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With the development of technology, mobile robots are increasingly deployed in real-world environments. To enable robots to
work safely in a variety of terrain environments, we proposed a ground-type detection method based on the Hilbert–Huang
transform (HHT) and attention-based spatiotemporal coupled network. Taking a dataset containing multiple sets of robot signals
from a Kaggle competition as an example; we use the proposed method to classify the signals and thus achieve a terrain
classification of the robot’s location. Firstly, the signal data were processed using the discrete wavelet transform for noise reduction,
and all channels in the dataset were ranked by importance using the permutation importance method. Next, the instantaneous
frequencies of the two most important channels were extracted using the HHT and added to the original dataset to expand the
feature dimension. Then the features in the expanded dataset were extracted by the convolutional neural network, long short-term
memory, and attention module. Afterward, the fully extracted features were passed into the fully connected layer for classification,
and an average classification accuracy of 83.14% was obtained. The effectiveness of each part in our method was demonstrated
using ablation experiments. Finally, we compared our method with some common methods in the field and found that our method
obtained the highest classification accuracy, proving the superiority of the proposed method.

1. Introduction

With the development of artificial intelligence technology,
mobile robots are increasingly deployed in various domains,
including forestry, mining, rescue, and space exploration [1].
Robots may encounter complex, unknown, and even danger-
ous terrain that may cause it to be damaged or down. For
example, if a robot encounters slippery terrain while travel-
ing at high speeds, accidents such as skidding and sinking
may occur [2, 3], or if it encounters bumpy sections and
rocks, damage can be caused to the robot [4]. On the other
hand, detailed information about the ground medium allows
robots to work more effectively in the real world [5]. There-
fore, there is an urgent need for a way to detect the ground in
the environment where the mobile robot is located, allowing
the robot to adapt its driving style and strategies to different
terrains to accomplish its tasks more efficiently and safely.

Many scholars have explored applying terrain perception
in mobile robots. The mainstream methods can be broadly

divided into two categories. The first methods category is
more traditional and primarily includes using cameras or
radar to intuitively obtain relevant information about the
terrain near the robot and calculate terrain parameters using
relevant mechanical knowledge. These methods are simple to
apply but are subject to more significant external interference
and have relatively low terrain classification accuracy [6–8].
The second category of methods is primarily based on sensors
collecting signals of robot–terrain interactions. The collected
signals are analyzed in time domains to extract relevant fea-
tures, significantly improving the classification effect [9–12].

Most of the early-stage studies have used the first type of
approach mentioned above. Howard and Seraji [6] devel-
oped a set of vision algorithms that extracted features from
image data obtained from cameras mounted on robots and
combined the features to form a fuzzy traversability metric
that quantified the ease of mobile robots traversing over
terrain. However, the accuracy of vision-based algorithms
is significantly reduced when visibility is relatively low.
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Lalonde et al. [7] used radar to classify terrain. This approach
emphasizes terrain segmentation based on obstacles rather
than the terrain itself and is still subject to weather interfer-
ence. Iagnemma et al. [8] proposed an algorithm that relies
on classical terrain mechanic equations and uses linear least
squares to calculate terrain parameters in real time, which
can successfully calculate terrain parameters but is still sub-
ject to noise interference. In short, it is a challenging task to
sense terrain reliably.

Inspired by how humans and other animals perceive
terrain through their footsteps [13], the primary approach
in the current research stage has shifted from the previous
traditional methods to terrain perception using acoustic and
vibration responses generated by the robot–terrain interac-
tion. At the same time, with the continuous improvement
and development of sensor-related technologies and perfor-
mance, sensors have been applied in many applications for
signal collection [9]. Zhao et al. [10] proposed a new classifi-
cation framework using acoustic and vibration signals gen-
erated by robot–terrain interaction and selected multiple
data sets for complementary experiments, which achieved
good classification results. Wu et al. [11] used a miniature
capacitive tactile sensor array to collect ground pressure data
by directly measuring the ground reaction force on the legs
of a small running robot, which was used as input data for a
support vector machine (SVM) classifier and subsequent
ground classifications. However, the above method still suf-
fers from two problems: (1) the collected signals are primar-
ily affected by background noise, and (2) the signals have a
mixed distribution between categories. These problems make
it difficult to extract features directly from signals.

