
Research Article
Exploiting DBSCAN and Combination Strategy to
Prioritize the Test Suite in Regression Testing

Zikang Zhang ,1 Jinfu Chen ,1 Yuechao Gu ,1 Zhehao Li ,1 and
Rexford Nii Ayitey Sosu 1,2

1School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 202013, China
2Faculty of Computing and Information Systems, Ghana Communication Technology University, Accra 233021, Ghana

Correspondence should be addressed to Jinfu Chen; jinfuchen@ujs.edu.cn

Received 15 October 2023; Revised 28 February 2024; Accepted 14 March 2024; Published 4 April 2024

Academic Editor: Hui Liu

Copyright © 2024 Zikang Zhang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Test case prioritization techniques improve the fault detection rate by adjusting the execution sequence of test cases. For static
black-box test case prioritization techniques, existing methods generally improve the fault detection rate by increasing the early
diversity of execution sequences based on string distance differences. However, such methods have a high time overhead and are
less stable. This paper proposes a novel test case prioritization method (DC-TCP) based on density-based spatial clustering of
applications with noise (DBSCAN) and combination policies. By introducing a combination strategy to model the inputs to
generate a mapping model, the test inputs are mapped to consistent types to improve generality. The DBSCANmethod is then used
to refine the classification of test cases further, and finally, the Firefly search strategy is introduced to improve the effectiveness of
sequence merging. Extensive experimental results demonstrate that the proposed DC-TCP method outperforms other methods in
terms of the average percentage of faults detected and exhibits advantages in terms of time efficiency when compared to several
existing static black-box sorting methods.

1. Introduction

Regression testing [1, 2] is an important software testing
technique designed to ensure that software with fixed defects
does not introduce new functional failures and still meets
user requirements and security specifications. Therefore,
regression testing is an important part of the software devel-
opment and maintenance cycle, and it plays a key role in
software quality and reliability. However, there are some
issues with regression testing, such as the selection of test
data, the maintenance of test cases, and the testers’ knowl-
edge levels. In addition, the scope of regression testing may
also vary depending on the project’s complexity, leading to
increased difficulty and time cost of testing. Therefore,
regression testing must be carefully planned and executed
during development to ensure maximum value. In order to
reduce the overall test time overhead, there has been much
research on regression testing, including test set reduction
techniques [3, 4], test case selection [5, 6], and test case
prioritization [7, 8]. Test set reduction techniques aim to

improve testing efficiency by reducing the number of test
cases, mainly by removing redundant ones, thereby reducing
testing time and ensuring the test suite’s quality. The test case
prioritization technique aims to find the best order of test
case execution and then prioritize the execution of important
test cases to maximize the effort of testers. While test case
reduction techniques truncate the original test set, test case
prioritization techniques do not remove any test cases. In
other words, test case prioritization techniques are relatively
conservative in comparison, yet they provide enhanced secu-
rity and reliability. Therefore, researchers are more interested
in test case prioritization techniques.

Test case prioritization techniques can be divided into
dynamic and static categories, depending on the required
links and dependent information. Dynamic ranking techni-
ques are widely studied due to their high effectiveness, but
these types of techniques are usually more complex and dif-
ficult to reuse, as they depend on historical execution infor-
mation of the software. Static techniques, on the other hand,

Hindawi
IET Software
Volume 2024, Article ID 9942959, 14 pages
https://doi.org/10.1049/2024/9942959

https://orcid.org/0009-0002-5695-6426
https://orcid.org/0000-0002-3124-5452
https://orcid.org/0009-0007-0375-8326
https://orcid.org/0009-0002-1662-7839
https://orcid.org/0000-0001-5527-5114
mailto:jinfuchen@ujs.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

can sort test cases when execution information is not avail-
able. Also, since static sorting techniques can also sort newly
generated test cases, they are more widely applicable.

Many test case ranking methods have been proposed
based on static test case information. Among them, the string
distance-based test case ordering method is one of the clas-
sical and effective prioritization methods [9]. It relies solely
on the text of the test cases for ranking. The existing black-
box test case sorting technique based on string distance is
simple to use and demonstrates a certain sorting effect with-
out relying on execution information. However, it has lim-
itations on performance due to its time overhead, and the
string similarity metric tends to ignore some of the informa-
tion available for the test cases, thereby impacting the sorting
effect. In light of the drawbacks of static test case ranking
methods, one solution is to use clustering analysis techniques
[10] to differentiate test cases more granularly to process test
cases individually based on the clustering results. In the pre-
vious study, the proposed K-medoids and similarity-based
test case prioritization (KS-TCP) [11, 12] method can effi-
ciently rank test cases with a certain degree of efficiency.
Nonetheless, there are still some limitations in terms of
applicability as well as stability.

This paper proposes a novel test case ranking method
based on density-based spatial clustering of applications with
noise (DBSCAN) and a combinatorial strategy to address
these issues. First, the concept of the combinatorial strategy
is presented to tackle the limitation in applicability observed
in the KS-TCP method, particularly concerning program
input types. This approach transforms test cases into consis-
tent numerical parameters, thereby sidestepping the need for
specialized treatment of intricate types and enhancing the
inclusiveness of the black-box static sorting method. Subse-
quently, the DBSCAN method is used to improve the clus-
tering effect to better cope with the transformed input types
and improve the method’s stability. Finally, the search strat-
egy in the Firefly algorithm, as well as the random and rest
mechanisms, are combined to guide the sequence merging
process and improve the selection efficiency of the algorithm.
The experiments apply the sorting method to the combina-
torial testing technique to guide the testing process, and the
experimental results show that the DBSCAN-based test case
prioritization (DC-TCP) algorithm has certain advantages in
algorithm stability while ensuring a certain fault detec-
tion rate.

The main contributions of this paper are as follows:

(1) Introduction of combination strategy: This paper
introduces a combination strategy for conducting
similarity analysis on static test cases. By mapping
test inputs to a consistent type, this method enhances
the generality of the test case sorting approach. The
application of this combination strategy enables the
sorting method to better handle different types of test
cases, improving the consistency and accuracy of the
sorting results.

(2) Clustering analysis based on DBSCAN: To further
enhance the classification effectiveness of test cases,

this paper employs the DBSCANmethod. By utilizing
the DBSCANmethod for finer clustering of test cases,
it becomes possible to better distinguish between dif-
ferent types of test cases and enhance the stability of
the sorting method.

(3) Introduction of Firefly search strategy: To improve
the effectiveness of sequence merging, this paper
introduces the Firefly search strategy. By utilizing
the Firefly search strategy to guide the sequence
merging process, the algorithm’s selection efficiency
is enhanced, further optimizing the sorting results of
test cases.

(4) Extensive experimental evaluation: To assess the effec-
tiveness and efficiency of the proposedDC-TCPmethod,
this paper conducts extensive experimental compar-
isons on 10 Java datasets. The experimental results
indicate that the DC-TCP method outperforms
other methods in terms of the average percentage
of faults detected (APFD) metric. Moreover, it exhi-
bits a significant advantage in terms of time effi-
ciency compared to existing static black-box sorting
methods.

The rest of the paper is organized as follows: Section 2
presents some background knowledge. Section 3 presents the
methodology. Section 4 evaluates the effectiveness and effi-
ciency of the proposed method through an empirical study.
Section 5 discusses potential limitations to the validity of our
work. Section 6 gives the conclusion.

