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Chemical contents, the important quality indicators are crucial for the modeling of sintering process. However, the lack of these
data can result in the biasedness of state estimation in sintering process. It, thus, greatly reduces the accuracy of modeling.
Although there are some general imputation methods to tackle the data lackness, they rarely consider the interoutputs correlation
and the negative impacts caused by incorrect prefilling. In this article, a novel sparse multioutput Gaussian convolution process
(MGCP) modeling framework is proposed for data imputation. MGCP can flexibly mine the relationships between the outputs by a
convolution of a sharing latent function and different Gaussian kernels. Moreover, the penalization terms are designed to weaken
the false relationship between these outputs. To generalize the MGCP to a long-period case, dynamic time warping term is
introduced to keep the global similarity between the original and estimated time series. Compared with several existing methods,
the proposed method shows great superiority in sintering raw material contents estimation with real-world data.

1. Introduction

Sintering process is widely used to manufacture sinter ore,
which is one of the main raw materials for pig iron. As
illustrated in Figure 1, the iron ore mix, dolomite, limestone,
and return sinter are put together as the raw material of
sintering process. These materials are mixed, ignited, sin-
tered, crushed, and sorted in this process [1]. As the founda-
tion of the iron making, the automation of sintering process
is of great significance.

Since sintering process is a complex thermochemical
process, the control process heavily relies on the operators’
experiments. In order to achieve the automatc sintering,
some expert systems have been first implemented to simulate
the experts’ decisions and experience. For example, Kawasaki
Steel Company in Japan developed a diagnostic expert sys-
tem to predict the burning through point based on the per-
meability data of raw material [1]. This approach greatly

improves the stability of sintering process, and the fluctua-
tion in the determination of the fluctuation of the sintering
endpoint position has decreased from 7% to 3%. Since man-
ual water flooding brings a great variation in the moisture
content of the raw materials, Jiang et al. [2] combined the
deep learning and autoregressive model to predict the mois-
ture efficiently. Additionally, Chen et al. [3] proposed a factor
dynamic autoregressive hidden variables model to monitor
the states of raw materials and detect the process abnormali-
ties. However, due to the complex process of sintering pro-
cess, it still remain large quantities of issues for further
improvements, such as high-precision modeling with a large
amount of imperfect data.

The chemical contents of the raw materials are measured
and used to predict some key quality indicators of the sinter
[4]. The accurate acquisition of the chemical contents helps
to provide more reasonable dosing scheme, thereby improv-
ing the sintering quality and reducing the procurement cost
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of sintering raw materials. However, the lack of raw material
data is inevitable in actual production. These collected data
of the raw materials are measured with different time inter-
vals by different sampling frequencies. Moreover, the delayed
uploading of these data often occurs due to the large amount
of test samples. These unknown raw material contents may
lead to poor quality of sinter ore and excessive emissions of
pollution gases.

The lackness of chemical contents data can be filled with
some substituted values, known as data imputation. In the
past few decades, many data-driven methods have been pro-
posed to address the imputation of missing values in indus-
trial and engineering problems [5–9]. The most simple
solutions are to impute the missing values with some statis-
tical values, such as mean, median, and the last observation
[10]. But these approaches ignore the inner correlation
among these samples, it can not provide good performance
when the missing situation is complex. In order to make full
use of the global consistency among the time series, smooth-
ing methods [11, 12] are proposed with easy implement. For
multivariate time series, the relations between variables are
utilized to recover the missing data. Based on the assumption
that the missing values are closer to those samples with
higher similarity, K-nearest neighbor (KNN) is adopted.
Stockmann et al. [13] imputed the single missing data
from k most similar samples of a multidimensional time
series. This method was used for the imputation of time
delay estimation and the effectiveness was demonstrated.
Zhang et al. [14] proposed a matrix/tensor factorization
method for the imputation of multidimensional data in
structural health monitoring. These high-dimensional data
were decomposed into low-dimensional factors so that the
computation efficiency was highly promoted. Moreover, the
prefilling-prediction methods are proposed for the data