Some standard time–frequency analysis methods [14]
can reduce noise and improve the signal-to-noise ratio. Stan-
dard analysis methods include the Fourier transform and
wavelet transform. Further, The wavelet transform is divided
into the continuous wavelet transform (CWT) and the dis-
crete wavelet transform (DWT). In 1997, Hazarika et al. [15]
proposed using the Wavelet Transform to preprocess EEG
(electroencephalogram) signals before classifying them as
normal or abnormal. Experiments showed that the network
trained with wavelet coefficients could correctly classify
EEGs in the normal and schizophrenia classes with 66%
and 71% accuracy, respectively. Saravanan and Ramachan-
dran [16] used the DWT to extract all the signals’ wavelet
coefficients and features, performed feature selection on var-
ious discrete wavelets and used the wavelets with maximum
potential as input for a neural network to obtain a subse-
quent classification. Deokar and Waghmare [17] proposed a
DWT-FFT (fast Fourier transform) method using integra-
tion rules to integrate the traditional DWT with an FFT for
classification. The results showed that the classifier based on
the DWT-FFT method could obtain high accuracy with less
computational complexity.

However, both the Fourier transform and the wavelet
transform have their own limitations. For the former, it is
mainly applied to smooth signals, but the signals collected
for this study may contain nonsmooth or transient fea-
tures. For the latter, although the wavelet transform can

theoretically handle nonlinear nonsmooth signals, it can
only navigate linear nonsmooth signals in practical algo-
rithmic implementations.

The Hilbert–Huang transform (HHT) [18] differs from
these traditional methods in that it is entirely free from lin-
earity and smoothness constraints and is suitable for analyz-
ing nonlinear nonsmooth signals. Fu et al. [19] used the
HHT for processed EEG signals and an SVM classifier to
classify whether epilepsy presented with seizures. It was
experimentally demonstrated that the method could achieve
the best average classification accuracy. Guo et al. [20] trans-
formed sampled signals into spectrograms using the HHT.
They later used convolutional neural networks (CNNs) to
extract image features to perform fault classification in power
distribution systems successfully.

The systems used in previous works send all extracted
features directly to classifiers. Still, the distributions of signal
patterns collected by the sensors vary greatly, so there is
usually a mixed distribution between categories. To solve
this problem and improve the accuracy of terrain classifica-
tion, signal patterns need to be passed into the classifier for
further feature extraction and final ground classification. In
previous works, the methods that appear most frequently can
be broadly classified into two categories. The first category is
based on traditional machine learning classification models,
such as decision trees and SVMs [11, 12, 19, 21–23]. The
second category is based on deep learning with various neu-
ral networks, such as CNNs and artificial neural networks
(ANNs) [16, 20, 24].

The traditional SVM machine learning model can solve
convex optimization problems with globally optimal solu-
tions and has a low Vapnik-Chervonenkis dimensionality,
which allows for classifying high-dimensional data with
fewer optimization parameters, making the model popular
among scholars. In 2013, Subasi [21] proposed a method that
combines the particle swarm optimization (PSO) algorithm
and SVM, which produced an overall classification accuracy
of 97.41% for 1200 EMG signals selected from 27 topics. Du
and Zhu [22] proposed a PCA (principal component analysis)-
SVM method that included feature fusion and dimensionality
reduction using PCA before passing data into an SVM classi-
fier for ground classification. In addition to SVM, other
machine learning models can be applied to related tasks.
Gokgoz and Subasi [23] proposed an EMG signal classifica-
tion framework using a multiscale PCA for noise reduction,
the DWT for feature extraction, and a decision tree algorithm
for classification. Comparing the effects of several different
decision tree algorithms, the results showed that the combi-
nation of the DWT and random forest machine learning
model obtains the best performance and the highest total
classification accuracy.

With the increase in computing power, deep learning,
and neural networks have been widely used for various tasks
in recent years. Saravanan and Ramachandran [16] used an
ANN for subsequent classification after extracting features
with the DWT and noise reduction. They experimentally
found that neural networks have a high potential in condition-
monitoring gearboxes with various faults. Baishya and Bauml
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[24] found that these methods were not robust after using
K-nearest neighbor, SVM, and Bayesian analyses after a
dimensionality reduction of the features. So they decided to
use a CNN for high dimensional data and found that the CNN
outperformed the previous best classifier. After transforming
surface electromyography signals into images, Duan et al. [25]
used a CNN to classify images. They then completed the
classification of limb movements and found that a CNN
showed better robustness than other methods. Prabhakar
et al. [26] used partial least squares nonlinear regression tech-
nique, expectation–maximization-based PCA technique, and
isometric mapping (Isomap) technique to extract features,
which were later further optimized by four optimization algo-
rithms (pollen algorithm, hawk strategy using different evolu-
tionary algorithms, backtracking search optimization algorithm
and group search optimization algorithm) to provide ideas for
the treatment of related problems. Liu et al. [27] proposed a
framework for signal classification based on deep learning net-
works, where signals are preprocessed and represented as 2D
time–frequency images by Choi–Williams distributed time–
frequency analysis. Corresponding simulation results show
that the proposed framework is able to learn the hierarchical
features accurately and achieve excellent signal classification
performance.

