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With the continuous advancement of autonomous driving technology, visual analysis techniques have emerged as a prominent
research topic. The data generated by autonomous driving is large-scale and time-varying, yet more than existing visual analytics
methods are required to deal with such complex data effectively. Time-varying diagrams can be used to model and visualize the
dynamic relationships in various complex systems and can visually describe the data trends in autonomous driving systems. To this
end, this paper introduces a time-varying graph-based method for visual analysis in autonomous driving. The proposed method
employs a graph structure to represent the relative positional relationships between the target and obstacle interferences. By
incorporating the time dimension, a time-varying graph model is constructed. The method explores the characteristic changes of
nodes in the graph at different time instances, establishing feature expressions that differentiate target and obstacle motion
patterns. The analysis demonstrates that the feature vector centrality in the time-varying graph effectively captures the distinctions
in motion patterns between targets and obstacles. These features can be utilized for accurate target and obstacle recognition,
achieving high recognition accuracy. To evaluate the proposed time-varying graph-based visual analytic autopilot method, a
comparative study is conducted against traditional visual analytic methods such as the frame differencing method and advanced
visual analytic methods like visual lidar odometry and mapping. Robustness, accuracy, and resource consumption experiments are
performed using the publicly available KITTI dataset to analyze and compare the three methods. The experimental results show
that the proposed time-varying graph-based method exhibits superior accuracy and robustness. This study offers valuable insights
and solution ideas for developing deep integration between intelligent networked vehicles and intelligent transportation. It
provides a reference for advancing intelligent transportation systems and their integration with autonomous driving technologies.

1. Introduction

The acceleration of urbanization has rendered automobiles
indispensable for daily commuting, enhancing travel efficiency
yet concurrently engendering a host of societal challenges,
including escalating road accidents, urban traffic congestion,
and environmental degradation [1, 2]. According to statistics,
83%—-94% of traffic accidents are related to human fault [3].
The advent of autonomous vehicles and the advancement of
intelligent network infrastructure have been identified as piv-
otal strategies to ameliorate these issues. Autonomous vehicles,
emblematic of a novel transportation paradigm, amalgamate
capabilities such as environmental sensing, decision-making,
and control execution [4-6]. A critical hurdle in autonomous

driving is the real-time extraction and analysis of intricate
visual data. Vision analytics-based methodologies have gained
traction as a viable resolution, given their capacity to synthesize
and interpret diverse data modalities, encompassing images,
videos, Lidar, and radar data [7-10]. Additionally, these
approaches can model temporal dependencies in traffic scenar-
ios, a crucial element for forecasting and strategizing the trajec-
tory of autonomous vehicles. Visual analytics methods entail
the deployment of sensors, including onboard cameras and
Lidar, to capture road-related information, subsequently facili-
tating the processing and interpretation of data to achieve
comprehensive perception of the vehicular environment.
Despite the significant progress that has been made, current
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visual analytics methods still have some limitations and chal-
lenges. For example, existing visual analytics methods must be
more stable for target tracking and obstacle detection at differ-
ent speeds. Traditional visual analytics methods fail under
adverse weather conditions, such as dense fog, heavy rain, or
snow. Current visual analytics methods may need to be
improved in terms of real-time performance, especially in com-
plex scenes. Therefore, there is a need to investigate an
advanced visual analytics method for visualization. Among
various visual analytics techniques, the time-varying graph is
a prevalent visualization instrument that can depict data trends
postsensor acquisition [11]. For instance, it can be employed to
monitor vehicle trajectories, thereby enabling the calculation of
parameters such as current vehicle position and orientation.
Hence, the potential for applying time-varying graphs in vision
analysis techniques is substantial. In light of this, the present
study introduces a time-varying graph-based visual analytics
method for autonomous driving. It conducts comparative
experiments juxtaposing traditional (frame differencing
method (FD)) and advanced (visual lidar odometry and map-
ping (V-LOAM)) visual analytics methods. The comparative
analysis reveals that the proposed time-varying graph-based
approach exhibits stable localization precision across varying
driving distances and vehicle speeds and a consistent total
feature node count in each scenario, demonstrating robustness.
The proposed algorithm exhibits superior accuracy, robustness,
and resource utilization relative to the alternative vision analy-
sis algorithms.
The innovations of this paper are as follows:

(1) A method based on time-varying graphs is intro-
duced for visual analysis in automatic driving.

(2) Using the knowledge of graph theory and the char-
acteristics of complex transportation networks, the
time-varying graphs of target and obstacle interfer-
ence are established, and the edges of the graph mea-
sure the relationship between nodes.

