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Accurate prediction of financial market trends can have a great impact on maximizing profits and avoiding risks. Conventional
methods, e.g., regression or SVR, or end-to-end training approaches, coined as deep learning algorithms, have restraints as a
consequence of capturing noisy and unnecessary data. Financial market’s data are composed of stock’s price time series that are
correlated, and each time series has both global and local dynamics. Inspired by recent advancements in disentanglement
representation learning, in this paper, we present a promising model for predicting financial markets that learn disentangled
representations of features and eliminate those features that cause interference. Our model uses the informer encoder to extract
features, capturing global–local patterns by using the time and frequency domains, augmenting the clean features with time and
frequency-based features, and using the decoder to predict. To be more specific, we adopt contrastive learning in the time and
frequency domains to learn both global and local patterns. We argue that our methodology, disentangling and learning the
influential factors, holds the potential for more accurate predictions and a better understanding of how time series move and
behave. We conducted our experiments using the S&P 500, CSI 300, Hang Seng, and Nikkei 225 stock market datasets to predict
their next-day closing prices. The results showed that our model outperformed existing methods in terms of prediction error (mean
squared error and mean absolute error), financial risk measurement (volatility and max drawdown), and prediction net curves,
which means that it may enhance traders’ profits.

1. Introduction

Financial markets act as a significant element of economic
systems, and predicting them is both a critical ingredient and
a challenging problem for market traders and scholars. Many
methods, including technical and fundamental analysis
[1, 2], have been employed to study the historical behavior
of financial markets. Sound financial decision-making is a
massive challenge since it depends on accurate prediction,
transparency, and trust [3]. Given how quickly machine
learning (ML) and, in particular, deep learning (DL) techni-
ques are growing, studying, and understanding stock market
movements is an interesting task for ML experts. Indeed, DL
methods combined with financial time series prediction
methods are among the most attractive research topics as a
result of the complex nature of the financial markets [4].

In recent literature, recurrence, convolutional, or hybrid
models have proven to be outstanding frameworks for finan-
cial market prediction. However, they are not devoid of lim-
itations, including ignoring the long-sequence terms of time
series that may cause valuable information to be missed [5],
vanishing and exploding gradients [3], high time complexity
[6], weak of parallelism, lack of explainability, and so on. In
order to connect various data points of a sequence model and
build a representation of them, self-attention, sometimes
called intra-attention, was introduced to eliminate shortcom-
ings of earlier frameworks [7]. Multihead attention, as the
innovation of transformer [7], brings several strengths to the
table, like capturing global dependencies, efficient parallelism
[8], and context-aware representations [9], making it a valu-
able tool in a range of applications, like text classification [10]
and time series prediction [11]. Researchers should be aware
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of the limitations of the self-attention mechanism used in
transformers [7]. These include the fact that its core opera-
tion, the scaled dot product, has quadratic computational
complexity and the slowness of inference. Several endeavors
have been undertaken to get around this limitation by study-
ing the correlation between the key and the query, which are
the fundamental constituents of the attention value. As a case
in point, Child et al. [12] suggested that the self-attention
probability may display potential sparsity, whereas this paper
[13] has evinced that the softmax function can be repre-
sented as a probability distribution. One method used for
addressing such limitations is ProbSparse self-attention,
also denoted as informer [5], which employs the concept
of probability through Kullback–Leibler divergence to mea-
sure query sparsity. Informer demonstrated its effectiveness
in different fields, including time series prediction [14], heat-
ing load prediction [15], and wind power prediction [16].

These methods rely on the end-to-end training of the
models using observable data. This means it often picks up
unwanted or noisy data, propagates errors, and cannot be
interpreted. In contrast, the concept of disentanglement
learning [17] is relatively new and aims to improve explain-
ability and interpretability by capturing and isolating the
main important beneficial factors that make up the data.
Learning disentangled representation has been used in a
set of studies and yielded impressive results, including devel-
oping a new fashion design based on disentangling the fea-
tures of the images [18], video prediction [19], and medical
imaging [20].

Time series are typically modeled through two funda-
mental methods: (1) in the time domain, which captures
temporal correlations between individual data points and
helps identify patterns and trends, and (2) in the frequency
domain, which extracts relevant data that display periodic or
quasiperiodic patterns and provides the spectral content of a
time series [21, 22].

