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With the increasing number of software projects, within-project defect prediction (WPDP) has already been unable to meet the
demand, and cross-project defect prediction (CPDP) is playing an increasingly significant role in the area of software engineering.
The classic CPDP methods mainly concentrated on applying metric features to predict defects. However, these approaches failed to
consider the rich semantic information, which usually contains the relationship between software defects and context. Since
traditional methods are unable to exploit this characteristic, their performance is often unsatisfactory. In this paper, a transfer
long short-term memory (TLSTM) network model is first proposed. Transfer semantic features are extracted by adding a transfer
learning algorithm to the long short-term memory (LSTM) network. Then, the traditional metric features and semantic features
are combined for CPDP. First, the abstract syntax trees (AST) are generated based on the source codes. Second, the AST node
contents are converted into integer vectors as inputs to the TLSTM model. Then, the semantic features of the program can be
extracted by TLSTM. On the other hand, transferable metric features are extracted by transfer component analysis (TCA). Finally,
the semantic features and metric features are combined and input into the logical regression (LR) classifier for training. The
presented TLSTM model performs better on the f-measure indicator than other machine and deep learning models, according to
the outcomes of several open-source projects of the PROMISE repository. The TLSTM model built with a single feature achieves
0.7% and 2.1% improvement on Log4j-1.2 and Xalan-2.7, respectively. When using combined features to train the prediction
model, we call this model a transfer long short-term memory for defect prediction (DPTLSTM). DPTLSTM achieves a 2.9% and
5% improvement on Synapse-1.2 and Xerces-1.4.4, respectively. Both prove the superiority of the proposed model on the CPDP
task. This is because LSTM capture long-term dependencies in sequence data and extract features that contain source code
structure and context information. It can be concluded that: (1) the TLSTM model has the advantage of preserving information,
which can better retain the semantic features related to software defects; (2) compared with the CPDP model trained with
traditional metric features, the performance of the model can validly enhance by combining semantic features and metric features.

1. Introduction

Software defect prediction (SDP) has attracted widespread
attention in recent years. It can supply effective guidelines
for software developers, and enable them to spend more
time and energy on defective software modules (such as files,
classes, functions, etc.). By reducing the time spent on non-
defect software modules, the software testing cycle can be
shortened [1, 2]. According to the data and feature distribu-
tion of the project, SDP can be classified as within-project
defect prediction (WPDP) [3], cross-project defect prediction

(CPDP) [4], and cross-company defect prediction (CCDP)
[5]. Existing research has mainly absorbed in WPDP, using
historical data to train machine learning models [6]. Never-
theless,WPDP does not performwell with incipient programs
that have insufficient data. To fill this gap, CPDP [7, 8] has
been proposed. That is, a model is built using the mature
projects (called source projects) and then used to predict
whether a new project (called target projects) contains defec-
tive modules. WPDP relies on single-project historical data
for model training, whereas CPDP and CCDP use data from
multiple projects or companies for more robust models.
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To improve the performance of CPDP, various methods
have been proposed. At present, the mainstream CPDP mainly
introduces transfer learning approaches [9] to match the fea-
tures. Nevertheless, existingmodels have poor prediction perfor-
mance in CPDP. This is because transfer learning models
assume that the source and target domains have similar distribu-
tions, which may not be the case in CPDP. The reasons for this
problem can be analyzed from three aspects. Firstly, an inappro-
priate transfer learning [10] approach is selected for CPDP.
Transfer learning includes both instance-based and feature-
representation methods. Instance-based transfer learning
involves directly transferring knowledge or models from one
domain to another by reusing labeled data instances. This
method adjusts source domain data to match the target domain
distribution. It assigns weights to each source domain sample
based on its similarity to the target domain. The feature-
representation transfer learning refers to the process of using
the knowledge learned from a source domain, such as an existing
model or dataset, to extract transferable features that can be
applied to a target domain. This approach is commonly used
in CPDP, where the source and target domains have different
feature distributions. It can fit the boundaries of diverse domains
so that the features in the domain are also mapped to the same
space [11]. In summary, to improve the prediction performance
of transfer learning models in CPDP, appropriate transfer learn-
ing methods should be selected based on specific scenarios.

Secondly, network models have different scopes of appli-
cation. Nowadays, many neural network models are used to
extract semantic features [12–15]. However, the semantic
features extracted by traditional neural network models usu-
ally cannot explain how these defects are generated. An
example is the convolutional neural network (CNN), which
is mainly used to process images; while code defects are
usually textual information, CNN is not suitable for this
case. Therefore, it is worth considering the network model
commonly used to analyze textual information, and use it to
extract semantic features that contain defective information.

Thirdly, traditional machine learning models only con-
sider the metric features and do not take full advantage of the
information involved in semantic features. In the research of
CPDP [16], some researchers used metric features and
semantic features to construct prediction models respec-
tively. It was found that the model trained by the latter
had better prediction performance. This is because compared
with metric features, semantic features contain more infor-
mation related to defects. Semantic features typically refer to
aspects of source code that reflect programmer intent, func-
tionality, and logic. This may include the naming of vari-
ables, functions, classes, and methods, the presence and
content of comments, code structure, etc. For example, the
function in Figure 1 is named “calculate_average” and this
naming itself is a semantic feature as it gives information
about the purpose and functionality of the function. In addi-
tion, the comments for a function increase the readability of
the code by providing more information about the function’s
functionality, inputs, and outputs. Therefore, semantic fea-
tures are important for understanding the purpose, design
intent, and functionality of the code. Metric features are

numerical features obtained by measuring or statistics on
the code. These measures can relate to the number of lines
of code, complexity, coupling, cohesion, and other aspects. In
this study, integrating semantic features and metric metafea-
tures can provide more comprehensive code information for
the model.