(3) Static and time-varying graphs of targets and inter-
ference are established to analyze and compare the
changes in the characteristics of various graphs, and
the changes in the characteristics of such graphs pro-
vide a strong basis for the classification of targets and
interference.

2. State of the Art

2.1. Study of Time-Varying Graph Concept and Its Model.
Time-varying graphs, alternately termed dynamic or temporal
graphs, are either directed or undirected graphs delineating each
node and its corresponding edges within a specified time slice
[12]. These graphs encapsulate time-dependent graphs wherein
the states of nodes or edges undergo alterations over time,
thereby inducing modifications in their topological relationships.
In autonomous driving, time-varying graphs can encapsulate
data pertinent to the traffic milieu, encompassing vehicular posi-
tion, velocity, and directional alterations [13]. By processing and
analyzing time-varying graphs, one can attain a more nuanced
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understanding of the prevailing traffic conditions, enhancing the
performance and precision of autonomous driving systems.

Traditionally, the characterization of network topology
models has been approached as a static graph, merely depict-
ing the connectivity relationships between nodes and the
properties of the links. This conventional approach fragments
the interrelations between network topologies across distinct
time intervals, thereby underutilizing network resources.
Time-varying graphs address this limitation. Time-varying
graph models have evolved through multiple phases, delineat-
ing several quintessential models below.

The incipient time-varying graphs, denominated as snap-
shot graphs [14], are founded on the principle of discretizing
the network topology across the temporal dimension to yield
multiple network topologies corresponding to distinct time
intervals, thereby transmuting the dynamic network model
into a static one. This transformation facilitates the resolution
of time-varying network issues via traditional static graph-
solving techniques. The snapshot graph severs the interrela-
tions between the dynamic topologies of each time interval,
precluding the collective scheduling of static topologies across
individual time slots.

The time-extended graph model [15] is predicated on
correlating the topologies of each time slot in the snapshot
graph with the storage resources of the nodes. Subsequently,
the network topologies of each time slot are interrelated via
the storage edges of the nodes, thereby converting multiple
static graphs into a singular static graph for resolution. This
model effectively interconnects network topologies across
disparate time slots along the temporal dimension, optimiz-
ing resource utilization. Although the network necessitates
segmentation to construct the time-extended graph, the stor-
age of its topology still demands substantial resources. None-
theless, at the algorithmic stratum, this model significantly
enhances the accuracy and computational complexity of the
problem solution relative to snapshot graphs.

The temporal aggregation graph model [16] is underpinned
by the compression of the snapshot graph through the aggrega-
tion of link resource representations across diverse time intervals.
Within a single graph, links are characterized via aggregation,
with each element in the set denoting the attribute of the link for
the corresponding time interval. This model, characterized by
superior algorithmic performance, also addresses the issue of
extensive storage resources necessitated by the time-extended
graph and snapshot graph topology storage.

The storage time aggregation graph model [17] addresses
the absence of constraint relationships between storage and
link resources in the temporal aggregation graph. This defi-
ciency culminates in diminished accuracy while resolving the
maximum flow problem. Consequently, an enhanced version
of the temporal aggregation graph termed the storage tem-
poral aggregation graph model, is proposed. This model
amalgamates the merits of the temporal aggregation graph
and significantly bolsters network capacity.

2.2. Study of Autonomous Driving Vehicle Obstacle Avoidance
Trajectory. Following the stages of target detection and track-
ing, it remains imperative to forecast the future trajectory of a
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target to precisely evaluate the hazard level posed by dynamic
obstacles within the traffic milieu and to formulate a judicious
path. The ongoing advancements in artificial intelligence
have progressively deepened its research applications in the
trajectory planning domain of autonomous driving.

Liu and Shi [18] leveraged the features of a BP neural
network for self-learning to construct a lane change trajec-
tory model using actual vehicle lane change trajectory data.
Gan et al. [19] employed a local planning method with a
rolling window to accommodate environmental information
alterations. Subsequently, a heuristic algorithm was imple-
mented in the local planning process for critical path point
processing during lane changes, followed by a transition arc
to generate the lane change trajectory seamlessly. Ding et al.
[20] incorporated B-samples to reprogram the curvature dis-
continuity phenomenon of lane change trajectories, thereby
reconstructing the free lane change model. Xin et al. [21]
executed efficient operations within the octree data structure
to generate an online free-space flight corridor comprised of
overlapping three-dimensional grids. This was followed by
generating a smooth trajectory adhering to higher-order
dynamic constraints. Xiong et al. [22] reformulated the path
planning issue as a quintessential quadratic planning problem
predicated on optimization. This method facilitated the real-
time generation of 3D optimal paths adhering to input con-
straints, thereby efficaciously addressing the trajectory gener-
ation challenge in tightly constrained environments.