Each financial market movement is composed of specific
movements of the stocks, called local movements, and
changes related to the overall market, called global move-
ments [17]. These movements can be helpful in providing
insights for making decisions about the models and provid-
ing answers to people who demand explanations for specific
decisions. Capturing and separating the underlying factors
that explain the data can provide advantages such as reduc-
ing sample complexity, offering interpretation potential, and
overcoming some DL challenges like the black-box nature of
such algorithms. For this reason, learning disentangled
global–local representations, which are more valuable for
financial market prediction, is the aim of this work.

Unsupervised disentanglement learning is challenging,
and that is why contrastive learning, as a promising approach
to self-supervised learning, is used to enhance the results by
setting similar samples close to each other while dissimilar
ones are pushed far apart [23, 24].

Financial markets may have a scarcity of labeled data, which
is essential for a good DL model, and data augmentation is a
useful approach for improving both the quantity and the quality
of the training data [22] by applying transformations or

perturbations. Conventional augmenting methods, like scaling
and shifting, may result in a mismatch between the augmented
data and the target [24].

In this paper, we propose GLAD (Global–Local Approach;
Disentanglement Learning for Financial Market Prediction), a
prediction model that disentangles financial market move-
ments into global and local patterns. Our framework makes
use of an informer module to capture the temporal feature
relationships between historical data. Afterward, time and fre-
quency domains are used to capture global–local representa-
tion, i.e., (1) a mixture of autoregressive experts is used to
extract global representations, and (2) a discrete Fourier trans-
form (DFT) is applied to represent local features. We will use
(1) time-based augmentation on global representation and (2)
frequency-based augmentation on local representation to aug-
ment the extracted features. Contrastive learning, inspired by
Woo et al. [25], is used to train global and local representations.
We use more prominent stock market indexes, such as the
S&P 500, Hang Seng, Shanghai and Shenzhen 300 (CSI 300),
andNikkei 225. In all of the experiments, the accuracymetrics
(mean squared error (MSE) andmean absolute error (MAE)),
risk measurement, and prediction net curves show that our
results are better than the state of the art.

To sum up, our significant contributions include the
following:

(1) We propose GLAD, a novel approach for predicting
financial market movements using global and local
disentanglement with time–frequency contrastive
learning.

(2) We overcome the black-box aspect of DL and offer
interpretability, how the algorithm works, and
explainable artificial intelligence (XAI) by separating
the underlying factors.

(3) To tackle the problem of limited available data, we
augmented the extracted features in both time and
frequency domains.

(4) Our model can provide traders with the source of
changes in the financial markets, which will funda-
mentally increase profits and improve people’s
decision-making reliability.

This paper’s outline is as follows: the literature that has
relevance to our work is discussed in the next section. In
Section 3, we provide an overview of the theoretical under-
pinnings of our model. Our model’s framework is detailed in
Section 4. Section 5 describes the experiments, including
parameter settings and evaluation criteria. Section 6 con-
cludes this work.

2. Related Works

Over the recent years of renovation, interest among many
academics and market participants has grown exponentially
in the financial markets, and this has motivated the use of DL
methods to provide more accurate solutions for predicting
financial markets [1]. As a result of their inherent complex-
ity, financial markets are always at the core of challenging
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problems. Prior works in the field of DL usage for analyzing
financial markets may be divided into two main categories:

(1) End-to-end learning: These techniques make use of
observed data. They are proficient prediction tools,
but they possess notable limitations, like learning
unnecessary or noisy data. For stock closing price
prediction, Lu et al. [26] integrated convolutional
neural networks (CNN), bidirectional long short-
term memory (BiLSTM), and attention mechanism
(AM) to proposed a CNN-BiLSTM-AM architecture.
In Cheung et al.’s [27] study, 3D-CNN was used to
find a more comprehensive set of elements that may
affect crop output and price variations. Using CNN
and long short-term memory (LSTM) models to
increase accuracy rate, Chen and Huang [28] used
eight different input features. They conclude that
the proposed method can improve prediction accu-
racy significantly. By converting technical indicators
into 2D pictures and analyzing the pictures using a
CNN-LSTM-ResNet architecture, Khodaee et al. [29]
predicted stock market turning points. In a more
recent work,Wang et al. [3] used a transformermodel
for forecasting stock market indices. Furthermore, in
order to capture the temporal dependency of financial
data, Zhang et al. [30] used features for five consecu-
tive calendar days in a transformer architecture and
reported favorable results. Some scholars have also
shown interest in sentiment analysis for financial
market prediction, e.g., Köksal and Özgür [31] pre-
dicted market trends by analyzing social media com-
ments and news. Numerous scholarly investigations
have been conducted to explore the concept of feature
engineering, like this paper [2], which demonstrates
the use of the discrete wavelet transform by the
authors for decomposing the financial time series
data into approximation and detail coefficients. Fur-
thermore, the researchers used chicken swarm opti-
mization as an optimization technique in order to
determine the most optimal subset of characteristics.