The motion of a robot is a continuous process, and time
is the basis of many intrinsic behaviors. Signals of a last
moment and the next moment are necessarily related, and
the ANN and CNN methods mentioned above can extract
features in the spatial dimension. Still, it is difficult to mine
backward and forward connections in time. Therefore,
recurrent neural networks (RNNs) must be used to solve
the problem in this paper. However, spatial relationships
exist between the information collected by multiple sensors
simultaneously in this task. Thus, it is difficult to combine
this spatial information effectively using only RNNs. There-
fore, a ground classification detection method based on the
HHT and attention-based spatiotemporal coupled network
is proposed in this study. After the DWT denoise, the instan-
taneous frequency features were extracted by the HHT to
expand the dataset. Then the CNN, long short-term memory
(LSTM), and attention module were sequentially used to
achieve the final ground-type classification.

Specifically, the main contributions of this paper are as
follows:

(1) We used DWT to preprocess the input signal for
noise reduction and compared the effect of several
different sets of denoise thresholds on the final
results.

(2) To analyze the signals from various angles and
extract the signal features more accurately, the
HHT was used to process signals. Unlike the tradi-
tional idea of image classification using HHT spec-
trograms, we expand the features while preserving
the original data. Compared with image classifica-
tion, our method is less expensive, more accurate,
and less likely to be overfitted.

(3) In our dataset, different groups of signals from the
same sensor were collected at different moments. The
signals collected at the same moment came from
different sensors. Therefore, a combination of CNN
and LSTMwas used to realize the coupled calculation
of temporal and spatial information.

(4) An attention mechanism was introduced after the
LSTM layer to enhance the weight of important
information, reduce the number of parameters, and
improve efficiency during the training process.

This paper is organized in the followingmanner. Section 1
introduces the background of the problem and related work;
Section 2 describes the rationale of each method used in this
study. Section 3 explains the working process of each experi-
ment and presents the results. Finally, Section 4 concludes the
paper and provides possible future research directions.

2. Methods

In brief, our model can be divided into a denoise module, a
feature extraction module, and a classification module. In the
denoise module, the discrete wavelet transform is used to
denoise the input data, which can make the signal features
in the dataset more obvious and convenient for subsequent
feature extraction. In the feature extraction module, the
HHT is first used to extract the instantaneous frequencies
of the two most important channels. Next, the dataset is
enlarged with the extracted frequency information from
the first step. Then, features from the expanded dataset are
fully extracted by combing the spatial feature extraction
capability of 1D CNN and the temporal feature capture capa-
bility of LSTM. Finally, an attention mechanism is intro-
duced after the LSTM layer to enhance the extraction
effect of the network. In the classification model, the
extracted features are passed through a fully connected layer
to achieve the final terrain classification.

2.1. Denoise by the Discrete Wavelet Transform. The function
f(t) in any L2 (R) space is expanded under the wavelet basis,
and this expansion is called the CWT of the function f(t). Its
expression is given by the following:

WTf a; τð Þ ¼ < f tð Þ;ψa;τ tð Þ> ¼ 1ffiffiffi
a

p
Z

R
f tð Þψ ∗ t − τ

a

� �
dt:

ð1Þ

For continuous wavelets, the scale parameter a, the time
t, and the time-shift parameter τ are all continuous. When
using the computer to calculate these three parameters, they
must be discretized to obtain the discrete wavelet transform.
Specifically, the discrete wavelet transform discretizes the
scale parameter a and the time shift parameter τ of the con-
tinuous wavelet transform, but t is still continuous.

The principle of discrete wavelet denoising is that the
wavelet coefficients of the signal are larger after wavelet
decomposition, while the wavelet coefficients of the noise
are smaller. Therefore, a suitable choice of threshold value
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is required to judge whether a wavelet coefficient is generated
by the signal or the noise. That is, the wavelet coefficients
larger than the threshold value are considered to be gener-
ated by the signal and need to be retained; those wavelet
coefficients smaller than the threshold value are considered
to be generated by the noise and are set to zero to achieve the
purpose of denoising. This method can successfully retain
the signal characteristics after denoising, so it is better than
the traditional low-pass filter. The diagram of DWT is shown
in Figure 1 and our model diagram is shown in Figure 2.