2. Background and Related Work

2.1. Test Case Prioritization. Test case prioritization techni-
ques are designed to adjust the order of test case execution to
improve overall test efficiency as well as test quality. Suppose
the execution of a scheduled test set is interrupted or stopped
for any reason. In that case, the important test cases will also
be prioritized, thus minimizing the loss of complete execu-
tion due to sudden changes in test costs. Test case prioritiza-
tion allows the perfect sequencing of test cases to generate an
execution sequence that meets testers’ expectations opti-
mally. Therefore, the test case prioritization strategy becomes
critical, and a wrong prioritization strategy can even lead to
the exact opposite result, increasing the required testing cost.
Among the test case prioritization techniques, the following
four types of techniques can be classified based on the
required information as well as the state of the environment
[13, 14].

(1) White-box execution-based prioritization is a rank-
ing method based on the dynamic execution infor-
mation of the software to be tested and the test cases.
Generating the execution sequence requires knowl-
edge of the software’s source code to be tested and
the historical execution flow information of each test
case in the software source code.

(2) Black-box execution-based prioritization is a ranking
method based on the dynamic execution information

2 IET Software

of the test cases, where the execution sequence is
generated using the execution logs of the test cases
and does not depend on the actual source code of the
software to be tested.

(3) White-box static prioritization is a ranking method
based on information about the software to be tested
and test cases. The execution sequence is generated
based on software knowledge and static information
about the test cases and does not depend on the
historical execution information of the test cases.

(4) Black-box static prioritization is a ranking method
based on test case information. The execution sequence
is generated based on the test cases themselves and does
not require the historical execution information of the
software to be tested or knowledge of the model; it only
relies on some information that exists in the test cases
themselves.

Dynamic test case prioritization techniques are more
effective for regression testing applications than static meth-
ods. However, dynamic techniques are usually more complex
and may have some technical difficulties in practical applica-
tions; in addition, the technique requires historical versions
of execution information (e.g., source code [15–17], coverage
information [18, 19], fault severity [20], etc.)

Dynamic techniques usually do not avoid the question: Is
the historical execution information of the test cases available?
Dynamic sequencing techniques rely heavily on execution
information, and it is difficult to function when execution
information is absent [21]. For example, it is too expensive
for larger software systems to collect and maintain execution
information as software versions evolve, and the execution
information needs to be updated as the source code changes.
In contrast to dynamic sequencing techniques, static sequenc-
ing techniques do not rely on historical execution information
or knowledge of the software but only on the current version
of the software or information that already exists on its own
[22]. In addition, static black-box techniques can sort newly
generated test cases and can be applied in the initial testing of
the software. It can also be combined with different test case
generation techniques for testing [23] and thus has a broader
scope of application.

The discussion above focuses on traditional TCP meth-
ods, but recent approaches often integrate machine learning
techniques for improved results [24–26]. Recent studies
[27–29] also propose supervised machine learning techni-
ques for test prioritization as a ranking problem. However,
this paper primarily emphasizes traditional TCP methods.

2.2. Coverage-Based Test Case Prioritization Techniques. The
coverage-based test case prioritization technique is one of the
basic strategies commonly used in regression testing, and it is
generally believed that increasing software execution cover-
age can improve the efficiency of software defect detection.
For example, if test cases A and B cover more functions,
branches, and statements, test case A may have a higher
probability of detecting triggered software defects than test
case B.

Mahdieh et al. [30] improved the coverage-based ranking
method by considering the distribution of fault propensity
over code blocks. The proposed method introduces defect
prediction techniques and trains a neural network model
using historical error records of the software, which is then
used to predict the fault propensity of each region of the
source code and merge the estimation results into the
coverage-based ranking method. Themethod proposes a gen-
eralized strategy that can be applied to most coverage-based
methods. Its experimental results show that using appropriate
historical error records can improve the coverage-based rank-
ing method.

Rothermel et al. [8] first defined the test case prioritiza-
tion problem and also proposed the original coverage-based
ranking technique, which mainly consists of two greedy algo-
rithms. The first is the global greedy algorithm, greedy essen-
tial, which treats each test case individually and ranks them
according to execution coverage from the highest to lowest.
The other one considers the overall code coverage of the
combination and ranks the test cases according to their con-
tribution to the extra code coverage, known as the extra
greedy algorithm, greedy redundant essential. Various test
case ranking techniques are proposed based on statement
coverage and branch coverage; in addition to the two greedy
algorithms, there is also a capability for detecting test case
history. These ranking techniques are compared with ran-
dom sampling sequences and optimal sequences in experi-
ments, and the results show that these techniques can
effectively improve the detection efficiency.

2.3. Requirements-Based Test Case Sequencing Techniques.
Srikanth et al. [31] first used test requirements (including
customer priority, error-prone probability, fluctuation value,
and execution difficulty) in a test case prioritization tech-
nique, but this technique is more subjective due to the need
for human prediction of requirement attributes. Srikanth et al.
[32] found in their recent study that the effect of prioritization
of two or more factors is better than that of a single factor in
terms of test validity.

Muthusamy and Seetharaman [33] proposed a new algo-
rithm for prioritizing test cases grounded in requirements
(including traceability, completeness, requirement error impact,
requirement changes, customer priority, and developer view). It
hinges on multiple weighting factors, strategically employing
diverse attributes to enhance the efficacy of the ranking process.
The method is more efficient in fault detection compared to
random ranking methods.

2.4. Search-Based Test Case Sequencing Techniques. There
has been a lot of research related to search-based test case
ranking methods, such as genetic algorithms [34, 35], greedy
algorithms [36], ant colony algorithms [37], etc. Recent
research by Li et al. [38] has shown that genetic algorithms
are less effective in data generation than greedy algorithms.
However, the application in search-based algorithms may
differ depending on the chosen test set, input criteria, fitness
function, etc. Although the experimental results demonstrate
the advantages of genetic algorithms applied to test case
ranking methods, there are also some disadvantages; for

IET Software 3

example, the slow ranking process using genetic algorithms
can lead to a high time overhead.

2.5. Model-Based Test Case Prioritization Techniques. Fraser
and Wotawa [39] proposed a method for test case ranking
using a model detector, the main advantage of which is that it
can cover critical paths in a software system and rank them
efficiently according to the criticality of the test cases, thus
covering as many important modules of the software system
as possible with limited testing time. Its experimental results
show that this model-based ranking technique can obtain
better testing results than the coverage-based ranking tech-
nique, but it relies on the quality of the model specification
description.

Korel et al. [40] proposed a system model-based prioriti-
zation method that first uses a system model to describe the
system to be tested and then uses the system model to calcu-
late similarity to generate execution sequences, thereby
quickly identifying similarity and reducing testing costs. Its
experimental results show that the system model can effec-
tively be used in test case prioritization and improve overall
effectiveness. However, the technique relies on the accuracy
of the system model and requires significant upfront work,
such as building the system model and generating the rele-
vant sequences.

2.6. Text-Based Test Case Prioritization Techniques. String
distance-based test case prioritization (SD-TCP) [9] priori-
tizes test cases based on string distance, relying solely on test
case text and independent of program knowledge. It calcu-
lates similarity using string distance metrics like Euclidean,
Manhattan, Hamming, and edit distance, with Manhattan
distance proving more effective. The core concept involves
adding each test case to the least similar sequence in each
iteration for prioritization.

Firefly algorithm for test case prioritization (FA-TCP)
[41] is a method for prioritizing software test cases using
the Firefly algorithm. This approach optimizes the sorting
of test cases by applying the Firefly algorithm and a fitness
function defined by a similarity distance model.

KS-TCP [12] efficiently organizes test cases using
K-medoids and similarity. This method groups test cases,
applies a greedy strategy for prioritization within each group,
and employs a polling mechanism for the final execution
order. Prioritization considers the entire set of test cases,
reducing the impact of extreme cases. Experiments reveal
that, compared to random sample test case prioritization
(RS-TCP) and SD-TCP, KS-TCP achieves a higher APFD
and better time efficiency.