(2) Disentanglementmethods: Relying on the premise that
the observed data consists of the interaction of various
sources, these techniques prioritize capturing the
essential factors and diverse explanatory sources
from the observed data and isolating them from
each other. The concept of encoder–decoder was
used in Hadad et al.’s [32] study to map the data of
a financial market to its specified and unspecified
components. Chen and Huang [17] focused on disen-
tangling excess and market returns of stocks and
showed that, using this approach, the prediction out-
come was improved. By disentangling news into posi-
tive and negative sentiment, Costola et al. [33]
investigated the impact of news on financial markets.
Using the generalized autoregressive conditional het-
eroscedasticity (GARCH-MIDAS) model, this study
[34] found that oil supply shocks and oil consumption

demand shocks had a comparable effect on the stock
market volatilities in Nigeria and South Africa.

Even though generally sound conclusions have been
drawn from the prior efforts, limitations like the capture of
noisy data or incorrect correlations, as well as constraints
related to model capacity, have been pointed out. As of
late, self-attention mechanisms have shown exceptional skill
in modeling the complex dependencies of time-series data.
Financial markets data usually contain temporal correlations
[35], while end-to-end learning could be used to model these
correlations, it does not provide interpretable predictions, as
does disentanglement learning. This work delves explicitly
into these limitations and strengthens positive points for
better prediction results as well as interpretability, which is
crucial for many downstream tasks [36]. This effort is based
on the promising progress of disentanglement methods and
similar ideas.

3. Global–Local Disentanglement and
Its Interpretation

Financial time series are intricate, noisy, and frequently show
significant correlation, which means that a variable’s past
values have weight on its current value along with the impact
of other stocks movements. As a result, it is essential to
understand the main factors that generate the observed
data for analysis and prediction purposes. Our work will
begin based on the following three theoretical pillars:

(1) Data from financial markets are highly correlated
[37], and this is a result of multiple stock market
factors being cointegrated, which leads to both rich
and complicated observed data. Disentangling these
factors leads to the extraction of meaningful explan-
atory sources and has a significant impact on the
interpretability of financial market prediction models
as well as their predictability [36–38].

(2) Data from financial markets consist of both clean
features and noise [28]. We can make the best pre-
dictions if we find features that accurately describe
both local and global patterns [17].

(3) When analyzing the fact that each stock’s feature
represents one dimension in a financial market data-
set, it is quickly concluded that the prediction task is
a high-dimensional problem, which is in general a
great challenge [39]. To improve prediction rates, it is
necessary to take into account both global and local
representations [39], as well as the benefits for
traders.

4. Problem Formulation

Financial market data consist of data generated from market
behavior or overall patterns, referred to as global representa-
tion, and specific stock movements, called local dynamics
[17]. Suppose X is the price records of a group of stocks in
a market, i.e.:
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X ¼ xi;1:To

È É
n
i¼1 ; ð1Þ

where Xi; 1:To
¼ xi; 1;
È

xi; 2;…; xi; to ;…; xi;Ti
g, T0 is to the num-

ber of time points in a stock, xi; to is the observation of stock i
at time step to, and n is the number of input variables. The
ultimate objective of a prediction model is to inference the
output yi; 1:To

¼ yi; 1;
È

yi; 2;…; yi; to ;…; yi;Ti
g, where yi; 1:To

represents the future values based on the input time series.

