rank
f6 Dependency packages
f7 Dependency repositories
f8 Number of releases

f9

Downstream dependency packages

Average age
f10 Average number of stars
f11 Average number of keywords
f12 Average number of forks
f13 Average rank
f14 Average dependency packages
f15 Average dependency repositories
f16 Average number of releases

IET Software 7

respectively. Figure 6 shows that the number of dependency
packages in DDGs follows a power-law distribution, indicat-
ing that most packages are relied upon by only a small num-
ber of other packages. Specifically, more than 80% of DDGs
have less than 20 dependency packages. Notably, Cargo has
the lowest average number of dependency packages in DDGs
among the three packaging ecosystems, with over half of its
DDGs having fewer than five dependency packages. This can
be attributed to Cargo’s relative youth, as many of its
packages have not yet been widely adopted by others. In
contrast, stable packaging ecosystems tend to form large
DDGs when some dependencies continue to grow. For
instance, in RubyGems, nearly 500 DDGs have over 100
dependency packages.

Tables 4 and 5 show statistics of the dataset and list the
five largest DDGs and CDDGs, respectively. Cargo, CPAN,
and RubyGems have 705, 730, and 1,526 DDGs, respectively,
and the number of CDDGs is 185, 178, and 329, respectively.
The number of packages used for research in DDGs is

20,102, 22,983, and 102,655 in Cargo, CPAN, and Ruby-
Gems, respectively, and 5,790, 4,335, and 13,940 in CDDGs.
We also provide their information, including size, the ratio of
focal packages, average age, average version updates, average
contributors, and main keywords.

Tables 4 and 5 both exhibit the presence of certain focal
packages. Notably, the members of a CDDG form a subset of
those belonging to the DDG with the same focal package. In
terms of Cargo, four of the top five DDGs have overlapping
CDDGs. However, for CPAN, only one DDG has a corre-
sponding CDDG in the list, indicating that a DDG may not
necessarily have a proportionate CDDG size. This is under-
standable since a package often depends on another package
for a specific function, and the developers may not necessar-
ily be involved in the development of the focal package. The
number of developers contributing to dependency packages
varies across ecosystems. As rapidly growing ecosystems like
Cargo are more likely to have larger CDDGs corresponding
to larger DDGs, the size of the DDGs is not closely related to

0

500

≤5 (5, 20) (20, 50)
Size

D
ist

rib
ut

io
n

(50, 100) >100

1,000

1,500

2,000

2,500

3,000

ðaÞ

0

500

≤5 (5, 20) (20, 50)
Size

D
ist

rib
ut

io
n

(50, 100) >100

1,000

1,500

2,000

2,500

3,000

ðbÞ

0

500

≤5 (5, 20) (20, 50)
Size

D
ist

rib
ut

io
n

(50, 100) >100

1,000

1,500

2,000

2,500

3,000

ðcÞ
FIGURE 6: Size distribution of downstream dependency packages in (a) Cargo, (b) CPAN, and (c) RubyGems packaging ecosystems.

8 IET Software

T
A
B
LE

4:
D
D
G
s
in

th
e
th
re
e
pa
ck
ag
in
g
ec
os
ys
te
m
s
(t
he

fi
ve

la
rg
es
t
D
D
G
s
ar
e
lis
te
d)
.

N
o.

Fo
ca
lp

ac
ka
ge

na
m
e

Si
ze

R
at
io

of
fo
ca
l
pa
ck
ag
es

A
ve
ra
ge

ag
e

A
ve
ra
ge

ve
rs
io
n
up

da
te
s

A
ve
ra
ge

co
nt
ri
bu

to
rs

K
ey
w
or
ds

D
D
G
s
in

C
ar
go

(t
ot
al
D
D
G
s:
70
5,
to
ta
lp

ac
ka
ge
s:
20
,1
02
)

1
Se
rd
e

3,
75
8

0.
03

2.
63

8.
48

9.
63

R
us
t,
ap
i,
go
og
le
,c
li,

w
eb
,p

ro
to
co
l

2
Se
rd
e_
de
ri
ve

2,
83
9

0.
03

2.
69

8.
99

10
.1
6

R
us
t,
ap
i,
go
og
le
,c
li,

w
eb
,p

ro
to
co
l

3
Se
rd
e_
js
on

2,
74
7

0.
02

2.
71

8.
31

9.
48

R
us
t,
ap
i,
go
og
le
,c
li,

w
eb
,p

ro
to
co
l

4
Lo

g
2,
49
4

0.
03

2.
81

9.
23

12
.0
9

R
us
t,
cl
i,
ht
tp
,a
pi
,w

eb
,l
og

5
Li
bc

2,
28
3

0.
05

3.
46

8.
82

7.
42

R
us
t,
ffi
,b

in
di
ng
s,
lin

ux
,d

at
ab
as
e,
gn
om

e

D
D
G
s
in

C
P
A
N

(t
ot
al
D
D
G
s:
73
0,
to
ta
lp

ac
ka
ge
s:
22
,9
83
)

1
M
od

ul
e-
bu

ild
4,
13
0

0.
03

9.
60

11
.1
1

0.
90

P
er
l,
pe
rl
5,
lo
ca
liz
at
io
n,

un
ic
od

e,
di
st
-z
ill
a,
ga
m
e

2
M
oo
se

2,
45
7

0.
05

8.
88

10
.2
3

1.
21

P
er
l,
lo
ca
liz
at
io
n,

un
ic
od

e,
pe
rl
5,
di
st
-z
ill
a,
ob
je
ct
-o
ri
en
te
d

3
E
xp
or
te
r

1,
70
9

0.
06

9.
67

14
.5
1

1.
58

P
er
l,
pe
rl
5,
pe
rl
-m

od
ul
e,
te
st
in
g,
de
bu

gg
er
,c
pa
n

4
T
es
t-
ex
ce
pt
io
n

1,
66
7

0.
04

9.
28

12
.9
9

1.
71

P
er
l,
pe
rl
5,
lo
ca
liz
at
io
n,

un
ic
od

e,
co
de
4l
ib
,c
m
e

5
V
er
si
on

1,
61
9

0.
07

10
.1
2

14
.8
2

1.
89

P
er
l,
lo
ca
liz
at
io
n,

pe
rl
5,
un

ic
od

e,
di
st
-z
ill
a,
co
m
pi
le

D
D
G
s
in

R
ub

yG
em

s
(t
ot
al
D
D
G
s:
1,
52
6,
to
ta
lp

ac
ka
ge
s:
10
2,
65
5)

1
R
ai
ls

8,
86
0

0.
01

6.
25

8.
66

3.
85

R
ai
ls
,r
ub

y,
ge
m
,r
ub

y-
on

-r
ai
ls
,a
ct
iv
er
ec
or
d,

ra
ils
-e
ng
in
e

2
A
ct
iv
es
up

po
rt

8,
55
6

0.
02

6.
55

9.
82

6.
93

R
ub

y,
ra
ils
,a
ct
iv
er
ec
or
d,

ge
m
,r
ub

y-
ge
m
,r
ub

yg
em

s

3
P
ry

7,
52
2

0.
02

5.
10

9.
82

4.
18

R
ub

y,
se
ns
u-
pl
ug
in
s,
ra
ils
,m

on
it
or
in
g,
m
et
ri
cs
,g
em

4
Sq
lit
e3

6,
47
6

0.
01

5.
89

8.
85

3.
37

R
ub

y,
ra
ils
,a
ct
iv
er
ec
or
d,

ge
m
,r
ub

y-
on

-r
ai
ls
,r
ub

y-
ge
m

5
Js
on

5,
88
2

0.
02

6.
88

11
.9
2

6.
21

R
ub

y,
ra
ils
,g
em

,a
pi
,a
pi
-c
lie
nt
,m

on
it
or
in
g

IET Software 9

T
A
B
LE

5:
C
D
D
G
s
in

th
e
th
re
e
pa
ck
ag
in
g
ec
os
ys
te
m
s
(t
he

fi
ve

la
rg
es
t
C
D
D
G
s
ar
e
lis
te
d)
.

N
o.