3. Proposed Method

3.1. Motivation. The KS-TCP method we proposed in our
previous study can effectively reduce the time overhead of
the SD-TCP method in terms of testing efficiency. However,
the algorithm may not perform better in terms of applicabil-
ity for different types of inputs. In particular, the KS-TCP
method generally performs well for more complex types of

inputs. Two aspects of the method could be improved, as
follows:

KS-TCP starts the process of similarity analysis between
test cases by treating the test cases as strings and using Man-
hattan distances. A correlation distance matrix is generated
to provide further calculations. However, using a single-
string distance metric does not guarantee that differences
between test cases can be extracted. In addition, using Man-
hattan distances shows good variability for numeric test
cases. This variability does not consistently translate to other
data types (e.g., string inputs, table inputs, composite inputs,
and some difficult-to-parse file inputs). For example, here are
three test cases as follows.

Test Case 1: server read only close;
Test Case 2: server read only close prepared true;
Test Case 3: webserver updatable hold.
Test Case 1 has one more last parameter compared to

Test Case 2, while Test Case 2 and Test Case 3 have the same
length but almost no intersection of content. If measured by
string distance, the distance between Test Case 2 and Test
Case 1 is much greater than the distance between Test Case 2
and Test Case 3. However, from the semantic point of view,
the similarity between Test Case 1 and Test Case 2 may be
higher. To address these challenges, a combination strategy is
introduced. The method’s applicability is further improved
by extracting models to transform the test case presentation
for complex and composite types of inputs so that all pro-
grams can get consistent inputs and facilitate the subsequent
similarity analysis process.

KS-TCP uses the K-medoids clustering method to refine
the test case classification and provide the basis for subsequent
operations. However, the K-medoids method itself has some
problems. First of all, the original method mainly targets
numerical data clustering, which is adapted in the KS-TCP
method by changing the centroid selection strategy. In addi-
tion, the K-medoidsmethod is prone to sensitivity regarding its
initial conditions, and the number of clusters necessitates man-
ual setting. The initial conditions may change, greatly impact-
ing the final clustering results. The setting of the number of
clusters, if for long-term regression testing, may have a certain
setting basis for the parameters, which can weaken the advan-
tage of the static test case prioritization technique for ranking
new test cases. On the other hand, introducing the combination
strategy leads to a change in test cases and the need to find a
more appropriate clustering method. For this reason, this
method introduces DBSCAN density clustering to alleviate
this one problem.

DBSCAN, a density-based clustering algorithm, stands out
for its effective handling of noise and outliers compared to
distance-based algorithms like K-means. In software testing,
where uncertainties and exceptional situations arise, DBSCAN
excludes outliers by setting the neighborhood radius parameter,
enhancing clustering accuracy and stability.

Unlike algorithms requiring a prespecified number of
clusters, DBSCAN adapts to varying density and shape struc-
tures, automatically discovering patterns without constraints
on cluster numbers. In test case prioritization, especially with
uneven test case distribution, DBSCAN accommodates such

4 IET Software

scenarios, revealing potential clustering structures. Its insen-
sitivity to the order of data points is crucial for test case
prioritization, where execution order influences results.

Choosing DBSCAN over OPTICS, a similar algorithm, is
driven by its simpler computational process. OPTICS involves
calculating reachability distances, constructing graphs, tuning
parameters, and adding complexity and implementation diffi-
culty. DBSCAN’s streamlined approach makes it a preferred
choice.

In conclusion, DBSCAN can automatically identify the
number of clusters to discover arbitrarily shaped cluster clas-
ses and is not limited to numerical inputs when targeting
complex types of inputs, which can be an improvement to
KS-TCP in terms of applicability and stability.

3.2. Combination Strategy. In the KS-TCP method, the
selected string metric does not cope well with all types of
inputs for different types of inputs. It is difficult to achieve
the same prioritization effect for complex and compound
types of inputs. Also, it may be necessary to design specific
input and output configurations for the software to be tested
before prioritizing the test cases.

Therefore, unifying different input types is a key to sim-
ilarity analysis. This method first builds a model for the test
case inputs of the program to be tested. It extracts the generic
input parameters and then feeds these extracted parameters
into the model. Multiple options are available for each
parameter position of the program under test. This method
numbers the set of parameters that appear at each parameter
location and then maps the test cases. As shown in Figure 1,
the program to be tested in the figure has multiple input
parameters, and the list represents the optional inputs, which
can be represented as the test cases on the right side. In
Figure 1, 0 indicates the selection of the first optional option,
and so on. This generates a new test case composed of num-
bers. Afterward, the test cases are sorted. Then, reflect the
projection and recover the original test cases.

With the above strategy, the software to be tested will be
modeled so that there is no need to use specific metrics and
different configurations for complex types, allowing the next
algorithmic framework to handle consistent data and improve
the generality of the approach.

3.3. DBSCAN Cluster. To alleviate the initial condition-
sensitive problem of clustering methods in KS-TCP and to
better cope with the combinatorial strategies used, this method
introduces the DBSCAN method. This can automatically
identify the number of clusters and discover cluster classes of
arbitrary shapes, providing stable clustering results.

The DBSCAN algorithm is applied in the DC-TCP
method as follows: first, randomly select an unvisited test
case; then find all test cases in the neighborhood with this

test case, and if the number of test cases in the neighborhood
is greater than or equal to the set threshold, add these test
cases to the same set and mark them as visited; for the test
cases that have been added to the set, continue to search for
test cases in their neighborhoods by threshold until no more
new test cases can be added; then, continue to randomly
select the next test case that has not been visited and repeat
the above steps until all test cases are visited; finally, output
the clustered set.

Algorithm 1 shows the operation flow in DC-TCP using
the DBSCAN clustering method. The algorithm requires
input test set Tnum, distance matrix distMatrix, neighbor-
hood radius e, and domain density Minpts, and the final
output result Clusters. First, the set Clusters is initialized
(line 1), and an element start is randomly selected from
Tnum, and start is put into temp list and selected from
Tnum (lines 4–6). Then, a recursive, iterative process is exe-
cuted to find all neighbors of start and remove them from
Tnum based on the distance division radius. If the number of
neighbors exceeds the density threshold Minpts, it indicates
that start is a core point, and the neighbor points of start
need to be recursively continued to be divided (line 7) until
they do not exceed the threshold or until all have been vis-
ited. Then, the clustering set temp list is put into Clusters
(line 8). Finally, when all elements in Tnum are picked, it
means the DBSCAN clustering process is completed, and
the final clustering result Clusters (line 10) is output for
the input of the subsequent process.

3.4. Firefly Search. To further improve the efficiency of
greedy search in the KS-TCP method, the search strategy
in the Firefly algorithm [41] is introduced in this method
to select the test cases in the set. The KS-TCP method utilizes
the greedy idea of the original method to improve the early
diversity of the execution sequence. However, this strategy
still has a high time overhead for larger clustering sets and
may lack some stability for different test set classification
cases. Therefore, this method helps to merge the classified
test cases by leveraging the search strategy in the Firefly
algorithm. Compared with the original greedy strategy, it
not only achieves a similar greedy selection effect to improve

Para 1 Value 1, value 2, value 3

Para 2 Value 1, value 2

Para 3 Value 1, value 2, ······

······ Value 1, value 2, ······

0 0 0 0 0 0 0 0 -> pass

0 1 0 0 0 1 0 0 -> exception 1

0 2 0 1 3 0 0 4 -> exception 2

0 3 0 1 0 2 0 1 -> pass

FIGURE 1: The framework of the KS-TCP approach.

