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In recent years, extensive research has been conducted to obtain better detection performance by combining massive multiple-input
multiple-output (MIMO) signal detection with deep neural network (DNN). However, spatial correlation and channel estimation
errors significantly affect the performance of DNN-based detection methods. In this study, we consider applying conditional
generation adversarial network (CGAN) model to massive MIMO signal detection. First, we propose a preset conditional generative
adversarial network (PC-GAN). We construct the dataset with the channel state information (CSI) as a condition preset in the
received signal, and train the detector without direct involvement of CSI, which effectively resists the impact of imperfect CSI on the
detection performance. Then, we propose a noise removal and preset conditional generative adversarial network (NR-PC-GAN)
suitable for low-signal-to-noise ratio (SNR) communication scenarios. The noise in the received signal is removed to improve the
detection performance of the detector. The numerical results show that PC-GAN performs well in spatially correlated and imperfect
channels. The detection performance of NR-PC-GAN is far superior to the other algorithms in low-SNR scenarios.

1. Introduction

Massive multiple-input multiple-output (MIMO) technol-
ogy in wireless communications can significantly improve
spectral efficiency and link reliability. Specifically, the total
throughput is improved by using a large number of transmit
antennas and receive antennas simultaneously for multi-
stream communication. However, implementing massive
MIMO system detection is a challenging problem [1].
Among existing detectors, maximum likelihood (ML) detec-
tion achieves the best performance, but the complexity of
considering all combinations of transmission symbols during
detection makes it infeasible for the practical detection. The
common linear detectors based on zero-forcing (ZF) [2] and
minimum mean square error (MMSE) criteria [2] require
matrix inversion during detection, which becomes very com-
plicated in massive MIMO systems with a large number of
antennas. There are also suboptimal algorithms whose detec-
tion accuracy decreases significantly with the number of
antennas, such as spherical decoding (SD) [3] and

semidefinite relaxation (SDR) [4]. Approximate message
passing (AMP) [5] and orthogonal AMP (OAMP) [6] exhibit
a sharp increase in complexity in massive MIMO systems.

Deep learning (DL) has been successfully applied in areas
such as computer vision, automatic speech recognition, and
natural language processing [7] due to the powerful learning
capability that enables it to approach the objective function
step by step with nonlinear operations and neural networks.
Recently, detection methods based on deep neural network
(DNN) framework have also been proposed for massive
MIMO detection to pursue performance enhancement [8].
DetNet with unfolding projection gradient descent method
proposed in references [9, 10] achieves promising results
under i.i.d. (independent and identically distributed) Ray-
leigh fading channel. However, due to its complexity, a lon-
ger training time is required when achieving comparable
detection performance to SDR. A sparsely connected neural
network (ScNet) with network simplification based on Det-
Net was proposed in [11], which has better detection capa-
bility than DetNet and dramatically reduces the network
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complexity. However, ScNet significantly compromises
detection performance in high-order scenarios, and the mul-
tisegment mapping network (MsNet) proposed in [12] uses
the sigS step function to solve this problem. Both, LcgNet
[13] and DL-based [14] are based on conjugate gradient
descent [15] combined with DNN, and they perform simi-
larly with large-scale antennas. Due to the algorithm model’s
low degree of nonlinearity, the algorithm’s performance in
the spatially correlated channel decreases. The OAMP-Net
[16] based on the fusion of OAMP and DNN has perfor-
mance advantages among existing algorithms and achieves
considerable performance under both i.i.d. Rayleigh fading
channel and spatially correlated channel. However, its detec-
tion process is extremely complex, making it only suitable for
small systems, but not for the massive MIMO with a large
number of antennas. The detection algorithm MMNet pro-
posed in [17] is suitable for online training and has some
adaptability to spatially correlated channels due to its high
number of trainable variables. The authors in [18] combined
deep learning and SD, proposing sparsely connected sphere
decoding (SC-SD) with lower complexity. The authors in
[19] proposed to combine deep reinforcement learning
(DRL) with Monte Carlo tree search (MCTS) to obtain
DeepMcTs detectors with better detection performance.
The detection methods combining DNN framework with
traditional algorithms can rely on DNN’s powerful data
and nonlinear expression learning ability, demonstrating
superior performance over traditional algorithms. However,
these algorithms are either limited by the distribution of
training data or by the original algorithm model, and the
detection performance decays significantly when the com-
munication environment becomes complex; for instance
increased spatial correlation, difficulty obtaining accurate
channel state information (CSI), or high-noise power.

Generative adversarial network (GAN) [20] is effective in
learning data distribution. Currently, GAN is widely used in
computer vision, such as image restoration [21] and image
super-resolution reconstruction [22]. Besides, GAN models
are gradually applied in the field of communication. The
authors in [23] used GAN models for modulated signal clas-
sification; the authors in [24] proposed conditional genera-
tion adversarial network- (CGAN-) based end-to-end
communication for unknown channels; the authors in [25]
and [26] solved the channel estimation problem with CGAN
and achieved good performance gains.