2.2. HHT. In signal science, the Hilbert transform can
directly calculate the instantaneous amplitude, the instanta-
neous frequency, and the phase of the signal. However, the
instantaneous frequency calculated by this method may con-
tain negative values that do not have real physical meaning.
The HHT transform first decomposes the signal using
empirical mode decomposition (EMD) to obtain the compo-
nents at different scales and then performs the Hilbert trans-
form on each component to obtain the instantaneous
frequency with real meaning, thus realizing the high-resolution
time–frequency analysis. In the experiment, each data set is a
physically meaningful timing signal collected by sensors. There-
fore, the HHT transform is very suitable for our task.

2.2.1. EMD. EMD [18] is the process of decomposing a com-
plex signal into a finite number of intrinsic mode functions
(IMFs) based on the time-scale characteristics of the data
itself, without any predetermined basis functions. The decom-
posed IMF components contain the local feature information
of the original signal at different time scales, which is a kind of
time–frequency domain signal processing method. Specifi-
cally, EMD decomposes the input signal into several intrinsic
mode functions and one residual part, i.e., for each input
signal, there are as follows:

I nð Þ ¼ ∑
M

m¼1
IMFm nð Þ þ Re sM nð Þ; ð2Þ

where IMFm nð Þ denotes the mth eigenmode function and
ResM nð Þ denotes the residual. For each of these IMF compo-
nents, the following two conditions need to be satisfied:

(1) In the entire time range, the number of local extremes
and the number of points whose values are equal to
zero must be equal or differ by at most one.

(2) At any moment, the mean value of the local maxi-
mum value of the upper envelope and the local min-
imum value of the lower envelope must be zero; that
is, the upper envelope and the lower envelope are
locally symmetric about the time axis.

2.2.2. Ensemble Empirical Mode Decomposition (EEMD).
Although EMD decomposition can effectively divide the
original signal into several IMF components for subsequent
time–frequency analysis, it still has an obvious mode mixing
problem, which means that an IMF component contains
feature components with different time scales. One of the
following situations is called mode mixing:

(1) In the same IMF component, there are different sig-
nals with a wide-scale distribution range.

(2) In different IMF components, there are signals with
similar scales.

The mode mixing problem will make IMF lose single-
scale features and then increase the difficulty of feature
extraction and network training. Therefore, EEMD [28] is
used to improve the mode mixing problem. Specifically,
since the white noise has a mean value of zero, EEMD intro-
duces uniformly distributed white noise many times in the
process of signal EMD decomposition. As a result, the added
white noise is able to mask the noise of the signal itself to
obtain a more accurate upper and lower envelope. Finally,
the decomposition result of EMD is averaged to reduce noise
interference, and the mean value of the corresponding mode
IMF components is taken as the EEMD decomposition
results. In addition, the more the averaging number of pro-
cessing, the less the noise affects the signal decomposition.

The decomposition results of EMD and EEMD are
shown in Figure 3 (taking the signal of the last channel of
the sixth group of signals in the dataset as an example). From
Figure 3, it can be intuitively seen that for the same set of
signals, the IMF components in the EEMD decomposition
result are more symmetrical than those in the EMD, which is
more in line with the requirements of signal decomposition.

2.2.3. Hilbert Transform. Let the original signal be X tð Þ, and
after the EEMD decomposition, we obtain n IMF compo-
nents and the residuals:

X tð Þ ¼ ∑
n

i¼1
ci þ rn: ð3Þ

For each IMF component cj tð Þ, subject it to the Hilbert
transform, i.e.,

H cj tð Þ
Â Ã ¼ 1

π

Z 1

−1

cj tð Þ
t − τ

dτ: ð4Þ

The resolved signal A cj tð Þ
Â Ã

and the parameters of the
resolved signal in polar coordinates a and θ are as follows:

A cj tð Þ
Â Ã ¼ cj tð Þ þ iH cj tð Þ

Â Ã ¼ aj tð Þeiθj tð Þ; ð5Þ

aj tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2j tð Þ þ H2 cj tð Þ

Â Ãq
; ð6Þ

Feature extraction Low-pass filtering
Original signal

Feature signal

Signal reconstruction

FIGURE 1: DWT denoising diagram.
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θj tð Þ ¼ arctan
H cj tð Þ
Â Ã
cj tð Þ

: ð7Þ

The corresponding instantaneous frequency fj tð Þ and
IMF components cj tð Þ are as follows:

fj tð Þ ¼
1
2π

dθj tð Þ
dt

; ð8Þ

cj tð Þ ¼ Re aj tð Þeiθj tð Þ
À Á ¼ Re aj tð Þexp i2π

Z
fj tð Þdt

� �� �
:

ð9Þ
As a result, we can obtain the instantaneous frequency

information of each IMF component.