Input: Tnum, distMatrix, ε, Minpts

Output: Clusters

1: Clusters← ;
2: while Tnum ≠ ; do

3: temp list ← fg :

4: start← RandomChoiceðTÞ:

5: Add start to temp list

6: Delete start from Tnum

7: Expandðstart;Tnum; temp list; ε;MinptsÞ :

8: Add temp list to Clusters

9: end while

10: return Clusters

ALGORITHM 1: DBSCAN.

IET Software 5

the early diversity of the execution sequence but also ensures
the stability of test case selection.

This strategy can consider the set after clustering as a
Firefly. The attractiveness of light sources between fireflies
depends on the similarity distance between them, and finally,
the paths of fireflies move to build the execution sequence.
Suppose there are four sets after clustering and many test
cases in each set. The test cases in the sets are compared with
those in the other sets, and their distances are used as the
factors of light source attraction. First, the first set is ran-
domly selected and moved from its first element, and each
time, the movable test cases are calculated to the next set
point, and then the next position is calculated from the test
cases in the next position, and so on, to get the final search
path. Searching the path with the corresponding test cases is
added to form the execution sequence.

The search strategy of the Firefly algorithm acts directly
on the distance of the set of test cases. Although it can
achieve a greedy selection effect, but at the same time, there
are some problems. One is that there may be a problem of
local optimum. The second point is that since the greedy
algorithm selects the brightest Firefly if Firefly A1 is similar
to Firefly A2 when the Firefly flies to the distant Firefly B,
there’s a possibility that it might subsequently return to
the position of Firefly A2. Such a strategy could impact the
final generated diversity. Therefore, this method uses the
following two mechanisms to alleviate the aforementioned
issues:

(1) Multiple candidate sets are selected each time for the
computed optimal position for the search process.
Then, a random strategy is used to select a set where
the first test case is placed in the execution sequence.
The suboptimal solution is selected with random
probability to reduce the number of cases that fall
into one error orientation.

(2) A rest queue is used to store the set number during
the selection process, and if the set has been selected
recently, it is added to the rest queue. In this scenario,
it is imperative to note that any previous choices
made will only be considered once. Every new selec-
tion will be added to the remaining queue without
fail. Once the queue reaches its maximum capacity,
the initial item in the collection will be reintroduced
into the search process without exception. In addi-
tion, the size of the rest queue is used to control the
number of rest rounds, thus alleviating the above
possible ABA problem. The detailed algorithm exe-
cution process is described in Section 4.2.3.

Algorithm 2 shows a detailed description of the process
of introducing the search strategy in the Firefly algorithm in
the DC-TCP method and the related improvements.

The algorithm first initializes the rest queue, the candi-
date set, and the result sequence (lines 1–3). Then, an initial
position Cur (line 4) is randomly selected and placed into the
sequence. Then, the steps in rows 6–12 are looped until the
termination condition is reached.

The cyclic process is described as follows: first, multiple
brightest candidate sets are selected using the brightness adap-
tation function defined by the Firefly algorithm (line 7), from
which one candidate set is randomly selected, and the other
candidates are released (line 8). Finally, the position is updated
(line 9), the test case is moved into the execution sequence, and
the corresponding set is moved into the rest queue (line 11).
Repeat this process until all sets have been picked.

3.5. Algorithm Framework and Process. The general frame-
work of the DC-TCP approach is shown in Figure 2. It con-
sists of four main phases as follows:

(1) First is the initialization phase, where the method will
generate the corresponding input model based on the
input configuration of the software to be tested and
then generate the corresponding test set using the
combined test method and map the initial test case
set to the new alternative test set by the model.

(2) The newly generated alternative test sets are then
subjected to similarity analysis using Manhattan dis-
tance to generate a distance matrix that acts on the
subsequent stages.

(3) Next, based on the distance matrix obtained in the
previous step, the alternative test sets are clustered
and grouped using a density clustering algorithm to
generate the corresponding clusters, and each cluster
set is used as the subsequent input.

(4) Finally, an improved Firefly search strategy selects
the sets, and test cases are selected to be added to
the alternative execution sequence. After the selec-
tion is completed, the original test case type is
restored using the combined input model reflective
projection to generate the final execution sequence.

The ordering measures of the DC-TCP algorithm have
been described in detail above, and the entire algorithm is

Input: Cluters, RestQueueSize

Output: S

1: RestQueue← QueueðRestQueueSizeÞ:

2: candidateQueue← ;
3: Res← ;
4: Cur← RandomChoiceðClustersÞ:

5: Add Cur to Res

6: while Clusters ≠ ; do

7: candidateQueue← LightFindðClusters;RestQueueÞ:

8: T Clu← RandomChoiceðcandidateQueueÞ:

9: Cur← T Clu½0�:

10: Add Cur to Res

11: Add T Clu to RestQueue

12: end while

13: return S

ALGORITHM 2: Firefly-Search.

6 IET Software

explained in detail below. The pseudo-code of the DC-TCP
algorithm is shown in Algorithm 3. The algorithm requires the
input of the original test set T, the threshold value threshold, and
the rest queue size RestQueueSize. First, the relevant variables are
initialized (lines 1–4), including the execution sequence, the
cluster set Clusters, the alternative test case Tnum, and the alter-
native execution sequence Snum. Then, the model mod is con-
structed based on the parameter input of the test set T (line 5),
which maps T into Tnum (line 6). The similarity analysis of the
test set is then performed on Tnum to generate the distance
matrix distMatrix (line 7). Then, the clustering of Tnum is per-
formed using distMatrix to generate the set Clusters (line 8).
Finally, the Clusters are searched using the search strategy to
generate the execution sequence Snum (line 9), and then the
model mod is used to reflect the projection Snum (line 10) to
obtain the final execution sequence S (line 11).

4. Empirical Study and Analysis

In this section, a series of comparison experiments and a
description of the related experimental setup are designed

to verify the effectiveness of the DC-TCP algorithm. The
SD-TCP algorithm [9], FA-TCP algorithm [41], RS-TCP
[42] algorithm, and KS-TCP [12] algorithm are selected for
comparison of their effectiveness. The research questions,
real program experimental setups, metrics, results, and anal-
ysis of the comparison experiments are presented.

RS-TCP [12, 42] is a test case prioritization method that
employs a random sampling approach to enhance the sequenc-
ing of software test cases. It will be subsequently utilized as one
of the baselines to demonstrate the improvements achieved by
the proposed DC-TCP.

4.1. Selection of Baselines. In this study, selected methods
were used as baseline experiments due to the reliance on a
static black-box approach for test case prioritization, avoid-
ing the need for historical execution data. The choice of
baseline methods is guided by specific constraints:

(1) The experiments do not depend on historical execu-
tion data, necessitating the choice of a method that
does not require access to such information. Tradi-
tional methods based on code coverage information
are deemed unsuitable in this context.

(2) The research focuses on static black-box methods,
prioritizing test cases solely based on the test cases
themselves without relying on additional informa-
tion. Given the relatively few relevant methods in
this domain, text-based TCP methods like SD-TCP,
FA-TCP, and KS-TCP are chosen as baseline meth-
ods for comparative research.

Furthermore, the DC-TCP proposed in this paper is an
improvement over KS-TCP for specific scenarios. Choosing
KS-TCP facilitates a more intuitive comparison to observe the
contributions and effects of the improvements made by the DC-
TCP. By selecting these methods as baselines, the performance of
the proposed method can be evaluated in a static black-box envi-
ronment and comparedwith othermethods. This approach helps
in better understanding the advantages and limitations of DC-
TCP, providing a reference and benchmark for future research.

DBSCAN
Sequence

Firefly search Candidate set

PickRest queue

FIGURE 2: The framework of the DC-TCP approach.

