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In photoacoustic tomography (PAT), object identification and classification are usually performed as postprocessing processes after image
reconstruction. Since useful information about the target implied in the raw signal can be lost during image reconstruction, this two-step
scheme can reduce the accuracy of tissue characterization. For learning-based methods, it is time consuming to train the network of each
subtask separately. In this paper, we report on an end-to-end joint learning framework for simultaneous image reconstruction and object
recognition, named IRR-Net. It establishes direct mapping of raw photoacoustic signals to high-quality images with recognized targets.
The network consists of an image reconstruction module, an optimization module, and a recognition module, which achieved signal-to-
image, image-to-image, and image-to-class conversion, respectively. We built simulation, phantom and in vivo data sets to train and test
IRR-Net. The results show that the proposedmethod successfully yields concurrent improvements in both the quality of the reconstructed
images and the accuracy of target recognition at a lower time cost compared to the separately trained networks.

1. Introduction

Photoacoustic tomography (PAT) is a newly developed hybrid
biological imaging modality that distinguishes tissue composi-
tions based on high specificity of optical absorption [1]. The
use of machine learning technology to automatically identify
objects of interest in images and characterize tissue types is of
great significance for improving the clinical value of PAT and
improving the efficiency of computer-aided diagnosis [2].

Most existing approaches employ a two-step strategy that
considers image reconstruction and image segmentation or
target recognition independently. First, the image represent-
ing the distribution of the initial pressure or optical absorp-
tion in the imaging plane is reconstructed from the pressure
signal collected by ultrasonic transducers. Then, the image
segmentation or classification is performed as a postproces-
sing procedure. Image reconstruction aims to recover the
structural and functional information of the imaging target
from the photoacoustic signal through acoustic inversion or
optical inversion. Traditional methods include back projection
(BP) [3], time reversal (TR) [4], delay and sum (DAS), iterative
reconstruction technique (IRT) [5], etc. Thesemethods usually

make idealized assumptions about the imaging scenario and
have limitations in noise suppression and artifact elimination.
In recent years, learning-based image reconstructionhas received
extensive attention [6]. Based on the working domains, cur-
rent methods can be divided into two categories: image-to-
image conversion and signal-to-image conversion. The
former uses a deep neural network (DNN) to optimize images
reconstructed by the traditional methods. The initial image
reconstructed from the pressure signal using a traditional
method is fed into the network, which outputs the optimized
image with high quality [7–9]. The process of this method is
simple and fast. However, the image quality is limited by the
initial reconstruction. Some information lost during initial
reconstruction is difficult to recover through learning. The
latter uses DNN to map signals to images. The photoacoustic
signal is directly fed into the network, which is trained to learn
the prior knowledge of the target. This process is complex and
computationally intensive, but most of the image features can
be recovered [10–13].

In the early stage, traditional image processing techniques
were typically used to achieve PAT image segmentation and
target recognition. For example, Zhang et al. [14] used
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nonparametric smoothing and Gaussian low-pass spatial filter-
ing to search for the skin surface. Mandal et al. [15] used an
active contour model to segment target contours to identify
regions with different speed of sound. Meiburger et al. [16]
used Frangi vessel filtering [17] and the skeleton extraction
algorithm to extract blood vessels from 3D PAT images. Rau-
monen and Tarvainen [18] adopted reliability assessment based
on a probabilistic framework to extract vessels. Sun et al. [19]
designed a hybrid method that combines Otsu thresholding
with a 3D Hessian matrix to extract tumor vessels. Lutzweiler
et al. [20] developed a signal domain algorithm to segment
images. In PAT images, the contrast between the background
and anatomical structures is generally lower than in the digital
photography. The presence of image artifacts such as reflec-
tion artifacts, blurring artifacts, and limited view artifacts
increases the difficulty of using traditional nonlearning meth-
ods to segment images. In addition, these methods generally
design image processing steps and the corresponding param-
eters (such as filtering parameters and segmentation thresh-
old) for specific applications and imaging objects, with poor
generalization and a low degree of automation. In recent
years, the application of deep learning in photoacoustic image
processing has been extensively studied. For example, Chlis
et al. [21] built sparse U-Net (S-UNet) to automatically extract
vessel contours. Lafci et al. [22] employed U-Net to segment
dual-modal optoacoustic ultrasound (OPUS) images. Rajanna
et al. [23] used a DNN to realize the three-level classification
(malignant, benign, and normal) of prostate tumors. Zhang
et al. [24] employed AlexNet and GoogLeNet, respectively, to
characterize tissues from PAT images of breast. In the two-step
scheme, the quality of the reconstructed image affects the accu-
racy of the image processing. The errors that occur in image
reconstruction will accumulate in subsequent image processing,
thereby reducing segmentation and recognition accuracy.

Joint image reconstruction and segmentation can achieve
both tasks simultaneously, utilizing all of the correlation and
mutual information between the two tasks [25]. Taking into
account the heterogeneity of the excitation field and the char-
acteristics of the imaging region, image segmentation can
improve image reconstruction [26]. Reconstruction can benefit
from the target information obtained by segmentation and vice
versa, thus improving the precision and consistency of recon-
struction and segmentation [27]. In the PAT study, Boink et al.
[28] used the partially learned primal-dual (L-PD) algorithm for
the first time to achieve simultaneous image reconstruction and
segmentation, obtaining binary images of the segmented blood
vessels. However, they did not specify whether themethod could
be used to segment targets other than the blood vessels.

In this study, a joint learning framework named Image
Reconstruction and Recognition Network (IRR-Net) is pro-
posed for the concurrent PAT image reconstruction and tar-
get recognition. Our contributions are summarized as follows:

(1) We propose a joint learning framework that incor-
porates the image reconstruction subnetwork, the
image optimization subnetwork, and the object rec-
ognition subnetwork. The reconstruction subnetwork
achieves signal-to-image conversion by using a deep

gradient descent (DGD) architecture, where the for-
ward imaging operator and its adjoint operator are
incorporated into the gradient calculation and sepa-
rated from the network training. Gradient information
is used to reduce the impact of the acoustic heteroge-
neity of the medium on the quality of the reconstruc-
tion. The image optimization subnetwork achieves
image-to-image conversion, where the initially recon-
structed image is optimized in the image domain to
improve quality. The recognition subnetwork achieves
the conversion from images to feature classification,
with the aim of extracting features from optimized
images, identifying and classifying objects of interest.
To the best of our knowledge, this is the first work to
achieve end-to-endmapping from photoacoustic pres-
sure signals to high-quality images, where the target of
interest has been identified.

(2) Compared to separately trained networks for sub-
tasks, our end-to-end framework strikes a balance
between computational efficiency and accuracy, mak-
ing it more suitable for practical applications.