2.3. Neural Network

2.3.1. 1D CNN. Classical CNNs typically use 2D convolu-
tional kernels, which perform convolutional operations

DWT HHT

··· ···

: One of the convolution kernels

···Conv∗2
···

···

Raw data

Extended data

Instantaneous frequency

······

Dense

Enlarge dataset features

   Denoise module

Feature extraction module

LSTM 
cell

Attention

  Classification results

  Classification module

FIGURE 2: The model architecture diagram.
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FIGURE 3: EMD and EEMD decomposition results for the signal in Figure 2 (limited by space, only the first four IMF components are shown;
the left is the EMD decomposition result, and the right is the EEMD decomposition result).
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simultaneously in both the width and height directions. These
networks are commonly used in computer vision and image
processing [29]. 1D CNNs, on the other hand, are used for 1D
input data and produce 1D output after convolution and
pooling operations. They are primarily used in sequence
modeling and natural language processing. Compared to 2D
CNNs, 1D neural networks require fewer parameters, reduc-
ing their reliance on large-scale datasets.

For our task, we mainly use a 1D CNN to extract spatial
features from the signal. It consists of two convolutional
layers and a pooling layer, whose structure and operation
are shown in Figure 4.

The convolutional layer is the core of the CNN, and its
main role is to extract the feature information of the input. In
the convolutional layer, the convolutional kernel performs
convolutional operations on the output of the previous layer
and outputs the convolutional result. Its mathematical model
is as follows:

Llþ1
i jð Þ ¼ Kl

i ∗ xl jð Þ þ bli; ð10Þ

where Llþ1
i jð Þ denotes the convolution of the input l+ 1 layer.

Kl
i denotes the weight of the ith first convolution kernel in

layer l, ∗ denotes the convolution operation, xl jð Þ denotes
the jth region in layer l, and bli denotes the deviation of the ith
convolution kernel in layer l.

The role of the pooling layer is to reduce the number of
dimensions and parameters, generally divided into the max-
imum pooling method and average pooling method; in this
task, we use the maximum pooling method, the function is as
follows:

Pi;m ¼ maxqi; m−1ð ÞSþn; ð11Þ

where Pi;m denotes the ith feature map in the mth layer,
qi; m−1ð ÞSþn denotes the value of the m−ð 1ÞSþ n cell in the
ith feature map, and S is the size of the overlap of adjacent
sampling windows.

2.3.2. Long Short-Term Memory (LSTM). LSTM is a special
form of RNN, which adds three gate structures on the basis
of RNN, thus effectively solving the problem of gradient
vanishing and gradient explosion in long sequence training
[30]. Compared with ordinary RNN, LSTM can retain more
historical information and avoid unnecessary interference
when dealing with longer and more complex sequences, so
it has better performance than RNN. In our task, each group
of signals needs to collect 128 points, and the robot behavior
has obvious temporal features, such as a robot performing
different actions at different time periods. Therefore, we use
LSTM to further extract the hidden temporal features in the
signal after 1D CNN.

Suppose the current input of the LSTM is xt , and the
information passed down from the previous stage is ht−1,
then we have the following:

z ¼ tanh WSð Þ; ð12Þ

zi ¼ σ WiSð Þ; ð13Þ

zf ¼ σ Wf S
À Á

; ð14Þ

zo ¼ σ WoSð Þ; ð15Þ

where S is a vector of xt and ht−1 splices, zizf zo are three
gating signals that control the forget gate, the selective mem-
ory gate and the output gate respectively, and z are converted
to a value between −1 and 1 by a tanh activation function.

As shown in Figure 5, there are three phases inside the
LSTM during model work:

(1) Forgetting phase: selective forgetting of input from
the previous node to control which of the previous
state ct−1 needs to be retained and which needs to be
forgotten by calculating the gated signal zf .

Input layer Convolutional layers Pooling layer

Input data 

Feature maps

10 (original features) +
2 (extend features)

···

···

···

···
···

Number of convolution 1 kernels

Convolution 1 Convolution 2       Pooled feature map

     Number of convolution 2 kernels

···
···
···
···
···
···
···

···

···
···
···
···

FIGURE 4: 1D convolutional neural network structure (in the convolutional layers, each color represents a set of convolutional kernels).
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(2) Select memory phase: the input of the current phase
xt is selectively memorized, with the current input
signal represented by the previously calculated z and
zi as the gated signal controlling this step.

From (1) and (2), we can calculate the transfer to the next
state ct as follows:

ct ¼ zf ⊙ ct−1 þ zi ⊙ z; ð16Þ

where the ☉ symbol represents matrix multiplication.