Input: T , threshold, RestQueueSize

Output: S

1: S← fg:

2: Clusters← fg :

3: Tnum ← ;
4: Snum ← ;
5: model←Model BuildðTÞ:

6: Tnum ←mapðT;modelÞ:

7: distMatrix← getDistanceðTnumÞ:

8: Clusters← DBSCANðthreshold;Tnum; distMatrixÞ :

9: Snum ← FireflyðClusters;RestQueueSizeÞ:

10: S← ref lectðSnum;modelÞ:

11: return S

ALGORITHM 3: DC-TCP.

IET Software 7

4.2. Question. The DC-TCPmethod addresses some applicabil-
ity and stability problems of the KS-TCP method by using tech-
niques such as DBSCAN clustering and the Firefly algorithm
andmitigating these problems using variousmechanisms. These
processes, however, have an impact on the KS-TCPmethod fault
detection efficiency as well as on the time overhead. For this
reason, this section conducts many comparative experiments
to analyze the effectiveness and time overhead of the DC-TCP
method. The experiments focus on answering the following two
questions.

(1) RQ1: What is the average fault detection rate of the
DC-TCP method, and has the stability improved?

(2) RQ2: Does the DC-TCP method improve the time
efficiency of the KS-TCP method?

4.3. Experiment Set. The automation platform for this exper-
iment was built with Python 3.8.10 on Ubuntu 20.04. The
Java assembly was compiled using the JDK version V11.0.11.
Each set of experiments was repeated more than 300 times,
and the average value was used as the final result, and the
related statistical analysis was performed.

Four open-source software, Hsqldb, Commons-Cli, Joda
Time, and Jsoup, were selected for this experimental study.
Also, to further verify the applicability of the black-box static
ranking method, this experiment is combined with the com-
binatorial testing technique for practical testing applications.
For the combinatorial strategy, java assemblies [43, 44] used
in recent combinatorial testing studies were chosen because
of the possible difficulty in covering the general program to
be tested due to the insufficient normative description of the
Siemens assembly input and the large deviation of the model
extracted from the initial test set. They contain different
versions and are all highly configurable.

For the parameter configuration of DBSCAN clustering,
after a lot of preliminary experiments, we found that for the
threshold value e of the combination strategy, if greater than
2, most of the programs will only form one classification. At
the same time, the number of classifications will be too large
when it is set to 1, which will have some influence on the
subsequent sorting steps. Therefore, 2 is chosen as a fixed
value in the experiment to ensure a better clustering effect
can be obtained. The parameter minpts is used to control the

number of samples in the domain, which has less influence
compared to e. The experimental setting of 50 is a fixed value.

To further demonstrate the effectiveness of the test case
ordering method, the test case set is processed in this experi-
ment. According to the combined dictionary order, only
1 test case that can find software defects is retained. Due to
the performance limitation of the experimental platform, the
overall number of test cases that reach the million level is
kept within 5,000. For the Hsqldb-2.25 version, since each of
its test cases is able to find defects, it is treated separately, and
all test cases that find the first bug are retained to expand the
number of test sets. Table 1 lists the selected real assemblies
to be tested with their brief descriptions, version informa-
tion, number of lines of code, number of classes in the proj-
ect, input dimensions, and number of defects present.

The key steps in the experiment are shown in detail in
Figure 3. First, a mapping model is constructed based on the
program’s input under test to convert the original test cases
into a new test set. Then, the test case distances are calculated
using the similarity metric, and the results are saved in a dis-
tance matrix for the subsequent prioritization process. Based
on the distance matrix, the original test case set is then priori-
tized using the DC-TCP method, as well as several other com-
parison methods. This produces execution sequences for each
ranking technique while also recording the generation time.
Afterward, the execution sequences are reflected in the original
type of test sets using the model. The final obtained test sets
are executed on the programs to be tested, and their outputs
are saved. The sequence numbers of the test cases containing
the faults found, and the order in which the faults were found
are recorded. Finally, the evaluationmetrics of the test cases are
calculated based on the program execution records to evaluate
the execution sequences generated by each test case prioritiza-
tion method. Then the execution efficiency of the different
sequencing methods is evaluated based on the generation
time of the records.

4.4. Evaluation Metrics. We selected the APFD value as the
main metric for this experiment, which was first proposed by
Rothermel et al. [8]. This metric indicates the speed of defect
detection in test case sequences and is widely used to evaluate
the effectiveness of prioritization methods. The APFD value
ranges from 0% to 100%, with closer to 100% indicating that
the method is relatively more effective. Given a test set T

TABLE 1: Details of the Java real programs.

Program Description Version Lines Dimension Class Defects

Hsqldb Database management software
2rc8 139,425 12 495 5
2.2.5 156,066 17 508 2
2.2.9 162,784 11 525 18

Commons-Cli
Parsing command line options 1.2 4,630 8 44 2

passed to the program 1.3.1 6,433 8 48 3

Joda-Time Java standard date and time library
2.3 82,158 9 317 2
2.9.1 85,512 7 330 2

Jsoup Java HTML parser
1.8.3 10,295 9 55 2
1.9.1 10,489 7 56 3

8 IET Software

containing n test cases and m defects, for a given test execu-
tion sequence, TFi denotes the position in the execution
sequence of the first test case in which defect i is detected.
The calculation of the APFD value is shown in Equation (1).

APFD¼ 1 −
TFi þ TF2þ ⋅⋅⋅ þTFm

nm
þ 1
2n

: ð1Þ

It can be seen from the Equation (1) that the higher the
APFD value indicates that the sequence of test cases finds
defects faster.

5. Results and Analysis

This section shows the results of the experiments in this
section, comparing the DC-TCP method with the SD-TCP
method, KS-TCP method, FA-TCP method, and RS-TCP
method in terms of effectiveness and efficiency and answer-
ing two research questions.

5.1. Validity Analysis. Figure 4 and Table 2 show the effective
performance of the DC-TCP, SD-TCP, KS-TCP, FA-TCP,
and RS-TCP methods under real programs. Figure 4 is a
box plot; the upper and lower bounds of the box represent
the upper and lower quartiles of the data, respectively. The
horizontal line inside the box denotes the median. The red
dot signifies the mean, referring to the arithmetic average of a
set of numbers, while black squares represent outliers. In
Table 2, the mean corresponds to the red dot in the box
plot and the p-value is used to assess the degree of contra-
diction between the observed data and the null hypothesis in
hypothesis testing. It helps determine whether the experi-
mental data are attributable to random chance.

5.1.1. DC-TCP Method vs. SD-TCP Method. Among the 10
Java programs, the average APFD values of the experimental
results of the DC-TCP method outperformed those of the

SD-TCP method in all cases. This disparity was particularly
pronounced in the case of the three versions of the Hsqldb
program. Also, there is some significant difference in the p-value.
In terms of stability, the DC-TCP and SD-TCP methods share
similar box sizes, while the SD-TCPmethod has some outliers in
the sorting results of some programs, while theDC-TCPmethod
performs well. Therefore, the overall comparison results show
that the DC-TCP method has some improvement in the effec-
tiveness of the SD-TCP method.

5.1.2. DC-TCP Method vs. KS-TCP Method. Among the 10
Java programs, the average APFD values of the DC-TCP
method are either close to or even higher than the KS-TCP
method for most of the programs. It is slightly lower than the
KS-TCP method in three of the programs. On the top, there
is a significant difference in all seven programs except for
Commons-Cli-1.2 and Hsqldb-2rc8 programs. In terms of
stability, the DC-TCP method’s box is flatter and more stable
than the KS-TCP method on most programs. Only on the
Jsoup-1.9.1 program does the KS-TCP method perform very
well, which may be because the critical test cases of Jsoup-
1.9.1 are more likely to be selected by the KS-TCP method.
Therefore, the DC-TCP method is overall more stable than
KS-TCP and can achieve the performance of the KS-TCP
method.