imputation by prefilling these missing values, and then the
missing values are refreshed through the prediction model
until the prediction errors meet the requirements [15, 16].
Compared with other approaches, this method takes full use
of the relationships among these inputs and outputs instead
of making no distinction among these features. In Che et al.’s
[16] study, the mean value and the last observation of the
time series data are merged and regarded as the initial miss-
ing values, and gate recurrent unit-based approach was
developed to predict the target labels. However, many of
these works assumed that the missing rate is relatively small.
Additionally, the patterns of missingness greatly influence
the imputation accuracy, such as sparsity and sequence
length, and these characteristics need to be better studied.

Although these methods provide the insights into the
imputation of the chemical contents, it has to deal with
some challenges:

(1) The missing ratio of chemical contents of sinter raw
materials can be over 60%, while most studies focus
on the situations where the miss rate is below 50%.

(2) The sintering process is a complex nonlinear process.
Interfeature relationships are difficult to determine.

(3) The interval length between two missing data points
may vary.

Wu et al. [17] and Hu et al. [18] took into consider the
issue of missing data on these chemical contents when they
established the burdening optimization model for sintering.
The missing values were substituted by the last observed
value because this method is easy to implement. However,
the above approach ignores the relationship among these
variables. From the sintering process, the chemical contents
are related to each other. In order to keep the high-basicity
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FIGURE 1: Schematic diagram of sintering process.
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environment, there is a proportional constraint between these
alkaline substances and silica (SiO2). In addition, the sinter
quality indicators are related to these chemical contents of raw
materials. If these variables are not taken into consideration,
the accuracy is difficult to make sure. With the development
of advanced intelligent algorithms, the missing data in indus-
try are gradually receiving more attention [19–23].

To this end, the multioutput Gaussian process (MGP)
approaches are explored for dealing with the data imputa-
tion. The inspiration comes from the empirical rule that the
richer information can be obtained with more related out-
puts when the observations of the current output are rare. GP
regression model is a nonparametric method and shows
excellent fitting capability for various functions [24, 25].
Recently, MGP has attracted increasing attention used for a
multitask learning model with the ability to describe the cor-
relation among different outputs [26], which has been widely
employed in the capacity forecast of battery cells [27], traffic
modeling [28], WiFi sensor system [29], and multienviron-
mental trial [30]. For instance, Rodrigues et al. [28] proposed
the Bayesian nonparametric formalism-based MGP to model
the complex spatial and temporal relationships in crowd-
sourced traffic data. Hori et al. [30] combined MGP model
with self-measuring similarity kernels to reflect correlation
among genotypes, traits, and environments. The performance
of MGP behaved better than regularized PCA. However, the
majority of these approaches assume the correlations between
variables are very strong, which are incapable of solving fragile
relationships between variables introduced by large number
of missing output values.

In this article, we propose a new regularized MGP with
convolution covariance (MGCP) framework for the imputa-
tion of chemical contents of sintering raw materials. First, the
prefilling strategy based on GP is adopted to obtain themissing
values of the related outputs. Second, two novel MGCP meth-
ods are proposed to establish the models between the inputs
and multiple outputs. In addition, the performance of the pro-
posed methods are validated with the simulation case and the
chemical contents dataset measured from the actual operating
sintering plant. To the best of my knowledge, we are the first to
systematically study the imputation of these missing values.
The contributions of this article can be summarized as follows:

(1) A new regularized MGCP-based structure is pro-
posed for data imputation with high missing ratio,
including the prefilling and reconstruction of the
outputs, the model establishment based on regular-
ized MGCP, and the implement of the corresponding
optimization algorithm. This approach is applied to
impute the missing outputs values and make full use
of the relationships between the outputs.

(2) The proposed MGCP approach improves the model
accuracy with the knowledge transferred from the
related outputs and greatly reduces the negative impact
caused by filling a large number of missing values.
Moreover, the dynamic time warping (DTW) method
is applied to maintain high similarity with the mea-
sured time series, so as to avoid the overfitting.