4.1. Encoder–Decoder Models. In several prevalent models,
the observed data are encoded into hidden representations,
and from the hidden representations, the output representa-
tions yi; t are inferred. The precision of the results depends on
how well the necessary data is captured and on their
interdependencies.

4.2. Disentangled Representation. These models aim to cap-
ture the underlying factors that generate the raw data. Each
xi has global and local representations. In other words, stock
market prices can be decomposed into two separate parts as
follows:

(1) Local representations xi −ð localÞ are the specific
stock’s movements that reflect the movement of a
stock itself.

(2) Global representation (X-Global) is the behavior of a
market that consists of overall stock movement and
the shared value with other stocks in the same mar-
ket, which is sometimes called the trend.

Our objective is to improve financial market prediction
and help traders figure out the source of variation in stock
movements. Separating financial market data into global and
local patterns with effective dependency capture can accom-
plish this.

5. Methodology

In light of what has been said above, a prediction framework
that disentangles financial market movements into global
and local representations, called GLAD: Global–Local
Approach; Disentanglement Learning for Financial Market
Prediction, is proposed in this paper. Instead of end-to-end
learning from observed data, this work aims to capture and
learn usable features from observed data. Please refer to
Figure 1 for an overview of our approach, in which an
informer encoder–decoder [5] is the backbone of the model.

5.1. Encoder: Extraction of Sequential Input Dependencies.
First, the input is fed to an informer encoder, which learns
the mapping connection between the long-term relationships
of the sequential input. To this end, the input sequence is
shaped into a matrix X 2Rdmodel×xT , where dmodel represents
the model dimension. For the embedding layer, we use a time
feature to understand the sequence of our stock prices over
time, and we use sine and cosine functions to encode data
location. Encoder layers receive a combined input of posi-
tional encoding and embedded input. The self-attention
mechanism in Vaswani et al.’s [7] study is based on the tuple

of qi, ki, and vi for each row, which represent query, key, and
value, respectively.

In the standard transformer [7], all elements of the input
sequence attend to each other, resulting in a dense attention
matrix, which makes the complexity of computing the atten-
tion scores for all pairs of elements prohibitively high. In place
of using a scaled dot product, the lens of a kernel-based atten-
tion study [13] suggests viewing attention mechanisms as
implicitly defining a kernel or similarity measure between
elements in the input sequence. The attention mechanism
can be seen as implicitly computing a kernel matrix that
quantifies the similarity or relevance between pairs of ele-
ments. At the same time, some works, like [12], indicated
that there are sparse patterns in self-attention. It was proposed
to use “selective” counting techniques on all p kj qij jÀ Á

to deter-
mine which elements are attended to and which are ignored.

In view of what was found above, Tsai et al. [13] and
Child et al. [12], informer [5], as utilized in our model,
proposed ProbSparse attention. ProbSparse attention deter-
mines which queries are “important” by comparing the
probability of the key-query pair p ki qij jð Þ with that of a
uniform distribution q kj qij jÀ Á

through Kullback–Leibler
divergence. Multihead attention addresses the issue of lost
information by enabling each head to produce distinct sparse
query-key pairs for every head. ProbSparse attention allows
the model to focus on the most important elements and
capture long-range dependencies without attending to all
pairwise combinations. As a result of the ProbSparse self-
attention mechanism, a 1D convolutional filter is used on the
temporal dimension, along with an activation function. This
is done to capture the better features and avoid the redun-
dant combinations of value V. Following that, a max-pooling
layer is added with a stride value of 2.

5.2. Decoder: Dynamically Inferring the Output. Instead of
inferring the output state step by step from the hidden state,
as most traditional decoders do, our decoder, as used in Zhou
et al.’s [5] study, outputs by one forward procedure by feed-
ing the following vectors as: Xt

de ¼Concat xttoken;
À

xtoÞ 2
R LtokenþLyð Þ×dmodel , where Xt

de is the decoder inputs, Xt
token is

the start token length of decoder, Ltoken is a sequence in the
input, Ly is the output’s length, xo is the target sequence that pads
to zero, and Concat is the concatenation operator. In other
words, decoder’s input is Concat (start token length of the
decoder, zero padding of target elements). After that, the weight
will be measured, and the output will be inferred. The final layer
will be a fully connected layer, and the prediction type deter-
mines whether the result is univariant or multivariate.