5.1.3. DC-TCP Method vs. FA-TCP Method. In this experi-
ment, The results are stable and constant due to the heuristic
algorithm search of the FA-TCP algorithm itself. Among the
10 Java programs, the FA-TCP method performed well on
the Commons-Cli, Joda-Time, and Jsoup-1.8.3 programs.
However, it performed poorly on the other five programs,
especially on the Hsqldb-2.25 program, and even worse than
the RS-TCP method. The FA-TCP method selected a path to
construct the execution sequence using a search algorithm.
However, its effect was less stable for the different programs
to be tested, and misleading sequencing guidelines may have
appeared. Relative to the DC-TCP method, the sequencing
process is guided by using an early diversity strategy to per-
form stably across programs. In terms of aspect, the FA-TCP
method has a significant and significant difference due to the
algorithm’s stability.

The above analysis answers research question 1: The DC-
TCPmethod has some advantages over several baseline black-
box static rankingmethods with strong significant differences.
Compared with the FA-TCP method, although the FA-TCP
method shows higher stability on several of the programs, it
also shows almost the opposite results on the other programs,
which are less stable. Compared with the KS-TCPmethod, the
DC-TCP method exhibits a higher level of stability, attaining
and outperforming the KS-TCP method on most of the pro-
grams. Thus, DC-TCP ensures algorithmic effectiveness in
the process of targeting the stability of the KS-TCP method,
while the combined strategy also performs well in terms of
applicability.

5.2. Efficiency Analysis. Figure 5 and Table 3 show the per-
formance of the DC-TCP method, SD-TCP method, KS-
TCP method, and FA-TCP method in terms of sorting

SUT
Model

mapping
Test
suite

Comparison
method

… DBSCAN Firefly

Execution sequence Model reflection

Execution Result Evaluation

FIGURE 3: Experiment flow.

IET Software 9

efficiency under real programs, and the execution time of
each method is recorded.

Figure 5 exclusively presents the results of four methods,
excluding RS-TCP due to its nature as a random sample TCP
method. Comparing its execution time may have limited
significance. Nevertheless, the figure effectively illustrates
the noticeable improvement achieved by DC-TCP.

It is noteworthy that in most cases, DC-TCP exhibits
relatively lower execution times, demonstrating higher per-
formance. Taking Commons-Cli-1.2, Commons-Cli-1.3.1,
and Jsoup-1.9.1 as examples, the execution times for DC-
TCP are 0.0014 , 0.011 , and 0.0115 s, respectively, showing
a significant performance improvement compared to other
methods. This can also be seen from the bar chart; the bar is
almost unseeable due to its low time consumption. In some
programs, such as Hsqldb-2.2.5, Hsqldb-2.9.1, and Hsqldb-
2rc8, DC-TCP also performs exceptionally well. Especially
on Hsqldb-2.2.5, the execution time for DC-TCP is

significantly lower than the other three methods, with times
of 0.6396 , 3.2614 , and 1.3952 s, respectively.

Overall, In terms of time efficiency, the DC-TCP method
shows better results on all data sets, and the KS-TCP method
has a greater advantage in the analysis of the experimental
results. According to the time complexity analysis in Sections
3.2.4 and 4.2.4, the time consumption of the KS-TCP algo-
rithm mainly comes from the K-medoids clustering process,
while the time complexity of the DC-TCP algorithm is also
mainly in the DBSCAN process. Where the time complexity
of K-medoids isO (nkt), t is the number of iterations, and k is
the number of clusters. The time complexity of DBSCAN is
O (nlog (n)). In the experimental results, the time efficiency
of the DC-TCP method is higher than the KS-TCP method
in all cases. Although the time complexity of K-medoids can
reach the linear level, it may not maintain a strong efficiency
advantage for small and medium datasets when the number
of iterations and the number of clusters are large.

1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðaÞ

1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðbÞ

1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D 0.65
0.60
0.55
0.50
0.45
0.40
0.35

0.25
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðcÞ
1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðdÞ

1.00
0.95
0.90
0.85
0.80
0.75
0.70A

PF
D

0.65
0.60
0.55
0.50

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðeÞ

1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðfÞ
1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðgÞ

1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðhÞ

1.00
0.95
0.90
0.85
0.80
0.75
0.70

A
PF

D

0.65
0.60
0.55
0.50
0.45
0.40
0.35
0.30

FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

ðiÞ
FIGURE 4: The box plot of APFD: (a) cli-1.2, (b) cli-1.3, (c) hsqldb-2.25, (d) hsqldb-2.29, (e) hsqldb-2rc8, (f) joda-time-2.3, (g) joda-time-2.9.1,
(h) jsoup-1.8.3, and (i) jsoup-1.9.1.

10 IET Software

TABLE 2: The APFD result of five TCP methods.

Programs FA-TCP DC-TCP KS-TCP RS-TCP SD-TCP

Commons-Cli-1.2
Mean 0.976667 0.946267 0.944444 0.681533 0.889654
p-Value 1.24E-66 — 0.673754 5.10E-45 4.22E-78

Commons-Cli-1.3.1
Mean 0.991871 0.917703 0.932602 0.620305 0.870224
p-Value 5.41E-67 — 0.000356 4.86E-68 1.79E-18

Hsqldb-2.2.5
Mean 0.505381 0.790283 0.665543 0.5990850 0.638170
p-Value 6.50E-43 — 2.18E-07 4.01E-15 6.72E-09

Hsqldb-2.9.1
Mean 0.699793 0.741197 0.780869 0.539773 0.688091
p-Value 3.21E-23 — 5.52E-15 7.21E-58 3.64E-19

Hsqldb-2rc8
Mean 0.797631 0.810610 0.824234 0.773319 0.773319
p-Value 1.03E-09 — 0.076612 6.11E-10 6.11E-10

Joda-Time-2.3
Mean 0.992845 0.969778 0.955621 0.667413 0.952232
p-Value 2.89E-65 — 0.000119 2.42E-57 0.000157

Joda-Time-2.9.1
Mean 0.981834 0.900819 0.924198 0.67372 0.881482
p-Value 5.15E-32 — 0.022778 1.18E-38 0.007497

Jsoup-1.8.3
Mean 0.974518 0.938182 0.927039 0.643678 0.919821
p-Value 7.50E-43 — 0.016564 2.78E-50 0.007687

Jsoup-1.9.1
Mean 0.739899 0.947652 0.977525 0.636995 0.919722
p-Value 3.9E-205 — 1.07E-52 2.33E-60 3.43E-27

FA-TCP DC-TCP KS-TCP SD-TCP

0.10

0.08

0.06

0.04

0.02

0.00

Ex
ec

ut
io

n
tim

e (
s)

ðaÞ
FA-TCP DC-TCP KS-TCP SD-TCP

0.6

0.5

0.3

0.4

0.2

0.1

0.0

Ex
ec

ut
io

n
tim

e (
s)

ðbÞ
FA-TCP DC-TCP KS-TCP SD-TCP

300

250

150

200

100

50

0

Ex
ec

ut
io

n
tim

e (
s)

ðcÞ

FA-TCP DC-TCP KS-TCP SD-TCP

8,000

7,000

5,000

6,000

4,000

2,000

3,000

1,000

0

Ex
ec

ut
io

n
tim

e (
s)

ðdÞ
FA-TCP DC-TCP KS-TCP SD-TCP

20,000

10,000

15,000

5,000

0

Ex
ec

ut
io

n
tim

e (
s)

ðeÞ
FA-TCP DC-TCP KS-TCP SD-TCP

800

300

200

400

600

500

700

100

0

Ex
ec

ut
io

n
tim

e (
s)

ðfÞ
FIGURE 5: Continued.