(3) Output phase: determines which output will be treated
as the current state. This step is controlled primarily by
zo, while the previous stage co is scaled as follows:

ht ¼ zo ⊙ tanh ctð Þ: ð17Þ

The resulting output yt is similar to the normal RNN and
changes from ht to the following:

yt ¼ σ W0htð Þ: ð18Þ

2.3.3. Attention Mechanism. The internal mechanism of
robot motion is complex, so there may be a lot of interference
in signals collected through sensors. To prevent model inter-
ference, we introduced an attention layer after the LSTM layer
to enable the model to capture more meaningful information
to improve the accuracy of the final classification [31].

Assuming that the information from the LSTM layer is
H ¼ h1;½ h2; h3…hn�, the attention’s structure is shown as
Figure 6.

(1) Calculate the correlation between the query vector q
and each input hi through the function S h;ð qÞ, and in
our work, select the dot product model as the S func-
tion in the following:

S h; qð Þ ¼ hTq: ð19Þ

(2) Use the softmax activation function to normalize
these fractions, mapping to the 0–1 interval, and
the result of normalization is the attention distribu-
tion of the query vector q on each input hi,denoted as
a ¼ a1;½ a2; a3…an�, the h-array corresponds to the a-
array, and the corresponding formula is as follows:

ai ¼
exp s hi; qð Þð Þ

∑N
j¼1exp s hj; q

À ÁÀ Á : ð20Þ

(3) According to the attentional distribution obtained in
the previous step, the information can be extracted
selectively from the input information, and the input
information can be summarized and weighted
according to the attentional distribution.

Context embodies the current focus of the model. The
calculation formula is as follows:

Context ¼ ∑
n

i¼1
ai ⋅ hi: ð21Þ

(4) Finally, context is activated by the tanh function as
an output of attention.

3. Experiments

3.1. Experiment Environment and Details. Our model is
implemented in Tensorflow 2.11.0, and the training is car-
ried out on a single NVIDIA Tesla T4. The training is done
using the ADAM optimizer, and the batch size is set to 16. To
ensure that the model could get the best possible classification
effect, all cases of hyperparameter values were arranged and
combined using classification accuracy as an indicator, which
was identified using the 10-fold cross-validation method.
Table 1 shows the optimal hyperparameter situation.

3.2. Dataset Introduction. The dataset used in the experiment
was a public dataset [32] created in a Kaggle competition.
The X_train dataset contains 3,810 groups of signal data
collected by inertia measurement unit sensors. Each group
of signals contains ten different channels and corresponds to
one classification result, where each group of signals in each
channel is 128 points accumulated by a single 400Hz sensor
over the same period. The signal waveforms of ten channels

TABLE 1: Hyperparameter optimal combination.

Hyperparameter Optimal value

Number of convolutional kernels 128
Size of convolutional kernel 3
Number of nodes of the LSTM layer 100
Time step of the LSTM 128
Probability values for the dropout layer 0.3
Learning rate 0.001
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FIGURE 5: Structure of LSTM’s internal work.
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in a group of signals are shown in Figure 7. The Y_train
dataset contains ground-type classification results for these
3,810 groups of signals, and the number of categories and
corresponding categories are shown in Figure 8.

3.3. Experimental Process. In the experimental process, the
DWT method was used to reduce the noise in the original
dataset, giving the original data more distinct signaling
characteristics.

In the second step, when the HHT was used to extract the
frequency domain characteristics of the signal, the impor-
tance of 10 channels was sorted. The best combination of
channels was selected through comparative experiments.
The effects of the EMD and EEMD were also compared
when decomposing the signal. After choosing the best chan-
nel combination, the signal data were decomposed using the
EEMD method.

After that, each module of the proposed method was
removed for the ablation experiment to prove the validity
of the modules in the proposed method.

Finally, the technique used in this study was compared
with some popular methods in this field to demonstrate its
superiority.

3.3.1. DWT Denoise Comparison Experiment. First, the Dau-
bechies 8 wavelet was selected as the wavelet basis function.
We used the dwt_max_level function to adaptively select the
level that best fits this signal decomposition. In the second
step, six sets of high-frequency coefficient thresholds were
selected to decompose the signal. Finally, the decomposed
wavelet signal was reconstructed and trained on a base LSTM
model with the same training parameters. The average

classification accuracy on the test set in six cases was com-
pared using a 10-fold cross-validation method. The results
are shown in Table 2. It can be seen that the best classifica-
tion effect is achieved when selecting a threshold of 0.06.
Accordingly, a threshold of 0.06 was chosen for this study
to reduce the noise of the original data, and the resulting new
dataset was used as the input for the next step.