5.3. Global Feature Disentangler. The global feature disen-
tangler is designed to capture global representation. It
receives the output of the informer encoder as input and
passes it through a mixture of Lþ 1 autoregressive experts,
which consist of a 1D causal convolution layer as it can
effectively capture the continuous representation within a
time series [40] and the kernel size of the ith expert is 2i

which determines the receptive field of the convolutional
operation. The causal nature of these layers makes them
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particularly suitable for this module, where temporal order
and causality are important. Finally, an average-pooling
operation, for retaining important information and feature
aggregation, is used to get the final global representations.

5.4. Time-Based Augmentation. Through a time-based aug-
mentation, which consists of scaling, shifting, and jittering
techniques, as three typical augmentation methods. For scal-
ing and shifting, we used x̃t ¼ ϵxt and x̃t ¼ ϵþ xt , respec-
tively, while jittering was performed as follows: x̃t ¼ ϵt þ xt ,
where x̃t is the output of an augmented method, xt is a time
step, ϵ is a sample of random scalar value ϵ ∼N 0;ð 0:5Þ, and
ϵ̃t is Gaussian noise from distribution ϵt ∼N 0;ð 0:5Þ.
5.5. Time Domain Contrastive Loss.We used the concept of a
dynamic dictionary of MoCo [41] as contrastive learning to
learn discriminative global representations. MoCo uses the
momentum principle, which leverages a momentum-based
update mechanism and contrastive learning to train deep

neural networks on unlabeled data, to obtain the positive
pairs, which represent samples of data augmentations, and
a dynamic dictionary that contains a queue of negative pairs
obtained by considering all other samples as negative sam-
ples. From Woo et al.’s [25] study, we took the loss function
for similarity measured by dot product as shown below:

Lglobal ¼ ∑
N

i¼1
− log

exp qi ⋅
ki
τ

� �
exp qi ⋅

ki
τ

� �
þ ∑K

j¼1exp qi ⋅
kj
τ

� � ; ð2Þ

where τ is the temperature hyperparameter, q is an encoded
query, and k is a set of encoded samples.

5.6. Local Feature Disentangler. This section’s primary objec-
tive is to obtain a local representation of the data by using the
DFT in view of its ability to capture intrafrequency interac-
tions [42] and detect periodic patterns. DFT is used to map

Informer decoder

Global contrastive
loss

Local contrastive
loss

Frequency-based
augmentation

Local feature
disentangler

Informer encoder
(a)

x

(b)

(d)

(f)

(h)

(g)

(e)

(c)
Global feature
disentangler

Time-based
augmentation

FIGURE 1: Overview of GLAD architecture. The model is made up of the following components: (a) an informer encoder to capture the
temporal relationship between historical data, (b) a global feature disentangler that uses a mixture of autoregressive experts, (c) a local feature
disentangler that acts in frequency domain, (d) time-based augmentation is used to augment the global feature by jitter, shift, and scale, (e)
frequency-based augmentation by adding frequency, (f ) time contrastive loss is used as discriminative global learning, (g) frequency
contrastive loss which is used to discriminate local learning, and (h) an informant decoder which is used for final prediction.
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the time-domain representations into the frequency domain
along the temporal dimension by converting a discrete
sequence of N time-domain samples into N frequency-
domain components. The resulting frequency components
represent the amplitudes and phases of sinusoidal signals.
The Fourier transform coefficients are learned using a learn-
able Fourier layer, which is realized using a per-element
linear layer. The inverse DFT method was used to transform
the representation back to the time domain. As a result of
this layer, we get a matrix that represents the local feature
representation. The equation utilized in Woo et al.’s [25]
study was employed to represent the constituent of the i,
kth element of the output:

V Lð Þ
i;k ¼ F−1 ∑

d

j¼1
Ai;j;kF eVÀ Á

i;j þ Bi;k

 !
; ð3Þ

where F is the number of frequencies, d is the latent dimen-
sion, A2CF×d×dl and B2CF×dl are the parameters, and dl is
the local dimension.