(3) The performance of the proposed method is verified
by the chemical contents of sintering raw materials
measured from a running steel industry. Compared
with other imputation methods, the new method
achieves the best hit rate.

The rest of this article is organized as follows. We briefly
introduce some basic knowledge about MGCP. Then, a novel
MGCP modeling framework for the imputation is presented.
The proposed model is verified by the simulated data and the
actual sintering raw materials data. Finally, the conclusion of
this article is given.

2. Preliminaries of MGCP

In this section, we introduce the basic knowledge of MGCP. A
GP is defined as a collection of random variables sampled from
a joint Gaussian distribution model [25]. Given the input vari-
ables x2R and the covariance function Θ x;ð x0Þ, a GP can be
described as Φ xð Þ∼GP 0;ð Θ x;ð x0ÞÞ, in which a GP is
regarded as a model established by recovering the shared
underlying function parameterized through a covariance
matrix. Considering that the convolution between a Gaussian
white noise process R xð Þ and a smoothing kernelQ xð Þ is still a
GP, a Gaussian convolution process (GCP) is reconstructed
through a CP. The covariance function of a GCP is as follows:

Φ xð Þ ¼ Q xð Þ ⋆ R xð Þ ¼
Z 1

−1
Q x − uð ÞR uð Þdu ; ð1Þ

where ⋆ is a convolution operation. The parameters of the
covariance can be estimated by the following optimization
problem:

min
θ;σϵ

L y x; θ; σϵj j ¼ −logP yð Þx; θ; σϵð Þ: ð2Þ

While we extend to solve the problems of the multiple
outputs, GP models constructed with the cross-covariance
among different outputs are required. However, the covari-
ance structure design for MGPs remains challenging [31].
The models with a separable covariance structure are the
most common approaches, including linear model of core-
gionalization [32], and intrinsic coregionalization model
[33]. However, the expression of the covariance is not suit-
able for borrowing strength from different outputs since they
have the same covariance structure.

Nonseparable models are designed to overcome this lim-
itation. The CP is applied to construct the MGCP with its
flexible structure, denoted as MGCP. MGCP has two parts,
including the shared latent process and different smoothing
kernels. Compared to separable models, the structure of the
MGCP is more flexible since the interaction between differ-
ent outputs is available by different smoothing kernels,
which make it possible to capture the intrinsic relatedness
and bias to improve the accuracy. Suppose that we have the
number of latent variables l, a base GP R uð Þ and the kernel
Q xð Þ, and then the jth covariance is as follows:
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Φj xð Þ ¼ ∑q
l¼1

Z 1

−1
Qjl x − uð ÞRl uð Þdu : ð3Þ

The framework of MGCP are illustrated in Figure 2. The
basic idea of MGCP is to construct the covariance by the
shared latent process and different smoothing kernels. In
the training process, the latent function and smoothing ker-
nels are calculated according to their definitions. The latent
function is a Gaussian white noise function, and the kernel
can be a Gaussian kernel function. Furthermore, the covari-
ance can be obtained by Equation (3). The objection function
(Equation (2)) is implemented to realize the identification of
different parameters. For the new input point x∗, based on
multivariate normal theory, the posterior distribution of the
target output ft x∗ð Þ can be expressed as follows [34]:

ft x∗ð Þ Xj ; y ∼N μ x∗ð Þ;Φj x∗ð ÞÀ Á
; ð4Þ

where μ x∗ð Þ is the mean value of prediction andΦj x∗ð Þ is the
variance.

Kasarla et al. [35] considered the complexity of the out-
puts, and proposes a MGCPmodel that each output can have
its own unique feature. Therefore, they separate each output
into the shared part and the independent part. This method
improve the accuracy of the model, but the computation
burden also increases. Wang et al. [34] established a
MGCP to deal with the inconsistent input domain. The
method marginalizes the inconsistent features to realize the
domain adaptation. However, these methods do not consider
the existence of large quantities of missing values, which will
be discussed in the following sections.