(3) Weprovide a general joint learning framework for simul-
taneous image reconstruction and object recognition.
Although we designed, trained, and validated the net-
work for PAT, the framework can be used for other
tomographic imaging modalities by changing the for-
ward imaging operator. It has clinical importance in
facilitating tissue characterization and lesion recognition.

(4) We validated IRR-Net on simulation, phantom, and
in vivodata sets to show its feasibility and generalizability.
We achieved consistent improvements in terms of accu-
racy, sensitivity, specificity, and F1 score for both image
reconstruction and object recognition tasks on each data
set compared to the separately learned networks.

2. Materials and Methods

2.1. Overview of the Problem of PAT Image Reconstruction. PAT
image reconstruction is essentially the inversion of the forward
imaging model. We consider the following imaging scenario. A
fixed-position light source emits short laser pulses that produce
a uniform coverage of light on the surface of the imaging object.
Pressure waves are collected by an array of ultrasonic transdu-
cers in which each transducer element is idealized as a point
detector. A complete set of pressure signals is collected in the
tomographic slice through full-view scanning. The absorbed
optical energy density (AOED) is determined by the local light
fluence and optical absorption coefficient, as shown below:

A rð Þ ¼ μa rð ÞΦ rð Þ; ð1Þ

where r is a location in a 2D bounded imaging domain Ω
with a boundary ∂Ω, A is AOED in J/cm3, and μa and Φ
represent optical absorption coefficient and light fluence,
respectively. The initial pressure photoacoustically induced
by optical absorbers is proportional to AOED:
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p0 rð Þ ¼ ΓA rð Þ; ð2Þ

where p0(r) is the initial pressure generated by the optical
absorber at r, and Γ is the Grüneisen coefficient describing
the thermoelasticity of the tissue. In this work, Γ is assumed
to be constant in space and equal to 1.

The propagation of a pressure wave prompted by an
initial source in an acoustically inhomogeneous medium
with spatially varying density and speed of sound is governed
by the following coupling equations [29],

∂
∂t
u r; tð Þ ¼ −

1
ρ0

∇p r; tð Þ
∂
∂t
ρ r; tð Þ ¼ −ρ0∇ ⋅ u r; tð Þ

p r; tð Þ ¼ c rð Þ½ �2ρ r; tð Þ 1 − 2μ c rð Þ½ �a−1 ∂
∂t

−∇2ð Þa2−1 þ 2μ c rð Þ½ �a tan πa=2ð Þ −∇2ð Þaþ1
2 −1

� �
;

8>>>>>>><
>>>>>>>:

ð3Þ

where t 2 ½0;T� is the observation time for a final time T, u
denotes the velocity of the acoustic particle, p is the acoustic
pressure, ρ0 denotes the ambient density, ρ represents the
fluctuation of the acoustic density in the heterogeneous
medium, c is the speed of sound, ∇ is the Hamiltonian oper-
ator, a is the power law exponent typically ranging from 1 to
1.5, and μ is the power law prefactor with a typical value of
10‒7/2π cm‒1 rad‒1s [30]. The time-dependent pressure satis-
fies the initial conditions of p(r, 0)= p0(r) and ∂p(r, t)/
∂t|t= 0= 0 for r 2Ω, as well as the Neumann boundary con-
dition of ∂p/∂n0= 0 on ∂Ω× [0, T], where n0 denotes the
outer unit normal to ∂Ω. The velocity of the particles satisfies
the initial condition of u(r, 0)= 0. The k-space pseudospec-
tral method (PSM) [31] is used to discretize Equation (3).

The forward process of generating the pressure signal
fromAOED can be expressed by the operatorHð⋅Þ as follows:

p¼H Að Þ; ð4Þ

where A is the spatial distribution of the AOED and p is the
pressure matrix reaching the detector surface. Reconstruction
of the image representing the AOED distribution within a
tomographic slice from the pressure time series measured by
the detector is essentially the inverse problem of Equation (4),

A¼H∗ pð Þ; ð5Þ

where H∗ð⋅Þ is the adjoint operator of H.
2.2. IRR-Net Architecture. An overview of our approach is
illustrated in Figure 1. The acquired pressure signal in a slice
is recorded in a 2D matrix and then fed into the network,
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FIGURE 1: Flowchart of the proposed method.
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which outputs a reconstructed image representing the AOED
distribution with identified targets of interest.

As shown in Figure 2, the overall architecture of IRR-Net
consists of three modules: reconstruction module, optimiza-
tion module, and recognition module. In the reconstruction
module, the DGD architecture [10, 32] is used to solve the
acoustic inversion, and the AOED distribution is robustly
recovered from the pressure signal to realize the conversion
from the signal domain to the image domain. Its calculation
is expressed as follows:

A1 ¼Dθ A0;Gð Þ; ð6Þ

where Dθð⋅Þ represents the DGD unit with the learning
parameter θ, and A1 represents the AOED distribution map
output from the DGD unit. Dθð⋅Þ has two inputs, one of
which is the initial AOED distribution A0:

A0 ¼H∗ Pmð Þ; ð7Þ

where Pm is the matrix for recording the measured acoustic
pressure. Another input is the likelihood gradient that mea-
sures the data fitting between the measured pressure signal
and the theoretical pressure calculated by the forward model
as follows:

G¼ ∇d Pm;H A0ð Þð Þ ¼H∗ H A0ð Þ − Pmð Þ; ð8Þ

where ∇d(·) denotes the calculation of the likelihood gradient
and H(A0) is the theoretical pressure calculated from the
forward model described in Section 2.1.

As shown in Equation (8), the calculation of the likeli-
hood gradient involves the forward operator and its adjoint
operator, which contain the information that the estimates
need to be improved. The likelihood gradient reflects the
error distribution between reconstruction and measurement.
Therefore, it is used as data fidelity to enhance data consis-
tency and produce efficient estimate updates. Inputting the
concatenated AOED distribution map and its likelihood
gradient into the network helps to obtain more reliable
estimates than just inputting the image itself, while elimi-
nating the need for the network to learn the entire physical
prior from training data.

The DGD unit consists of nine convolutional layers that
form the encoding–decoding architecture. The encoder
extracts features from the input through convolution, while
increasing the number of channels between layers to achieve
structural refinement of the feature map from the previous
layer. The decoder combines similar features of layers by
reducing the number of filtering kernels between layers.
The network uses the same convolution with a kernel size
of 3× 3×M and a stride of 1 is used, whereM is the number
of feature maps input into the layer. The initial number of
feature channels is 16, meaning channels= 16 for both
inputs. The linear rectification unit (ReLU) is used as the
activation function. The output of the DGD module is

obtained by adding the initial input AOED map and the
output AOED update via a skip connection.