To compensate for the existing shortcomings of traditional
neural network models in CPDP, a transfer long short-term
memory (TLSTM) network is proposed. The transfer learning
approach is associated with the network model to raise the
behavior of the CPDP model. The TLSTM network adds a
matching layer to the infrastructure of the LSTM network,
which is used tomatch the transferable semantic features. Since
LSTM has the function of memory retention and forgetting
[17], the irrelevant information can be effectively filtered. It
also avoids the gradient vanishing phenomenon that exists in
the recurrent neural network (RNN). Compared with CNN
(suitable for processing images), LSTM (suitable for processing
textual information) is better for capturing the semantic fea-
tures of code. Specifically, the source file is first parsed into an
abstract syntax tree (AST) and converted into the token vector.
It is then transformed into an integer vector through a dictio-
nary. Before input into the TLSTM network, the ensemble
learning [18] method is adopted to preprocess the data.
Then, the semantic features are obtained by the TLSTM net-
work and combinedwith themetric features extracted by trans-
fer component analysis (TCA). The combined features are
input into the logistic regression (LR) [19] classifier for train-
ing, and the CPDP model is constructed.

The contributions of this article are summed up as
follows.

(1) In this article, a TLSTM model for CPDP is put
forward. Due to the LSTM network having the func-
tion of memory retention and forgetting, it can effec-
tively extract the semantic features related to code
defects. Therefore, compared with other network
models, LSTM is more suitable for mining the intrin-
sic information of defects. Experimental results on
six different projects indicate that the TLSTM model
outperforms the other models in CPDP.

(2) For the study of CPDP, this paper maps the features
of diversity projects into a reproducing kernel Hilbert

def   calculate_average (numbers):
" " "

" " "

Calculate the average of a list of numbers.

Parameters:
- numbers: List of numeric values.

Returns:
- average: Te average value.

if not numbers:

total = sum(numbers)
average = total/len(numbers)
return average

return None # Avoid division by zero if the list is empty

FIGURE 1: Source code example.

2 IET Software



space (RKHS) and uses the maximum mean discrep-
ancy (MMD) [20] to measure the distance between fea-
tures of different projects. Transfer features with similar
distances. Moreover, semantic features acquired by the
TLSTM and the metric features are combined to con-
struct the CPDP model.

(3) This paper explains why LR is selected as the classi-
fier through comparative experiments. In the experi-
ments, the combined features are input into LR,
support vector machine (SVM), and random forest
(RF) classifiers to build CPDP models respectively.
The outcomes demonstrated that contrasted with
SVM and RF, LR has better outcomes.

This article consists of the following parts. Section 2
describes the related work from the three steps of CPDP.
Section 3 introduces the research methodology, including
the overall framework and each link. The analysis of results
and model introduction are reported in Section 4. Section 5
discusses the TLSTM model and the threats to validity.
Finally, Section 6 summarizes the full text and points out
the research direction.

2. Related Work

Section 2 introduces the latest progress in SDP and the short-
comings and limitations of these methods. It will give a brief
description from the following three directions: data prepro-
cessing, feature extraction, and classifier selection.

2.1. Data Preprocessing. Data preprocessing is an essential
step in SDP that involves various techniques such as data
cleaning, missing value supplement, and class imbalance
processing [21]. Since the open-source dataset selected for
this paper does not contain dirty data and missing values, the
class imbalance problem is mainly considered. Methods for
solving class imbalance problems can be summarized in the
following three categories: (1) random sampling, (2) cost-
sensitive learning, and (3) ensemble learning.

The operation object of random sampling is data. A
sample proportion is rebalanced before the model is con-
structed. It can prevent the classifier from biasing the labels
of the majority of class samples during training. Although
using the random undersampling method [22] to preprocess
the dataset can alleviate the class imbalance problem. How-
ever, random undersampling selects bug-free instances in the
dataset, so that the proportion of nondefective samples and
defective samples is equal. This will lead to a decline in the
quantity of defective-free samples, and some important infor-
mation related to code defects may be lost. Feng et al. [23]
adopted random oversampling to tackle the imbalance mat-
ter. Although it could increase defective samples, making the
proportion of samples with and without defects equal. How-
ever, expanding the dataset by generating repeated defective
samples will produce redundant information, which makes
the model overfit to the defective samples.

Based on the above-mentioned problems of oversampling
and undersampling, a cost-sensitive [24] learning method has
been proposed to address this question. In SDP, the cost of

classifying defective modules as defective-free modules
exceeded the other case. Instead of balancing the data distri-
bution by subsampling, cost-sensitive learning sets corre-
sponding prices for diverse classification situations by using
a cost matrix. Various learning approaches have been inno-
vated based on cost-sensitive learning, like cost-sensitive deci-
sion trees [25], cost-sensitive neural networks [26], etc. These
methods can effectively address the class imbalance problem
and improve the classification performance of the models in
SDP. However, the cost matrix needs to be carefully designed
based on the specific problem and domain knowledge to
achieve optimal results.

Finally, a popular approach today is to cope with the class
imbalance issue through ensemble learning in the data pre-
processing step. This type of method combines the strengths
of individual learners. The class imbalance is dealt with by
choosing suitable weights for learners to underline minority
groups. The most widespread means in ensemble learning
are bagging [27] and boosting [28]. Bagging combines mul-
tiple models, and the final output is based on their majority
vote. Boosting trains models sequentially and assigns higher
weights to misclassified instances. Gao et al. [29] proposed a
new ensemble approach on the foundation of boosting, which
combines random sampling methods to address the high
dimensionality in features. Contrasting the samplingmethods
introduced in the previous part, the ensemble learning
method is adopted in the experiments. The reason is that
compared to other methods like random sampling or cost-
sensitive learning, ensemble learning has less prone to over-
fitting and can better capture the complexity of the data. This
method can validly wipe out the problem of class imbalance in
the dataset. After the preprocessing operation, the obtained
balanced dataset will not have a biased effect on the classifi-
cation results when it is input to the classifier for training.

2.2. Feature Extraction. Feature extraction is an indispens-
able link in determining the performance of SDPmodels, and
good features can validly promote the prediction ability of the
models. In the field of SDP, features can be broadly classified
into two types. One is the metric features of source code, such
as Halstead complexity metric, McCabe cyclomatic complex-
ity metric, and object-oriented CK metric [30]. Another type
is the semantic features based on the source program. Seman-
tic features capture the context and meaning of the software
development process and can include factors such as devel-
oper experience, team dynamics, and software architecture.
The features are extracted from the program and provided to
the classifier to build the SDP models [31].