Motivated by the existing work, we propose a preset con-
ditional generative adversarial network (PC-GAN) based on
CGAN for uplink massive MIMO signal detection and apply
an improvedU-Net [27] structure in the generator to enhance
the network learning capability. In addition, to adapt the low-
signal-to-noise ratio (SNR) communication scenarios, we
design a noise removal and preset conditional generative
adversarial network (NR-PC-GAN) detection with a denois-
ing function. Our contributions are summarized as follows:

(1) First, we leverage the image processing method of
CGANmodel in the MIMO signal detection and pro-
pose a PC-GAN detection method to generate a

similar probability distribution to the transmitted sig-
nal. The excellent nonlinear capability of PC-GAN
enables it to release the influence of spatial correlation
on the detection accuracy to a certain extent. We treat
the CSI as a condition and preset it so that it is no
longer directly involved in the detection process. This
method can reduce the dependence of detection
methods on CSI and effectively resist the impact of
imperfect CSI on detection performance.

(2) The generator adopts an improved U-Net structure,
which aims to improve the detection accuracy with-
out affecting the network convergence speed, and it
consists of an encoder and decoder that contain a
small amount of convolution and deconvolution,
respectively. Compared with the original U-Net, its
computational complexity is reduced while solving
the overfitting problem and improving the upper
limit of detection accuracy. In addition, the improved
U-Net increases the number of feature maps of the
decoder, which enhances the feature reconstruction
capability of the network and ensures the conver-
gence speed of the network.

(3) An NR-PC-GAN detection method suitable for high-
noise power scenarios is proposed. This detection
method multiplexes the same network for noise
removal and signal detection and improves detection
accuracy at the expense of complexity. Simulation
results show that NR-PC-GAN exhibits good noise
removal capability and has superior detection perfor-
mance under low-SNR conditions.

(4) The detection accuracy, complexity and robustness
of the proposed PC-GAN are evaluated. The detec-
tion accuracy of PC-GAN is compared with the other
detectors, and the results show that the proposed PC-
GAN exhibits advantages over OAMPNet and
MMNet, both in spatially correlated channels and
imperfect channels. In the online training mode,
the computational complexity of PC-GAN is reduced
by thousands of times compared with the DNN-
based detection method. In addition, PC-GAN shows
good robustness when SNR and channel gain are
mismatched. When the SNR conditions of training
and testing are inconsistent, we call it SNRmismatch,
and when the channel gain of training and testing is
inconsistent, we call it channel gain mismatch.

2. Related Work

2.1. The MIMO Signal Detection Problem. In a massive
MIMO system with the number of receive antennas N and
the number of transmit antennas M, the received signal y 2
CN×1 is given by the following:

y ¼Hx þ n; ð1Þ

where x2CM×1 is the transmitted signal, H2CN×M denotes
the channel matrix, and n2CN×1 is the additive Gaussian
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white noise during signal transmission with zero mean and
variance σ2.

2.1.1. Linear Detection. The detection principle of the linear
detection algorithm is that the final detection result is
obtained by multiplying the received signal y by a receive
filter G. The MMSE detector can be expressed as follows:

x_¼ GMMSEy ¼ HTHþ σ2Ið Þ−1HTy; ð2Þ

where I denotes the unit matrix ofM ×M;HT represents the
transpose of H. It can be seen that the MMSE detection
process involves matrix inversion operation. When the num-
ber of antennas in a massive MIMO system increases, the
computational complexity of MMSE detection will be
very high.

2.1.2. DNN-Based Detection Algorithm. Based on the pro-
jected gradient descent method, the authors in [9] used DL
for MIMO detection and proposed the DetNet detection
algorithm. This detection algorithm shows good perfor-
mance under i.i.d. Rayleigh fading channels and achieves
higher detection accuracy under low-order modulation
schemes than that under high-order modulation. The Det-
Net detection algorithm can be described by the following
equations:

zk ¼ ρ w1k

HTy
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HTHx_k
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x_kþ1 ¼ ψ w2kzk þ b2kð Þ
v_kþ1 ¼ w3kzk þ b3k
x_1 ¼ 0

; ð3Þ

where k¼ 1;…; L; L is the number of layers of the network,
ψ ⋅ð Þ is a segmented symbolic mapping function similar to
the hyperbolic tangent, and w1k;½ b1k;w2k; b2k;w3k; b3k� are
trainable variables.

2.2. CGAN Model. GAN was proposed as a machine learning
method in [20], which consists of two networks, the genera-
tor and the discriminator. The generator attempts to fool the
discriminator by generating data similar to the real sample
distribution, and the discriminator tries to distinguish
the sample sources correctly. During the training process,
the generator and the discriminator compete with each
other, and their generation and discrimination abilities are
gradually improved to Nash [28] equilibrium. The basic
GAN generator synthesizes real samples from random noise;
this unsupervised training process is not accessible, and the
properties of the generated samples cannot be controlled. To
solve this problem, an improved CGAN was proposed in
[29], adding additional conditional information to the basic
GAN to generate samples with specific attributes. The struc-
ture of CGAN network is shown in Figure 1, where z denotes

the input noise, x is the generation target, and x_is the output
of the generator. The discriminator x and x_ judges to be real
and to be fake. Condition c can be a category label or other
type of data that controls sample attribute generation. The
condition c is input as an independent item to the generator
and discriminator.