Fo
ca
lp

ac
ka
ge

na
m
e

Si
ze

R
at
io

of
fo
ca
l
pa
ck
ag
es

A
ve
ra
ge

ag
e

A
ve
ra
ge

ve
rs
io
n
up

da
te
s

A
ve
ra
ge

co
nt
ri
bu

to
rs

K
ey
w
or
ds

C
D
D
G
s
in

C
ar
go

(t
ot
al
C
D
D
G
s:
18
5,
to
ta
lp

ac
ka
ge
s:
5,
79
0)

1
Se
rd
e

89
6

0.
07

3.
55

16
.4
5

34
.9
4

G
oo
gl
e,
ru
st
,w

eb
,p

ro
to
co
l,
ap
i,
cl
i

2
Se
rd
e_
de
ri
ve

74
0

0.
05

3.
56

16
.3
5

33
.7
5

G
oo
gl
e,
w
eb
,r
us
t,
cl
i,
pr
ot
oc
ol
,a
pi

3
Li
bc

68
3

0.
06

3.
96

14
.8
4

20
.5
3

R
us
t,
ffi
,b

in
di
ng
s,
gn
om

e,
lin

ux
,g
tk
-r
s

4
Se
rd
e_
js
on

64
6

0.
05

3.
62

15
.1
7

33
.5
5

G
oo
gl
e,
w
eb
,a
pi
,c
li,

pr
ot
oc
ol
,r
us
t

5
H
yp
er

60
6

0.
01

3.
67

12
.7
7

26
.7
1

G
oo
gl
e,
w
eb
,a
pi
,p

ro
to
co
l,
cl
i,
ru
st

C
D
D
G
s
in

C
P
A
N

(t
ot
al
C
D
D
G
s:
17
8,
to
ta
lp

ac
ka
ge
s:
4,
33
5)

1
M
oo
se

54
8

0.
09

8.
74

15
.7
5

4.
18

P
er
l,
lo
ca
liz
at
io
n,

pe
rl
5,
un

ic
od

e,
di
st
-z
ill
a,
aw

s

2
T
es
t-
ri
nc
i

54
5

0.
04

5.
99

10
.5
5

1.
23

T
es
t,
m
et
ad
at
a

3
D
is
t-
zi
lla

47
6

0.
13

8.
60

14
.7
6

3.
71

D
is
t-
zi
lla
,m

et
ap
ro
gr
am

m
in
g,
pe
rl
,o

bj
ec
t-
or
ie
nt
ed
,a
m
az
on

4
P
er
l-
os
na
m
es

30
6

0.
07

5.
92

14
1.
26

U
ni
x,
bs
d,

sy
sv
,p

os
ix

5
D
is
t-
zi
lla
-P
lu
gi
n-
gi
t-
co
nt
ri
bu

to
rs

30
2

0.
15

8.
65

15
.0
4

3.
72

P
er
l,
di
st
-z
ill
a,
lo
ad
in
g,
pa
ck
ag
in
g

C
D
D
G
s
in

R
ub

yG
em

s
(t
ot
al
C
D
D
G
s:
32
9,
to
ta
lp

ac
ka
ge
s:
13
,9
40
)

1
A
ct
iv
es
up

po
rt

1,
53
1

0.
03

7.
92

19
.8
1

34
.6
9

R
ub

y,
ra
ils
,a
ct
iv
er
ec
or
d,

ht
m
l,
ac
ti
ve
jo
b,

ge
m

2
R
ai
ls

1,
31
5

0.
02

7.
59

16
.7
5

21
.2
5

R
ub

y,
ra
ils
,a
ct
iv
er
ec
or
d,

ge
m
,j
so
n,

ec
om

m
er
ce

3
A
ct
iv
er
ec
or
d

92
1

0.
02

7.
94

15
.0
4

27
.9
3

R
ub

y,
ra
ils
,a
ct
iv
er
ec
or
d,

ru
by
-o
n-
ra
ils
,t
es
ti
ng
,s
ql

4
R
ub

oc
op

61
3

0.
06

5.
90

30
.1
2

30
.5
9

R
ub

y,
ra
ils
,g
em

,r
ub

oc
op

,r
ub

y-
ge
m
,a
ct
iv
er
ec
or
d

5
R
ai
lti
es

45
5

0.
03

7.
43

20
.2
0

47
.7
3

R
ai
ls
,r
ub

y,
ac
ti
ve
re
co
rd
,a
ut
he
nt
ic
at
io
n,

de
vi
se
,m

on
go
db

10 IET Software

the corresponding CDDGs’ size in ecosystems that cease
growth, such as CPAN.

There are notable differences in the keywords used by the
top five DDGs and CDDGs. The top five DDGs tend to focus
on fundamental tools such as building and framework,
whereas the top five CDDGs prioritize technology-oriented
keywords. In other words, contributors in CDDGs tend to
collaborate based on shared interests in tech-related topics.
Taken together, DDGs and CDDGs encompass over 80% of
all keywords associated with the packaging ecosystem. This
underscores the fact that packages found in DDGs and
CDDGs account for a majority of the package types available
across the entire ecosystem.

The analysis reveals that the packages found in CDDGs
have a longer history compared to those in DDGs. This
finding suggests that it takes time to establish collaborative
relationships among different package developers. Moreover,
CDDGs tend to have a higher number of version updates and
contributors on average, indicating that they are more active
than their DDG counterparts. These observations align with
our expectations.

In addition, we observed that Cargo, despite being the
youngest packaging ecosystem, has the highest average num-
ber of contributors in DDGs. This indicates that Cargo has
successfully attracted a sizable community of developers who
frequently collaborate within this ecosystem. It is one of the
key factors contributing to the rapid growth of Cargo.

4.1.2. How Do the Features of DDGs Evolve with the
Development of the Ecosystem over Time? To analyze the
evolution of DDGs in the packaging ecosystem, we began
by conducting a statistical analysis of their total number
each year. Next, we manually selected five key features to
assess the changes in DDGs over time. These features include
the average number of stars and forks for packages, as well as
the average rank, number of dependency packages, and
releases for packages in DDGs. By examining these features,
we aimed to gain insight into how DDGs have evolved within
the larger ecosystem.

Figure 7 presents the evolution of DDG features over
time. Figure 7(a) displays the annual growth in the number
of DDGs across the three packaging ecosystems. Notably,
RubyGems consistently has the highest number of DDGs,
followed by CPAN and Cargo, which have the fewest
DDGs. Interestingly, there has been exponential growth in
the number of DDGs within the Cargo ecosystem. In the case
of RubyGems, the number of DDGs grew rapidly before 2018
but has since slowed down. Conversely, the growth rate of
DDGs in CPAN has nearly plateaued. These trends align
with those observed in the overall number of packages within
each ecosystem, underscoring the significant role played by
DDGs in shaping these systems. Panels (b) through (f) of
Figure 7 exhibit similar patterns, with the average metric
values of DDGs in Cargo showing a significant decreasing
trend, while those in RubyGems exhibit a slight decrease and
those in CPAN remain mostly unchanged. Typically, these

metric values increase over time for a given DDG. However,
when new DDGs appear within an ecosystem, their metric
values tend to be small in the initial stages. As the number of
DDGs increases each year, the average metric values for all
DDGs gradually decrease. This phenomenon is particularly
evident in the case of Cargo, where the total number of
DDGs has grown exponentially. For RubyGems, there was
a noticeable drop in the metric values of DDGs, particularly
before 2018, which aligns with the trends observed in Panel
(a) of Figure 7. After 2018, the metric values continued to
decline slightly.

Observing Figure 7, it can be noted that among the three
package ecosystems, Cargo’s DDGs have the highest average
number of stars and ranks, which is due to its rapid develop-
ment and significant attention from users. Such attention
and feedback further facilitate its growth. Conversely, Ruby-
Gems’ DDGs exhibit a larger average number of forks and
version updates as compared to Cargo, given RubyGems’
longer history in the market.

Moreover, Figure 7(e) illustrates the average number of
dependency packages among the three packaging ecosys-
tems. In earlier years, specifically 2015 and 2016, Cargo
had the largest average number of dependencies for DDGs.
Nevertheless, this figure significantly decreased over time
and became the smallest. This pattern can be attributed to
the growth trajectory of the number of DDGs in the Cargo
ecosystem. It is important to note that attracting downstream
dependencies takes time for any DDG; hence, the lower aver-
age number of dependencies of DDGs in the later years does
not necessarily translate to smaller-sized DDGs in Cargo
compared to the other two packaging ecosystems. Rather,
it demonstrates that DDGs in Cargo had more dependencies
in the earlier years, as evident in the data.