Methods for operating features fall into two main catego-
ries. First is the selection of features, which aims to select a
subset of relevant features from the original feature set. This
helps reduce the dimensionality and eliminate redundant or
irrelevant features. Different weights are set for different fea-
tures according to their relevance to the category, and the
higher the relevance to the category, the greater the weight;
then the first few features with a large percentage of weight are
selected as key features. Classical feature selection approaches
such as the χ2 test [32], information gain [33], and distance
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correlation [34, 35] have been used to study software defect
features. The second category is feature extraction, which
refers to the process of transforming the original feature set
into a new feature space that is more suitable for the classifi-
cation task. Numerous network models have been applied to
extract features from source code. For instance, Zhou et al.
[36] proposed a convolutional-graph convolutional network
(CGCN)model to extract semantic information. This method
combined semantic and metric features and proved that the
combined features can elevate the performance.

Feature transfer learning is a popular CPDP approach,
addressing domain shift due to differences in data distribu-
tions between source and target projects. Bai et al. [37] pro-
posed a three-stage weighting framework for multisource
transfer learning (3SW-MSTL) in CPDP. This method aims
to improve the transferability of features and achieve better
performance than other multisource CPDP methods. Jin [38]
used kernel twin support vector machines (KTSVMs) to per-
form domain adaptation and fit the data of diverse projects
with large differences in data distribution. Chen and Ding
[39] proposed the transfer AdaBoost (TrAdaBoost) algo-
rithm, which is a type of domain adaptation algorithm that
transfers knowledge learned from a source project to a target
project with different feature distributions. In the experi-
ments, weights are set for various samples according to the
similarity of the range, and TraAdaBoost is used for training.
The paired CPDP approach was applied in their research.
Nam et al. [40] extended the original TCA algorithm with
custom standardization regulations and produced a feature
transfer approach TCA+. Xia et al. [41] came upwith a hybrid
model reconstruction approach (HYDRA) that combines
multiple classifiers trained on different subsets of data. The
first step of this method is to use a genetic algorithm (GA) to
build the classifiers, and the boosting algorithm is adopted to
assign weights to the classifiers. These transfer learning meth-
ods are effective in handling the domain shift problem
in CPDP.

Deep learning [42] and transfer learning have become
increasingly popular in the field of CPDP due to their superior
performance in feature extraction and knowledge transfer.
Wang et al. [43] proposed utilizing the deep belief network
(DBN) to abstract semantic information from the programs,
and after that take these features to establish a CPDPmodel. It
is proved that the features picked up by network models are
superior to the traditional metric features. Qiu et al. [44]
united transfer learning with the neural network model and
proposed a transfer convolutional neural network (TCNN)
model. They used TCNN to extract transferable features
among distinct projects, but the model’s ability to analyze
textual information is still worth exploring. In addition,
Deng et al. [45] studied the performance of the LSTM and
other network models in WPDP. Their study compared the
performance of different machine learning and neural net-
work models. The experimental results showed that the
LSTM model outperformed other models.

After summarizing the previous research results, this
paper proposes using the TLSTM model to extract transfer-
able semantic features. Specifically, after inputting data into

the network model, it first goes through the embedding layer,
which maps the input data to a low-dimensional vector
space. In the matching layer, the features of different projects
are mapped to the kernel space, and the distance is compared
to select the correlation features across projects. Then, the
iterative training of the network is used to continuously
reduce the loss, and finally output the extracted transferable
semantic features. The use of deep learning and transfer
learning techniques can potentially improve prediction accu-
racy and reduce the cost of building and maintaining a CPDP
model.

2.3. Classifier Selection. After the two steps of data preproces-
sing and feature extraction, the next step is to input the
obtained features into the classifier for model construction.
Numerous algorithms have already been applied to SDP, like
LR [46], naive Bayes (NB) [47], SVM [48], decision tree (DT)
[49], RF [50], etc.

Zain et al. [51] conducted experiments to compare vari-
ous classifiers in machine learning. The study found that in
SDP, the RF has better results on specific datasets. Probably
because the RF is obtained by integrating multiple DTs, with
more balanced results. In addition, Hall et al. [52] found that
models that perform well in SDP are often based on simple
modeling techniques, such as NB, LR, and other simple clas-
sifiers. Summarizing the previous studies, it is found that
different classifiers have their application scenario. It is chal-
lenging to find a single classification model that works well
on all datasets. Therefore, it is necessary to select the appro-
priate classifier to build the model according to the specific
dataset. If the training set is insufficient, NB is preferable to
k-nearest neighbors (KNN), which the latter leads to over-
fitting [53]. If the training set is large, the opposite is true.

Similarly, the appropriate machine learning algorithm
can be selected as a classifier according to the following
situations. For example, the NB algorithm assumes that the
features are conditionally independent of each other given
the class variable. If the condition of the dataset is indepen-
dent, it can be selected as the classifier. The LR classifier
needs to focus on the correlation between features, which
cannot be achieved in DTs or support vector machines. It
happens that the CPDP should focus on the interrelated
features between different projects. Therefore, this experi-
ment chooses logistic regression to construct the CPDP
model.

3. Methodology

For the shortcomings in other studies, this paper makes the
following improvements. In data preprocessing, an ensemble
learning approach is applied to handle the imbalance issue.
In feature extraction, an improved model based on the LSTM
network, called TLSTM, is proposed to extract the transfer-
able semantic features. It is joined with the metric features
extracted by TCA to construct transferable combined fea-
tures. Finally, in the choice of classifier, LR is selected for
experiments and the results of LR and other classifiers on
CPDP are compared.
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3.1. Overall Framework. The overall framework of the experi-
ments is displayed in Figure 2. We will introduce the experi-
mental process in three steps.

Step 1-Source code parsing and vector mapping: in this
step, the collected open-source PROMISE dataset is parsed.
The source and target codes are converted into AST form
respectively, and then the AST node is transformed into
token vectors according to the tree structure. Since the net-
work model requires that the inputs be numeric vectors, a
dictionary is constructed to map token vectors to integer
vectors.