5.7. Frequency-Based Augmentation. We took the idea for
frequency-based augmentation from Zhang et al.’s [24] study
(https://github.com/mims-harvard/TFC-pretraining.git),
whereby frequencies are added or removed based on the
frequency’s characteristics and generate frequency-based
representations. First, we randomly choose E to represent
the number of frequency components (amplitude and
phase). We will reduce the amplitude of frequency compo-
nents to zero if we want to remove them, and increase it to
α ⋅ Am for adding, where Am is the maximum frequency–
amplitude and α is a predefined constant.

5.8. Frequency-Domain Contrastive Loss. To discriminate
between different local patterns, we apply the loss function
that was previously employed in Woo et al.’s [25] study.

Lamp ¼
1
FN

∑
F

i¼1
∑
N

j¼1
− log

exp F jð Þ
i;:

��� ����
⋅ F jð Þ

i;:

� � 0��� ���
exp F jð Þ

i;:

��� ����
⋅ F jð Þ 0

i;:

� ���� ���þ ∑N
k≠jexp F jð Þ

i;:

��� ��� ⋅ F kð Þ
i;:

��� ���� � ; ð4Þ

Lphase ¼
1
FN

∑
F

i¼1
∑
N

j¼1
− log

exp ϕF jð Þ
i;:

� �
⋅ ϕ F jð Þ

i;:

� �0
expϕ F jð Þ

i;:

� �
⋅ ϕ F jð Þ

i;:

� � 0� �
þ ∑N

k≠jexpϕ F jð Þ
i;: ⋅ ϕF kð Þ

i;:

� � ; ð5Þ

where F is the number of frequencies and F j
i; :, and F j

i; :

� �0
are

the frequency components and their augmentations,
respectively.

6. Experiments and Discussion

In the sections that follow, we discuss the results of our in-
depth empirical study of the model and how it compares to
other methods of predicting financial markets.

6.1. Datasets. We conducted extensive experiments on four
financial market indices, i.e., the S&P 500, the Nikkei 225,
the CSI, and the HSI, to demonstrate the predictive ability of
our model. We model these daily indices over the period
from January 1, 2010 to December 31, 2020.

6.1.1. Features Setting.We set the “close” feature as the target
value for our prediction while the input data consists of two
scenarios: (1) univariate input, which was the “close,” and (2)
multivariate features, including “close, open, high, low, adj
close, and volume”.

6.1.2. Data Processing. The raw data for each feature are a 1D
time series; to achieve good data quality, we scale the features
to unit variance and zero mean to decrease volatility.

6.1.3. Data Setup. We use the time feature with a fixed-size
rolling window to ensure whether the values are taken at
equal intervals or not. For the input data, we set the input
length for the encoder to 9 and the decoder to 2 to predict the
next day’s price.

6.2. Experimental Details. The basic information about com-
ponents and setups is summarized in the following sections.

6.2.1. Metrics. MSE and MAE on each prediction window
(averaging in the multivariate case) were used to evaluate this
work, with the dataset split 70/30 between train and test, as
shown in the following equations:

MSE¼ 1
N

∑
N

i¼1
byi − yið Þ2 ; ð6Þ

MAE¼ 1
N

∑
N

i¼1
byi − yij j ; ð7Þ

where yi, byi , and N are the actual value, the predicted value,
and the sample size, respectively.
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6.2.2. Risks Measurement. In addition to accuracy, it is imper-
ative to evaluate pertinent facets of the trading process, like
the measurement of risks related to stock returns, which may
be calculated using both real y and predicted values by . The
expression for the return R at time t+ 1 may be written as [3]:

Rtþ1 ¼ ln
yt þ 1
yt

× sign bytþ1 − yt
À Á

: ð8Þ

where sign bytþ1 −
À

ytÞ is the sing function. In this work, two
risk-related concepts will be utilized as follows:

(1) Volatility: It is a statistical indicator of how much
stock returns have variated over time [3, 43] and
can be expressed as:

Volatility ¼ σ Rið Þ : ð9Þ

(2) Max drawdown: It measures the most adverse poten-
tial result that may arise throughout a trade [3, 44]. It
might be written as:

Max drawdown ¼max
i< j

NVj − NVi

NVi
; ð10Þ

where NV(.) represents the total return.