Zhang et al. [23] employed a unified approach to encapsu-
late environmental semantic information, thereby establishing
a novel dynamic constraint composed of collision-free cubes,
denoted as a spatiotemporal semantic corridor structure. Addi-
tionally, segmented Bessel curve parameterization ensured the
safety, collision-free nature, and dynamic compliance of the
generated trajectories. Ding et al. [24] proposed a genetic algo-
rithm (GA) optimized long short-term memory (LSTM) pre-
diction model. The GA algorithm optimized the LSTM model’s
initial parameters, expedited model convergence, and circum-
vented poor convergence attributable to random initial param-
eters, thereby enhancing the model’s predictive performance.
Roy et al. [25] introduced a vehicle trajectory prediction model
amalgamating extreme learning machine (ELM) and deep neu-
ral networks, thereby enhancing the stochasticity of the ELM
and addressing the network generalization issue. Li et al. [26]
developed a spatiotemporal graph attention neural network-
based vehicle trajectory prediction model capable of capturing
and quantifying the interaction information of neighboring
vehicles across time and space. The Uber R&D team proposed
a convolutional neural networks-based vehicle trajectory pre-
diction model [27]. Zhao et al. [28] proposed a generative
adversarial networks-based model tailored for road intersection
scenarios. Li et al. [29] presented a dual-learning model, and
that integrates lane occupancy and risk maps for vehicle trajec-
tory prediction. The aim is to address the challenges observed
in existing deep learning-based vehicle trajectory prediction
models, including computational complexity, environment-
specific dependence, and neglect of vehicle interactions. Finally,
based on the effectiveness of graph neural networks (GNN)
[30] in node, edge, and graph classification, Jo et al. [31]

presented a hierarchical GNN-based behavior prediction
model known as Vector Net.

3. Methodology

In this section, a time-varying graph of target and obstacle
interference is built using graph theory knowledge and com-
plex traffic network properties to measure the relationship
between nodes regarding graph edges. The time dimension is
introduced to portray the appearance and disappearance of
obstacle disturbances, and the changes in the characteristics
of various graphs are analyzed and compared to provide a
strong basis for the classification of targets and obstacles.

3.1. Graph Theory Knowledge. This subsection introduces the
basic concepts of formal graph theory that support the meth-
odology of this paper, thereby explaining how to use graph
theory to construct time-varying graphs to analyze target and
obstacle interference in an autonomous driving environment.

The graph A= (Q, E) is composed of points g € Q and
edges e € e C QX Q. The weights of the edges e, are denoted
as m(x, y). In constructing the graph, the targets and distur-
bances in the image are used as the graph nodes. The rela-
tionship between the nodes will be converted into an
adjacency matrix, and the weights of the edges are obtained
using the distances between the nodes.

(1) The adjacency matrix of the graph

If the nodes are connected in the graph, the correspond-
ing position in the matrix is 1. Otherwise, it is 0.

1 ey,€kFE

0 ey &E @
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(2) Weight of the graph

_ Jdlxy) Glxy)=1
mwﬁ—{o Glry) = 0" (2)

is the distance

where - d(x,y) = /(i = i,)? + (jc = jy)?
between two nodes x and y.

(3) Degree of a node

The degree of a node is the number of nodes connected
to that node, i.e.,

D(x,y) = deg(x) :ng G(x.y). (3)

(4) Laplacian matrix of the graph

The Laplacian matrix L of the graph is calculated from
the degree matrix D and the adjacency matrix G of the graph,
L=D - G. That is,
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0 otherwise

The Laplace matrix is non-negative symmetric, and thus

L is a full rank matrix, so there will be ¢ eigenvalues 4, <1, <,

. Liqp corresponding to |Q| orthogonal eigenvectors ¢,

&2, .-, |q» Whose corresponding Laplace spectral decom-
position is as follows:

Q|
L= ;1 lx¢x¢fy (5)

The eigenvector corresponding to the smallest non-zero
eigenvalue is called the Fielder vector.

(5) Eigenvector centrality

The feature vector portrays the characteristics of a node
and can be used to measure the node’s importance in the
network. Suppose

A, Ay, A3, ..., A are the T eigenvalues of the adjacency
matrix G, and A is the principal eigenvalue of G, whose
corresponding eigenvector is e= e}, e,, ..., ¢JN. It is easy
to obtain Ae, :Z;:l Gay€y: X = 1,...,t, and the measure of
the node g, feature vector is defined as follows:

T
Ce(q:c) = ’1_1}/;1 xyy- (6)

In the following subsection, we will delve into the specific
procedures and methodologies used to apply these graph
theory principles to create our time-varying graph.