Step 2-TLSTM building and feature extracting: in this
step, the TLSTM is used to extract transferable semantic
features. Before input into the TLSTM network, the ensem-
ble learning approach is applied to preprocess the imbalance
question. When passing the TLSTM model, the first stage is
the embedding layer, which is responsible for mapping the
integer vectors to a continuous vector space. Then, the input
information is filtered in the LSTM cell layer. Finally, the
transferable semantic features between different projects
are extracted by the matching layer.

Step 3-Construct defect prediction model: at this stage,
the CPDP model is constructed. On the one hand, TCA is
used to extract the transferable metric features. On the other
hand, the transferable semantic features and transferable
metric features are combined. Finally, the combined features
are transmitted in the LR classifier for training, and the
CPDP model is constructed.

We will depict the three steps concretely in the following
parts.

3.2. Dataset Selection. The selection of a dataset is the first
stage of SDP, and selecting an appropriate dataset is helpful
in constructing an accurate prediction model. Currently, the
datasets widely used in the research mainly come from the
following repositories, including PROMISE [54], AEEEM
[55], NASA [56], Softlab, Relink [57], and the JiT data
repository. Since the PROMISE data repository is free of

missing values and embodies a great number of samples with
features and category labels, which is available for training and
testing. Therefore, this experiment select multiple projects from
this repository as datasets, which is also an extensively
manipulated data repository in the field of SDP. The selected
projects include Camel, Forrest, Log4j, Synapse, Xalan, and
Xerces. These projects contain defective and nondefective
modules, providing training data for building prediction
models. Table 1 describes the relevant information on the
selected six projects, and the defect rate of different projects
varies greatly, with the highest even reaching 98.8%. Therefore,
it is necessary to preprocess the dataset. The selected projects in
this experiment contain traditional metric features and the
source code, and the metric attributes used in the experiments
are listed in Table 2. By selecting an appropriate dataset and
preprocessing the data, the researchers can improve the
accuracy and performance of the prediction model and obtain
reliable results.

The following is a detailed description of the 20 metric
properties:

(1) WMC (weighted methods per class): this indicates
the number of methods in a class. This is usually
obtained by calculating the complexity of each
method and summing it up. This reflects the com-
plexity of the class.

(2) DIT (depth of inheritance tree): this indicates the depth
of inheritance of a class. The length of the longest path
a class can take from the root of the class hierarchy to
the class. This can be used to assess the complexity of
the inheritance hierarchy of a class.

(3) NOC (number of children): this indicates the number
of direct children in a class. This gives information
about the complexity and maintainability of the class.

(4) CBO (coupling between objects): this indicates the
degree of coupling between classes, that is, the num-
ber of connections between a class and other classes.

Token vectors Integer vectors
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Combined
features 

Transferable
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features  
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metrics features 
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Method
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... ...
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FIGURE 2: Overall framework of CPDP.
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Highly coupled code can be more difficult to under-
stand and maintain.

(5) RFC (response for a class): this indicates the number
of responses a class has to an external request,
including method calls and property accesses. This
reflects the complexity and responsibility of the
class.

(6) LCOM (lack of cohesion in methods): this measures
the extent to which there is a lack of cohesion
between methods in a class. A high LCOM value
may indicate that the methods in the class are not
relevant enough and there may be a design problem.

(7) CA (afferent connections): this represents the num-
ber of times a class is referenced by other classes, i.e.,
the dependance of external classes on the class. This
can be used to assess the complexity and impor-
tance of the class.

(8) CE (efferent connections): it means a kind of the
number of references to other classes, namely this
kind of dependance on foreign values. This also

concerns the complexity of the class and its rela-
tionship to other classes.

(9) NPM (number of public methods): this indicates
the number of public methods in a class. This pro-
vides information about the class interface.

(10) LCOM3: it is an improved version of LCOM that
measures the lack of cohesion between methods in a
class.

(11) LOC (lines of code): represents the number of
physical lines in the source code. This is a basic
metric, but often not the best indicator of code
quality.

(12) DAM (data access metric): this metric measures
access to external data structures. It can be used
to evaluate the complexity of a class and its interac-
tion with data.

(13) MOA (number of methods added): this indicates
the number of methods added to the child class
relative to the parent class. This provides informa-
tion on the evolution of the class.

TABLE 1: Information for the projects in PROMISE.

Projects in PROMISE Number of instances Number of defects Defect ratio

Camel-1.6 965 188 19.5%
Forrest-0.8 32 2 6.3%
Log4j-1.2 205 189 92.2%
Synapse-1.2 256 86 33.6%
Xalan-2.7 909 898 98.9%
Xerces-1.4.4 588 437 74.3%

TABLE 2: List of the metric attributes.

ID Metrics Meaning Type

1 wmc Method weights in a class Integer
2 dit Inheritance tree depth Integer
3 noc The number of direct subclasses of a class Integer
4 cbo Coupling between objects Integer
5 rfc The size of the response set of the class Integer
6 lcom Lack of methodological cohesion Integer
7 ca Depends on the number of classes in the current class Integer
8 ce The number of classes that the current class depends on Integer
9 npm The number of public methods in the class Integer
10 lcom3 Cohesion metrics Float
11 loc The number of lines in the Java binary of the class Integer
12 dam The ratio of all private attributes in the class Float
13 moa The number of fields in a class that a user defines as a class Integer
14 mfa The percentage of methods in a class that are inherited Float
15 cam The proportion of arguments in a method that are of the type of the argument Float
16 ic The number of inheritance coupling classes of a class Integer
17 cbm Number of new methods coupled to all inherited methods Integer
18 amc Average size of the methods in the class Float
19 max_cc The maximum cyclomatic complexity of all methods in a class Integer
20 avg_cc The arithmetic average of the cyclomatic complexity of all methods in the class Float
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(14) MFA (method flow analysis): this is used to mea-
sure the complexity of methods and call relation-
ships in a class.

(15) CAM (cohesion among methods of class): measures
the cohesion between methods of a class, that is,
whether they share the same data. High CAM
values may indicate that the methods of the class
are more relevant.

(16) IC (inheritance cohesion): represents the cohesion
of inheritance relationships within a class. High IC
values may indicate more consistent inheritance
relationships.

(17) CBM (coupling between methods): this measures
the degree of coupling between methods in a class.
High CBM values may indicate a strong depen-
dency between methods.