3. Proposed PC-GAN

This section proposes a PC-GAN detection method for mas-
sive MIMO detection based on CGAN. Unlike CGAN, we
preset the condition before entering it into the network for
PC-GAN. We preprocess the transmitted signal, transform
the transmitted signal matrix X and received signal matrix
YH into images, and then perform MIMO signal detection
with an image-to-image conversion. In this section, we first
introduce the system model, the signal image processing and
the precondition construction process. Then, we detail the
detection working process of PC-GAN and its structure.

3.1. System Model. As shown in Figure 2, we image the signal
and solve the signal detection problem based on CGAN. We
consider an uplink massive MIMO system with N antennas
at the base station (BS) and M single-antenna users at the
transmitter. We consider preprocessing the transmitted sig-
nal xt before it passes through the channel, constructing the
transmitted signal matrix X2CM×P (P is the number of
upsampling points), and transmitting the signal through the
channel to the BS to obtain the received signal matrix YH 2
CN×P. Thus, Equation (1) can be written as follows:

YH ¼HX þ n1; ð4Þ

where H is the channel matrix, and n1 2CN×P represents the
additive Gaussian white noise. Then, we use the CGAN-
based detection network to obtain the transmitted signal X
from the received signal YH to complete the signal detection.

3.2. Image Processing and Condition Presetting. In the mas-
sive MIMO detection problem, the original transmitted sig-
nal xt is usually considered as a modulated signal of
dimension M × 1. The principle of PC-GAN for MIMO sig-
nal detection is image feature extraction and reconstruction.
The essence of an image is a matrix, and the characteristics of
the image are closely related to the relationship between the
elements in the matrix. However, the transmitted signals are
M mutually independent symbols, and to establish the con-
nection between the transmitted signals, we consider the
preprocessing of xt . First, we upsample xt to get the sampled
signal matrix xup 2CM×P. Then, with the help of a high-
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FIGURE 1: CGAN network structure.
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frequency sinusoidal carrier, we can get the transmitted sig-
nal matrix X2CM×P with a close correlation between the
elements. The correlation between the elements of the signal
matrix can be intuitively determined from the real part image
of the signal matrix in Figure 3. It can be seen that the image
of the transmitted signal matrix X after preprocessing has
certain texture characteristics, and we can complete the sig-
nal detection work based on the texture characteristics of the
image.

The channel matrix in MIMO communication is the
bridge between the received signal and the transmitted signal.
In the PC-GAN detection method, we consider the channel
matrix as conditional information to control the process of
obtaining the transmitted signal from the received signal. The
intuition behind this is that the conditional input term in
CGAN can control the network to generate samples with
the specific properties. The principle of existingMIMO detec-
tion methods, both traditional and DNN-basedmethods, is to

calculate the transmitted signal based on the received signal
and the channel matrix. In MIMO communication, the signal
received by the BS is obtained by transmitting the transmitted
signal through the channel, which means that the received
signal is related to the channel matrix. Based on this theory,
we propose a detection network that only needs to provide
received signal. In order to train a detection network that no
longer needs to provide channel matrix separately, we per-
form conditional presetting when constructing the training
set. First, we simulate the transmitted signalmatrixX2CM×P ,
collect the conditional information channel matrix H, and
then preset the condition H in the received signal YH 2
CN×P using Equation (4). We transform X and YH into image
tensor X and YH with dual channel of real and imaginary parts
and construct training sets with X and YH . The dimensions of X
and YH are M ×P × 2 and N ×P × 2, respectively. During net-
work training, the CGAN in Figure 1 needs to input additional
conditions into the generator and discriminator. The inputYH of
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FIGURE 2: Signal detection framework for massive MIMO systems.

ðaÞ ðbÞ
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

ðcÞ
FIGURE 3: The real part image of (a) original transmit signal xt , (b) upsampling signal xup, and (c) transmit signal matrix X.
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the PC-GANgenerator is already preset with conditionH, so the
generator does not need additional conditional input. In addi-
tion, when constructing the dataset, we ensure that X and YH
correspond strictly so that the discriminator does not require
additional conditional input. The purpose of conditional preset-
ting is to reduce the dependence on the channel matrixH in the
detection process, so that the detectionmethod can be adapted to
imperfect CSI and, at the same time, simplify the network input.

3.3. The Working Process of PC-GAN Detection. In our work,
we use PC-GAN to build the mapping relationship from the
received signal image YH to the transmitted signal image X.
As shown in Figure 4, we input YH into the generator and X
into the discriminator for PC-GAN training. We use the
generator that has completed the training as the PC-GAN
detector, which can convert the received signal image YH to
the transmitted signal image X.