6.2.3. Environment Configurations. The experimental envi-
ronment and settings are described in Table 1.

6.2.4. Hyperparameter Tuning. For our model, the backbone
encoder used is an informer [5]. We used the Adam opti-
mizer with learning rate starting from 1e−4, and set the batch
size to 32, temperature to 0.07, momentum to 0.999, α¼ 0:5,
and E¼ 1 for frequency augmentation. The number of heads
is 8. The encoder contains a three-layer stack, while the
decoder consists of two layers. The kernel width of distilla-
tion is 3.

6.3. Baselines.We benchmarked our model with state-of-the-
art approaches to demonstrate how well our model per-
formed. The CoST and informer results are based on our
replication with dataset modifications for day, week, and
year, while the results of the transformer from the paper
are as is. The details are as follows:

(1) End-to-end learning methods (transformer and
informer): These methods are based on self-attention
mechanisms and end-to-end training.
(a) Transformer [3]: This work predicts univariate

stocks using a transformer encoder–decoder
architecture.

(b) Informer [5]: This paper was used to predict
ETT (https://github.com/zhouhaoyi/ETDataset.
gi), ECL(https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014), and weather
(https://www.ncei.noaa.gov/data/local-clima
tologicaldata/) dataset and we used the open
source implementation (https://github.com/
zhouhaoyi/Informer2020.gi) as is.

(2) Disentanglement methods: The main concept behind
these techniques is to capture the underlying compo-
nents of the observed data in the form of clean fea-
tures and use these features to learn the model.
(a) CoST [25]: This model (https://github.com/sale

sforce/CoST.gi) was used to predict ETT, electricity,
and weather by using TS2Vec [45] as backbone,
capturing seasonal-trend by time–frequency analy-
sis, and learning them by contrastive loss.

(b) GLAD_a: As a backbone, we utilize the informer
[5], and using time–frequency domain character-
istics, we were able to capture the global–local
patterns.

(c) GLAD_b: We used the transformer [7] as back-
bone and captured the global–local by using
time–frequency domain features.

(d) GLAD_c: We used the structure of GLAD_b and
improve the results by contrastive learning.

6.4. Interpretability and Explainability of Our Model. There is
a fine line between the concepts of interpretability and
explainability. Even with their importance, they do not
receive the same level of research attention in time series
prediction applications as they do in other fields, like com-
puter vision. Our model attempts to attain both, and a brief
discussion of each is provided below.

6.4.1. Interpretability: Understanding a Cause with an Effect.
The interpretability principle, which is essential for down-
stream tasks, is about how well decision-makers, like research-
ers or traders, can understand why a decision was made [46].
To make a model that can be understood, the most important
representations must be extracted, and then the model must be
trained to learn them [47]. The underlying factors of financial
market data, as with other time series, may be represented by
time–frequency domains. In prior works, the raw time series
were separated into their factors as they were in the original
input domain like [17]. This means that the interpretability was
based on the time domain. CoST [25] performed separation in

TABLE 1: The experimental environments’ setups.

Configuration

Processor 2.9GHz Quad-Core Intel Core i7
Operating system macOS Ventura Version 13.2.1
Python version Python 3.9.13 64-bit
Pytorch version Pytorch 1.8.0
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the latent space, not the raw data, utilizing the time–frequency
domain, whereas the augmentations are conducted in the time
domain. Our method separated the latent space, not the raw
data, using time–frequency domains and augmented the clean
features, which means the time and frequency domains were
augmented.

6.4.2. Explainability: Providing Meaningful Explanations for
the Model’s Decisions. One problem with traditional DL
models is that we cannot see inside them to find out what
contents they hold. As a result of the black box, even the
people who created it cannot explain why a certain result was
obtained. A model is considered explainable if its learning
content is understandable, and decomposability models, like
the disentanglement approach, are used to achieve explain-
ability. A multistep model and a good latent representation
of data inside the model, as well as extracting the key ele-
ments of this representation, provide an explanation of the
content of the model [48], and this is what our model
includes, which tries to overcome the black box nature
of DL.