(18) AMC (average method complexity): represents the
average complexity of the methods in a class. This
can be used to evaluate the overall complexity of the
class.

(19) Max_CC (maximum cyclomatic complexity): this
represents the cyclomatic complexity of the most
complex method in the class. Cyclomatic complex-
ity is a measure of the complexity of a method.

(20) Avg_CC (average cyclomatic complexity): this
represents the average cyclomatic complexity of
the methods in the class. Cyclomatic complexity is
a measure of code complexity.

3.3. Source Code Parsing and Vector Mapping. After obtain-
ing the dataset, the next step is to consider how to transform
the source code into integer vectors. Since the code in the
project is written in JAVA language, the source code can be
converted into AST through java.lang method. Then it is
converted into token vectors according to the structure of
AST. Because the vectors are composed of tree node types
instead of numeric vectors, they cannot be directly used as
inputs to the deep learning model. In this case, we need a
dictionary to map. The dictionary is shown in Table 3.
Through the key-value pairs in the dictionary, we can map
the node types in the vector to unique corresponding num-
bers. After the above procedure, the code is transformed into
the integer vector, which can be used as the input of the
TLSTM. The details of the LSTM are represented in
Section 3.4. In summary, the experiments use the source
code to construct the AST and transform it into integer
vectors. It should be noted that the class imbalance issue
needs to be dealt with before input into the network,
which is solved by the ensemble learning method.

3.4. TLSTM Building and Feature Extracting. This section
introduces the improved TLSTM model based on the
LSTM network used in the experiments. Before that, a
brief understanding of the LSTM is given. LSTM is a
variant of RNN and is designed to handle long sequence
input problems. It is similar to the baseline RNN, yet the
way used to compute the hidden state is diverse. The hidden
state ðhÞ : can abstract information from the sequence of data and

change them into outputs. The “memory” of the LSTM, also
known as the cell, and its input is the hidden state ht−1 and
the input xt . It can decide which information to keep in long-
term memory and which irrelevant information to forget. With
this distinguishing characteristic, the information related to
defects can be discovered. Specifically, the LSTM module
contains four interacting layers, i.e., three sigmoid and one
tanh layer. The structure is shown in Figure 3.

In addition, an important concept in LSTM, “gate”, is a
method to allow selective passage of information. It is used to
raise or reduce the ability of information to reach the cell
state. The forget gate, input gate, and output gate are con-
tained in the cell. The functions of these gates and related
theoretical equations are introduced in the following.

3.4.1. Forget Gate. The main task of the LSTM cell is to forget
irrelevant information from the cell state and retain useful
information. This step is achieved by a structure called the
“forget gate”, which reads the last hidden layer output ht−1
and the current input xt , does the sigmoid nonlinear map-
ping, and outputs a vector ft , which is multiplied by the cell
state Ct−1. The calculation process is shown in Equation (1).

ft ¼ σ Wf ⋅ ht−1; xt½ � þ bf
À Á

: ð1Þ

3.4.2. Input Gate. The next step is to determine which new
information is stored in the cell state. There are two parts
here, the first part is the sigmoid layer, also known as the
input layer, which determines what information will be
updated. The second part is the tanh layer, which creates a
new vector of candidate values eCt and adds them to the cell
state. The calculation process is shown in Equation (2).

it ¼ σ Wi ⋅ ht−1; xt½ � þ bið ÞeCt ¼ tanh Wc ⋅ ht−1; xt½ � þ bcð Þ

(
: ð2Þ

TABLE 3: Dictionary mapping table.

ID Token vector ID Token vector

1 PackageDeclaration 17 IfStatement
2 ClassDeclaration 18 CatchClause
3 ConstructorDeclaration 19 CatchClauseParameter
4 StatementExpression 20 ReturnStatement
5 FormalParameter 21 ForStatement
6 ReferenceType 22 ForControl
7 MemberReference 23 ThrowStatement
8 MethodInvocation 24 SuperMemberReference
9 MethodDeclaration 25 SynchronizedStatement
10 SuperMethodInvocation 26 BreakStatement
11 VariableDeclarator 27 InterfaceDeclaration
12 TryStatement 28 SwitchStatement
13 ClassCreator 29 SwitchStatementCase
14 BasicType 30 EnhancedForControl
15 WhileStatement 31 ContinueStatement
16 BlockStatement
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3.4.3. Cell State. The next step is to update the state of the old
cell, i.e., Ct−1 is updated to Ct . By multiplying the old state
with ft , the information not related to the software defect is
forgotten, followed by adding it∗ eCt , the new candidate value
Ct is obtained. The process is shown in Equation (3).

Ct ¼ ft∗Ct−1 þ it∗ eCt : ð3Þ

3.4.4. Output Gate. The output gate is used to determine
which value to output based on the cell state. First, which
part of the cell state is output by the sigmoid layer is deter-
mined; then the cell state is processed through the tanh
activation function (to obtain a value between −1 and 1)
and it is multiplied with the output of the sigmoid gate,
which is calculated as shown in Equation (4).

ot ¼ σ Wo ⋅ ht−1; xt½ � þ boð Þ
ht ¼ ot∗tanh Ctð Þ

(
: ð4Þ

The TLSTM model incorporates a matching process to
gauge feature discrepancy across projects, adding it during
network training loss calculation. The divergence is mea-
sured by MMD. By mapping features to RKHS, the MMD
is used to measure the distance between features on the
distribution curve and estimate the similarity. A smaller dis-
tance proves that the features are similar, and then the trans-
fer can be performed. In general, the distribution of features
varies widely between projects, and then neural networks can
be used for iterative training to minimize the loss function.
Particularly, we want to minimize the classification loss,
denoted as LossðcÞ:, and the distribution diversity between
different features LossðdÞ:. That is, minimizing the sum of
these two losses. By minimizing both losses, the TLSTM
model aims to improve the accuracy and generalization of

the defect prediction model across different projects. The
final function is expressed as Equation (5).

minLoss cð Þ þ λLoss dð Þ: ð5Þ

Here λ represents the regularization parameter.
The basic framework of the TLSTM is displayed in

Figure 4, which is composed of an embedding layer, an
LSTM cell layer, a linear layer, and a matching layer. The
embedding layer converts the integer vectors obtained from
the source code into continuous vectors. The LSTM cell layer
processes the sequence of input vectors and updates the hid-
den state of the network accordingly. The linear layer takes
the output of the LSTM layer and maps it to a lower-
dimensional feature space. Finally, the matching layer mea-
sures the feature discrepancy between different projects
using the MMD and adds it to the training loss of the net-
work. The final output layer has the function of classifying.
The network model is optimized by Adam optimizer and
stochastic gradient descent (SGD) algorithm during training,
with Adam used for the initial phase of training and SGD
used for fine-tuning. This approach can help to improve the
stability and generalization performance of the model.
Through the TLSTM model, the transferable features are
extracted for training the classifier.