3.3.2. HHT Experiment. The dataset obtained in the previous
step only reflects time domain features. Identifying hidden
frequency domain information is significant to creating a
high-performance network but cannot be explicitly extracted
by the neural network. Therefore, a time–frequency analysis
of the signal is needed. The HHT can solve the problem of
unstable signals and obtain the instantaneous frequency of
each moment signal more accurately. Therefore, HHT was
used to extract instantaneous frequency information from
the dataset.

To save computational costs and avoid interference
between too many features, only the most essential channels
in the frequency domain were analyzed for this study. For
feature importance sorting, the permutation importance
method was used. After classification accuracy was obtained
on the model, the data and model parameters of the other
channels were guaranteed to remain unchanged. Then, all
the data obtained from a channel was randomly disrupted,
and the classification test was reperformed. The importance
of each channel is reflected by the difference in accuracy
before and after the comparison.

Specifically, the first analysis performed was CNN-
LSTM-ATTENTION, the network model in the proposed
method, to test the initial accuracy. Then, the first through

h1 h2 h3 hn

S (h, q) = hT q 

Softmax

a1 a2 a3 an

+

Context

tanh

Unit1 Unit2 Unit3 Unitn···

···

···

LSTM input

Attention
mechanism 

Attention
output 

FIGURE 6: Structure of attention mechanism.
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tenth channels were disrupted. Five random disruptions
were conducted to avoid disturbing the effects of random-
ness on experimental results, and an average was calculated
and used as the result. The initial and disrupted accuracy
rates are shown in Figure 9.

The length of the orange section in Figure 9 signifies
characteristic importance and is sorted from large to small
as follows: linear_acceleration_Z> linear_acceleration_Y>
linear_acceleration_X> angular_velocity_Z>orientation_W>
angular_velocity_X> angular_velocity_Y> orientation_X>
orientation_Z> orientation_Y. Among these 10 features,

the linear_acceleration_Z, linear_acceleration_Y, linear_
acceleration_X columns are much more important than
the other seven. Therefore, instantaneous frequency features
from these three channels were added to the dataset to com-
pare classification results.

For seven different combinations of these three channels,
a comparative experiment was conducted to compare the
added classification accuracy, as shown in Table 3. As can
be seen from Table 3, the fusion of the two most essential
channels, linear_acceleration_Y, and linear_acceleration_Z,
yields the highest classification result, which aligns with the
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expectations of this study. However, there are some cases
where the classification results are not as primitive. For
example, there are several combinations that yield even
worse results than not adding features. We hypothesized
that the decomposition of the EMD in the traditional HHT
method would lead to mode mixing [28], resulting in a sig-
nificant error in the decomposed IMF components, which
interferes with the learning of the model. Because of this, an
EMD derivative optimization method, EEMD, was used to
redecompose the signal and compare it to EMD.

In our experiments, we chose to extract the last-order
IMF component of the EEMD decomposition for the follow-
ing reasons:

On the one hand, since our algorithm targets a small
dataset, we need to avoid extracting too many numbers of
IMF components, so for the two columns of signals with the
highest importance, we extract only one IMF compo-
nent each.

On the other hand, the information with high frequency
appears relatively short and rapid, so the LSTM model can
effectively remember this information; for the information
with lower frequency, the overall time interval is relatively
long, and the LSTM may forget in the long period of mem-
ory, so we extract the lowest frequency IMF component to
make up for this deficiency of the LSTM, which helps the
model to remember long-term information more effectively
and improves the learning ability of the model.

We ensured that other conditions remained unchanged
and added EEMD-extracted instantaneous frequency fea-
tures to the dataset. These results were then compared with
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TABLE 2: Classification accuracy corresponding to different denoise
thresholds in DWT.

Denoise threshold Average accuracy (%)

Original dataset 73.02
Universal threshold 68.23
0.04 73.99
0.06 74.08
0.07 74.04
0.08 71.72
0.1 73.29
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FIGURE 9: Channel importance sorting results.

TABLE 3: Accuracy of different channel combinations (the channel in
the channel combination is meant to expand the dataset by extract-
ing instantaneous frequency features from the channel using HHT.
If there is more than one channel, it means that their instantaneous
frequency feature are extracted channel by channel and added to the
original signal dataset).

Channel combinations Classification accuracy (%)

Linear_acceleration_X 76.90
Linear_acceleration_Y 74.02
Linear_acceleration_Z 74.28
Linear_acceleration_X, Y, Z 75.85
Linear_acceleration_X, Y 74.28
Linear_acceleration_X, Z 71.13
Linear_acceleration_Y, Z 78.74
No features added 76.11
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the EMD method, as shown in Figure 10, where the trans-
verse coordinates represent the first seven combinations
from 1 to 7. The ordinate represents the EMD and EEMD
results for each experiment.