The optimization module uses the forward propagation
U-Net as the backbone to optimize the initial reconstruction
output from the DGD module with the goal of converting
low-quality images to high-quality images. The module con-
sists of a total of 26 convolutional layers with a kernel size of
3× 3 and a stride of 1 used throughout, except for the last
layer, which is a 1× 1 convolution. The number of feature
channels is set to 64. ReLU and max pooling with a kernel
size of 2× 2 and a stride of 2 are used. Upsampling is per-
formed using a kernel size of 2× 2 and a stride of 2.

The recognition module uses the ResNet-50 architecture
[33] as a feature classifier. It consists of a 7× 7 convolution
layer, 16 residual blocks (ResBlocks), a global average pool-
ing layer and a fully connected layer. Each ResBlock consists
of three convolutional layers, three batch normalization (BN)
layers, and ReLU activation functions. The image output
from the optimization module is fed into the recognition
module. First, a 7× 7 convolution with a stride of 2 and 64
feature channels is used for preprocessing, in which the
ReLU activation function and maximum pooling with a ker-
nel size of 2× 2 and a stride of 2 are adopted. The prepro-
cessed image is then fed into ResBlocks, where the input
tensor is downsampled along the eigenmapping dimension
by 1× 1 convolution and the compressed tensor is filtered by
3× 3 convolution. Finally, another 1× 1 convolution is used
to upsample the tensor to the size of the original feature map.
The final output is an image with the labeled targets of
interest.

2.3. Data Preparation and Experimental Setup. To build the
simulation data set for training IRR-Net and testing its
binary and multiclass classification performance, we generate
numerical tubular phantoms containing different types of
tissues to mimic endoscopic scenarios. We use Adobe Illus-
trator (v.2022, Adobe Systems Incorporated, San Jose,
California) to draw the cross-sectional geometry of the
numerical phantoms. We set optical and acoustic parameters
for each tissue type based on histological references. In order
to show the diversity of tissue components, the absorption
coefficient, scattering coefficient, speed of sound, and mass
density of each tissue type follow a Gaussian distribution,
with the values listed in Table 1 as their average and a vari-
ance of 0.5. After generating the numerical phantoms, we use
the Matlab MCXLAB software package [34] to simulate light
transport in tissues, in order to obtain the light fluence in the
imaging domain. In forward optical simulation, we refer to
our experimental setup in the phantom study and set the
irradiation source as a pulse laser with a wavelength of
880 nm and a pulse width of 7 ns. The photon emission
source is located at the center of the imaging plane, with a
total of 106 incident photons in one pulse. Then, based on the
proportional relationship between AOED and the product of
absorption coefficient and light fluence, the simulated AOED
distribution is obtained. For forward acoustic simulation, we
use the Matlab K-wave toolkit [35] to simulate acoustic
propagation in heterogeneous media and obtain sound
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pressure signals reaching the detector surface. The time-
dependent pressure is then collected by a finite-sized
unfocused ultrasound transducer in the receiving mode,
which is located at the center of the image plane and scans
the surrounding tissue along a circular trajectory in a full
view (360°). The size of the imaging plane is 67mm× 67mm,
and the image size is 256× 256 pixels.

To construct the phantom data set for training and test-
ing the binary classification performance of IRR-Net, we
fabricate 14 cylindrical phantoms of about 20mm in diame-
ter and 80mm in height using materials such as low melting
point agar, gelatin, castor oil, intralipid, etc., in which we
design embeddings with different shapes, positions, and
materials (such as India ink, pencil lead, iron wire, etc.) to
mimic light absorbers of different compositions. We use a
preclinical multispectral optoacoustic tomography (MSOT)
system, inVision 256-TF (iThera Medical GmbH, Munich,
Germany) to acquire the PA scanning data of the phantoms.
The system uses an Nd:YAG pumped optical parametric
oscillator as an excitation source to provide laser illumina-
tion at a 10Hz repetition rate in the near-infrared spectral
range of 680–900 nm. The pulse width is 7 ns and the maxi-
mum pulse energy is 120mJ. The detector consists of 256
focused ultrasonic transducer arrays with a center frequency
of 5MHz and a bandwidth of 60% arranged in a ring array
with a coverage angle of 270°. After data acquisition, we use
the convolutional neural network (CNN) proposed in [12],
which is composed of five cascaded DGD units, to recon-
struct the image representing the AOED distribution in each
slice from the measured pressure signal. The images are then
manually labeled with binary labels, namely “embedding”
and “other,” which are used as the ground truth (GT) for
network training and testing.

To construct the in vivo data set for training and testing
the multiclass classification performance of the joint learning
network, we obtain live mouse scan data from the Institute of
Materia Medica of the Chinese Academy of Medical Sciences.
All animal procedures during data collection are reviewed and
approved by the Research Animal Care Subcommittee of the
Institute of Materia Medica, Chinese Academy of Medical
Sciences. The MSOT system inVision 128 (iThera Medical
GmbH, Munich, Germany) is used for whole-body scanning
in live mice. A tunable Nd:YAG laser provides laser irradia-
tion at a 10-Hz repetition rate in the spectral range of 715, 730,
760, 800, and 850 nm. At 730 nm, the maximum incident
pulse energy is 70mJ and the pulse width is 8 ns. The detec-
tion device consists of 128 focused ultrasonic transducer
arrays with a center frequency of 5MHz and a bandwidth
of 60%, arranged into a ring array with a curvature radius
of 40mm and a coverage angle of 270°. After data collection
is completed, the images are reconstructed using the DGD-
based method [12]. The images are then labeled manually by
the medical experts.

2.4. Network Training. We used the error backpropagation
algorithm to calculate the gradient of each layer in the net-
work, and we used the gradient descent algorithm for adap-
tive moment estimation (Adam) [36] to optimize the

parameters of each layer along the gradient direction to
achieve end-to-end training. The learning rate, batch size,
and epoch step were set to 0.001, 32, and 200, respectively.

The loss function for the joint learning framework con-
sists of three parts as follows:

L¼Lrecon þLopt þLrecog; ð9Þ

where Lrecon, Lopt, and Lrecog represent the reconstruction
loss, optimization loss, and recognition loss, respectively.

Lrecon indicates the loss of the initial reconstruction by a
single DGD unit, which encourages the AOED image output
from the reconstruction module to be as similar as possible
to the GT image:

Lrecon ¼
1
N

∑
N

i¼1
A1;i − Atrue;i

 2
2: ð10Þ

N is the number of samples in a batch of the training set,
Atrue,i is the expected output of sample i, and A1,i is the
output image of sample i from the reconstruction module.

Lopt indicates the loss of optimization by U-Net, defined
by:

Lopt ¼
1
N

∑
N

i¼1
Ai − Atrue;i

 2
2; ð11Þ

where Ai is the output image of sample i from the optimiza-
tion module.