3. Novel MGCP Model for Data Imputation

In this section, we proposed a sparse MGCP model used for
data imputation. First, a MGCP model framework is estab-
lished with a sparse covariance structure, and the covariance
is calculated by the characteristics of the latent functions and
kernels. Then, the proposed MGCP is applied for the impu-
tation of missing values. The corresponding optimization
problem of the proposed model is effectively completed.

3.1. Sparse MGCP Model Framework

3.1.1. Sparse MGCP Model. Given the set of training samples
D¼ xi; yið Þf gNi¼1 2Rp ×Rqþ1, the input variables with p
dimensions and the outputs with qð þ 1Þ dimensions are
denoted as xi 2Rp and yi 2Rqþ1, respectively. The dimension
of the current working output yc xð Þ is one, and the remaining
outputs yj xð Þ¼ y1 xð Þ; y2 xð Þ; …; yq xð ÞÈ É

T are the auxiliary
outputs. Let L¼ 1;f 2;…; q; cg and LR ¼ 1;f 2;…; qg denote
the index sets for all outputs and all auxiliary outputs,
respectively.

Because the ingredients of raw iron materials are related,
we obtain the modeling of the current chemical with the
assistant of the other chemicals. First, the equation of the
output is determined as follows:

y xð Þ ¼

y1 xð Þ
 ⋮

yq xð Þ
yc xð Þ

0BBBB@
1CCCCA¼

μ1

⋮
μq

μc

0BBBB@
1CCCCAþ

Φ1 xð Þ
 ⋮

Φq xð Þ
Φc xð Þ

0BBBB@
1CCCCAþ

ϵ1 xð Þ
 ⋮

ϵq xð Þ
ϵc xð Þ

0BBBB@
1CCCCA

¼ μþ Φ xð Þ þ ϵ xð Þ;
ð5Þ

where μ is the mean value of the historical data, Φ xð Þ is a
MGP with a mean zero and the covariance covΦij x;ð x0Þ, and
ϵ xð Þ is the measurement noise which is independent with
Φ xð Þ. The modeling of the current output fully makes use of
the transfer knowledge of the auxiliary outputs. Second, the
covariance structure of the outputs is constructed.

The structure of spare MGCP is illustrated in Figure 3,
the covariance structure has the ability to convey the knowl-
edge from the original data into the different outputs
through the same latent function (Rj xð Þ) and different
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smoothing kernels (Qjj xð Þ and Qjc xð Þ). More specifically, for
the jth output, the correlation between all these outputs in
MGCP is described by a Gaussian white noise process Rj xð Þ,
and the special characteristic of the output is denoted by the
smoothing kernels (Qjj xð Þ and Qjc xð Þ). According to the
description of MGCP before, the equation of MGCP can
be Φj xð Þ¼∑q

l¼1Qjl xð Þ⋆ Rl xð Þ¼∑q
l¼1

R1
−1Qjl x−ð uÞRl uð Þdu:

On the other hand, the above MGCP have to compute every
covariance with high computational complexity. To reduce
the computation complexity of our model, a sparse MGCP
structure is proposed with the assumption that the auxiliary
outputs of our method are independent with each other.
Then, the outputs are expressed as follows:

yj xð Þ ¼ μj þ Φj xð Þ þ ϵj xð Þ
¼ μj þ Qjj xð Þ ⋆ Rj xð Þ þ ϵj xð Þ; j 2 LR

yc xð Þ¼ μc þ Φc xð Þ þ ϵc xð Þ
¼ μc þ ∑

k2L
Qkc xð Þ ⋆ Rk xð Þ þ ϵc xð Þ:

ð6Þ

From Equation (6), we choose to get the accurate approx-
imation of the auxiliary outputs. By taking this approach, we
can both ensure the precision of the current output and
simplify the computation. According to the covariance struc-
ture illustrated in Figure 3, we can obtain the sparse covari-
ance matrix of our proposed MGCP:

Θ y ¼

Θ y
11 0 ⋯ 0 Θ y

1c

0 Θ y
22 ⋯ 0 Θ y

2c

 ⋮  ⋮ ⋱  ⋮  ⋮
0 0 ⋯ Θ y

qq Θ y
qc

Θ y
c1 Θ y

c2 ⋯ Θ y
cq Θ y

cc

266666664

377777775¼ P1 P2

PT
2 P3

" #
;

ð7Þ

where Θ y
k j ¼Θ y

k j x;ð x0Þ ¼ cov yk xð Þ;ð yj x0ð ÞÞ; k; j2 L. The
covariance matrix is divided into four matrix blocks, where
P1 is the covariance matrix between auxiliary outputs, P2
represents the covariance matrix between the auxiliary out-
put and the current output, and P3 represents the covariance
matrix between the current outputs. The calculation of
covariance Θ y

k j x;ð x0Þ and optimization process of the
parameters are represented in the following sections.

Given the training data X;f yg, we can calculate the
empirical best linear unbiased predictor (EBLUP) with our
estimated parameters at the new inputs x∗, and the predictive
mean byc x∗ð Þ and the variance Vc x∗ð Þ are as follows:

byc x∗ð Þ ¼ ΘT
∗cΘ

−1
y y

Vc x∗ð Þ ¼ ΘΦ
cc − ΘT

∗cΘ
−1
y Θ∗c;

ð8Þ

where Θ∗c is the covariance between the new inputs and the
historical data, ΘΦ

cc is the covariance of the new inputs.
Therefore, the mean prediction of the new inputs can be

regarded as the linear combination of the historical
observations.

3.1.2. Covariance of Sparse MGCP. Based on the model struc-
ture in Equation (5) and the assumption that the indepen-
dence between Φ xð Þ and measurement noise ϵ xð Þ, the
covariance between any two outputs can be expressed as
follows:

Θ y
k j x; x

0ð Þ¼ cov yk xð Þ; yj x0ð ÞÀ Á
¼ cov Φk xð Þ;Φj x0ð ÞÀ Áþ cov ϵk xð Þ; ϵj x0ð ÞÀ Á
¼ΘΦ

k j x; x
0ð Þ þ Θϵ

k j x; x
0ð Þτkj;  k; j 2 L;

ð9Þ

where ΘΦ
k j x;ð x0Þ is the covariance between Φk xð Þ and Φj x0ð Þ,

and Θϵ
k j x;ð x0Þ is the covariance of the measurement noise.

The Kronecker delta function τkj has the characteristic that
the value is equal to 1 while k¼ j, and the value is zero
otherwise.

For the computation of covariance, we select the Gauss-
ian white noise as the latent function (Rj) and the Gaussian
kernels as the smoothing kernels (Qkj). The Gaussian kernel
has the metric that it can complete the modeling of various
spatial features with few hyperparameters. The equation of
the Gaussian kernel is as follows:

Qkj xð Þ ¼ αkjπ
−
1
4 μkj
�� ��−1

2exp −
x2

2μ2k j

 !
; k; j 2 L; ð10Þ

where αkj is the scaling parameter factor used to vary the
cross correlation between two outputs, and μkj is the length
scale for the inputs. Combined with the characteristics of the
white noise Gaussian and Gaussian kernel, we obtain the
following equation:

Θ y
k j x; x

0ð Þ ¼ covykj x; x
0ð Þ ¼ 0;  k; j 2 LR;  k ≠ j&k;  j 2 LR;

ð11Þ

Θ y
jc x; x

0ð Þ ¼ αjjαjc
2
1
2 μjjμjc
�� ��12

μ2j j þ μ2jc

��� ���12 exp −
x − x0ð Þ2

2 μ2j j þ μ2jc

� �
24 35þ Στjc;