Regarding the metric values of DDGs across the three
ecosystems, Cargo, being a new ecosystem with only 75
DDGs in 2015, is currently undergoing fast-paced develop-
ment with highly active DDGs. In contrast, RubyGems, hav-
ing been around for a longer period, maintains a certain
number of new DDGs and exhibits stable increases in stars,
forks, dependencies, and version updates, indicating a stage
of stable development. Meanwhile, CPAN is experiencing
stagnation with a minimal number of newly formed DDGs
each year, and the forks and version updates of its DDGs
have stabilized. Regrettably, it receives little attention, result-
ing in the smallest number of stars and average rankings
among the three ecosystems.

Summary of findings: DDGs model the dependency rela-
tionships among packages, and CDDGs further identify the
collaborations between contributors. The size distribution of
DDGs follows the power-law distribution. The average met-
ric values of DDGs are consistent with the development stage
of the packaging ecosystem. A fast-developing ecosystem
receives considerable user feedback and witnesses numerous
new DDGs formations annually. Additionally, the metric
values of DDGs in a stable development ecosystem exhibit

IET Software 11

steady growth. Conversely, for an ecosystem in the stagnat-
ing stage, there is little change in the metric values of DDGs.

4.2. RQ2: How Does the Focal Package Influence the
Development of the DDG and CDDG? Are the Features
of Downstream Dependency Packages Relevant to the
Development of the Focal Package?

4.2.1. How Does the Focal Package Influence the Development
of the DDG and CDDG? The development of a DDG is
influenced by its component packages, including the focal
package and downstream dependency packages. Studies

indicate that the focal packages play a vital role in shaping
the evolution of DDGs [7, 8]. Consequently, we conducted a
quantitative analysis to examine the relationship between
features of the focal package and the development of a DDG.

To evaluate the development status of a DDG, we mea-
sured its size and the average number of releases of its
packages. Our study pursued an answer to RQ2.1 by exam-
ining how focal packages are linked to DDG development
through an analysis of their relationship with DDG size and
average number of releases. We focused on eight features of
the focal packages, including age, number of stars, number of

2015
0

200
400
600
800

1,000
1,200
1,400
1,600
1,800

N
um

be
r o

f D
D

G
s

2016

Cargo

2017 2018
Year

2019 2020 2021

CPAN
RubyGems

ðaÞ

0
50

100
150
200
250
300
350
400

A
ve

ra
ge

 n
um

be
r o

f s
ta

rs

2015 2016 2017 2018
Year

2019 2020 2021

Cargo
CPAN

RubyGems

ðbÞ

0
10
20
30
40
50
60
70

A
ve

ra
ge

 n
um

be
r o

f f
or

ks

2015 2016 2017 2018
Year

2019 2020 2021

Cargo
CPAN

RubyGems

ðcÞ

0
2
4
6
8

10
12

A
ve

ra
ge

 ra
nk

2015 2016 2017 2018
Year

2019 2020 2021

Cargo
CPAN

RubyGems

ðdÞ

0
5

10
15
20
25
30
35

45
40

A
ve

ra
ge

 n
um

be
r

of
 d

ep
en

de
nt

s

2015 2016 2017 2018
Year

2019 2020 2021

Cargo
CPAN

RubyGems

ðeÞ

0
5

10
15
20
25
30

A
ve

ra
ge

 n
um

be
r o

f
ve

rs
io

n
up

da
te

s

2015 2016 2017 2018
Year

2019 2020 2021

Cargo
CPAN

RubyGems

ðfÞ
FIGURE 7: Evolution of features in DDGs: (a) evolution of the number of DDGs; (b) evolution of an average number of stars; (c) evolution of an
average number of forks; (d) evolution of average rank; (e) evolution of an average number of dependents; (f) evolution of an average number
of releases.

12 IET Software

forks, rank, number of keywords, number of dependency
packages, number of dependent repositories, and number
of releases. Using the Spearman correlation coefficient, we
investigated the links between these features and DDG size,
as well as the relationship between these features and the
average number of releases of the DDGs. Notably, the num-
ber of stars, number of forks, and rank indicate package
popularity, while the number of dependent repositories
and number of releases measure the activity status of package
development.

The analysis presented in Table 6 highlights that in
Cargo and RubyGems, nearly all features of the focal
packages display a positive correlation with DDG size. Nota-
bly, rank holds a medium (in Cargo) or strong (in Ruby-
Gems) positive correlation with DDG size, while the number
of dependency repositories has a medium positive correla-
tion. These correlations suggest that package popularity and
activity level are key factors driving attraction to downstream
dependency packages. Moreover, our findings indicate that
age is not a significant factor influencing DDG size; rather, a
package’s influence holds greater sway over attracting down-
stream dependencies than its age.

Our analysis did not reveal any significant correlation
between the features of focal packages and the average num-
ber of releases of DDGs. Notably, we found no link between
the number of releases of focal packages and their down-
stream dependencies. This finding initially appears to con-
tradict the fact that a version update of a focal package can
create version compatibility issues, leading to necessary
updates to downstream dependency packages. However,
prior research indicates that updates to downstream depen-
dency packages often occur with delays [38]. This may
explain the absence of correlation in our findings.

Table 7 reveals that in Cargo and CPAN, the features of
focal packages display a positive correlation with CDDG size,
along with the number of keywords. These correlations
prove much stronger than those observed for DDGs, thereby
emphasizing the heightened influence of focal packages on
CDDG development. Unlike the correlation analysis between
focal package features and the number of releases of DDGs in
Table 6, Table 7 demonstrates that some focal package fea-
tures also exhibit a positive correlation with the number of
releases of CDDGs. Specifically, rank holds a weak positive
correlation with the average number of releases of CDDGs,
while the number of dependency repositories shows a
medium positive correlation with the average number of
releases of CDDGs. Notably, age also displays a positive
correlation with the number of releases of CDDGs, suggest-
ing that time plays a role in fostering collaborations among
project members and subsequently promoting package activ-
ity within the DDG.

Owing to its stagnant state, CPAN exhibits distinct pat-
terns compared to Cargo and RubyGems. Notably, focal
packages in CPAN have no discernible influence on DDG
development. However, within CDDGs, we found a weak
positive correlation between focal packages and CDDG
development in CPAN. Furthermore, our analysis indicated
that focal packages displayed no attraction to downstream

dependency packages, providing evidence of the sluggish
pace of ecosystem growth.

4.2.2. Are the Features of Downstream Dependency Packages
Relevant to the Development of the Focal Package? We also
want to know whether the features of downstream depen-
dency packages are related to the status of DDGs and the
focal packages. We study this by analyzing the correlation
between the features of downstream dependency packages
and the size of the DDGs, and the correlations between the
features of the downstream dependency packages and the
number of releases of the focal packages.

Since the number of downstream dependency packages
in the DDGs and CDDGs follows the long-tail distribution,
to remove the impact of a large number of new packages on
the overall correlation, we select the top 20% of downstream
dependency packages in terms of the number of their down-
stream dependency packages for the correlation analysis. The
results are shown in Tables 8 and 9.

It can be seen that in DDGs and CDDGs, some features
of the downstream dependency packages have a weak posi-
tive correlation with the size of the DDGs. The correlation
becomes stronger in CDDGs. This phenomenon indicates
that the size of DDGs is related to the popularity and activity
of the downstream dependency packages. In CDDGs, the
number of releases of the downstream dependency packages
and the number of releases of the focal package have a weak
positive correlation, while there is no correlation in DDGs.

After validating the configuration files of different ver-
sions in Figure 8, we found that when the focal package was
updated, the update frequency of downstream dependency
packages that responded to the update in CDDGs was twice
as many as for packages without collaboration in DDGs. Due
to the emergence of collaboration between contributors,
downstream dependency packages in CDDGs are more sen-
sitive to updates, such as bug fixes and new functions in focal
packages, and will tend to update accordingly. This shows
there is an inherent interaction between downstream depen-
dency packages and focal packages in CDDGs. For example,
the requirement of the downstream dependency packages
promotes the version update frequency of focal packages in
turn, which improves the number of releases of the focal
packages.