Lrecog is the multiclass cross-entropy loss [37], which is
used to guarantee differentiation between feature classes,
defined by:

Lrecog ¼ −
1
N

∑
N

i¼1
∑
C

c¼1
yi;c log pi;c: ð12Þ

C denotes the number of feature classes, log represents
the logarithm based on the natural constant e, yi,c represents
the GT label of sample i, and pi,c denotes the prediction
probability of classifying sample i as class c. yi,c is a symbolic
function which takes 1 if the true class of sample i is c and 0
otherwise.

Tenfold cross-validation was performed to tune hyper-
parameters to make full use of all data and to avoid locally
optimal hyperparameters due to data distribution deviation
caused by improper data set partition. For binary classifica-
tion, the data sets were evaluated using accuracy (Acc),
sensitivity (Sens), specificity (Spec), and F1 score [38] as
quantitative measures. For multiclass classifications, the
data sets were evaluated by calculating the weighted accu-
racy of each class and the F1 score of all classes.
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3. Experiments and Results

3.1. Experimental Design

3.1.1. Validation Data Sets. We validated the ability of IRR-
Net to directly map from raw scanning data to AOED images
with recognized targets on simulated, phantom, and in vivo
data sets, respectively. The construction details of these data
sets can be found in Section 2.3

3.1.2. Baseline Methods. To test the performance of the joint
learning framework and demonstrate its superiority, a two-
step scheme is exploited as the baseline in which object
recognition is performed in the image domain as a postpro-
cessing process after image reconstruction. We compare
IRR-Net with the eight two-step methods listed in Table 2.
In these comparative methods, the network models used for
image reconstruction and target recognition subtasks are
trained separately.

3.1.3. Evaluation Metrics. We evaluate the algorithm perfor-
mance in terms of commonly used quantitative metrics in
image classification and recognition. Considering that the
positive and negative classes in binary classification can be
clearly determined, we use accuracy, sensitivity, specificity,
and F1 score to measure the accuracy of binary classification.
In a multiclass classification scenario, there are at least five
categories, making it difficult to determine positive and neg-
ative categories. We use accuracy and F1 score to evaluate the
accuracy of multiclass classification, as they can evaluate the
overall performance of classification without considering
specific categories.

3.1.4. Implementation Details. All simulations, image recon-
struction by TR, and SVM classifiers are implemented through
Matlab programing (R2016a, Math Works, Inc., Natick,
Massachusetts) on an AMD Ryzen 7 4800H CPU, Radeon
Graphics and Windows 11 64-bit operating system. Neural
networks including our proposed IRR-Net and baseline net-
work models are implemented, trained, and tested on an
NVIDIA GeForce 3090Ti GPU using Python 3.7 with the
deep learning framework of TensorFlow 2.6.0 and Keras 2.0.
The data sets for training GoogLeNet, AlexNet, ResNet, and
SVM classifiers are constructed as follows: the images
reconstructed using the DGD-based method are used as

sample inputs, and manually labeled images are used as
expected outputs.

3.2. Simulation Data Sets and Test Result. We take the simu-
lated pressure signal matrix in the imaging plane as the input
of the sample, and the corresponding simulated AOED
image with the manually labeled targets as the expected out-
put. In order to train the performance of the network in
classifying different tissue types, two simulation data sets
are built: binary classification data set and multiclass classifi-
cation data set. In the binary classification data set, binary
labels, i.e., “lesion” and “other,” are used, each accounting for
about 50%. In the multiclass classification data set, a multi-
class label containing five categories is used, that is, “lesions”
are further divided into “calcifications,” “lipid pools,” “fibrous
caps,” and “mixed calcifications,” accounting for approxi-
mately 15%, 5%, 10%, 20%, and 50% respectively. By changing
the shape, number, location, and type of tissues, we generate
2,000 pairs of simulated samples. They are shuffled and ran-
domly partitioned into training and testing in a ratio of 8 : 2.
To avoid overfitting, we augment the original training set by
random rotation (−180° to 180°) and random shift (less than
10% of the image width or height), resulting in 8,000 pairs of
samples.

Figure 3 shows the results of image reconstruction and
target recognition on a simulation test set with GT labels.
Tables 3–5 present the statistical results of the evaluation
metrics for target identification using IRR-Net, LL, LH,
HL, and HH methods, respectively. The runtime provided
in Tables 3 and 4 refers to the time taken from the input of
the pressure signal matrix collected in a tomographic slice
into the trained network to the output of the labeled gray-
scale image that represents the AOED distribution. The time
spent in training the classifiers and image reconstruction
networks is not included. For IRR-Net, this time consists
of two parts: the time to calculate the likelihood gradient
in Matlab and the time to test the network. For the two-
step approach, this time refers to the total time taken to
reconstruct and label the image, without taking into account
the time taken by any intermediate steps involved.

From Table 3, we find that the overall accuracy, specific-
ity and sensitivity of binary classification by IRR-Net and the
HH methods are significantly improved compared with the

TABLE 2: Two-step methods for comparison.

Name of method for comparison Image reconstruction method Classifier

HH
5 DGD+GoogLeNet Five cascaded DGD units GoogLeNet
DGD+U-Net+ResNet A single DGD unit followed by a U-Net ResNet50

LH

1 DGD+GoogLeNet A single DGD unit GoogLeNet
TR+GoogLeNet TR GoogLeNet
TR+AlexNet TR AlexNet
TR+ResNet TR ResNet

HL (5 DGD+ SVM) Five cascaded DGD units SVM

LL (TR+ SVM) TR SVM

Note: HH, LH, HL and LL refer to “High-quality reconstruction+High-performance classifier”, “Low-quality reconstruction+High-performance classifier”,
“High-quality reconstruction+ Low-performance classifier”, and “Low-quality reconstruction+ Low-performance classifier,” respectively.
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LH, LL, and HL methods. The HH (5 DGD+GoogLeNet)
reaches the performance upper limit in all methods. In mul-
ticlass classification, the classification of the four tissue types
of calcification, lipid pool, fibrous cap, and mixed calcifica-
tion can influence each other, resulting in one tissue type
being misclassified into the other three. For example, fibrosis
is often mistakenly classified as lipids, and vice versa. From
Table 4, we can find that the classification accuracy of calci-
fication is the highest among the four types of tissues, while
the accuracy of mixed calcification is relatively low, mainly
due to its complex composition and the small number of
samples in the training set. Similar to binary classification,
HH (5 DGD+GoogleLeNet) performs the best among all
methods in terms of accuracy and F1 score in multiclass
classification. The improvement is attributed to the high
quality of the reconstructed images using five cascaded
DGD units, as well as the use of GoogLeNet for high-
performance classification. However, high-quality recon-
struction is achieved at the cost of extending training and
computational time. Due to the fact that the reconstruction
network and the classification network are trained separately,
the training time of the DGD+U-Net+ResNet and 5 DGD

+GoogLeNet methods is much longer than that of IRR-Net,
as shown in Table 5. Based on the running time listed in
Tables 3 and 4, we can find that the LL method is very fast,
less than 2 s. The high-time cost of the IRR-Net and HH
methods is attributed to the calculation of the likelihood
gradient involved in DGD-based image reconstruction. The
time cost of 5 DGD+GoogLeNet is significantly higher than
the IRR-Net because it uses five cascaded DGD units to
guarantee the high quality of the reconstructed images. In
summary, IRR-Net achieves a tradeoff between computa-
tional efficiency and accuracy.