During the training period, the generator performs fea-
ture extraction and feature reconstruction on the received
signal image YH , and then generates the signal image
G YHð Þ. We collect G YHð Þ and X to train the discriminator’s
ability to distinguish the real samples from the generated
samples. If the discriminator can successfully distinguish
G YHð Þ and X, the result is fed back to the generator to obtain
the gradients of the two networks. The generator and dis-
criminator continuously perform max–min games, and the
signal image G YHð Þ generated by the generator gradually
approaches the real transmitted signal image X, until the
discriminator is unable to distinguish the generated samples
from the real samples, and then the training ends. We apply
the following loss function to achieve the optimization of the
PC-GAN detection method:

max
D min

G
L D;Gð Þ ¼ E logD Xð Þ½ � þ E log 1 − D G YHð Þð Þð Þ½ �;

ð5Þ

where D Xð Þ and D G YHð Þð Þ are the outputs of the discrimi-
nator. In the training process, we record D Xð Þ as label “1”
and D G YHð Þð Þ as label “0”. When the discriminator can not
distinguish the generated samples from the real samples, the
network training can be completed. We can use the trained

generator to perform MIMO detection, in the case of input-
ting a new received signal image YH .

3.4. Generator and Discriminator Structure. The core idea of
our work is to transform the received signal image YH into
the transmitted signal image X. This process requires feature
extraction and feature reconstruction for YH . We use an
improved U-Net in the generator. U-Net is a variant of
FCN [30], which can be trained completely with fewer sam-
ples. Unlike only one deconvolution of the encoder in FCN,
the encoder on the left of U-Net is strictly opposite to the
encoder on the right, which enhances the U-Net’s ability for
the feature recovery.

We made some adjustments to the U-Net, and the
improved structure of U-Net is shown in Figure 5(a). We
consider a 3-layer U-shaped structure. The improved U-Net
simplifies the convolution operation to reduce the computa-
tional complexity while avoiding model overfitting. A size
adjuster containing convolution and deconvolution layers
is designed to shape the input YH to the same size as X, so
that the detection system can be applied to a multi-antenna
system. The encoder consists of batch normalization, convo-
lution, and ReLU activation functions, and the decoder con-
sists of batch normalization, deconvolution, and ReLU
activation functions. The convolution operation is used for
the feature extraction, and the deconvolution operation is
used for the feature reconstruction. The batch normalization
is used to continuously adjust the intermediate output of the
neural network to make the neural network more stable.
Setting the ReLU activation function both avoids gradient
vanishing and enhances the nonlinear capability of the net-
work. In addition, we set buffer blocks to avoid convergence
difficulties caused by too-deep feature extraction.

Our detection work essentially establishes the mapping
function from YH to X. The mapping relation from YH to X
is more complicated than the mapping relation from noisy
image to noiseless image. So, if the role of the decoder in the
image denoising process is considered as feature recovery,
then it is regarded as feature reconstruction in the process of
MIMO detection. We consider increasing the number of
feature maps in the decoder to enhance the feature recon-
struction capability of the network. As shown in Figure 5(a),
the convolution step in the first layer of the encoder is 2× 2
and the number of feature maps is 64, whereas the deconvo-
lution step in the first layer of the decoder is 2× 2 and the
number of feature maps is 128. It shows that the number of
encoder and decoder feature maps of the improved U-Net is
no longer completely symmetrical. In addition, the size of the
convolution and deconvolution kernels used is 3× 3, and the
small convolution kernels can enhance the nonlinear capa-
bility of the network. Further, the improved U-Net retains
the skipping connection to fuze the multiscale features and
accelerates the convergence speed.

The discriminator structure is shown in Figure 5(b). We
use the patch architecture [31] with three convolution layers
and one fully connected layer. The output of the regular
discriminator is a single evaluation value, but the patch archi-
tecture maps the input to a receptive field, which is averaged
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FIGURE 4: Description of the PC-GAN detection method.
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over all responses. The final output of the discriminator is an
evaluation of the entire image generated by the generator. The
patch architecture enhances the ability to identify local details,
which is particularly important for the accuracy of MIMO
detection. In addition, we added batch normalization and
ReLU activation function after the convolution layer to ensure
the robust training of the discriminator.

4. Proposed NR-PC-GAN

Based on the PC-GAN detection method, this section pro-
poses the NR-PC-GAN detection method for massive
MIMO detection in low-SNR scenarios. NR-PC-GAN
achieves multiplexing of noise removal and signal detection
with one network, reducing hardware costs. The MIMO sys-
tem has noise interference in the communication process,
adversely affecting the detection accuracy of the detector.
The detection performance decreases with the increase of
noise power. Assuming that there is no noise interference
in the communication process, we define Yp as the noiseless
received signal matrix received by the BS, and its expression
is as follows:

Yp ¼HX: ð6Þ

Equation (4) can be rewritten as follows:

YH ¼ Yp þ n1: ð7Þ

Before the detection, we remove the Gaussian additive
white noise n1 from the noisy signal matrix YH and obtain
the noiseless signal matrix Yp. We transform YH and Yp into
image tensor YH and Yp of dimension N × P× 2, respectively,
and use the PC-GAN with image denoising method to obtain
the pure received signal. The training of the NR-PC-GAN
detection network is divided into two stages: denoise training
and detection training.