It is also worth noting that the correlation in the Cargo is
the weakest, followed by RubyGems, while the strongest is
CPAN, which implies that the role of downstream depen-
dency packages in DDGs differs at different stages of pack-
aging ecosystems. In the early stage, focal packages play a
leading role, which directly affects the development of the
downstream dependency packages. With the development of
the downstream dependency packages, their influence grad-
ually increases, which can then affect the development of
focal packages.

Summary of findings: Focal packages, especially those
with high rankings, play a leading role in the development
of CDDGs. More popular and active packages generally
attract more dependency packages. In contrast, the age of a
package does not necessarily correspond to attracting more

IET Software 13

T
A
B
LE

6:
Sp
ea
rm

an
co
rr
el
at
io
n
co
ef
fi
ci
en
ts
be
tw
ee
n
th
e
fe
at
ur
es

of
th
e
fo
ca
lp

ac
ka
ge

an
d
th
e
de
ve
lo
pm

en
t
of

th
e
D
D
G
.

Fe
at
ur
es

of
fo
ca
lp

ac
ka
ge

an
d
si
ze

of
D
D
G
(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

of
fo
ca
l
pa
ck
ag
e
an
d
av
er
ag
e
nu

m
be
r
of

re
le
as
es

of
D
D
G

(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

C
ar
go

C
P
A
N

R
ub

yG
em

s
C
ar
go

C
P
A
N

R
ub

yG
em

s

A
ge

0.
17

(0
.0
3)

0.
11

(0
.0
0)

0.
25

(1
.4
8e
-2
2)

0.
16

(0
.0
0)

0.
12

(0
.0
0)

0.
10

(0
.0
0)

N
um

be
r
of

st
ar
s

0.
26

(0
.0
0)

0.
13

(0
.0
0)

0.
42

(1
.3
5e
-6
3)

−
0.
09

(0
.0
4)

0.
04

(0
.2
7)

0.
01

(0
.6
5)

N
um

be
r
of

fo
rk
s

0.
35

(1
.1
7e
-0
6)

0.
16

(2
.4
9e
-0
5)

0.
38

(5
.7
2e
-5
1)

−
0.
05

(0
.1
9)

0.
05

(0
.1
7)

0.
04

(0
.1
1)

R
an
k

0.
54

(1
.2
9e
-1
5)

0.
26

(0
.0
0)

0.
65

(2
.2
4e
-4
0)

0.
09

(0
.0
4)

0.
03

(0
.4
4)

0.
10

(0
.0
0)

N
um

be
r
of

ke
yw

or
ds

0.
10

(0
.1
8)

0.
05

(0
.1
6)

0.
03

(0
.2
7)

−
0.
07

(0
.3
5)

−
0.
07

(0
.0
5)

−
0.
02

(0
.5
2)

N
um

be
r
of

de
pe
nd

en
t
re
po

si
to
ri
es

0.
47

(1
.0
2e
-1
1)

0.
01

(0
.8
7)

0.
50

(1
.7
9e
-2
2)

0.
18

(5
.1
9e
-1
1)

−
0.
05

(0
.1
3)

0.
09

(0
.0
5)

N
um

be
r
of

re
le
as
es

0.
25

(0
.0
0)

0.
13

(0
.0
0)

0.
29

(2
.4
6e
-2
9)

−
0.
0
(0
.1
3)

−
0.
02

(0
.6
6)

0.
04

(0
.1
3)

T
he

co
rr
el
at
io
n
co
ef
fi
ci
en
t
is
no

t
le
ss

th
an

0.
20
,h

ig
hl
ig
ht
in
g
a
hi
gh
er

co
rr
el
at
io
n
us
in
g
bo
ld

fo
nt
.

14 IET Software

T
A
B
LE

7:
Sp
ea
rm

an
co
rr
el
at
io
n
co
ef
fi
ci
en
ts
be
tw
ee
n
fe
at
ur
es

of
th
e
fo
ca
lp

ac
ka
ge

an
d
th
e
de
ve
lo
pm

en
t
of

th
e
C
D
D
G
.

Fe
at
ur
es

of
fo
ca
l
pa
ck
ag
e
an
d
si
ze

of
C
D
D
G

(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

of
fo
ca
l
pa
ck
ag
e
an
d
av
er
ag
e
nu

m
be
r
of

re
le
as
es

of
C
D
D
G

(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

C
ar
go

C
P
A
N

R
ub

yG
em

s
C
ar
go

C
P
A
N

R
ub

yG
em

s

A
ge

0.
26

(9
.6
4e
-1
0)

0.
16

(0
.0
3)

0.
40

(3
.5
9e
-1
4)

0.
49

(9
.3
4e
-1
3)

0.
24

(3
.4
2e
-1
0)

0.
20

(0
.0
0)

N
um

be
r
of

st
ar
s

0.
43

(9
.0
2e
-5
)

0.
23

(0
.0
0)

0.
49

(1
.3
7e
-2
1)

0.
16

(0
.0
3)

0.
25

(0
.0
0)

0.
15

(0
.0
1)

N
um

be
r
of

fo
rk
s

0.
43

(2
.1
9e
-2
4)

0.
26

(0
.0
0)

0.
50

(2
.6
7e
-2
2)

0.
19

(0
.0
4)

0.
30

(3
.6
6e
-0
5)

0.
18

(0
.0
0)

R
an
k

0.
72

(1
.4
2e
-8
5)

0.
47

(3
.5
8e
-4
0)

0.
71

(1
.9
7e
-2
22
)

0.
38

(1
.3
7e
-0
7)

0.
34

(2
.4
9e
-0
6)

0.
39

(1
.3
0e
-1
3)

N
um

be
r
of

ke
yw

or
ds

0.
01

(0
.7
3)

0.
11

(0
.1
6)

0.
23

(2
.9
7e
-0
5)

0.
14

(0
.0
6)

0.
33

(5
.6
1e
-6
)

0.
02

(0
.7
3)

N
um

be
r
of

de
pe
nd

en
t
re
po

si
to
ri
es

0.
56

(2
.2
7e
-4
4)

0.
11

(0
.0
0)

0.
61

(3
.9
1e
-1
48
)

0.
49

(4
.9
4e
-1
3)

0.
04

(0
.1
9)

0.
48

(6
.1
0e
-2
1)

N
um

be
r
of

re
le
as
es

0.
41

(1
.8
9e
-2
2)

0.
20

(0
.0
1)

0.
44

(1
.2
2e
-1
6)

0.
19

(0
.0
1)

0.
17

(0
.0
3)

0.
23

(3
.3
2e
-0
5)

T
he

co
rr
el
at
io
n
co
ef
fi
ci
en
t
is
no

t
le
ss

th
an

0.
20
,h

ig
hl
ig
ht
in
g
a
hi
gh
er

co
rr
el
at
io
n
us
in
g
bo
ld

fo
nt
.

IET Software 15

T
A
B
LE

8:
Sp
ea
rm

an
co
rr
el
at
io
n
co
ef
fi
ci
en
ts
fo
r
fe
at
ur
es

of
do

w
ns
tr
ea
m

de
pe
nd

en
cy

pa
ck
ag
es

an
d
th
e
de
ve
lo
pm

en
t
of

th
e
fo
ca
lp

ac
ka
ge

in
D
D
G

(t
op

20
%

m
em

be
rs
).