3.5. Construct Defect Prediction Model. After going through
the previous series of steps, the final step is to construct a
CPDP model. The transferable metric features extracted
from TCA and the transferable semantic features extracted
from TLSTM are combined. Then the combined features are
input into the logical regression classifier. After training, the
CPDP model is constructed. In the original SDP, it is
common to split the samples. The division methods
include K-fold cross-validation, random sampling method,
etc. However, the data distribution is not similar in CPDP.

Forget gate Input gate Output gate

Ct–1
Ct

ht

× +

σ

ft

ht–1

xt

Input
data 

×

σ

it

tanh

×

σ

ot

tanh

ht

ct
~

FIGURE 3: LSTM cell structure.
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Therefore, the whole source project is taken for training, and
the whole target project is taken for testing in the
experiments. The model constructed in this method can be
used to perform CPDP.

4. Experiments and Results

This section describes the experiments, including model eval-
uation indicators, various machine learning and neural net-
work models used in the experiments, experimental results,
and research questions. Furthermore, we evaluate the effec-
tiveness of the TLSTM model.

4.1. Model Evaluation Indicators. SDP is a classificationmatter,
which is to judge whether a software module is defective or not.
Four values can represent various cases of prediction results, they
are true positive (TP), false positive (FP), false negative (FN), and
true negative (TN). With these four values, we can calculate the
following indicators to estimate the CPDP model, which are
accuracy, recall, precision, and f-measure.

(1) Accuracy (acc) measures how many samples are cor-
rectly identified in the two categories, but it does not

indicate whether one category can be better recog-
nized by the other. The accuracy calculation process
is shown in Equation (6).

acc¼ TPþ TN
TPþ TNþ FPþ FN

: ð6Þ

(2) Recall symbolizes the probability of predicting posi-
tive samples out of those that are actually positive, in
other words, how many samples are correctly identi-
fied in the whole sample set. Low recall means that
many samples are not identified. The equation for
calculating the recall rate is shown in Equation (7).

recall¼ TP
TPþ FN

: ð7Þ

(3) Precision refers to the prediction result, which means
the probability that is accurately judged as a true
sample. High precision means that many samples
identified as true are correctly identified. The expres-
sion for the precision is shown in Equation (8).
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precision ¼ TP
TPþ FP

: ð8Þ

(4) The f-measure value can be derived from precision and
recall. This indicator contemplates both of them, and the
f-measure is highest when both reach the equilibrium
point. Its expression is shown in Equation (9).

f -measure¼ 2  ×  precision  ×  recall
precision þ recall

: ð9Þ

After introducing the above indicators used to assess
the performance, and considering them comprehensively,
the experiments use the relatively balanced f-measure as the
indicator to evaluate the proposed model. f-measure is a
widely used metric that combines both precision and recall,
and it is especially useful when the distribution of positive and
negative instances is imbalanced. Moreover, this indicator is
often used to evaluate the effect of models in SDP. In the part
of experimental results, we judge the performance of distinct
models in CPDP by comparing the f-measure.

4.2. Model Comparison. It is common practice in machine
learning [58, 59] to compare the performance of different
types of models on a given task using evaluation metrics. We
selected several common models, including three machine
learning models and multiple network models [60, 61].
These models have shown significant effect in recent years
and are becoming increasingly popular for CPDP tasks.
Finally, we compared the f-measure indicators of these two
types of models to determine which approach is most
effective.

4.2.1. Machine Learning Models. LR: an algorithm for binary
classification using metric features.

NNFilter: clustering algorithms are adopted to aggregate
samples with high similarity and construct source samples
based on target samples.

TCA: transfer component analysis, a classical method of
learning transferable features.

4.2.2. Neural Network Models. DBN: the DBNmodel extracts
features from code by training a constrained Boltzmann
machine. The model consists of 10 hidden layers, each layer
containing 100 hidden nodes.

DPDBN: the semantic features extracted by DBN are
combined with metric features to train a classifier.

DPCNN: a method that abstracts the semantic informa-
tion by CNN. Then, the metric features and semantic fea-
tures are combined. In the parameter settings of CNN, we
initialize the network with an embedded layer dimension of
30, batch size of 32, hidden layer node of 100, etc.

DPTCNN: combined semantic features and metric fea-
tures on top of the transfer CNN.

TLSTM: the new model raised in this article is on the
foundation of the LSTM model and adds transfer learning
for CPDP. We set the initial parameters for the TLSTM net-
work with hidden layers of 3 and hidden layer nodes of 64, etc.

DPTLSTM: based on the TLSTM, the semantic features
and metric features are combined for defect prediction.

4.3. Analysis of Results. This section reveals the design and
the experimental results. For the sake of guaranteeing the
results are true and effective, we set a uniform random
seed to generate the same random value for each experiment.
At the same time, to prove the fairness of the experiments, we
performed CPDP on the projects and averaged the results.
The experimental results of six projects are selected. For each
target project, the other source projects conducted a CPDP
experiment for this project separately. The CPDP results are
recorded in Table 4 and the results are shown below.