4.1. Denoise Training. As shown in Figure 6,YH is input to the
generator, Yp is input to the discriminator, the generator and
the discriminator continuously play minimax game, and the
generator is trained to generateG YHð Þ, which is similar to Yp.
When the training is completed, the denoiser is obtained.

4.2. Detection Training. We train the detection network with
the obtained denoiser, as shown in Figure 7. NR-PC-GAN
detection network is basically the same as PC-GAN detection
network; the only difference is that the input of generator is
no longer YH , but the output Y

_
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After two training stages, we can use the two trained
generators shown in Figure 7 to perform MIMO detection
under low SNR. Compared with the PC-GAN detection, NR-
PC-GAN detection has been trained twice, and it is straight-
forward to find that its complexity is twice that of PC-GAN
detection. NR-PC-GAN detection achieves improved detec-
tion accuracy at the expense of complexity.

5. Simulation and Numerical Results

In this section, we first present the experimental setup and
implementation details. Next, numerical results are pro-
vided, comparing the detection performance of the proposed
detection method with the other detection methods. Then,
the contribution of the improved U-Net structure to the
detection accuracy and convergence is investigated. Finally,
we analyze the complexity of the PC-GAN detection method.

5.1. Implementation Details. In our simulations, the pro-
posed PC-GAN and NR-PC-GAN are implemented in Ten-
sorFlow 2.0 with Python [32]. We considered two antenna
configurations, 16× 64 and, 32× 64, and two modulation
methods, QPSK and 16QAM. The experimental process is
divided into a training phase and a test phase, and the

experiment adopts online training mode, i.e., the channel
matrices H in the training and test sets are identical, and
50 samples of H are generated for each experiment. We
consider two channel types, spatially correlated and imper-
fect CSI.

5.1.1. Spatial Correlation. The spatially correlated channel
described by the Kronecker model [33] is as follows:

HK ¼ R1=2
N HRR

1=2
M ; ð8Þ

where HR is the i.i.d. Rayleigh fading channel, R1=2
N 2CN×N

and R1=2
M 2CM×M are the correlation matrices for receiving

antenna and single antenna users, respectively, generated
according to the exponential correlation model with correla-
tion coefficient ρ⊂ (0,1) [17], and the closer ρ is to 1, the
stronger the correlation.

5.1.2. Imperfect CSI. Based on the LS (least squares) method
for estimating the i.i.d. Rayleigh fading channel to obtain an
imperfect channel, we use the normalized mean square error
(NMSE) to characterize the difference between the estimated
channel matrix and the original channel matrix as follows:
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NMSE¼ 10 log10 E
H −H

_


2

Hk k2

0
@

1
A; ð9Þ

where ∙k k denotes the matrix norm, and we compute
10 log10 ∙ð Þ to obtain the NMSE value in dB.

In our work, a total of nine MIMO detectors, PC-GAN,
NR-PC-GAN, OAMPNet, MMNet, DetNet, ScNet, LcgNet,
DL-based, and MMSE, are simulated. We construct the
training set and test set by following a random normal dis-
tribution and generating the transmitted signal from the
corresponding constellation set (QPSK or 16QAM). The
received signal is transmitted over a channel and carries
noise. The size of the training set for PC-GAN and NR-
PC-GAN is 2,500, and the training process is iterated 20
times with a batch size of 10 for each iteration, while the
size of the training set for other networks is 200,000, and the
training iterations are 20,000, with a batch size of 500 for
each iteration. All networks were evaluated using a test data-
set of 20,000 samples. We set the number of network layers
to 10 for OAMPNet, MMNet, LcgNet, and DL-based, 30 for
DetNet and ScNet, a single-layer structure for PC-GAN, and
NR-PC-GAN equivalent to two-layer PC-GAN.

5.2. PC-GAN Detection Performance Analysis. In this subsec-
tion, we investigate the massive MIMO detection perfor-
mance of PC-GAN in the case of spatially correlated
channels and imperfect CSI. In addition, we analyze the
robustness of PC-GAN to the scenarios with the various
mismatches, including SNR and channel gain mismatches.