Fe
at
ur
es

of
do

w
ns
tr
ea
m

de
pe
nd

en
cy

pa
ck
ag
es

an
d
si
ze

of
D
D
G

(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

of
do

w
ns
tr
ea
m

de
pe
nd

en
cy

pa
ck
ag
es

an
d
nu

m
be
r
of

re
le
as
es

of
fo
ca
l
pa
ck
ag
e
(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

C
ar
go

C
P
A
N

R
ub

yG
em

s
C
ar
go

C
P
A
N

R
ub

yG
em

s

A
ve
ra
ge

ag
e

0.
04

(0
.3
2)

0.
09

(0
.0
2)

0.
07

(0
.0
0)

0.
07

(0
.1
1)

0.
18

(8
.5
6e
-0
7)

0.
05

(0
.0
4)

A
ve
ra
ge

nu
m
be
r
of

st
ar
s

0.
10

(0
.0
3)

0.
26

(9
.6
1e
-1
3)

0.
19

(1
.0
2e
-1
3)

0.
03

(0
.4
4)

0.
10

(0
.0
0)

0.
02

(0
.5
2)

A
ve
ra
ge

nu
m
be
r
of

fo
rk
s

0.
08

(0
.0
9)

0.
29

(1
.8
6e
-1
5)

0.
22

(7
.6
9e
-1
7)

0.
00

(0
.9
2)

0.
05

(0
.1
9)

0.
07

(0
.0
1)

A
ve
ra
ge

ra
nk

0.
11

(0
.0
1)

0.
27

(3
.9
4e
-1
3)

0.
04

(0
.1
2)

0.
16

(0
.0
0)

0.
08

(0
.3
2)

0.
09

(0
.0
0)

A
ve
ra
ge

nu
m
be
r
of

ke
yw

or
ds

0.
02

(0
.6
5)

0.
36

(4
.6
8e
-2
4)

0.
02

(0
.5
3)

0.
09

(0
.0
3)

0.
03

(0
.4
7)

0.
02

(0
.5
6)

A
ve
ra
ge

nu
m
be
r
of

de
pe
nd

en
t
re
po

si
to
ri
es

0.
21

(2
.0
9e
-0
5)

0.
43

(2
.8
3e
-3
3)

0.
31

(9
.7
5e
-3
4)

0.
03

(0
.5
6)

0.
13

(0
.0
0)

0.
02

(0
.5
3)

A
ve
ra
ge

nu
m
be
r
of

re
le
as
es

0.
05

(0
.2
3)

0.
07

(0
.0
7)

0.
01

(0
.5
9)

0.
05

(0
.2
9)

0.
06

(0
.1
0)

0.
07

(0
.0
1)

A
ve
ra
ge

nu
m
be
r
of

de
pe
nd

en
t
pa
ck
ag
es

0.
17

(7
.1
1e
-0
5)

0.
36

(5
.3
1e
-2
3)

0.
24

(1
.3
0e
-1
9)

0.
12

(0
.0
1)

0.
01

(0
.8
5)

0.
03

(0
.2
1)

T
he

co
rr
el
at
io
n
co
ef
fi
ci
en
t
is
no

t
le
ss

th
an

0.
20
,h

ig
hl
ig
ht
in
g
a
hi
gh
er

co
rr
el
at
io
n
us
in
g
bo
ld

fo
nt
.

16 IET Software

T
A
B
LE

9:
Sp
ea
rm

an
co
rr
el
at
io
n
co
ef
fi
ci
en
ts
fo
r
fe
at
ur
es

of
do

w
ns
tr
ea
m

de
pe
nd

en
cy

pa
ck
ag
es

an
d
th
e
de
ve
lo
pm

en
t
of

th
e
fo
ca
lp

ac
ka
ge

in
C
D
D
G
s
(t
op

20
%

m
em

be
rs
).

Fe
at
ur
es

of
do

w
ns
tr
ea
m

de
pe
nd

en
cy

pa
ck
ag
es

an
d
si
ze

of
C
D
D
G

(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

of
do

w
ns
tr
ea
m

de
pe
nd

en
cy

pa
ck
ag
es

an
d
nu

m
be
r
of

re
le
as
es

of
fo
ca
lp

ac
ka
ge

(c
or
re
la
ti
on

co
ef
fi
ci
en
t
(p
-v
al
ue
))

Fe
at
ur
es

C
ar
go

C
P
A
N

R
ub

yG
em

s
C
ar
go

C
P
A
N

R
ub

yG
em

s

A
ve
ra
ge

ag
e

0.
14

(0
.0
6)

0.
60

(1
.0
1e
-1
8)

0.
41

(1
.2
6e
-1
4)

0.
25

(0
.0
0)

0.
26

(0
.0
0)

0.
01

(0
.8
3)

A
ve
ra
ge

nu
m
be
r
of

st
ar
s

0.
18

(0
.0
1)

0.
65

(3
.6
1e
-2
3)

0.
56

(1
.4
5e
-2
8)

0.
09

(0
.2
0)

0.
39

(5
.0
3e
-0
8)

0.
18

(0
.0
0)

A
ve
ra
ge

nu
m
be
r
of

fo
rk
s

0.
13

(0
.0
7)

0.
67

(1
.7
9e
-2
4)

0.
52

(2
.9
5e
-2
4)

0.
05

(0
.5
0)

0.
38

(1
.4
9e
-0
7)

0.
21

(0
.0
0)

A
ve
ra
ge

ra
nk

0.
18

(0
.0
1)

0.
65

(4
.6
4e
-2
3)

0.
58

(1
.9
3e
-3
0)

0.
02

(0
.7
7)

0.
25

(9
.5
5e
-1
2)

0.
10

(0
.0
8)

A
ve
ra
ge

nu
m
be
r
of

ke
yw

or
ds

0.
14

(0
.0
6)

0.
27

(0
.0
0)

0.
26

(2
.8
9e
-0
6)

0.
16

(0
.0
3)

0.
07

(0
.3
3)

0.
16

(0
.0
0)

A
ve
ra
ge

nu
m
be
r
of

de
pe
nd

en
cy

re
po

si
to
ri
es

0.
29

(7
.2
3e
-0
5)

0.
60

(1
.0
8e
-1
8)

0.
59

(3
.4
5e
-3
2)

0.
05

(0
.5
1)

0.
22

(0
.0
0)

0.
13

(0
.0
2)

A
ve
ra
ge

nu
m
be
r
of

re
le
as
es

0.
13

(0
.0
8)

0.
38

(2
.4
9e
-0
7)

0.
38

(4
.6
3e
-1
3)

0.
23

(0
.0
0)

0.
34

(4
.4
8e
-0
6)

0.
25

(4
.7
6e
-0
6)

A
ve
ra
ge

nu
m
be
r
of

de
pe
nd

en
cy

pa
ck
ag
es

0.
33

(4
.4
3e
-0
6)

0.
56

(2
.2
9e
-1
6)

0.
59

(1
.7
9e
-3
2)

0.
01

(0
.8
6)

0.
20

(5
.5
0e
-0
8)

0.
12

(0
.0
3)

T
he

co
rr
el
at
io
n
co
ef
fi
ci
en
t
is
no

t
le
ss

th
an

0.
20
,h

ig
hl
ig
ht
in
g
a
hi
gh
er

co
rr
el
at
io
n
us
in
g
bo
ld

fo
nt
.

IET Software 17

dependency packages. In CDDGs, focal packages have a
stronger influence on the development of DDGs and also
the dependency packages. In an ecosystem, the ability of
focal packages to attract dependency packages in DDGs
aligns with its development status. Moreover, the popularity
and activity of dependency packages exhibit a positive corre-
lation with the size of DDGs and CDDGs.

4.3. RQ3: Can We Predict the Development of DDGs and
CDDGs? When addressing RQ2, our findings indicate that
the majority of features within the focal package exhibit a
more robust positive correlation with the development of
CDDGs as opposed to DDGs. Additionally, CDDGs serve
as a reflection of the innate cooperation amongst developers
across packages. Consequently, predicting the development
of DDGs based on selected features proves challenging, but it
is possible to construct models for forecasting the develop-
ment of CDDGs.

To address RQ3, we leveraged features from both the
focal package and its dependency packages from the preced-
ing year to forecast the size and number of releases of
CDDGs in the subsequent year. We meticulously selected
sixteen features that demonstrated a correlation with
CDDG development, which are presented in Table 3. For
each year, we took one CDDG’s features alongside its corre-
sponding size and number of releases for the following year
as a singular sample. Consequently, we obtained 801 samples
for Cargo, 746 samples for CPAN, and 1,447 samples for
RubyGems over 5 years.

We trained our regression model using five conventional
models: linear regression, random forest, KNN, AdaBoost,
and GBRT. Since the size of CDDGs conforms to a long-tail
distribution and CDDGs of varying sizes may exhibit distinct
trends, we created separate models for two categories of
CDDGs based on different size ranges. Given that roughly
20% of CDDGs exceed the threshold of 100, we used 100 as
the benchmark.