Due to space limitations, only the experimental average
results of TLSTM, DPTLSTM, and other models are given
here to testify the availability of our research approach. By
observing the results in CPDP, it is concluded that the pro-
posed TLSTM and DPTLSTM are better than other models
in most projects. The results of these models are displayed in
Figure 5. By analyzing the experimental results, it can be
found that in six open-source Java projects, the f-measure
value of the proposed model has achieved better results in
four of them. These projects are Log4j-1.2, Synapse-1.2,
Xalan-2.7, and Xerces-1.4.4. According to the calculation,
the proposed model achieves the largest improvement on
the Xerces-1.4.4 project, which is 5% higher than the other
models. The remaining improvements are Log4j-1.2 (0.7%),
Synapse-1.2 (2.9%), and Xalan-2.7 (2.1%). For example,
DPTLSTM outperforms other models by 2.9% and 5% on
Synapse-1.2 and Xerces-1.4.4 projects, respectively. Simi-
larly, when using a single feature to build the prediction
model, the TLSTMmodel also outperforms the other models
on Log4j-1.2 and Xalan-2.7 projects. The improvements are
0.7% and 2.1%, respectively. Overall, the performance
improvement ranges from 0.7% to 5%, proving that the pro-
posed model outperforms traditional machine learning and

TABLE 4: f-measure values for each model in CPDP.

Target project LR NNFilter TCA DBN DPDBN DPCNN DPTCNN TLSTM DPTLSTM

Camel-1.6 0.328 0.325 0.324 0.31 0.336 0.341 0.331 0.309 0.322
Forrest-0.8 0.192 0.165 0.114 0.112 0.161 0.148 0.133 0.16 0.127
Log4j-1.2 0.644 0.649 0.669 0.66 0.657 0.68 0.684 0.689 0.652
Synapse-1.2 0.511 0.504 0.517 0.451 0.491 0.511 0.502 0.47 0.532
Xalan-2.7 0.609 0.611 0.66 0.661 0.642 0.653 0.655 0.675 0.64
Xerces-1.4.4 0.643 0.617 0.611 0.556 0.57 0.645 0.659 0.676 0.693

The values in bold represent the most optimal values in a row of data.
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neural network models on most open-source software
projects.

Figure 5 may be unable to represent the experiments in
detail, so it is refined to one group of CPDP. We use Xerces as
the target project and others as the source projects for CPDP
separately. The outcomes are given in Table 5. Through com-
parison, it is found that the f-measure values of TLSTM and
DPTLSTMare superior to othermodels inmultiple CPDPs. A
contrast between these models is presented in Figure 6.

To ensure the generality of the approach, we conducted the
same experiments on six items from the NASA repository. The
experimental results are recorded in Table 6, the corresponding
box plots are shown in Figure 7. By observing the experimental
results, it can be found that the performance of the proposed
model is also better than that of other models. Therefore, this
research method is valuable to the field of CPDP.

4.4. Research Questions. RQ1: What is the underlying factor
for the superior performance of TLSTM compared to other
network models?

Answer RQ1: For question 1, the reason is that the LSTM
network has the advantage of long short-term memory,

which can better retain useful information when proces-
sing long sequence inputs. When performing CPDP, the
semantic features associated with defects can be extracted
and irrelevant information can be forgotten. The ability
of the LSTM to capture long-term dependencies and
retain important information over time makes it well-
suited for this task. This is difficult to be done by CNN
and other neural networks, so the TLSTM works better in
CPDP. In addition, TLSTM combines the benefits of
LSTM with a transfer learning approach, where knowl-
edge learned from source projects is transferred to the
target project. Reducing the required training data can
enhance model performance and improve generalization
to new datasets.

RQ2: Why choose LR as the classifier of the experiments
to build the CPDP model?

Answer RQ2: For question 2, by employing distinct classi-
fiers for TLSTM and DPTLSTM in comparative experi-
ments, it was observed that the f-measure values achieved
under the LR classifier outperformed those under SVM and
RF. The experimental findings are visually depicted in
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FIGURE 5: f-measure values of different models in CPDP.

TABLE 5: f-measure of a set of CPDP for different models when Xerces as the target project.

Source project LR NNFilter TCA DBN DPDBN DPCNN DPTCNN TLSTM DPTLSTM

Camel-1.6 0.517 0.4 0.562 0.559 0.514 0.575 0.594 0.747 0.729
Forrest-0.8 0.336 0.355 0.332 0.418 0.347 0.487 0.482 0.549 0.415
Log4j-1.2 0.708 0.734 0.712 0.634 0.729 0.643 0.634 0.676 0.762
Synapse-1.2 0.579 0.508 0.692 0.519 0.542 0.702 0.73 0.749 0.774
Xalan-2.7 0.782 0.78 0.779 0.739 0.763 0.764 0.773 0.643 0.71

The values in bold represent the most optimal values in a row of data.
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Figure 8. Figures 8(a) and 8(b) shows the experimental com-
parison of TLSTM and DPTLSTM under different classi-
fiers, respectively. The possible reason for this phenomenon
is that the LR classifier focuses on the correlation of features
between cross-projects during training, which has better
results on CPDP compared to SVM and RF.

5. Discussion

In light of the results recorded in Table 4, it can be perceived
that the TLSTM and DPTLSTM in most CPDPs are better
than the other network models. The reasons for this situation
are explained here.

5.1. Why Does TLSTM Work Well?

(1) The TLSTM networkmodel has the function of mem-
ory retention and forgetting, which can effectively

TABLE 6: f-measure of different models on the NASA dataset.

Target project LR NNFilter TCA DBN DPDBN DPCNN DPTCNN TLSTM DPTLSTM

CM1 0.288 0.29 0.229 0.261 0.287 0.325 0.36 0.369 0.37
JM1 0.403 0.365 0.351 0.446 0.461 0.528 0.533 0.591 0.627
KC1 0.608 0.606 0.609 0.626 0.64 0.651 0.68 0.677 0.687
KC3 0.604 0.513 0.732 0.733 0.769 0.778 0.786 0.811 0.8
MW1 0.379 0.599 0.377 0.423 0.433 0.457 0.485 0.575 0.585
PC2 0.603 0.61 0.611 0.566 0.58 0.605 0.611 0.713 0.805

The values in bold represent the most optimal values in a row of data.
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analyze the semantic features of the code, retain useful
information and forget invalid information. In CPDP,
this could be important because code changes and bug
reports are typically related to previous actions, and
TLSTM can effectively capture these dependencies.
Moreover, it can parse the content of integer vectors
and discover the connection between defects, so it has
better experimental results compared with other net-
work models. In addition, a transfer learning algorithm
is added to the LSTM, and the iterative training of the
network model is used to reduce the MMD distance
between the different features. By enhancing the transfer
learning ability of features, the function of the CPDP
model will be upgraded. Although CNN can similarly
extract semantic features, the features discovered by
TLSTM can explain the causes of defects.