IET Software 11

The above analysis answers research question 2: The DC-
TCP method significantly improves the efficiency of the
black-box static test case sorting method in the Java experi-
mental program set compared to the three black-box static
sorting methods compared. The sorting efficiency is still fur-
ther improved compared to the KS-TCP method. Thus, the
DC-TCP method also maintains the efficiency advantage of
the KS-TCP method with further improvement in the effi-
ciency of generating execution sequences in the 10 Java
programs.

6. Conclusion and Future Work

This paper first details the main elements of the KS-TCP algo-
rithm, points out some of its problems, i.e., low applicability
and stability, and proposes relevant improvement schemes.
The applicability is improved by introducing the mechanism
of combined policies, and the KS-TCP method is balanced in
terms of stability and time overhead by combining the
DBSCAN algorithm and the Firefly search strategy. Addition-
ally, to accommodate other problems introduced by the
improvement scheme, two mechanisms are used to mitigate
their impact. Moreover, the DC-TCP method is applied in
practice on a combined test. To verify the effectiveness and
efficiency of the DC-TCP method, a series of real program
experiments were designed and implemented. The KS-TCP,
FA-TCP, SD-TCP, and RS-TCP methods were selected for
experimental comparison. The experimental results show

that, in terms of applicability, the combined strategy can indeed
improve the applicability of the black-box static methods. At
the same time, it can still maintain the advantage over SD-
TCP and several other algorithms in terms of method effec-
tiveness and efficiency. The stability is improved without
degrading the effectiveness of KS-TCP.

Further exploration can be conducted on the semantic
analysis of test cases. While the DC-TCP method proposed
in this paper introduces clustering analysis and combination
strategies to improve the sorting performance in test case
prioritization, there is still potential to enhance the under-
standing and analysis capability of the test case semantics.
Advanced natural language processing and machine learning
techniques can be explored to accurately capture the seman-
tic relationships between test cases and apply them to the
sorting process. This can further enhance the accuracy and
stability of the sorting. Besides, for the time challenge that
still exists with large-scale test sets, further exploration can be
done to improve time efficiency. Although the DC-TCP
method demonstrates advantages in terms of time efficiency
compared to other static black-box sorting methods, there
may still be high time costs for extremely large test sets.
Future work can consider utilizing techniques such as paral-
lel computing, distributed computing, or optimization algo-
rithms to accelerate the sorting process. Additionally, the
algorithm can be further optimized to reduce computational
complexity and improve sorting efficiency. By conducting
further research and exploration in these two aspects, the

FA-TCP DC-TCP KS-TCP SD-TCP

45

20

15

25

35

30

40

5

10

0

Ex
ec

ut
io

n
tim

e (
s)

ðgÞ
FA-TCP DC-TCP KS-TCP SD-TCP

3.5

1.0

0.5

1.5

2.5

2.0

3.0

0.0

Ex
ec

ut
io

n
tim

e (
s)

ðhÞ
FA-TCP DC-TCP KS-TCP SD-TCP

0.25

0.05

0.15

0.10

0.20

0.00

Ex
ec

ut
io

n
tim

e (
s)

ðiÞ
FIGURE 5: The bar chart of execution time: (a) cli-1.2, (b) cli-1.3, (c) hsqldb-2.25, (d) hsqldb-2.29, (e) hsqldb-2rc8, (f) joda-time-2.3, (g) joda-
time-2.9.1, (h) jsoup-1.8.3, and (i) jsoup-1.9.1.

TABLE 3: The execution time of four TCP methods.

Programs FA-TCP (s) DC-TCP (s) KS-TCP (s) SD-TCP (s)

Commons-Cli-1.2 0.042576174 0.0013566273 0.0284932321 0.094671390
Commons-Cli-1.3.1 0.589904398 0.011024305 0.050519592 0.235138911
Hsqldb-2.2.5 272.7259341 0.6395944821 4.213021665 95.86287254
Hsqldb-2.9.1 7554.271532 3.261357493 79.11503234 2271.508149
Hsqldb-2rc8 20042.83161 1.395196066 194.3872924 7252.688482
Joda-Time-2.3 770.0889478 0.169968938 6.552740538 266.5852311
Joda-Time-2.9.1 39.60215481 0.281344791 1.553541989 12.14473887
Jsoup-1.8.3 3.106531238 0.205778519 0.281324892 1.052573894
Jsoup-1.9.1 0.219398454 0.011527408 0.055429106 0.190094076

12 IET Software

performance and practicality of test case prioritization meth-
ods can be further enhanced, providing better support for
practical applications in the field of software testing.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partly supported by the National Natural Science
Foundation of China (NSFC) (grant nos. 62172194, 62202206,
and U1836116), the National Key R and D Program of China
(grant no. 2020YFB1005500), the Natural Science Foundation of
Jiangsu Province, China (grant no. BK20220515), the Leading-
Edge Technology Program of Jiangsu Natural Science Founda-
tion, China (grant no. BK20202001), the China Postdoctoral
Science Foundation, China (grant no. 2021M691310), and Qin-
glan Project of Jiangsu Province, China.

References

[1] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie,
“Dependent-test-aware regression testing techniques,” in
ISSTA 2020: Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis,
pp. 298–311, ACM, USA, 2020.

[2] R. H. Rosero, O. S. Gomez, and G. Rodriguez, “Regression testing
of database applications under an incremental software
development setting,” IEEE Access, vol. 5, pp. 18419–18428, 2017.

[3] R. Noemmer and R. Haas, “An evaluation of test suite
minimization techniques,” in Software Quality: Quality
Intelligence in Software and Systems Engineering, vol. 371 of
Lecture Notes in Business Information Processing, pp. 51–66,
Springer, Vienna, Austria, 2020.

[4] G. Rothermel, M. J. Harrold, J. von Ronne, and C. Hong,
“Empirical studies of test-suite reduction,” Software Testing,
Verification and Reliability, vol. 12, no. 4, pp. 219–249, 2002.

[5] E. Engström, P. Runeson, and M. Skoglund, “A systematic
review on regression test selection techniques,” Information
and Software Technology, vol. 52, no. 1, pp. 14–30, 2010.

[6] G. Rothermel and M. J. Harrold, “Analyzing regression test
selection techniques,” IEEE Transactions on Software Engineering,
vol. 22, no. 8, pp. 529–551, 1996.

[7] D. Hao, L. Zhang, and H. Mei, “Test-case prioritization:
achievements and challenges,” Frontiers of Computer Science,
vol. 10, no. 5, pp. 769–777, 2016.

[8] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE Transactions
on Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[9] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran,
“Prioritizing test cases with string distances,” Automated
Software Engineering, vol. 19, no. 1, pp. 65–95, 2012.

[10] P. Ramya, V. Sindhura, and P. V. Sagar, “Clustering based
prioritization of test cases,” in 2018 Second International Conference

on Inventive Communication and Computational Technologies
(ICICCT), pp. 1181–1185, IEEE, Coimbatore, India, 2018.

[11] J. Chen, Y. Gu, S. Cai, H. Chen, and J. Chen, “A novel test case
prioritization approach for black-box testing based on k-medoids
clustering,” Journal of Software: Evolution and Process, Article ID
e2565, 2023.

[12] J. Chen, Y. Gu, S. Cai, H. Chen, and J. Chen, “KS-TCP: an efficient
test case prioritization approach based on k-medoids and
similarity,” in 2021 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pp. 105–110, IEEE,
Wuhan, China, 2021.