3.2. Time-Varying Graph. In this subsection, a time-varying
graph is constructed based on graph theory knowledge by
introducing the time dimension. Then, the time-varying
graph is used to portray the dynamic motion process of
targets and obstacles.

The graph model consists of target and obstacle disturbances
and is a time-varying system where the relationship of nodes
changes over time. The dynamics of the system can be described
by a time-varying graph with € = (Q, E, 7, p, {), where,

(1) p:EXT — {0, 1} called the survival function, whether
an edge (relation) exists at a certain moment.

(2) (:EXT — T called the delay function, from a given
moment, the time required to cross a given edge.

The delay function can be defined for a given period, on a
given edge, or ignored, and when it is ignored, the time-
varying graph is defined as € =(Q.E, 7, p).

Both the target and the obstacle are moving, and they are
imaged at different positions in each image frame, which are
different but belong to the same node. We cannot reflect the
correspondence of nodes at different moments by using only

IET Software

[
o«
/
//
./
« ./
4 o
.,,,

FIGURE 1: Schematic diagram of trailing with obstacle interference.

static maps. Establish the time matrix of nodes (F, Q, i, j).
Consider it as a representation of a discrete system: F is the
frame number, Q is the label of each node, and (i, ) are the
image coordinates of the nodes. The node-time matrix
relates the nodes in different frames of a time sequence
from one to the other. The frame number is a known image
sequence number, and it is easier to extract the node posi-
tions, while how to label the corresponding nodes is the
difficult part of building the node-time matrix.

The tail of the obstacle interference will produce sparks,
and these sparks may not be connected with the interference
subject at a later stage during imaging, as shown in Figure 1.

We plot the extracted nodes in one image, and we can see
that the same node will form a trajectory, as shown in
Figure 2(a). From the figure, we can see many invalid nodes
at the end of the trajectory, which can cause great interfer-
ence with the association of the trajectory. They can cause
the trajectory to be disconnected and marked with wrong
numbers, making the characteristics of the nodes inconsis-
tent with the actual ones. Therefore, we need to merge these
invalid nodes. From Figure 2(a), we see that the invalid nodes
are mainly densely distributed at the end of the trajectory, so
we consider using the distance threshold to merge the nodes
that are smaller than the distance threshold. The distances of
all neighboring nodes in each frame are counted, and the
distances of neighboring nodes in all frames are sorted
from smallest to largest. Assume that this distance sequence
d has a size of T,. Pick a distance threshold in percentage u.

Nbu:d(TgXu). (7)

Each image frame constructs a distance matrix D with T
nodes and a matrix size of T*T. D(x,y) is the distance
between nodes x and y. D is a symmetric matrix whose only
upper triangular part needs to be used; the rest of the posi-
tions can be set to infinity to select pairs of nodes whose node
distances are less than the threshold.
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FiGure 2: Node diagram of all frames before and after merging invalid nodes: (a) before; (b) after

Mnode = {(x, y)|D(x, y) <Nb}.

(b)

(8)

12
11
We need to consider not only the node pairs that are 10
smaller than the threshold but also the node pairs that are o
adjacent to these node pairs. The center of mass of these . 8
nodes is taken as the new valid node, i.e., nodes x, y, z belong g7
to the same connected domain s, there are t5 nodes, and the “ 6
center of mass of these nodes is found as follows: i
Y ik Yok ;
New_node = ¢ | === ==L )|k« x,,2,...,E€s . 2
t, t 1
(9) 0 30 60

The processed nodes are plotted in the same image, as
shown in Figure 2(b). Compared with Figure 2(a) without
processing, it can be seen that the invalid nodes are signifi-
cantly reduced.

According to the above rules, a distance threshold is
needed to determine whether a node is a vanishing node.

Dp={min(d,,)lx=2....z=1,.... T, }. (10)
If two nodes in adjacent frames match, the distance

between them will not exceed the maximum value of Dp.

Then, the distance threshold for determining the disappear-
ance of a node can be set as follows:

Nbf = max(Dg).

(11)

90
Frame

1
120 150

FIGURE 3: Node number distribution.

shown in Figure 3. It can be seen that node 1 exists in every
frame, and it is the target node. There are 11 remaining
nodes, 10 of which are more evenly distributed and have
more nodes. It coincides with the number of trajectories in

Figure 2(b), which are all 10.

Counting the frame numbers of the nodes, we can learn
that their frame numbers are consecutive, as shown in
Table 1. After determining the number of nodes, the time
matrix of nodes (F, Q, i, k) can be constructed.