In the model training, 80% of the samples are used as the
training set, and 20% are used as the testing set. The CDDG

size prediction results on the three packaging ecosystems are
shown in Table 10. Correspondingly, the prediction results
of a number of releases are shown in Table 11.

Different size prediction models have different predic-
tion accuracies on different ecosystems. Among the five
size prediction models, random forest and GBRT have a rel-
atively stable performance. A comparison between the model
prediction performances for CDDGs exceeding 100 in size
versus those under 100 reveals that CPAN shows the most
significant improvement, followed by Cargo and then Ruby-
Gems. This can be attributed to the uneven development of
these three packaging ecosystems.

As shown in Table 5, the sizes of the three packaging
ecosystems vary significantly, with RubyGems displaying
the largest CDDGs, almost twice as large as those in the other
two ecosystems. However, some of these larger CDDGs have
already reached stability, while others are still in rapid devel-
opment stages, making them challenging to predict accu-
rately. Conversely, in the emerging Cargo ecosystem, both
large and small-sized CDDGs tend to experience continued
growth, leading to better prediction results. In the CPAN
ecosystem, only large CDDGs display slow growth, while
smaller CDDGs no longer develop, leading to a more uni-
form distribution that facilitates size prediction and
improves results significantly.

In terms of predicting the number of releases, the perfor-
mance of prediction models is significantly better for larger
CDDGs. This is due to the notable impact that sudden
growth in version updates of dependency packages has cal-
culations on the number of releases for CDDGs. In smaller
CDDGs, certain packages are frequently updated due to bugs
or sufficient attention, while others may remain inactive due
to a lack of attention or superior alternatives. However,
because larger CDDGs receive ample attention and continue
to update regularly, they yield more accurate predictions for
the number of releases.

In terms of prediction performance, both the size and
prediction of the number of releases for RubyGems are infe-
rior to that of Cargo and CPAN. This can be attributed to
RubyGems having the largest number of packages among the
three packaging ecosystems, resulting in relatively larger
CDDGs. Larger CDDGs exhibit two developmental trends;
some continue to develop steadily while others stagnate,
making predictions more challenging and adversely affecting
accuracy. Conversely, Cargo continues to grow rapidly, with
many new DDGs appearing annually, while CPAN is barely
developed, making them easier to predict.

Furthermore, we conducted feature importance analyses
to understand which normalized features play a more signif-
icant role in CDDG size and release prediction. The feature
labels correspond to those shown in Table 3. As depicted in
Figure 9, the importance ranks of features differ across the
three packaging ecosystems. Nonetheless, the number of
stars and dependency repositories of the focal package, aver-
age age, and average dependency repositories of dependency
packages are generally more important in predicting CDDG
size, as outlined in Table 3. In contrast, for predicting the
number of releases for CDDG, features of dependency

CDDGs
DDGs

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 n
um

be
r o

f u
pd

at
es

FIGURE 8: Comparison of update frequency of DDGs and CDDGs.

18 IET Software

packages such as the average number of stars, forks, version
updates, and rank are more influential.

Summary of findings: Applying random forest and
GBRT yields acceptable prediction performance for CDDG
size and number of releases, although the performance varies
across packaging ecosystems with different development
states. Furthermore, CDDGs of varying sizes exhibit differing
stages of development, leading to variances in prediction
accuracy. Packaging ecosystems in the initial and stagnant
stages demonstrate better predictability, while those in the
stable stage have worse prediction results due to package
development polarization.

5. Discussion

After analyzing the development stages of the top 12 pack-
aging ecosystems on the libraries.io platform, we have iden-
tified three growth patterns: steady growth, fluctuating
growth, and no growth. More than 70% of these ecosystems
fall into the fluctuating growth pattern, indicating that most
are still in the early stage of development. Although Cargo,
CPAN, and RubyGems share a similar number of packages,
their growth patterns differ significantly. Understanding
these growth patterns can help us better comprehend the
development trends of various packaging ecosystems.

TABLE 10: Prediction results of CDDG size.

Prediction models
CDDG size ≥ 100 CDDG size < 100

Cargo CPAN RubyGems Cargo CPAN RubyGems

Linear regression
MAE 35.14 35.53 101.74 12.16 14.43 13.39
RMSE 45.77 61.84 117.75 14.71 22.44 24.10
MAPE 13.08% 18.78% 72.77% 32.76% 37.66% 25.99%

Random forest
MAE 25.11 37.07 61.23 4.53 1.41 11.79
RMSE 33.05 65.41 87.47 6.35 5.41 15.80
MAPE 9.11% 17.18% 36.86% 10.65% 2.4% 25.18%

KNN
MAE 75.69 44.81 67.61 13.97 12.65 13.08
RMSE 95.61 74.11 93.80 18.55 15.77 16.90
MAPE 32.09% 20.10% 37.98% 41.29% 30.26% 30.96%

AdaBoost
MAE 75.48 40.14 99.42 5.59 3.32 14.56
RMSE 116.62 68.91 150.93 7.02 5.88 18.03
MAPE 19.53% 19.80% 39.29% 13.47% 7.2% 30.65%

GBRT
MAE 23.27 36.23 90.33 4.51 1.20 12.30
RMSE 28.40 61.69 157.87 6.36 3.58 16.86
MAPE 9.20% 17.62% 35.66% 10.59% 2.2% 26.48%

Highlight the optimal results under each indicator of different models.

TABLE 11: Prediction results of number of releases of CDDGs.

Prediction models
CDDG size ≥ 100 CDDG size < 100

Cargo CPAN RubyGems Cargo CPAN RubyGems

Linear regression
MAE 3.57 1.52 6.56 3.72 6.87 11.02
RMSE 5.08 2.46 7.89 5.06 8.63 17.06
MAPE 18.07% 11.26% 23.82% 26.95% 36.85% 36.50%

Random forest
MAE 2.51 1.43 5.74 3.16 6.57 9.70
RMSE 2.90 2.27 7.36 4.45 8.45 14.07
MAPE 16.10% 9.59% 21.75% 20.30% 30.46% 34.31%

KNN
MAE 2.54 1.41 7.24 3.74 8.02 9.72
RMSE 2.82 2.13 8.55 5.10 9.84 13.57
MAPE 15.70% 9.12% 26.20% 24.15% 36.00% 33.03%

AdaBoost
MAE 3.23 1.79 7.18 3.80 7.92 12.94
RMSE 3.92 2.58 9.30 4.97 9.12 15.49
MAPE 21.12% 12.14% 24.56% 22.14% 37.72% 37.71%

GBRT
MAE 2.70 1.52 6.18 3.59 6.42 9.62
RMSE 3.37 2.43 7.70 5.00 9.03 14.21
MAPE 18.70% 10.43% 22.92% 22.58% 28.49% 36.76%

Highlight the optimal results under each indicator of different models.

IET Software 19

0.000
f1 f2 f3 f4 f5 f6 f7 f8 f9

Features
f10 f11 f12 f13 f14 f15 f16

Fe
at

ur
e i

m
po

rt
an

ce

0.025

0.050

0.075

0.100

0.150

0.175

0.200

0.125

ðaÞ

f1 f2 f3 f4 f5 f6 f7 f8 f9
Features

f10 f11 f12 f13 f14 f15 f16
0.00

Fe
at

ur
e i

m
po

rt
an

ce

0.05

0.10

0.15

0.20

0.30

0.35

0.25

ðbÞ

f1 f2 f3 f4 f5 f6 f7 f8 f9
Features

f10 f11 f12 f13 f14 f15 f16
0.0

Fe
at

ur
e i

m
po

rt
an

ce

0.1

0.2

0.3

0.4

ðcÞ

f1 f2 f3 f4 f5 f6 f7 f8 f9
Features

f10 f11 f12 f13 f14 f15 f16
0.00

Fe
at

ur
e i

m
po

rt
an

ce

0.05

0.10

0.15

0.20

0.25

ðdÞ

f1 f2 f3 f4 f5 f6 f7 f8 f9
Features

f10 f11 f12 f13 f14 f15 f16
0.00

Fe
at

ur
e i

m
po

rt
an

ce

0.05

0.10

0.15

0.20

0.40

0.30

0.35

0.25

ðeÞ

f1 f2 f3 f4 f5 f6 f7 f8 f9
Features

f10 f11 f12 f13 f14 f15 f16
0.00

Fe
at

ur
e i

m
po

rt
an

ce

0.05

0.10

0.15

0.20

0.30

0.25

ðfÞ
FIGURE 9: GBRT feature importance of size prediction and number of releases prediction of CDDGs in three packaging ecosystems: (a) GBRT
feature importance of CDDG size prediction in Cargo; (b) GBRT feature importance of CDDG size prediction in CPAN; (c) GBRT feature
importance of CDDG size prediction in RubyGems; (d) GBRT feature importance of the number of releases prediction of CDDGs in Cargo;
(e) GBRT feature importance of the number of releases prediction of CDDGs in CPAN; (f) GBRT feature importance of the number of
releases prediction of CDDGs in RubyGems.