5.2.1. SER (Symbol Error Ratio) Performance under Spatially
Correlated Channel. Figure 8 compares the SER performance
of PC-GAN, OAMPNet, and MMSE with QPSK modulation,

correlation coefficients ρ of 0.6, 0.7, and 0.8, and antenna con-
figuration of 32× 64. It can be seen that under the same con-
ditions, the PC-GAN detection performance has obvious
advantages. Specifically, PC-GAN has 2.4 dB gain over
OAMPNet at SER of 10−4 under ρ of 0.7. In addition, all the
three detectors considered are affected by the channel
correlation and show different degrees of degradation in the
detection accuracy. OAMPNet detection performance is
relatively sensitive to correlation. With the increase in
correlation, the detection performance decreases significantly.
In contrast, PC-GAN detection is more resistant to correlation.
In the case of SER at 10−4, when ρ rises from 0.6 to 0.7,
OAMPNet detection performance decreases by 2.6 dB and
PC-GAN detection performance decreases by 1.4 dB. When ρ
rises from 0.7 to 0.8, PC-GAN detection performance only
decreases by 1.8 dB, while OAMPNet is no longer adapted to
that condition.

Figure 9 compares the SER performance of the proposed
PC-GAN, OAMPNet, MMNet, DetNet, ScNet, LcgNet, DL-
based, and MMSE at 16QAM modulation with ρ of 0.5. It
can be seen that the proposed PC-GAN can maintain the
performance advantage under high-order modulation. The
PC-GAN provides performance gains of 1.2 and 1.6 dB com-
pared toMMNet andOAMPNet, respectively, at SNR of 10−4.
Next, we analyze the reasons why PC-GAN shows good
detection performance under correlated channels. The spatial
correlation of the channel causes multiple transmitted signals
of MIMO to interfere with each other during transmission,
which causes the received signal to change at the BS. When
the linear connection between the received and transmitted
signal is weakened, the nonlinear connection is enhanced.
OAMPNet, MMNet, and other detectors assist traditional
linear algorithms withDNN’s nonlinear capabilities for detec-
tion. The limited nonlinear capability leads to a significant
decrease in their detection accuracy with the increase of
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FIGURE 9: SER performance of the proposed PC-GAN at ρ= 0.5 in a
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channel correlation. The PC-GAN detection method inherits
the feature of GAN models that do not require inference
during learning [29] and its ability to correct biases intro-
duced by various factors and interactions more easily. Com-
pared with the DNN-based detection algorithm, PC-GAN has
stronger nonlinear ability, making it perform well in spatially
correlated channels. On the other hand, the small convolution
kernel and ReLU function are used in the generator to further
enhance the nonlinear capability of the network.

5.2.2. SER Performance under Imperfect CSI. Figure 10 com-
pares the SER performance of PC-GAN, OAMPNet, MMNet,
DetNet, ScNet, LcgNet, DL-based, and MMSE, with different
SNR for the scenario with QPSKmodulation, NMSE of channel
estimation being −13dB, and antenna configuration of 32× 64.
As shown in Figure 10, PC-GAN outperforms other detectors in
the range of SNR from 0to 14dB. When the detection accuracy
SER reaches the level of 10−3, PC-GAN has about 1.4 and 2.3 dB
performance gain over OAMPNet and MMNet, respectively.
Further, we extend the experiments to show the detection
performance of the various detectors under different NMSE.
Figure 11 compares the SER performance of various detection
methods at different NMES with SNR of 6dB. PC-GAN
achieves superior performance under imperfect CSI, and the
gain of PC-GAN over MMNet and OAMPNet is 6 and 2dB,
respectively, when the SER is 10−3. The SER superiority of PC-
GAN can be sustainedwhenNMSE changes from−22 to−4dB.
From Figure 11, we can see that the SER advantage of PC-GAN
over other detectors gradually increases as the NMSE changes
from −22 to −4dB, which means that the larger the error in
the channel estimation, the more PC-GAN can show the
performance advantage. Next, we analyze the reasons why PC-
GAN exhibits good detection performance under imperfect CSI.

The adaptability of PC-GAN to imperfect CSI stems
from the fact that we conditionally preset the CSI. In
MIMO detection methods, CSI accuracy directly affects the
detection performance. OAMPNet, MMNet, DetNet, ScNet,
LcgNet, and DL-based are all DNN-based detection algo-
rithms. For the DNN-based detection algorithms and tradi-
tional linear algorithms MMSE, the channel matrix H is
directly involved in the operation as deterministic informa-
tion during the detection process. In this case, the detection
accuracy of these detection methods is positively correlated
with the degree of accuracy ofH. The lower the degree of accu-
racy of H, the more significant the decrease in detection accu-
racy. As can be seen in Figures 10 and 11, the detection accuracy
of the DetNet and ScNet detection methods is strongly affected
by the imperfect CSI. This is due to the fact that DetNet and
ScNet are data-driven detection methods based on which the
detection accuracy is more data dependent, and the DetNet
and ScNet detection performance is severely degraded when
the channel matrix H is no longer accurate. This further vali-
dates that the direct involvement of CSI in the operation is
results in the degradation of the detection performance of
existing algorithms under imperfect CSI conditions. Our pro-
posed PC-GAN detection method presets the channel matrix
H as a condition in the received signal image YH , and realizes
MIMO signal detection by constructing a mapping function
from the received signal to the transmitted signal. The chan-
nel matrix H is no longer directly involved in the detection
process, which effectively resists the impact of imperfect CSI
on the detection performance.