Figure 10 shows that the accuracy of the EEMD decom-
position is significantly improved compared to the EMD
decomposition under seven different experimental condi-
tions, and the best combination of channels is still a combi-
nation of linear_acceleration_Y and linear_acceleration_Z.
Therefore, this study adopted the HHT method of EEMD
decomposition to conduct subsequent experiments on the
instantaneous frequency extraction and expansion dataset
of these two channels.

3.3.3. Ablation Experiment. To verify the effectiveness of the
combined model, feature extraction, and fusion of the HHT,
the following best combination of modules, with other con-
ditions remaining the same, were chosen: experiments with a
separate CNN classification, separate LSTM classification,
combined CNN-LSTM classification, combined CNN-LSTM-
ATTENTION classification and combined HHT-CNN-
LSTM-ATTENTION classification. Each group of experi-
ments was conducted five times, and the average classifica-
tion accuracy was taken as the evaluation index.

Only the spatial features between the different sensors
were extracted when the CNN was classified separately.
The LSTM classification only extracted the timing features
of each sensor at different moments. Therefore they both
have low classification accuracy. The results show that the
accuracy of the CNN-LSTM classification is higher than that
of the CNN and LSTM classifications alone. As can be seen
from Figure 11, after the attention mechanism was added,
the model’s efficiency was improved, and the model could

focus on further analysis of the signal. Further, after extract-
ing the frequency feature with the HHT, the time domain
and frequency domain information could be fuzed to analyze
the signal from multiple angles and provide more helpful
information to the model. Therefore, classification accuracy
was further increased, and the experimental results aligned
with the expected results.

In addition, to more clearly determine whether the model
relies more on HHT or attention, we also performed a combina-
tion of CNN-HHT (AVG=68.26), LSTM-HHT (AVG=74.41),
and CNN-LSTM-HHT (AVG=81.33). Therefore, we can see
that HHT has a greater improvement for the model than atten-
tion, and the model relies more on HHT, which again proves the
superiority of our proposed method.

3.3.4. Comparison with Other Common Methods. To test the
performance of the proposed method, four common meth-
ods in this field were selected to compare results. The classi-
fication results are shown in Table 4. As can be seen from
Table 4, our inference time is indeed longer than the remain-
ing methods, but the feature extraction part of the remaining
methods takes longer, and the overall computational cost is
larger. The key point is that our method has the highest
accuracy, so we think that our method is the best.

4. Conclusion

Using the open dataset from a Kaggle competition as the
research object, this paper studies the problem of robot
ground-type classification based on HHT and attention-
based spatiotemporal coupling networks. First, the DWT
was used to reduce the noise of the original signal. Then, a
denoise threshold of 0.06 was selected based on classification
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accuracy under the same conditions. In the HHT experi-
ment, the importance of all channels in the dataset was
sequentially sorted using the permutation importance
method. The linear_acceleration_X, linear_acceleration_Y,
and linear_acceleration_Z were found to have the most sig-
nificant impact on the results. Therefore, seven different
combinations of these three channels were compared. It
was found that the best classification effect can be obtained
by combining the linear_acceleration_Y and linear_acceler-
ation_Z channels. After that, a comparative analysis of EMD
and EEMD was conducted. It was determined that EEMD is
superior to EMD in five experimental verifications. Thus, the
EEMD decomposition for linear_acceleration_Y and linear_-
acceleration_Z was used. Next, the last IMF component in
EEMDwas selected to perform theHilbert transform to obtain
the instantaneous frequency to enlarge the original dataset
features. After passing through two 1D CNN layers, LSTM,
attention structures, and a fully connected layer, the expanded
dataset obtained an average classification accuracy of 83.14%.
Finally, ablation experiments and contrast experiments with
other common methods were conducted in turn. It was deter-
mined that the classification accuracy increased after each
module was added. It was also proven that the method utilized
in this study is superior to other commonmethods in the field,
demonstrating the validity of each module in this study’s pro-
posed method and the superiority of the overall approach.

The authors of this study believe that future studies in
this field should go in the following directions:

(1) When reconstructing a signal after EEMD decomposi-
tion, it is necessary to select which IMF components to
reconstruct and to determine which IMF components
should be used under what conditions. Presently, this
research aspect lacks theoretical support and interpret-
ability, and IMF components can only be selected using
comparative experiments and experiences.

(2) When using a neural network for classification, if the
distribution of categories in the results is uneven, the
classification accuracy of the minority class samples
will be lower. How to solve this imbalance is a direc-
tion for future research.
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Data Source: https://www.kaggle.com/competitions/career-
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