In the following subsection, we will delve into using time-

varying graph properties for target and obstacle recognition.

3.3. Time-Varying Graph Characteristics Analysis. Unlike the
static diagram, the time-varying diagram is built based on the
The node matching is performed between two adjacent  time matrix of nodes. From the above node time matrix, we
frames, and the distance between nodes must be less than the ~ see 11 nodes left after excluding the interfering nodes. For
distance threshold Nbf. The image sequence is processed
sequentially, and the final node number distribution is

each frame, a graph structure consisting of 11 nodes is cre-
ated. If the current frame node does not exist, then the
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TasLE 1: Node frame number statistics.

Node number 1 2 3 4 5 6 7 8 9 10 11 12

Start frame number 1 33 43 52 61 69 79 88 97 106 111 114

End frame number 149 65 73 84 92 100 109 118 129 136 112 145

0.8 1

e
O
1

Eigenvector centrality
=1
(=)
1

=]
w
L

0.4 T T T T T 1
30 50 70 90 110 130 150

Frame number

FIGURE 4: Target eigenvector centrality.

connection weight of this node with all other nodes is 0.
Then, the adjacency matrix of the time-varying graph is as
follows:

1 x,y€ag

Gx.y) = { (12)

0 otherwise

where ay is the set of nodes in the Fth frame, and the corre-
sponding weight matrix is as follows:

M(x,y) = \/(ix - iy)z + (jix —jy)z X,y € ag .
0 otherwise

(13)

For each frame in the image, the adjacency matrix and
the weight matrix established by the nodes are different, and
the temporal changes of each node can be observed after the
nodes are associated.

Figures 4 and 5 show the eigenvector centrality metrics of
the target and interfering nodes, respectively. It can be seen
from the figures that the changes in the eigenvector centrality
indexes of the interference nodes are the same and different
from those of the target nodes.

Figure 5 shows that the eigenvector centrality of interfer-
ence nodes 1 and 10 is significantly different from that of
other nodes. This is because interference 1 is the first; there is
no antecedent interference, and only new nodes will be
added subsequently, so the overall trend is decreasing. Inter-
ference 10 is the last, and there is no subsequent interference,
and its precursors will disappear one after another, so the
first half of the curve shows a decreasing trend while the

second half is an increasing trend. Through the above analy-
sis, the feature vector centrality of this indicator can distin-
guish the target and obstacle interference.

4. Result Analysis and Discussion

This paper selects the Odometry scene ensemble of the
KITTI (Karlsruhe Institute of Technology and Toyota Tech-
nological Institute) dataset as the test subject. The KITTI
dataset is a widely used benchmark dataset for computer
vision tasks, especially autonomous driving. Researchers col-
lected this dataset to support the development and evalua-
tion of algorithms for tasks such as object detection, tracking,
stereo, and 3D scene understanding in the context of auton-
omous driving. It has become a standard benchmark for
evaluating the performance of algorithms in real-world, chal-
lenging driving scenarios. This dataset contains real data
sequences of 11 scenes, each with and without true values.
It covers typical road scenes such as suburban roads, high-
ways, and city roads, and the visual ranging sequence covers
39.2km of road scenes. Each scene data contains an image,
Lidar point cloud, and real bit pose data sequences, a com-
mon data set for testing the localization map building
algorithm.

4.1. Robustness Experiments. In real-world autonomous driv-
ing scenarios, algorithms must adapt to different environ-
ments and provide stable results to ensure the vehicle’s
safety. Therefore, robustness experiments in various envir-
onments are conducted in this paper.

The first experiment on robustness is to test the algo-
rithm’s ability to adapt to different environments by the
number of feature nodes it extracts. Specifically, the number
of visual feature nodes extracted by the time-varying graph-
based vision algorithm in this paper is examined separately
for different environments, and the results are compared
with the V-LOAM and the FD. In order to more visually
compare the differences between the three algorithms in
extracting features in different scenes, the number of features
extracted by each algorithm in each scene as a percentage of
the total number of features extracted in all scenes is plotted,
as shown in Figure 6.