5.2.3. Robustness. To verify the robustness of PC-GAN detec-
tion, we train PC-GAN under a specific SNR of 12 dB and
test its detection performance under the SNR ranging from 0
to 12 dB, to investigate the impact of SNR mismatch on the
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FIGURE 10: SER performance of the proposed PC-GAN at NMSE=
−13 dB in a (32, 64) system (i.e., M= 32, N= 64) using QPSK
modulation.

MMSE
PC-GAN
OAMPNet
ScNet

DetNet
DL_based
MMNet
LcgNet

SE
R

10–3

10–2

10–1

NMSE (dB)
–22 –20 –18 –16 –12–14 –10 –8 –6 –4

FIGURE 11: SER performance of the proposed PC-GAN with various
NMSE in a (32, 64) system (i.e., M= 32, N= 64) using QPSK
modulation.

IET Signal Processing 9



detection performance. Similarly, to verify the robustness of
PC-GAN detection against imperfect CSI, we train PC-GAN
under an imperfect CSI with NMSE of −22 dB and test its
detection performance under imperfect CSI with NMSE of
−24, −23, −21, and −20 dB. Figures 12 and 13 show the
detection results of PC-GAN in SNR and NMSE mismatch
states with 16QAM modulation, ρ¼ 0:5, and 16× 64
antenna configuration.

As shown in Figure 13, when the SNR is near 12 dB, the
detection performance of the mismatched network is almost
the same as that of the matched network; when the SNR is far

below 12 dB, the SER performance curve of the mismatched
network gradually deviates from the matched network. Gen-
erally speaking, mismatch has little effect on the detection
capability of PC-GAN. In Figure 12, when SER is at 10−4, the
mismatched network decreases about 0.4 dB compared with
the matched network and has about 0.8 dB gain compared
with OAMPNet. It can be seen from Figure 13 that when the
mismatched NMSE is −21 and −20 dB, the degree of detec-
tion performance degradation is large, and when the mis-
matched NMSE is −24 and −23 dB, the degree of detection
performance degradation is small. This means that the chan-
nel estimation error is smaller during testing than during
training, which can mitigate the impact of channel mismatch
on SER performance to a certain extent. When SER is 10−4,
the SNR of the network with mismatched NMSE of −23 dB is
about 2 dB lower than that of the matched network, but still
shows a gain of 1.7 dB compared to the MMSE detector. It
can be seen that the impact of channel mismatch on the
detection performance is within an acceptable range.

5.3. NR-PC-GAN Detection Performance Analysis. In this
section, we study the massive MIMO detection performance
of NR-PC-GAN under the condition of high-noise power
and show the results of the denoiser. Figure 14 shows the
SER performance of NR-PC-GAN, PC-GAN, and other
detectors with the setting of QPSK modulation, antenna
configuration of 32× 64; ρ¼ 0:5, and SNR ranging from
−6 to 8 dB. It is clear that NR-PC-GAN performs superiorly
at low SNR. When the SNR is 2 dB, the detection SER can
reach 10−3, while PC-GAN and OAMPNet achieve the same
SER performance with SNR of 4.9 and 7.4 dB, respectively. In
addition, compared to PC-GAN, the advantage of NR-PC-
GAN gradually decreases with the increase of SNR because
the advantage of denoise network is no longer evident with
the increase of SNR. In this case, no improvement in
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FIGURE 13: SER performance of the proposed PC-GAN in a (16, 64)
system (i.e.,M= 16, N= 64) using 16QAM modulation in the pres-
ence of channel mismatch.
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detection performance can be achieved even with the
addition of denoising. Therefore, NR-PC-GAN is more
suitable for high-noise channels.

There are two curves in Figure 15; Y_noise indicates
the difference between the noisy signal image YH and
the noiseless signal image Yp. Y_denoise indicates the dif-
ference between the image Y

_

p generated by the denoiser

and the noiseless signal imageYp, and the NMSE values are
obtained as follows.

NMSE ¼ log10 E
YHorY

_

p − Yp


2

Yp

 2

0
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FIGURE 15: Denoising performance of the proposed NR-PC-GAN in a (32, 64) system (i.e., M= 32, N= 64) using QPSK modulation.
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FIGURE 16: (a) noised signal image YH , (b) noiseless signal imageYp, and (c) denoiser generated image Y
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It can be seen that the difference between Y
_

p and Yp is
much lower than the difference between YH and Yp. Figure 16
shows YH ;Y

_

p, and Yp at SNR of −6 dB, and it can be seen
that YH is quite different from Yp. The denoiser restores the
picture texture by removing the noise and generates Y

_

p,
which is very similar to Yp. There is a tiny difference between
Yp and Y

_

p, which shows that the denoiser can effectively
remove the noise. In addition, as shown in Figure 15, with
the increase in SNR, the gap between the two curves
decreases. The difference between the two curves is 1.4 dB
at an SNR of −6 dB, while the difference is about 1.1 dB at an
SNR of 8 dB. This further shows that NR-PC-GAN has better
performance at low SNR.