[13] S. W. Thomas, H. Hemmati, A. E. Hassan, and D. Blostein,
“Static test case prioritization using topic models,” Empirical
Software Engineering, vol. 19, no. 1, pp. 182–212, 2014.

[14] J. A. P. Lima and S. R. Vergilio, “Test case prioritization in
continuous integration environments: a systematic mapping
study,” Information and Software Technology, vol. 121,
Article ID 106268, 2020.

[15] C. Malz, N. Jazdi, and P. Göhner, “Prioritization of test cases
using software agents and fuzzy logic,” in 2012 IEEE Fifth
International Conference on Software Testing, Verification and
Validation, pp. 483–486, IEEE, Montreal, QC, Canada, 2012.

[16] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei,
“Bridging the gap between the total and additional test-case
prioritization strategies,” in 2013 35th International Confer-
ence on Software Engineering (ICSE), pp. 192–201, IEEE, San
Francisco, CA, USA, 2013.

[17] Y. Lu, Y. Lou, S. Cheng et al., “How does regression test
prioritization perform in real-world software evolution?” in
Proceedings of the 38th International Conference on Software
Engineering, pp. 535–546, IEEE, Austin, TX, USA, 2016.

[18] D. D. Nardo, N. Alshahwan, L. C. Briand, and Y. Labiche,
“Coverage-based test case prioritisation: an industrial case
study,” in 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation, pp. 302–311,
IEEE, Luxembourg, Luxembourg, 2013.

[19] J. Zhou and D. Hao, “Impact of static and dynamic coverage
on test-case prioritization: an empirical study,” in 2017 IEEE
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), pp. 392–394, IEEE, Tokyo,
Japan, 2017.

[20] S. G. Elbaum, A. G. Malishevsky, and G. Rothermel,
“Incorporating varying test costs and fault severities into test
case prioritization,” in Proceedings of the 23rd International
Conference on Software Engineering, ICSE 2001, pp. 329–338,
IEEE, Toronto, Ontario, Canada, 2001.

[21] M. Azizi, “A tag-based recommender system for regression
test case prioritization,” in 2021 IEEE International Conference
on Software Testing, Verification and Validation Workshops
(ICSTW), pp. 146–157, IEEE, Porto de Galinhas, Brazil, 2021.

[22] W. Liu, X. Wu, W. Zhang, and Y. Xu, “The research of the test
case prioritization algorithm for black box testing,” in 2014
IEEE 5th International Conference on Software Engineering
and Service Science, pp. 37–40, IEEE, Beijing, China, 2014.

[23] J. Chen, H. Chen, Y. Guo, M. Zhou, R. Huang, and C. Mao, “A
novel test case generation approach for adaptive random
testing of object-oriented software using K-means clustering
technique,” IEEE Transactions on Emerging Topics in
Computational Intelligence, vol. 6, no. 4, pp. 969–981, 2022.

[24] D. Marijan, “Comparative study of machine learning test case
prioritization for continuous integration testing,” Software
Quality Journal, vol. 31, no. 4, pp. 1415–1438, 2023.

IET Software 13

[25] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement
learning for test case prioritization,” IEEE Transactions on
Software Engineering, vol. 48, no. 8, pp. 2836–2856, 2022.

[26] V. H. Durelli, R. S. Durelli, S. S. Borges et al., “Machine learning
applied to software testing: a systematic mapping study,” IEEE
Transactions on Reliability, vol. 68, no. 3, pp. 1189–1212, 2019.

[27] B. Busjaeger and T. Xie, “Learning for test prioritization: an
industrial case study,” in FSE 2016: Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 975–980, Association for
Computing Machinery, New York, NY, USA, 2016.

[28] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and
S. Russo, “Learning-to-rank vs ranking-to-learn: strategies for
regression testing in continuous integration,” in 2020 IEEE/
ACM 42nd International Conference on Software Engineering
(ICSE), pp. 1–12, ACM, 2020.

[29] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and I. Schaefer,
“System-level test case prioritization using machine learning,”
in 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA), pp. 361–368, IEEE,
Anaheim, CA, USA, 2016.

[30] M. Mahdieh, S.-H. Mirian-Hosseinabadi, K. Etemadi, A. Nosrati,
and S. Jalali, “Incorporating fault-proneness estimations into
coverage-based test case prioritization methods,” Information and
Software Technology, vol. 121, Article ID 106269, 2020.

[31] H. Srikanth, L. A. Williams, and J. A. Osborne, “System test
case prioritization of new and regression test cases,” in 2005
International Symposium on Empirical Software Engineering
(ISESE 2005), pp. 64–73, IEEE, Noosa Heads, QLD, Australia,
2005.

[32] H. Srikanth, C. Hettiarachchi, and H. Do, “Requirements
based test prioritization using risk factors: an industrial study,”
Information and Software Technology, vol. 69, pp. 71–83,
2016.

[33] T. Muthusamy and K. Seetharaman, “A new effective test case
prioritization for regression testing based on prioritization
algorithm,” International Journal of Applied Information
Systems (IJAIS), vol. 6, no. 7, pp. 21–26, 2014.

[34] A. Panichella, R. Oliveto, M. D. Penta, and A. De Lucia,
“Improving multi-objective test case selection by injecting
diversity in genetic algorithms,” IEEE Transactions on Software
Engineering, vol. 41, no. 4, pp. 358–383, 2015.

[35] F. Yuan, Y. Bian, Z. Li, and R. Zhao, “Epistatic genetic
algorithm for test case prioritization,” in Search-Based Software
Engineering, vol. 9275 of Lecture Notes in Computer Science,
pp. 109–124, Springer, Bergamo, Italy, 2015.

[36] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for
regression test case prioritization,” IEEE Transactions on
Software Engineering, vol. 33, no. 4, pp. 225–237, 2007.

[37] W. Zhang, Y. Qi, X. Zhang, B. Wei, M. Zhang, and Z. Dou, “On
test case prioritization using ant colony optimization
algorithm,” in 2019 IEEE 21st International Conference on
High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International
Conference on Data Science and Systems (HPCC/SmartCity/
DSS), pp. 2767–2773, IEEE, Zhangjiajie, China, 2019.

[38] S. Li, N. Bian, Z. Chen, D. You, and Y. He, “A simulation study
on some search algorithms for regression test case prioritiza-
tion,” in 2010 10th International Conference on Quality
Software, pp. 72–81, IEEE, Zhangjiajie, China, 2010.

[39] G. Fraser and F. Wotawa, “Test-case prioritization with
model-checkers,” in 25th conference on IASTED International,
pp. 1–6, Citeseer, 2007.

[40] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Application of
system models in regression test suite prioritization,” in 24th
IEEE International Conference on Software Maintenance
(ICSM 2008), pp. 247–256, IEEE, Beijing, China, 2008.

[41] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, H. N. A. Hamed,
and M. D. M. Suffian, “Test case prioritization using firefly
algorithm for software testing,” IEEE Access, vol. 7, pp. 132360–
132373, 2019.

[42] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” IEEE Transac-
tions on Software Engineering, vol. 28, no. 2, pp. 159–182,
2002.

[43] X. Niu, C. Nie, J. Y. Lei, H. Leung, and X. Wang, “Identifying
failure-causing schemas in the presence of multiple faults,”
IEEE Transactions on Software Engineering, vol. 46, no. 2,
pp. 141–162, 2020.

[44] X. Niu, C. Nie, H. Leung et al., “An interleaving approach to
combinatorial testing and failure-inducing interaction identi-
fication,” IEEE Transactions on Software Engineering, vol. 46,
no. 6, pp. 584–615, 2020.

14 IET Software