The 2nd experiment is to take the average translation
error and rotation error of the first 800 m in each scene
with nodes at 100m intervals (see Figures 7 and 8). As
seen from Figure 7, the translation error of the V-LOAM
algorithm increases with the length. This is because the algo-
rithm does not detect loopback, leading to serious drift when
the path is too long. In contrast, the translation error and
rotation error of the proposed algorithm and FD decrease
more smoothly with the increase in length. Compared with
ED, the proposed algorithm is smoother. In addition, the
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Figure 6: Number of feature nodes extracted by each algorithm as a percentage of their total number.

errors of the algorithm at different vehicle speeds were also ~ variation, while the proposed algorithm’s and V-LOAM
tested. error changes are more stable. Compared with V-LOAM,

As can be seen in Figure 8, all three algorithms change to  the variation of the proposed algorithm is more stable and
varying degrees as the vehicle speed increases. Regarding  stays within the range of 1.0-1.2. Regarding rotation error,
translation error, the FD algorithm causes a large error  the fluctuation amplitude of both FD and V-LOAM is
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FIGURE 8: Average translation and rotation errors of the three algorithms at different speeds.

relatively large. In contrast, the variation amplitude of the
proposed algorithm is smaller. The results prove that the
algorithm in this paper has better stability performance.

In summary, the proposed algorithm has better adapt-
ability and stability in different environments, has stronger
anti-interference ability in the face of different vehicle speed
changes, and higher robustness of the algorithms.

4.2. Accuracy Experiment. Precise localization and trajectory
estimation are crucial for safe and reliable autonomous driv-
ing. In this paper, the accuracy experiments aim to verify the
algorithm’s accuracy and applicability in self-driving car
applications.

The above three algorithms are run in 11 scenarios from
Odometry0l to Odometryll. Then, the output poses are
compared with the real trajectories to calculate absolute
pose error (APE) and relative pose error (RPE), and the

standard deviation, root means square error, and mean value
are output. The output error values of each algorithm in the
11 scenarios are averaged (see Table 2).

Table 2 shows that in the translation error, the FD algo-
rithm performs the worst compared to the other two algo-
rithms. The mean values of the errors of the proposed
algorithm are 26.99 and 0.09, which are lower than those of
V-LOAM (32.98 and 0.25). In the rotation error, the mean
values of the errors of the proposed algorithm are 0.146 and
0.002, which are also lower than those of FD and V-LOAM.
The combined accuracy error of the proposed algorithm is the
smallest compared with the other two algorithms.

4.3. Resource Occupancy Test Experiment. Efficient resource
utilization is crucial for in-vehicle autonomous driving sys-
tems as they usually have limited computational resources.
Therefore, studying CPU occupancy is crucial to evaluate the
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TaBLE 2: Average error of the three algorithms in all scenarios.
Translation error Rotation error
Category Evaluation indicator

FD V-LOAM Proposed FD V-LOAM Proposed

Standard deviation 121.14 28.76 20.99 0.005 0.008 0.006

APE Root mean square 312.44 38.38 34.18 0.325 0.174 0.155

Mean value 286.66 32.98 26.99 0.313 0.188 0.146

Standard deviation 1.12 0.33 0.14 0.005 0.004 0.002

RPE Root mean square 1.83 0.57 0.26 0.006 0.008 0.003

Mean value 1.48 0.25 0.09 0.004 0.006 0.002
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FiGUre 9: Comparison of CPU occupation rate of algorithms.

algorithms’ computational efficiency and determine how it
affects the overall performance of the self-driving car system.

In addition to the localization module, the autonomous
driving system must also be equipped with target detection,
path planning, and other modules. Therefore, with the lim-
ited computational resources, the computational volume of
the algorithms should be reduced as much as possible, and
the algorithms’ performance should be guaranteed simulta-
neously. The average CPU (I7-7700HQ, 2.80 GHz x4)
usage of the computer is tested and compared for the three
algorithms running in each environment from sequence01l
to sequencell. The test method is to record the CPU occu-
pancy rate every 5 s while running and then take the average
value. The algorithm CPU occupancy results are shown in
Figure 9.

According to Figure 9, the average CPU occupancy of the
proposed algorithm is 21.8%, while the average CPU occu-
pancy of FD is 26.4% and V-LOAM is 27%. It shows that the
proposed algorithm is much lower than the other two. This is
because the total number of feature nodes extracted by the
proposed algorithm is smaller, and the optimization strategy
at the back end reduces the computation. Therefore, the
time-varying graph-based algorithm proposed in this paper
has a lower resource occupation rate while having higher
accuracy and robustness, and it is more suitable for vehicle
autonomous driving systems.

5. Conclusion

Autonomous driving represents a burgeoning technology
that has recently garnered considerable focus. Vision-centric
analytical methodologies are prevalently employed in auton-
omous driving because they assimilate and scrutinize diverse
data types in real time. As a visual analytical instrument of
vision technology, time-varying graphs can be utilized in the
autonomous driving domain to analyze vehicle motion trajec-
tories, identify obstacles, etc. Consequently, this research intro-
duces a time-varying graph-centered approach for the visual
analysis of autonomous driving. The proposed technique is
juxtaposed against the conventional vision analysis method
(FD) and the advanced visual analysis method (V-LOAM)
and is examined utilizing the KITTI dataset. The research find-
ings demonstrate that the time-varying graph-centered method
delineated in this paper exhibits superior accuracy and robust-
ness. This investigation can facilitate the steering of the evolu-
tion of more efficacious and precise autonomous driving
systems. It can serve as a benchmark for other application
methodologies predicated on vision analysis in the transporta-
tion sector.