5.4. The Contribution of Improved U-Net. We set the experi-
mental conditions to QPSK modulation, ρ equal to 0.6, and
the antenna configuration of 32× 64. We compare the SER
performance of PC-GAN detectors with different iterations
when the generator adopts the U-Net structure, the FCN
structure and the improved U-Net structure, respectively,
and analyze the effect of the improved U-Net on the SER
performance and convergence of PC-GAN detection meth-
ods. The experimental conditions were kept consistent
except for the generator structure. A comparison of the main
operations of the encoder and decoder of the original U-Net,
FCN, and improved U-Net is given in Figure 17. It can be
concluded that the original U-Net decoder and encoder
are strictly symmetric; the improved U-Net decoder and
encode have the same number of layers, but the numbers
of feature maps are no longer perfectly symmetric. In con-
trast, FCN is a completely asymmetric structure. As shown in
Figure 18, the U-Net structure converges after 15 iterations,
whereas the improved U-Net and FCN need 19 and 25 itera-
tions, respectively, to reach convergence. This is because the
decoder of FCN has only one deconvolution, while the
decoder of U-Net is strictly opposite to the encoder, which
is a structure of step-by-step amplification, and the superpo-
sition of multiple deconvolution operations speeds up
the convergence of network. Therefore, the symmetry of the
generator decoder and encoder is the main reason for the
convergence speed. However, the U-Net structure is trained
with fewer samples, and too many convolution operations
cause overfitting, significantly damaging the SER perfor-
mance of detection. Our improved U-Net halves the number

of convolution operations compared to the original U-Net,
effectively avoiding overfitting. It can be observed that the
SER performance of the improved U-Net reaches below 10−5

when the network is converged, while that of the original U-
Net and FCN is 10−1 and 10−3, respectively. Such a signifi-
cant performance improvement is also attributed to the
enhanced decoder feature reconstruction capability of the
improved U-Net.

5.5. Complexity Analysis. In this subsection, the number of
operations of the proposed detection network is compared
with the other detection networks. As we know, the com-
plexity of detection algorithms mainly comes from multipli-
cation operations. In Table 1, we roughly estimate the
number of multiplication operations for DetNet, ScNet,
LcgNet, DL-based, MMNet, and the PC-GAN as well as
NR-PC-GAN proposed in this paper, using the QPSK mod-
ulation method as an example. The OAMPNet algorithm
requires matrix inversion operations at each iteration, with
a computational complexity of O LM3ð Þ, much higher than
the other methods.

In the DNN-based detection algorithm, the computa-
tional complexity mainly consists of two parts: initialization
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FIGURE 17: Schematic diagram of generator structure (a) U-Net, (b) improved U-Net, and (c) FCN.
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and network iteration process. For example, DetNet needs to
calculate HTy and HTH during initialization, which require
4MN and 8NM2 operations, respectively, while 24M2ð þ
4MN þ 4MÞL is the number of operations for iteration pro-
cess, and L is the number of iterative layers. The PC-GAN
complexity expression differs from the other networks. As
shown in Table 1, d is the number of convolution kernels, m
and w are the image length and width, Ci

in and Ci
out are the

number of the i-th convolution/deconvolution input and
output feature maps (the total number of convolution and
deconvolution during training and detection is 16 and 13,
respectively). In the detection process, PC-GAN convolution
brings about 10 times more operations than in DetNet detec-
tion. However, in the training process, because PC-GAN uses
improved U-Net, only a small number of iterations and a
small number of batches per iteration are needed to complete
the training. DetNet completes training with 1,000 times
more iterations than PC-GAN and 50 times more batches
per iteration than PC-GAN. Because we use an online train-
ing scheme, the complexity advantage of the PC-GAN
method is significant. In addition, NR-PC-GAN is equivalent
to performing PC-GAN twice, so the computational com-
plexity is twice that of PC-GAN.

6. Conclusions

In this paper, we propose a PC-GAN for massive MIMO
detection. In order to make the CSI no longer directly
involved in the detection process, PC-GAN presets the CSI
as a condition in the received signal to performMIMO signal
detection in the form of learning the probability distribution
of the transmitted signal. To improve the nonlinear capabil-
ity of the network, we use a small convolutional kernel and a
ReLU function in the generator. In addition, to make the
detection adaptive to low-SNR scenarios, we propose NR-
PC-GAN with a denoising function to gain detection perfor-
mance by removing the noise in the received signal. Numer-
ical results show that the detection accuracy of PC-GAN
under spatially correlated channels and imperfect CSI can
surpass that of OAMPNet and MMNet, which are the rep-
resentative detection methods among the existing works.
Moreover, with online training mode, the complexity of
PC-GAN can be reduced by several thousand times com-
pared to the DNN-based detection method. In addition,
NR-PC-GAN demonstrates superior detection performance
in scenarios with high-noise power.
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