20 IET Software

The findings reveal a correlation between the overall state
of DDGs and CDDGs and the development stages of their
packaging ecosystems. When an ecosystem is developing
rapidly, many DDGs and CDDGs show increased expansion
rates. Conversely, when an ecosystem reaches a stable stage,
most DDGs and CDDGs maintain a stable expansion speed.
This reflects the fact that DDGs and CDDGs are essential
constituents of the entire ecosystem, and their number of
releases plays a vital role in driving its prosperity. While it
is challenging to evaluate the development of a packaging
ecosystem, the overall status of DDGs and CDDGs can serve
as a measure of the ecosystem’s health status. However, we
must keep in mind that every DDG or CDDG within a
packaging system has its own status, which is determined
by various factors.

Apart from different developmental patterns, distinct
languages, and technical domains also give rise to unique
dynamics among DDGs and CDDGs in various ecosystems.
Therefore, the interactions between the focal package and
downstream dependency packages differ across ecosystems,
making them highly complex and influenced by multiple
factors.

Despite these differences, DDGs and CDDGs share some
common laws. Generally, as the size of a DDG expands, the
impact of the focal package on the number of releases of
downstream dependency packages decreases. Comparing
CDDGs with DDGs, we find that the inter-influence between
the focal package and downstream dependency packages is
more significant in CDDGs. Hence, we can build a reliable
size prediction model for CDDGs. In ecosystems with rapid
development, such as Cargo, the interinfluence between the
focal package and downstream dependency packages is
stronger. On the contrary, for stable ecosystems, this interin-
fluence becomes weaker. Therefore, we can assume that, in
healthy ecosystems, the development of the focal package
and downstream dependency packages in DDGs should be
mutually beneficial.

Furthermore, statistical analysis reveals that CDDGs are
more active and have more contributors compared to DDGs.
Unlike DDGs, where only features of the focal package and
the development of downstream dependency packages are
related, some features of downstream dependency packages
also affect the development of focal packages in CDDGs.
This phenomenon shows that with the establishment of col-
laboration among contributors, the importance of internal
members of CDDGs also increases. The role of downstream
dependency packages differs across various stages of packag-
ing ecosystems. In the early stages, focal packages play a
leading role, directly influencing the development of down-
stream dependency packages. As the development of down-
stream dependency packages progresses, their influence
gradually increases, subsequently affecting the development
of focal packages. Focal packages and downstream depen-
dency packages mutually influence each other, making the
development of CDDGs more stable. Thus, promoting col-
laborations among contributors can help maintain the devel-
opment of packaging ecosystems, reducing the risks of
dependency hell, which arises when a package you depend

on may be abandoned over time due to a lack of
maintenance.

In summary, delving into the dependency package eco-
system offers valuable insights to a wide range of stake-
holders and holds significant practical implications. The
study imparts the following insights to various stakeholders:

Researchers: Investigating package dependencies and
ecosystem evolution patterns can provide researchers with
valuable quantitative data, analytical models, and deeper
insights. Thus, they are encouraged to give greater consider-
ation to DDGs and CDDGs in their software ecosystem
research endeavors.

Practitioners: Our findings emphasize the crucial roles
played by DDGs and CDDGs within software ecosystems.
To gain insight into the current state and future trends,
practitioners can benefit from analyzing the distinctive char-
acteristics of DDGs and CDDGs.

Package managers: The healthiness of a CDDG signifi-
cantly influences the vitality of a focal package. As a package
manager, to foster the growth and success of a package, it is
essential to strive for broader adoption by downstream
packages.

6. Threats to Validity

Although we only analyzed three packaging ecosystems in
this research, they are all widely used and represent different
stages of development. Thus, our findings have general appli-
cability. However, incorporating more ecosystems may help
improve the reliability of our results.

Our research relies on the data from libraries.io, which is
the most widely recognized package directory. It provides a
large amount of information about each package. However,
development platforms, such as GitHub, may also have
related information on the repositories of some packages.
If we can integrate these data into our study, more compre-
hensive models can be built to discover more relationships.

We studied the interaction mechanism between the focal
packages and downstream dependency packages in DDGs
without differentiating the types of focal packages. We
believe DDGs of different types may have different interac-
tion mechanisms. Incorporating focal package types into our
study can explore the interaction mechanisms more deeply.

Furthermore, the features we listed to describe a DDG
and a CDDG are based on our manual selections and are not
necessarily complete. For CDDG development prediction,
the features we chose are also limited, which may affect
prediction precision. If more features can be included in
the prediction model, the results would be more precise.
However, because we tried to reveal the general interaction
mechanisms between the focal package and downstream
dependency packages, the features we selected capture these
common factors so that the rules we found are more general.

7. Conclusions and Future Work

This study investigates package dependencies in packaging
ecosystems. We identified three growth patterns in these eco-
systems: steady growth, fluctuating growth, and no growth.

IET Software 21

After a screening process, we selected three widely used pack-
aging ecosystems with comparable total package numbers but
exhibiting contrasting developmental patterns for analysis:
Cargo for Rust, CPAN for Perl, and RubyGems for Ruby.
To investigate ecosystem development, we defined two types
of dependency groups: DDGs and CDDGs. By treating these
groups as subecosystems, we proposed three research ques-
tions and provided detailed answers.

First, we conducted a statistical analysis of the features of
DDGs and CDDGs in packaging ecosystems. We investi-
gated the factors influencing DDG development and inher-
ent interactions between the focal package and downstream
packages. Finally, we combined features from both the focal and
dependency packages to compare different prediction models
for CDDG development in the three ecosystems. The experi-
ment results showed that prediction performance varied among
packaging ecosystems and CDDGs of different sizes. Of all the
models, GBRT and random forest delivered the best perfor-
mance, indicating that the size and number of releases have
nonlinear relationships with the selected features.

Although we analyzed three typical packaging ecosystems in
this study, future work could extend our research to include
more ecosystems. Currently, we only consider direct dependen-
cies between packages, but we aim to incorporate transitive
dependencies into our analysis moving forward. Additionally,
we plan to extract more features and examine their dynamic
processes to further investigate DDG and CDDG development.

Data Availability

Our data are from libraries.io (https://libraries.io/), which
monitors over 4 million open-source packages across 32 pop-
ular package managers for specific programing languages.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was supported by the National Key Research
and Development Program of China (grant number:
2018YFB1003800).

References

[1] R. Arora, S. Goel, and R. K. Mittal, “Supporting collaborative
software development over GitHub,” Software: Practice and
Experience, vol. 47, no. 10, pp. 1393–1416, 2017.

[2] K. Manikas and K. M. Hansen, “Software ecosystems–a
systematic literature review,” Journal of Systems and Software,
vol. 86, no. 5, pp. 1294–1306, 2013.

[3] T. Mens, B. Adams, and J. Marsan, “Towards an
interdisciplinary, socio-technical analysis of software ecosys-
tem health,” arXiv preprint arXiv: 1711.04532, 2017.

[4] E. Wittern, P. Suter, and S. Rajagopalan, “A look at the
dynamics of the JavaScript package ecosystem,” in Proceedings
of the 13th International Conference on Mining Software
Repositories (MSR), pp. 351–361, IEEE, Austin, TX, USA,
2016.