6.5. Results and Analysis. Our experimental results on four
datasets are demonstrated in Tables 2 and 3. The best results
are highlighted in boldface, while the second-best results are
enclosed within brackets. Table 2 provides a summary of
the GLAD’s results and the top-performing baselines for
the univariate setting, while Table 3 reports the results of

the multivariate setting of the GLAD. Figures 2 and 3 present
the fitted curves, in training and testing sets, generated by
GLAD and other models for four main stock market indices.
Figure 4 presents a sample of the fitted curves (40 days) in
testing, and our GLAD was closer to the real data. The pre-
dicted values are close to the real data in both the training
and testing sets. In addition to evaluating the accuracy of the
model, we employed max drawdown and volatility, two com-
monly used financial market risk indicators, to appraise its
performance. Table 4 presents the outcomes for volatility
and max drawdown, indicating that GLAD has a competitive
performance in these measures.

6.5.1. Ablation Study. To evaluate the efficacy of each GLAD
module, we design two main approaches: (a) end-to-end
learning that utilizes raw data in the learning, whether via
transformer [3] or informer [5] and (b) representation learn-
ing with two scenarios: (1) disentangle the output features
from the encoder into global–local representations and (2)
implement contrastive learning. The results demonstrate
that all of GLAD’s components are indispensable, as may be
seen in Table 2 and Figure 2. In addition to this, we observed
the following other phenomena: (1) self-attention mechan-
isms, transformer and informer, showed close results to
CoST, with informer having superiority, (2) the global–local
disentanglement models outperformed transformer and
informer as examples of end-to-end learning, (3) informer’s

TABLE 2: Results of univariate price prediction on four datasets.

Stock
End-to-end learning Representation learning

Metric Transformer [3] Informer [5] CoST [25] GLAD_b GLAD_c GLAD_a GLAD

S&P 500 index
MSE 0.0037 0.0029 0.0038 0.0035 (0.0026) 0.0027 0.0025
MAE 0.0131 0.0125 0.0129 0.0128 (0.0117) 0.0121 0.0111

Nikkei 225
MSE 0.0002 0.00015 0.0004 0.00018 (0.00009) 0.00012 0.00006
MAE 0.0017 0.0013 0.0019 0.0015 0.0006 (0.0012) 0.0006

Hang Seng HSI
MSE 0.0005 0.00045 0.00091 0.00049 (0.00028) 0.00039 0.00023
MAE 0.0025 0.0022 0.003 0.0023 0.0011 (0.0016) 0.0011

CSI
MSE 0.0004 0.00029 0.0009 0.00035 (0.00019) 0.00026 0.00015
MAE 0.0025 0.0021 0.0029 0.0022 (0.0015) 0.0018 0.0012

The best results are highlighted in boldface, while the second-best results are enclosed within brackets.

TABLE 3: Multivariant prices prediction results on four datasets.

S&P 500 index Nikkei 225

Univariant Multivariant Univariant Multivariant

MSE 0.0025 0.0031 MSE 0.00006 0.00095
MAE 0.0111 0.0159 MAE 0.0006 0.0073

HSI CSI
Univariant Multivariant Univariant Multivariant

MSE 0.00023 0.00092 MSE 0.00015 0.00092
MAE 0.0011 0.0084 MAE 0.0012 0.0075
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performance is superior to that of the transformer, and (4)
contrastive learning improves performance over the baselines.

7. Conclusion and Future Work

Our findings point out that disentangling, when it comes to
stock market prediction, is a more productive model than
conventional end-to-end methods in both prediction error
(7.21% improvement in MSE and 4.53% improvement in
MAE) and net value analysis, along with financial risk mea-
surement. We have based our work on theoretical back-
ground through the nature of financial market movements
and experimentally verified it, which showed that our model
outperformed the state-of-the-art approaches. For financial
market prediction, we introduced GLAD, a framework that
disentangles global and local representations. Augmenting
financial markets data is a challenge because of the time-
stamps, which may generate a mismatch between the aug-
mented data (generated by methods such as shifts, scale, and
others) and the target. In this paper, we inspired the idea of
Zhang et al. [24], but we augmented the extracted features in
(1) the time domain, where we adopt shifts, scale, and jitter
on global representation, and (2) the frequency domain, in
which we add or remove frequency on local representation.
Empirical results demonstrated that contrastive learning
may improve both learning and the prediction model. Our
results make it easier for real-world users to understand
what’s going on by showing them where the variance and
influencing factors come from. In our future research, we will
investigate (1) whether this model can predict new stocks to
solve the data scarcity challenge by generating local parame-
ters and (2) whether our model has the capability to extend
to other time-series datasets.
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