By comparing the results in Tables 3 and 4, we find that
the accuracy and F1 score of the multiclass classification are
significantly lower than those of binary classification, indi-
cating the uncertainty of these methods in the classification
of specific types of lesions.

In addition, to verify the necessity of data augmentation,
we train IRR-Net using the original simulation data set and
the augmented data set, respectively, while other conditions
remained unchanged. Table 6 presents the metrics for evalu-
ation binary and multiclass classification. We can find that
the performance of IRR-Net in binary and multiclass classi-
fication is significantly improved after training on the aug-
mented data set.

3.3. Phantom Data Set and Test Result. We obtain a total of
4,379 slices by scanning the cylindrical phantoms along their
long axes. We take the pressure signal matrix collected by the
detector as the input of the sample and the manually labeled
image as the expected output to construct the original phan-
tom data set containing 4,379 pairs of samples. The samples
are shuffled, and 1,305 pairs of samples are randomly
selected for testing. The remaining 3,074 pairs are aug-
mented to 6,596 pairs for training.

We validate the performance of the trained IRR-Net in
reconstructing images and recognizing embedded targets on
the experimental phantom test set. Figure 4 presents the
results for four phantoms. Nine different algorithms are
compared regarding the accuracy, sensitivity, specificity, F1
score, and computational time for the binary classification.
Table 7 provides the result of evaluation metrics for binary
classification. From the table, we find that deep learning-
based classifiers have significantly higher accuracy and F1
scores than SVM. Our IRR-Net outperforms LL, LH, and
HL on the phantom data set in terms of all evaluation
metrics, which can improve F1 scores by 8.5%. In addition,
the performance of IRR-Net is very close to that of HH
(5DGD+GoogLeNet), which is the upper performance limit
of the comparative methods, while the computational time is
reduced by half. The results show that IRR-Net strikes a
balance between accuracy and time cost.

3.4. In Vivo Data Set and Test Result. We collect a total of
1,970 cephalic, thoracic and abdominal slices from whole-
body scans of anesthetized male nude mice (6–8 weeks of
age, supine, and prone). A scanning signal slice and its cor-
responding manually labeled image with multiclass labels are
taken as the input and expected output of an in vivo sample,
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respectively. We randomly select 750 samples for testing, and
augment the remaining 1,220 samples to 4,025 samples for
training.

To further analyze the accuracy and generalizability of
our proposed IRR-Net, we test it on the in vivo data set.
Figure 5 presents the results for image reconstruction and
tissue identification of cephalic, thoracic, and abdominal
slices, in which a multiclass classification was performed,

including mandible, tongue, spine, kidney, liver, abdominal
aorta, and ribs. Table 8 presents the accuracy, F1 score, and
runtime for nine methods. Compared with the simulation
and phantom experiments, the overall performance of IRR-
Net in multiclass classification of in vivo images containing
complex anatomical structures has decreased, but it still out-
performs LL, LH, and HL. IRR-Net has the highest classifi-
cation precision for the spine (81.09%) and the lowest for the

TABLE 3: Evaluation metrics for binary classification in the simulation study.

Method Acc Sens Spec F1 score Runtime (s)

HH (5 DGD+GoogLeNet) 0.9574 0.9535 0.9691 0.9711 21.4

IRR-Net 0.9474 0.9324 0.9524 0.9572 10.6

HH (DGD+U-Net+ResNet) 0.9474 0.9324 0.9524 0.9572 28.6

LH

1 DGD+GoogLeNet 0.9277 0.9189 0.9486 0.9503 9.3
TR+GoogLeNet 0.9184 0.9098 0.9440 0.9436 3.2
TR+AlexNet 0.9012 0.8910 0.9316 0.9311 2.7
TR+ResNet 0.8987 0.8892 0.9303 0.9275 2.7

HL (5 DGD+ SVM) 0.8926 0.8874 0.9271 0.9208 20.1

LL (TR+ SVM) 0.8739 0.8665 0.8961 0.9117 1.4

TABLE 4: Evaluation metrics for multiclass classification in the simulation study.

Method
Acc

F1 score Runtime (s)
Cal FC LP MC

HH (5 DGD+GoogLeNet) 0.9243 0.9146 0.9322 0.8801 0.8980 29.1

IRR-Net 0.9191 0.9089 0.9161 0.8702 0.8878 10.7

HH (DGD+U-Net+ResNet) 0.9191 0.9089 0.9161 0.8702 0.8878 33.6

LH

1 DGD+GoogLeNet 0.9002 0.8913 0.8867 0.8561 0.8705 9.8
TR+GoogLeNet 0.8976 0.8891 0.8555 0.8405 0.8627 3.1
TR+AlexNet 0.8776 0.8702 0.8415 0.8245 0.8229 2.7
TR+ResNet 0.8714 0.8649 0.8358 0.8191 0.8203 2.7

HL (5 DGD+ SVM) 0.8617 0.8587 0.8302 0.8238 0.8189 28.6

LL (TR+ SVM) 0.8575 0.8461 0.8266 0.8212 0.7968 1.4

CAL, FC, LP, and MC stand for calcification, lipid pool, fibrous cap, and mixed calcification, respectively.

TABLE 5: Training time in hours.

5 DGD+GoogLeNet DGD+U-Net+ResNet 1 DGD+GoogLeNet IRR-Net

Total training time 27.6 11 6.8 5.3
Training time of reconstruction network 26 6.5 5.2 —

Training time of optimization network — 2.4 — —

Training time of classifier 1.6 2.1 1.6 —

TABLE 6: Evaluation metrics for binary classification and multiclass classification before and after data augmentation in the simulation study.