Data Availability

The labeled dataset used to support the findings of this study
is available from the corresponding author upon request.

Disclosure

To complete the research work, we have received academic
guidance and assistance from our unit and a small amount of
financial support to help complete the research project.

Conflicts of Interest

The author of this article states that there are no conflicts of
interest with the unit academically.

Acknowledgments

This work was supported in part by the construct program of
applied characteristic discipline in Hunan Province and the
Project of Hunan Provincial Natural Science Foundation of
China (Grant No. 2023]J50421). The author acknowledges
that some content in this article was translated and polished
by ChatGPT (https://chat.openai.com/) to improve the


https://chat.openai.com/
https://chat.openai.com/
https://chat.openai.com/

10

quality of English writing. We sincerely thank ChatGPT for
its contribution.

References

[1] F. Zhao, Z. Mu, H. Hao et al., “Hydrogen fuel cell vehicle
development in China: an industry chain perspective,” Energy
Technology, vol. 8, no. 11, Article ID 2000179, 2020.

[2] F. O. Okeke, A. E. Okosun, C. A. Udeh, and C. J. Okekeogbu,
“Cities for people: the dependency & impact of automobile in
the life of city dwellers,” European Journal of Sustainable
Development, vol. 9, no. 3, Article ID 157, 2020.

[3] D. Xiao, M. Dianati, W. G. Geiger, and R. Woodman, “Review
of graph-based hazardous event detection methods for
autonomous driving systems,” IEEE Transactions on Intelligent
Transportation Systems, vol. 24, no. 5, pp. 4697-4715, 2023.

[4] S. Manoharan, “An improved safety algorithm for artificial
intelligence enabled processors in self-driving cars,” Journal of
Artificial Intelligence and Capsule Networks, vol. 1, no. 2,
pp. 95-104, 2019.

[5] J.Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey
on theories and applications for self-driving cars based on
deep learning methods,” Applied Sciences, vol. 10, no. 8,
Article ID 2749, 2020.

[6] S. Jain and I. Malhotra, “A review on obstacle avoidance
techniques for autonomous driving vehicle,” International
Journal of Advanced Science and Technology, vol. 29, no. 6,
pp. 5159-5167, 2020.

[7] S. Jamonnak, Y. Zhao, X. Huang, and M. Amiruzzaman, “Geo-
context aware study of vision-based autonomous driving models
and spatial video data,” IEEE Transactions on Visualization and
Computer Graphics, vol. 28, no. 1, pp. 1019-1029, 2022.

[8] M. Lei, D. Yang, and X. Weng, “Integrated sensor fusion based

on 4D MIMO radar and camera: a solution for connected

vehicle applications,” IEEE Vehicular Technology Magazine,

vol. 17, no. 4, pp. 38-46, 2022.

H. Fujiyoshi, T. Hirakawa, and T. Yamashita, “Deep learning-

based image recognition for autonomous driving,” IATSS

Research, vol. 43, no. 4, pp. 244-252, 2019.

[10] T. Zhou, M. Yang, K. Jiang, H. Wong, and D. Yang, “MMW
radar-based technologies in autonomous driving: a review,”
Sensors, vol. 20, no. 24, Article ID 7283, 2020.

[11] Y. Zhao, L. Ge, H. Xie et al., “ASTF: visual abstractions of
time-varying patterns in radio signals,” IEEE Transactions on
Visualization and Computer Graphics, vol. 29, no. 1, pp. 214-
224, 2023.

[12] D. B. Tay and J. Jiang, “Time-varying graph signal denoising
via median filters,” IEEE Transactions on Circuits and Systems
II: Express Briefs, vol. 68, no. 3, pp. 1053-1057, 2021.

[13] H.Pang, N. Liu, C. Hu, and Z. Xu, “A practical trajectory tracking
control of autonomous vehicles using linear time-varying MPC
method,” Proceedings of the Institution of Mechanical Engineers,
Part D: Journal of Automobile Engineering, vol. 236, no. 4,
pp. 709-723, 2022.

[14] F.Bauza Mingueza, M. Florfa, ]. Gomez-Gardefies, A. Arenas, and
A. Cardillo, “Characterization of interactions’ persistence in time-
varying networks,” Scientific Reports, vol. 13, Article ID 765, 2023.