[5] K. Plakidas, D. Schall, and U. Zdun, “Evolution of the R
software ecosystem: metrics, relationships, and their impact on
qualities,” Journal of Systems and Software, vol. 132, no. 10,
pp. 119–146, 2017.

[6] M. Mora-Cantallops, S. Sánchez-Alonso, and E. García-
Barriocanal, “A complex network analysis of the comprehen-
sive R archive network (CRAN) package ecosystem,” Journal
of Systems and Software, vol. 170, Article ID 110744, 2020.

[7] M. Valiev, B. Vasilescu, and J. D. Herbsleb, “Ecosystem-level
determinants of sustained activity in open-source projects: a
case study of the PyPI ecosystem,” in Proceedings of the 2018
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (FSE), pp. 644–655, ACM, 2018.

[8] A. Decan, T. Mens, and P. Grosjean, “An empirical
comparison of dependency network evolution in seven
software packaging ecosystems,” Empirical Software Engineer-
ing, vol. 24, no. 1, pp. 381–416, 2019.

[9] A. G. Tansley, “The use and abuse of vegetational concepts
and terms,” Ecology, vol. 16, no. 3, pp. 284–307, 1935.

[10] J. te Molder, B. van Lier, and S. Jansen, “Clopenness of
systems: the interwoven nature of ecosystems,” in Proceedings
of the Third International Workshop on Software Ecosystems,
pp. 52–64, CEUR-WS.org, Brussels, Belgium, 2011.

[11] J. Bosch and P. Bosch-Sijtsema, “From integration to
composition: on the impact of software product lines, global
development and ecosystems,” Journal of Systems and
Software, vol. 83, no. 1, pp. 67–76, 2010.

[12] M. Lungu, “Towards reverse engineering software ecosys-
tems,” in 2008 IEEE International Conference on Software
Maintenance, pp. 428–431, IEEE, Beijing, China, 2008.

[13] K. Manikas, “Revisiting software ecosystems research: a
longitudinal literature study,” Journal of Systems and Software,
vol. 117, pp. 84–103, 2016.

[14] J. Choi, B. Ferwerda, H. Jungpil, J. Kim, and J. Y. Moon,
“Impact of social features implemented in open collaboration
platforms on volunteer self-organization: case study of open
source software development,” in Proceedings of the 9th
International Symposium on Open Collaboration, pp. 1-2,
ACM, 2013.

[15] A. E. Akgün, “Team wisdom in software development projects
and its impact on project performance,” International Journal
of Information Management, vol. 50, pp. 228–243, 2020.

[16] G. Korkmaz, C. Kelling, C. Robbins, and S. Keller, “Modeling
the impact of Python and R packages using dependency and
contributor networks,” Social Network Analysis and Mining,
vol. 10, no. 1, pp. 1–12, 2020.

[17] E. Trainer, Q. Stephen, C. de Souza, and D. Redmiles,
“Bridging the gap between technical and social dependencies
with ariadne,” in Proceedings of the 2005 OOPSLA workshop
on eclipse technology eXchange, pp. 26–30, ACM, 2005.

[18] J. Hejderup, A. vanDeursen, andG. Gousios, “Software ecosystem
call graph for dependency management,” in Proceedings of the
40th International Conference on Software Engineering: New Ideas
and Emerging Results, pp. 101–104, ACM, 2018.

[19] A. Mockus, “Amassing and indexing a large sample of version
control systems: towards the census of public source code history,”
in Proceedings of the 6th International Working Conference on
Mining Software Repositories (MSR), pp. 11–20, IEEE, 2009.

[20] K. Blincoe, F. Harrison, and D. E. Damian, “Ecosystems in
GitHub and a method for ecosystem identification using
reference coupling,” in Proceedings of the 12th International
Working Conference on Mining Software Repositories (MSR),
pp. 202–211, IEEE, Florence, Italy, 2015.

22 IET Software

https://libraries.io/
https://libraries.io/

[21] P. Mohagheghi and R. Conradi, “Quality, productivity and
economic benefits of software reuse: a review of industrial
studies,” Empirical Software Engineering, vol. 12, no. 5,
pp. 471–516, 2007.

[22] C. Bogart, C. Kästner, D. James, J. Herbsleb, and F. Thung,
“How to break an API: cost negotiation and community values
in three software ecosystems,” in Proceedings of the 24th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering (FSE), pp. 109–120, ACM, 2016.

[23] A. Decan, T. Mens, and E. Constantinou, “On the evolution of
technical lag in the npm package dependency network,” in
2018 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 404–414, IEEE, Madrid, Spain,
2018.

[24] A. Decan, T. Mens, and E. Constantinou, “On the impact of
security vulnerabilities in the npm package dependency
network,” in Proceedings of the 15th International Conference
on Mining Software Repositories (MSR), pp. 181–191, ACM,
2018.

[25] G. Fan, C. Wang, R. Wu, X. Xiao, Q. Shi, and C. Zhang,
“Escaping dependency hell: finding build dependency errors
with the unified dependency graph,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp. 463–474, ACM, 2020.

[26] Y. Tanabe, T. Aotani, and H. Masuhara, “A context-oriented
programming approach to dependency hell,” in Proceedings of
the 10th International Workshop on Context-Oriented
Programming: Advanced Modularity for Run-time Composi-
tion, pp. 8–14, ACM, 2018.

[27] A. Decan, T. Mens, M. Claes, and P. Grosjean, “When GitHub
meets CRAN: an analysis of inter-repository package
dependency problems,” in Proceedings of the 23rd Interna-
tional Conference on Software Analysis, Evolution, and
Reengineering (SANER), pp. 493–504, IEEE, 2016.

[28] N. Lertwittayatrai, R. G. Kula, S. Onoue et al., “Extracting
insights from the topology of the JavaScript package
ecosystem,” in Proceedings of the 24th Asia-Pacific Software
Engineering Conference (APSEC), pp. 298–307, IEEE, 2017.

[29] M. Claes, A. Decan, and T. Mens, “Inter-component
dependency issues in software ecosystems,” in Software
Technology, pp. 35–56, John Wiley & Sons, Inc., 2018.

[30] G. Bavota, G. Canfora, M. D. Penta, R. Oliveto, and
S. Panichella, “The evolution of project inter-dependencies
in a software ecosystem: the case of apache,” in IEEE
International Conference on Software Maintenance, pp. 280–
289, IEEE, Eindhoven, Netherlands, 2013.

[31] R. Kikas, G. Gousios, M. Dumas, and D. Pfahl, “Structure and
evolution of package dependency networks,” in Proceedings of the
14th International Conference on Mining Software Repositories
(MSR), pp. 102–112, IEEE, Buenos Aires, Argentina, 2017.

[32] M. M. M. Syeed, K. M. Hansen, H. Imed, and K. Manikas,
“Socio-technical congruence in the ruby ecosystem,” in
Proceedings of The International Symposium on Open
Collaboration, pp. 1–9, ACM, 2014.

[33] Y. Mijsters, A. Mustafa, I. Mihai, and S. Jansen, “On the nature
of software sub-ecosystems and their health,” in Proceedings of
the 1st International Workshop on Software Health, pp. 25–32,
IEEE, Gothenburg, Sweden, 2018.

[34] H. Midi, S. K. Sarkar, and S. Rana, “Collinearity diagnostics of
binary logistic regression model,” Journal of Interdisciplinary
Mathematics, vol. 13, no. 3, pp. 253–267, 2010.

[35] J. Miles, “Tolerance and variance inflation factor,” in Wiley
StatsRef: Statistics Reference Online, Wiley, 2014.

[36] S. Menard, “Applied logistic regression analysis,” 2002.
[37] H. Midi and A. Bagheri, “Robust multicollinearity diagnostic

measure in collinear data set,” in Proceedings of the 4th
International Conference on Applied Mathematics, pp. 138–
142, ACM, 2010.

[38] A. Zerouali, E. Constantinou, T. Mens, G. Robles, and
J. González-Barahona, “An empirical analysis of technical lag
in npm package dependencies,” in New Opportunities for
Software Reuse, vol. 10826 of Lecture Notes in Computer
Science, pp. 95–110, Springer, Cham, 2018.

IET Software 23