Data set

Binary classification Multiclass classification

Acc Sens Spec F1 score
Acc

F1 score
Cal FC LP MC

Original data set 0.9330 0.9012 0.9467 0.9310 0.8274 0.8173 0.8168 0.8108 0.8569
Augmented data set 0.9474 0.9324 0.9524 0.9572 0.9191 0.9089 0.9161 0.8702 0.8878
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ribs (75.75%) among all types of tissues. This is because the
number of spinal samples in the training set is greater than
that of other structures. Therefore, the network can learn
more features of the spine. Furthermore, the GT labels in
the data set were manually marked, which can result in
unclear boundary representation and a decrease in classifi-
cation accuracy. In addition, compared to the simulation
experiment, the evaluation indicators of both phantom and
in vivo images have decreased, which is related to the
decrease in image quality in practical application scenarios.

4. Discussion

4.1. Influence of the Number of DGD Units. In this section, we
analyze the impact of the number of DGD units in IRR-Net
on the quality of reconstructed images through simulation,
phantom and in vivo experiments. Figure 6 shows the images
reconstructed using our joint framework and the metrics for

evaluating image quality, where the image reconstruction
modules consists of 1, 2, 3, and 4 DGD units, respectively.
From the figure, we can find that increasing the number of
DGD units does not significantly improve the quality of the
reconstructed image due to the architecture of initial recon-
struction followed by image optimization.

In the simulation experiment, compared with the archi-
tecture of “1 DGD unit+U-Net,” the peak signal-to-noise
ratio (PSNR) and structural similarity (SSIM) of the images
reconstructed using “4DGDunits+U-Net” are only increased
by 1.847% and 1.185%, respectively. In both phantom and
in vivo experiments, as the number of DGD units increases,
there is no significant difference in the visual effect of the
images, and the metrics only slightly improved. Compared
with “1 DGD unit+U-Net,” the contrast (CR) and noise
ratio (CNR) of the phantom images reconstructed by “4
DGD units+U-Net” are increased by approximately 1.7635%
and 0.8942%, respectively, and the CR and CNR of the in vivo
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FIGURE 4: Example of image reconstruction and object recognition from the scanning data of the experimental phantoms. (a) Photos of four
cylindrical phantoms and (b) images reconstructed using the DGDmethod [12] and the object recognition result. The GT of the binary labels
was obtained manually on the images. In the binary labels, “embedding” refers to the region enclosed by the yellow line. Unmarked parts are
labeled as “other”.

TABLE 7: Evaluation metrics for binary classification of experimental phantom images.

Method Acc Sens Spec F1 score Runtime (s)

HH (5 DGD+GoogLeNet) 0.9211 0.9338 0.8879 0.9502 23.6

IRR-Net 0.9108 0.9237 0.8721 0.9395 11.8

HH (DGD+U-Net+ResNet) 0.9108 0.9237 0.8721 0.9395 30.2

LH

1 DGD+GoogLeNet 0.8907 0.9123 0.8516 0.9206 10.3
TR+GoogLeNet 0.8743 0.8873 0.8354 0.9137 3.1
TR+AlexNet 0.8562 0.8694 0.8166 0.9007 2.6
TR+ResNet 0.8511 0.8647 0.8132 0.8916 2.6

HL (5 DGD+ SVM) 0.8461 0.8573 0.8094 0.8812 22.7

LL (TR+ SVM) 0.8088 0.8221 0.7689 0.8658 1.5
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images are increased by 1.4880% and 0.7974%, respectively.
However, adding additional DGD units in the joint framework
greatly extends the training time and image formation time, as
shown in Figure 6(g). Therefore, in order to find a balance
between time cost and image quality, we use a single DGD
unit for the initial reconstruction.

4.2. Necessity of Optimization Module. In this section, we
discuss the necessity of an optimization module in recon-
structing high-quality images in the proposed framework.
We compare the images reconstructed using a DGD unit
followed by an optimization module (i.e., 1 DGD+U-Net),
a single DGD unit, and traditional BP, respectively. Figure 7
presents the results of image reconstruction. From the figure,
we can observe the poor quality of BP reconstructions, with
obvious blurring, distortion, and overall low brightness. In
the images reconstructed using a single DGD unit, the
regions around the vessel wall and the lesions appear blurred,

and the visualization of areas containing multiple tissue com-
ponents is poor. In contrast, the images reconstructed using 1
DGD+U-Net have significantly improved quality, with clear
tissue boundaries and high contrast between different tissue
regions. This conclusion can also be drawn from the metrics
for evaluating the image quality shown in Figure 7(d)–7(f),
indicating that the use of optimization module improves the
quality of reconstruction.

4.3. Advantages and Limitations. Based on the analysis of all
the experimental results, we can find that our joint learning
framework improves the efficiency of image reconstruction
and object recognition compared with the separately learned
subtask networks. For example, in the binary classification
experiment of the phantom study, IRR-Net achieves a 12.6%
improvement in classification accuracy over the traditional
TR+ SVM approach, despite approximately eight times lon-
ger computation time. Compared with the HH (5 DGD

TABLE 8: Evaluation metrics for multiclass classification of in vivo images.

Method
Acc

F1 score Runtime (s)
Mandible Tongue Liver Kidney Spinal cord Abdom aorta Rib

HH (5 DGD+GoogLeNet) 0.8134 0.8067 0.8203 0.7946 0.8286 0.7798 0.7802 0.6251 24.1

IRR-Net 0.7941 0.7855 0.7995 0.7667 0.8109 0.7657 0.7575 0.6135 12.0

HH (DGD+U-Net+ResNet) 0.7941 0.7855 0.7995 0.7667 0.8109 0.7657 0.7575 0.6135 33.7

LH

1 DGD+GoogLeNet 0.7884 0.7811 0.7805 0.7602 0.7968 0.7613 0.7536 0.5904 10.9
TR+GoogLeNet 0.7733 0.7766 0.7741 0.7545 0.7839 0.7574 0.7504 0.5745 3.1
TR+AlexNet 0.7686 0.7705 0.7687 0.7478 0.7743 0.7536 0.7488 0.5544 2.7
TR+ResNet 0.7677 0.7700 0.7583 0.7443 0.7725 0.7524 0.7465 0.5537 2.7

HL (5 DGD+ SVM) 0.7670 0.7698 0.7452 0.7401 0.7708 0.7515 0.7440 0.5531 21.5

LL (TR+ SVM) 0.7560 0.7681 0.7227 0.7354 0.7686 0.7503 0.7380 0.5433 1.5
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FIGURE 5: Example of image reconstruction and tissue characterization from the whole-body scanning pressure data of living mice. The GT of
the multiclass labels was obtained manually by medical experts on the reconstructed images using the DGD-based approach [12]. In the
multiclass GT labels, the anatomical structures such as mandible, tongue, liver, kidney, spinal cord, abdom aorta, and rib are the regions
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FIGURE 6: Reconstructed images using our joint learning framework, where the image reconstruction modules consists of 1, 2, 3, and 4 DGD
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+GoogLeNet) method with the highest accuracy in our
experiment, the accuracy of IRR-Net is slightly lower by
about 1.13%, while the computation time on the GPU is
reduced from 23.6 to 11.8 s, and the training time is signifi-
cantly reduced from 27.6 to 5.3 hr. Our method utilizes a
CNN to implement joint learning for image reconstruction
and recognition, seeking a tradeoff between computational
efficiency and accuracy.