[15] D. Hu, S. Zhang, and A. M. Zou, “Velocity-free fixed-time
attitude cooperative control for spacecraft formations under
directed graphs,” International Journal of Robust and
Nonlinear Control, vol. 31, no. 8, pp. 2905-2927, 2021.

[9

—

IET Software

[16] I. Maduako and M. Wachowicz, “A space-time varying graph
for modelling places and events in a network,” International
Journal of Geographical Information Science, vol. 33, no. 10,
pp. 1915-1935, 2019.

[17] T. Zhang, J. Li, H. Li, S. Zhang, P. Wang, and H. Shen,
“Application of time-varying graph theory over the space
information networks,” IEEE Network, vol. 34, no. 2, pp. 179-
185, 2020.

[18] M. Liu and J. Shi, “A cellular automata traffic flow model
combined with a BP neural network based microscopic lane
changing decision model,” Journal of Intelligent Transporta-
tion Systems, vol. 23, no. 4, pp. 309-318, 2019.

[19] N. Gan, M. Zhang, B. Zhou, T. Chai, X. Wu, and Y. Bian,
“Spatio—temporal heuristic method: a trajectory planning for
automatic parking considering obstacle behavior,” Journal of
Intelligent and Connected Vehicles, vol. 5, no. 3, pp. 177-187,
2022.

[20] Y. Ding, W. Zhuang, L. Wang, J. Liu, L. Guvenc, and Z. Li, “Safe
and optimal lane-change path planning for automated driving,”
Proceedings of the Institution of Mechanical Engineers, Part D:
Journal of Automobile Engineering, vol. 235, no. 4, pp. 1070-
1083, 2021.

[21] L. Xin, Y. Kong, S. E. Li et al., “Enable faster and smoother
spatio—temporal trajectory planning for autonomous vehicles
in constrained dynamic environment,” Proceedings of the
Institution of Mechanical Engineers, Part D: Journal of
Automobile Engineering, vol. 235, no. 4, pp. 1101-1112, 2021.

[22] L. Xiong, Z. Fu, D. Zeng, and B. Leng, “An optimized
trajectory planner and motion controller framework for
autonomous driving in unstructured environments,” Sensors,
vol. 21, no. 13, Article ID 4409, 2021.

[23] T. Zhang, W. Song, M. Fu, Y. Yang, X. Tian, and M. Wang, “A
unified framework integrating decision making and trajectory
planning based on spatio—temporal voxels for highway autonomous
driving,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 10365-10379, 2022.

[24] W. Ding, J. Huang, G. Shang et al, “Short-term trajectory
prediction based on hyperparametric optimisation and a dual
attention mechanism,” Aerospace, vol. 9, no. 8, Article ID 464,
2022.

[25] B. Roy, M. P. Singh, M. R. Kaloop et al., “Data-driven approach
for rainfall-runoff modelling using equilibrium optimizer coupled
extreme learning machine and deep neural network,” Applied
Sciences, vol. 11, no. 13, Article ID 6238, 2021.

[26] J. Li, H. Ma, Z. Zhang, J. Li, and M. Tomizuka, “Spatio-
temporal graph dual-attention network for multi-agent
prediction and tracking,” IEEE Transactions on Intelligent
Transportation Systems, vol. 23, no. 8, pp- 10556-10569, 2022.

[27] B. Yang, X. Cao, K. Xiong et al, “Edge intelligence for
autonomous driving in 6G wireless system: design challenges
and solutions,” IEEE Wireless Communications, vol. 28, no. 2,
pp. 40-47, 2021.

[28] C. Zhao, Y. Zhu, Y. Du, F. Liao, and C.-Y. Chan, “A novel
direct trajectory planning approach based on generative
adversarial networks and rapidly-exploring random tree,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 10, pp. 17910-17921, 2022.

[29] Z.1i, P. Zhao, C. Jiang, W. Huang, and H. Liang, “A learning-
based model predictive trajectory planning controller for
automated driving in unstructured dynamic environments,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 6,
pp. 5944-5959, 2022.



IET Software

[30] V. La Gatta, V. Moscato, M. Postiglione, and G. Sperli, “An
epidemiological neural network exploiting dynamic graph
structured data applied to the COVID-19 outbreak,” IEEE
Transactions on Big Data, vol. 7, no. 1, pp. 45-55, 2020.

[31] E. Jo, M. Sunwoo, and M. Lee, “Vehicle trajectory prediction
using hierarchical graph neural network for considering
interaction among multimodal maneuvers,” Sensors, vol. 21,
no. 16, Article ID 5354, 2021.

11