(2) In contrast with the formerly CPDP models that only
apply deep learning to generate features, the TLSTM
model considers the divergence in feature distribu-
tion. We perform the transfer learning approach by
mapping the features to the RKHS, and transfer fea-
tures with high similarity. By directly learning from
source and target project data, TLSTM can better
capture the divergence in feature distributions, which
is important in the context of CPDP. In other words,
TLSTM can identify and focus on the features that
are most relevant for predicting bugs in the target
project, even if they are different from those signifi-
cant in the source project. In addition, we discovered
that the combined features can effectively promote
the function of the CPDP model in some projects.

5.2. Threats to Validity. We explore the validity threat of the
experiments as follows. Three aspects of internal validity,
external validity, and construct validity are presented and
solutions are given.

5.2.1. Threats to Internal Validity. The network parameters of
TLSTM lack research. In the experiments, the TLSTM network
model is set with an initialization parameter, which does not
consider the influence of different parameters on the
experimental effect. The settings of different parameters, such
as the number of hidden layer units, can be investigated in future
studies. In the next stage, we determine to explore whether
parameter optimization can contribute to the CPDP results.
For the optimization of parameters in the neural network
model, we can combine hyperparameter optimization
algorithms to explore the use of different hyperparameter
optimization methods, such as Bayesian optimization, genetic
algorithm, etc., to adjust the key parameters of the neural
network. In addition, different learning rate adjustment
strategies can be investigated, including learning rate decay,
dynamic learning rate adjustment, etc. Determine the most
effective learning rate adjustment method during training to
accelerate convergence and avoid getting stuck in a local
optimal solution. By selecting and optimizing these
parameters, we can improve the accuracy and robustness of
the models, and ensure that they are effective for a wide range
of tasks and datasets.

5.2.2. Threats to External Validity. In the experiments, the LR
classifier in machine learning was used in the model con-
struction. Although it was compared with two classifiers, RF
and SVM, there was a lack of comparative research on other
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classification models. Aiming at the problem of classifier
selection for building software defect prediction models, the
selection range of classifiers can be extended, including but
not limited to decision tree, naive Bayes, k-nearest neighbor,
etc. In the next study, the performance of these classifiers on
the software defect prediction task will be comprehensively
compared. In addition, considering the performance differ-
ences of different classifiers in defect prediction, the base
classifiers can be integrated to make full use of the advantages
of each classifier to improve the comprehensive performance
of the model. Each of these models has its strengths and
weaknesses, and may be better suited to certain types of tasks.
It is unknown that the choice of other classifiers affects the
experimental results, so contrast experiments with different
classifiers can be added in subsequent studies.

5.2.3. Threats to Construct Validity. Although the f-measure
can be used as an indicator to estimate the predictive ability
of a model, it is not excluded that there are better indicators
worth studying. Such as Matthews correlation coefficient
(MCC), the area under roc curve (AUC), etc. MCC is a
metric that comprehensively considers TP, TN, FP, and FN
in binary classification problems. In addition, AUC is a met-
ric used to evaluate the performance of a model under dif-
ferent classification thresholds, which is also widely used to
evaluate binary classification models. These indicators are
not considered to assess the function of the CPDP model
in this article, they are worth studying in the future.

6. Conclusion and Future Work

In conclusion, our proposed TLSTM model represents a sig-
nificant advancement in addressing the challenges of CPDP.
Firstly, the model combines transfer learning and LSTM net-
work to improve the transfer ability of features across items.
Secondly, the innovative combination of semantic features
and metric features in CPDP is a key factor in improving
the predictive ability of the model. Unlike existing machine
learning models and traditional neural network approaches,
TLSTM demonstrates superior performance.

Furthermore, by leveraging deep learning for feature gen-
eration, TLSTM incorporates a matching layer that effectively
associates semantic features between source and target pro-
jects. This novel approach minimizes classification errors and
mitigates distribution diversity among projects, resulting in a
substantial improvement in overall performance.

Importantly, experimental results consistently highlight
the superiority of TLSTM and its variant, DPTLSTM, across
various scenarios in the CPDP task. The outperformance of
these models underscores their effectiveness in handling the
intricacies of CPDP.

Several issues are worth investigating in future research.
First, more approaches will be applied to measure the distri-
bution dispersion between features and find better transfer
learning methods to match features. Second, we will conduct
more experiments on SDP datasets constructed in other pro-
graming languages (C, C++, etc.) to further explore the gen-
eralizability of our approach. Finally, the neural network
model proposed in other studies can be used to study feature

extraction, and explore whether other network models can
further improve the prediction effect.
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WPDP: Within-project defect prediction
CPDP: Cross-project defect prediction
TLSTM: The transfer long short-termmemory network
LSTM: The long short-term memory network
AST: Abstract syntax trees
TCA: Transfer component analysis
LR: Logical regression
SDP: Software defect prediction
CCDP: Cross-company defect prediction
CNN: Convolutional neural network
RNN: Recurrent neural network
RKHS: Reproducing kernel Hilbert space
MMD: Maximum mean discrepancy
SVM: Support vector machine
RF: Random forest
CGCN: Convolutional-graph convolutional network
3SW-MSTL: Three-stage weighting framework for multi-

source transfer learning
KTSVMs: Kernel twin support vector machines
TrAdaBoost: Transfer AdaBoost
HYDRA: A hybrid model reconstruction approach
GA: Genetic algorithm
DBN: Deep belief network
TCNN: Transfer convolutional neural network
NB: Naive Bayes
DT: Decision tree
KNN: K-nearest neighbors
SGD: Stochastic gradient descent
TP: True positive
FP: False positive
FN: False negative
TN: True negative
AUC: Area under roc curve
MCC: Matthews correlation coefficient.
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