The acoustic inversion of PAT is ill-posed due to the
influence of complex factors involving incident irradiation,
acoustic propagation, and ultrasonic detection, such as
pulsed laser energy fluctuation, nonuniform light coverage,
incorrect sound speed assumption, heterogeneously distrib-
uted acoustic properties, imaging system calibration error,
limited-view scanning geometry, limited detector bandwidth,
and incomplete measurement data. In this work, to improve
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FIGURE 7: Images reconstructed using a single DGD unit and 1 DGD+U-Net, respectively, and the metrics for evaluating the image quality.
(a) Images reconstructed from the simulation data; (b) images reconstructed from the scanning data of the experimental phantoms; (c)
images reconstructed from the whole-body scanning data of living mice; (d) PSNR and SSIM of the reconstructed images from the simulation
data; (e) CR and CNR of the phantom images; and (f ) CR and CNR of the in vivo images.
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the image quality, we adopt the scheme of initial reconstruc-
tion followed by optimization. For image optimization or
enhancement tasks, it can be difficult to accurately identify
the causes of image quality degradation and implement tar-
geted solutions. In the initial reconstruction, the forward
imaging model can fully consider the nonideal scenarios to
avoid the factors that may lead to the degradation of image
quality. However, the computational cost of a physical model
is proportional to its completeness. The more comprehensive
and realistic the imaging process described by the model, the
higher the computational complexity required to solve its
inverse problem. In the forward imaging model established
in this work, the inhomogeneous acoustic medium with spa-
tially varying sound speed and density is taken into account.
Other nonideal factors mentioned above are not included.
The experimental results show that IRR-Net improves the
accuracy of multiclass classification compared to HL, LL, and
LH methods. However, the classification accuracy of IRR-
Net is slightly lower than that of HH (5 DGD+GoogLeNet),
although the latter has a much higher time cost. This may be
due to the fact that artifacts are not completely eliminated
during image formation, resulting in artifacts being misclas-
sified as lesions. One of our future work is to build a forward
physics model that can adequately describe real-world imag-
ing scenarios, further improve the quality of reconstructed
images, and find a tradeoff between accuracy and computa-
tional cost. In addition, we plan to conduct experiments to
test which model architecture (such as U-Net, ResNet, and
GAN) or U-Net parameters (such as the number of convolu-
tional filters and kernel size) can be used as optimization
modules to yield an optimal balance between image quality
and inference time.

5. Conclusions

This work presents a joint learning framework for simulta-
neous image reconstruction and target recognition. The
framework consists of the DGD module, the U-Net module,
and the ResNet-50 module. The DGD module maps the raw
photoacoustic signal to the optical absorption distribution
image. The forward imaging operator and its adjoint opera-
tor define the mapping relationship between the optical
absorption and the measured acoustic pressure, which are
included in the likelihood gradient calculation, but are sepa-
rated from the network training, thus reducing the complex-
ity of the network architecture and training. The U-Net
module optimizes the initial reconstruction and outputs
high-quality images. The ResNet-50 module is used for
image feature extraction and target recognition and outputs
the labeled image. The feasibility of this method has been
verified by the simulations, phantom, and in vivo studies. In
addition, experiments have been conducted to compare the
performance of the proposed method with state-of-the-art
nonlearning and learning-based methods. The results show
that IRR-Net achieves a balance between computational effi-
ciency and accuracy compared to separately trained net-
works for subtasks. This method provides a universal deep
learning scheme for simultaneous image reconstruction and

object recognition. When the forward imaging operator is
changed, it can be used for other tomographic imaging
modalities.

Data Availability

The data sets generated during and/or analyzed during the
current study are available from the corresponding author
upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors thank the Beijing University of Chemical Tech-
nology and the Institute of Materia Medica of the Chinese
Academy of Medical Sciences for their support and assis-
tance in the acquisition of the imaging data. This work was
financially supported by the National Natural Science Foun-
dations of China (no. 62071181).

References

[1] W. Choi, D. Oh, and C. Kim, “Practical photoacoustic
tomography: realistic limitations and technical solutions,”
Journal of Applied Physics, vol. 127, no. 23, Article ID 230903,
2020.

[2] R. Manwar, M. Zafar, and Q. Xu, “Signal and image processing
in biomedical photoacoustic imaging: a review,” Optics, vol. 2,
no. 1, pp. 1–24, 2021.

[3] M. H. Xu and L. V. Wang, “Universal back-projection algorithm
for photoacoustic computed tomography,” in Proceeding of SPIE
International Conference on Photons Plus Ultrasound: Imaging
and Sensing 2005, pp. 251–254, SPIE, San Jose, USA, 2005.

[4] Z. Sun, D. Han, and Y. Yuan, “2-D image reconstruction of
photoacoustic endoscopic imaging based on time-reversal,”
Computers in Biology and Medicine, vol. 76, pp. 60–68, 2016.

[5] J. Poudel, L. Yang, and M. A. Anastasio, “A survey of
computational frameworks for solving the acoustic inverse
problem in three-dimensional photoacoustic computed tomog-
raphy,” Physics in Medicine & Biology, vol. 64, Article ID
14TR01, 2019.

[6] P. Rajendran, A. Sharma, and M. Pramanik, “Photoacoustic
imaging aided with deep learning: a review,” Biomedical
Engineering Letters, vol. 12, no. 2, pp. 155–173, 2022.

[7] D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic source
detection and reflection artifact removal enabled by deep
learning,” IEEE Transactions on Medical Imaging, vol. 37,
no. 6, pp. 1464–1477, 2018.

[8] T. Vu, M. Li, H. Humayun, Y. Zhou, and J. Yao, “A generative
adversarial network for artifact removal in photoacoustic computed
tomography with a linear-array transducer,” Experimental Biology
and Medicine, vol. 245, no. 7, pp. 597–605, 2020.

[9] G. Godefroy, B. Arnal, and E. Bossy, “Compensating for
visibility artefacts in photoacoustic imaging with a deep learning
approach providing prediction uncertainties,” Photoacoustics,
vol. 21, Article ID 100218, 2021.

[10] A. Hauptmann, F. Lucka, M. Betcke et al., “Model-based learning
for accelerated, limited-view 3-D photoacoustic tomography,”
IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1382–
1393, 2018.

18 IET Signal Processing



[11] F. K. Joseph, A. Arora, P. Kancharla, M. K. A. Singh,
W. Steenbergen, and S. S. Channappayya, “Generative adversarial
network based photoacoustic image reconstruction from band
limited and limited-view data,” Proceedings of SPIE International
Conference on Photons Plus Ultrasound: Imaging and Sensing,
vol. 11642, Article ID 1164235, 2021.

[12] Z. Sun, X. Wang, and X. Yan, “An iterative gradient
convolutional neural network and its application in endoscopic
photoacoustic image formation from incomplete acoustic
measurement,” Neural Computing and Applications, vol. 33,
no. 14, pp. 8555–8574, 2021.

[13] H. Lan, C. Yang, and F. Gao, “A jointed feature fusion
framework for photoacoustic image reconstruction,” Photo-
acoustics, vol. 29, Article ID 100442, 2023.

[14] H. F. Zhang, K. Maslov, and L. V.Wang, “Automatic algorithm
for skin profile detection in photoacoustic microscopy,” Journal
of Biomedical Optics, vol. 14, no. 2, Article ID 024050, 2009.

[15] S. Mandal, X. L. Deán-Ben, and D. Razansky, “Visual quality
enhancement in optoacoustic tomography using active
contour segmentation priors,” IEEE Transactions on Medical
Imaging, vol. 35, no. 10, pp. 2209–2217, 2016.

[16] K. M. Meiburger, S. Y. Nam, E. Chung, L. J. Suggs,
S. Y. Emelianov, and F. Molinari, “Skeletonization algorithm-
based blood vessel quantification using in vivo 3D photoacoustic
imaging,” Physics in Medicine and Biology, vol. 61, no. 22,
Article ID 7994, 2016.

[17] T. Oruganti, J. G. Laufer, and B. E. Treeby, “Vessel filtering of
photoacoustic images,” Proceeding of SPIE International
Conference on Photons Plus Ultrasound: Imaging and Sensing
2013, vol. 8581, Article ID 85811W, 2013.

[18] P. Raumonen and T. Tarvainen, “Segmentation of vessel
structures fromphotoacoustic images with reliability assessment,”
Biomedical Optics Express, vol. 9, no. 7, pp. 2887–2904, 2018.

[19] M. Sun, C. Li, N. Chen et al., “Full three-dimensional
segmentation and quantification of tumor vessels for photo-
acoustic images,” Photoacoustics, vol. 20, Article ID 100212, 2020.

[20] C. Lutzweiler, R. Meier, and D. Razansky, “Optoacoustic image
segmentation based on signal domain analysis,” Photoacoustics,
vol. 3, no. 4, pp. 151–158, 2015.

[21] N.-K. Chlis, A. Karlas, N.-A. Fasoula et al., “A sparse deep
learning approach for automatic segmentation of human
vasculature in multispectral optoacoustic tomography,” Photo-
acoustics, vol. 20, Article ID 100203, 2020.

[22] B. Lafci, E. Merčep, S. Morscher, X. L. Deán-Ben, and
D. Razansky, “Deep learning for automatic segmentation
of hybrid optoacoustic ultrasound (OPUS) images,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 68, no. 3, pp. 688–696, 2021.

[23] A. R. Rajanna, R. Ptucha, S. Sinha, B. Chinni, V. Dogra, and
N. A. Rao, “Prostate cancer detection using photoacoustic
imaging and deep learning,” Electronic Imaging, vol. 28, Article ID
art00007, 2016.

[24] J. Zhang, B. Chen,M. Zhou, H. Lan, and F. Gao, “Photoacoustic
image classification and segmentation of breast cancer: a
feasibility study,” IEEE Access, vol. 7, pp. 5457–5466, 2019.

[25] Z. Wei, B. Liu, B. Dong, and L. Wei, “A joint reconstruction
and segmentation method for limited-angle X-ray tomogra-
phy,” IEEE Access, vol. 6, pp. 7780–7791, 2018.

[26] V. Corona, M. Benning, M. J. Ehrhardt et al., “Enhancing joint
reconstruction and segmentation with non-convex Bregman
iteration,” Inverse Problems, vol. 35, no. 5, Article ID 055001,
2019.

[27] L. Qiu and H. Ren, “RSegNet: a joint learning framework for
deformable registration and segmentation,” IEEE Transactions
on Automation Science and Engineering, vol. 19, no. 3,
pp. 2499–2513, 2022.

[28] Y. E. Boink, S. Manohar, and C. Brune, “A partially-learned
algorithm for joint photo-acoustic reconstruction and segmen-
tation,” IEEE Transactions on Medical Imaging, vol. 39, no. 1,
pp. 129–139, 2020.

[29] B. E. Treeby and B. T. Cox, “Modeling power law absorption
and dispersion for acoustic propagation using the fractional
Laplacian,” The Journal of the Acoustical Society of America,
vol. 127, no. 5, pp. 2741–2748, 2010.

[30] L. Mohammadi, H. Behnam, J. Tavakkoli, and M. Avanaki,
“Skull’s photoacoustic attenuation and dispersion modeling
with deterministic ray-tracing: towards real-time aberration
correction,” Sensors, vol. 19, no. 2, Article ID 345, 2019.

[31] M. Tabei, T. D. Mast, and R. C. Waag, “A k-space method for
coupled first-order acoustic propagation equations,” The
Journal of the Acoustical Society of America, vol. 111, no. 1,
pp. 53–63, 2002.

[32] J. Adler and O. Öktem, “Solving ill-posed inverse problems
using iterative deep neural networks,” Inverse Problems, vol. 33,
no. 12, Article ID 124007, 2017.

[33] K. He, X. Zhang, and S. Ren, “Deep residual learning for
image recognition,” in Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–
778, IEEE, Las Vegas, NV, USA, 2016.

[34] L. Wang, S. L. Jacques, and L. Zheng, “MCML—Monte Carlo
modeling of light transport in multi-layered tissues,” Computer
Methods and Programs in Biomedicine, vol. 47, no. 2, pp. 131–
146, 1995.

[35] B. E. Treeby and B. T. Cox, “k-Wave: MATLAB toolbox for
the simulation and reconstruction of photoacoustic wave
fields.” Journal of Biomedical Optics, vol. 15, no. 2, Article ID
021314, 2010.

[36] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” arXiv preprint arXiv: 1412.6980, 2014.

[37] X. Chen, S. Kar, and D. A. Ralescu, “Cross-entropy measure of
uncertain variables,” Information Sciences, vol. 201, pp. 53–
60, 2012.

[38] G.-H. Fu, F. Xu, B.-Y. Zhang, and L.-Z. Yi, “Stable variable
selection of class-imbalanced data with precision–recall
criterion,” Chemometrics and Intelligent Laboratory Systems,
vol. 171, pp. 241–250, 2017.

IET Signal Processing 19