ð12Þ

Θ y
j j x; x

0ð Þ ¼ α2j jexp −
x − x0ð Þ2
4μ2j j

" #
þ Στjj; ð13Þ

Θ y
cc x; x0ð Þ ¼ ∑

l2L
α2lcexp −

x − x0ð Þ2
4μ2lc

� �
þ Στlc; ð14Þ

where Σ is a diagonal matrix and represents the measure-
ment noise. Equation (11) is based on the assumption that
the auxiliary outputs are independent of each other. The
derivation of Equation (12) is illustrated in the Appendix.
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The parameter αjc; j2 LR describes the correlation between
Φj xð Þ and Φc xð Þ.
3.2. Regularized Sparse MGCP for Data Imputation

3.2.1. Missing Values Prefilling. The previous situations are
based on the assumption that all the outputs are complete.
However, the incomplete outputs with a large amount of
missing data are a common issue in industrial applications.
The rough discard of these incomplete data will greatly
decrease the accuracy of the modeling. Therefore, we pro-
posed an effective approach to prefill the missing values of
outputs.

The basic idea of our method is to first impute missing
values of the auxiliary outputs, then establish our MGCP
model with the part of the observed data. The process is
illustrated in Figure 4. First, the missing values of the auxil-
iary outputs are filled with the estimated values. In our work,
GP is adopted as the method because it is easy to implement
and no prior information is needed. The reconstructed
matrix can be expressed as follows:

Dnew ¼ xi; y0ið ÞNi¼1; ð15Þ

where y0 ¼ y01;f y02;…; y0qg. Suppose that the number of the
observations yoc is No and the number of the missing values
ymc is Nm ¼N −No. Then, the reconstructed matrix is sepa-
rated as the observed dataset Do ¼ xi; y

0
i

À Á
No

i¼1 and the miss-
ing part Dm ¼ xi; y

0
i

À Á
Nm

i¼1 according to the missing situation
of the current output. The model is established by our pro-
posed MGCP with the observed dataset Do. After that, we
can compute the missing values of the current output byc by
the established model.

3.2.2. Two Regularized MGCP for Data Imputation. Since we
prefill a large number of the missing values of the auxiliary

outputs to finish the modeling process, it is inevitable to
introduce some false data. Furthermore, it may create incor-
rect connection between the auxiliary output and the current
output. To avoid this negative influence, we proposed regu-
larized MGCP based on the previous results.

From the structure of the covariance in Equation (7), the
cross-covariance between the auxiliary output yj and the
current output yc is Θ y

jc. If the estimated parameter αjc is
equal to zero, cross-covariance Θ y

jc is also equal to zero,
which means there is no correlation between these two out-
puts. By introducing the l0-norm over parameter αjc, we can
obtain the following optimization problem:

min
θ;σϵ

− logP y xj ; θ; σϵð Þ þ λ1 ∑
j2LR

αjc
 

0; ð16Þ

where − logP yjx; θ;ð σϵÞ denotes the negative log-likelihood
function of MGCP, and λ1 is a nonnegative penalty hyper-
parameter. The optimization of λ1 can be conducted by
cross-validation method.

It is a NP-hard problem because the l0-norm function is
not continuous and convex. By replacing the l0-norm func-
tion with l1-norm function, we achieve the relaxation of this
item. This method is named MGCP-R and the expression is
as follows:

min
θ;σϵ

− logP y xj ; θ; σϵð Þ þ λ1 ∑
j2LR

αjc
 

1: ð17Þ

Moreover, we expect the estimated missing values to
have a high similarity with the actual time series trajectory
if the special missing part is large. Therefore, we proposed an
modeling method based on DTW, which is named as
MGCP-R-D. Then, we have the following function:
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min
θ;σϵ

− logP y xj ; θ; σϵð Þ þ λ1 ∑
j2LR

αjc
 

1 þ λ2DTW byc; yocð Þ;

ð18Þ

where DTW byc;ð yoc Þ is the distortion loss of our model based
on DTW in order to obtain the global similarity between the
prediction byc and the observations yoc .

3.3. Parameter Identification. For inputs variables x, the out-
puts y can be divided into the auxiliary outputs ys ¼
yT1 ; y

T
2 ; …; yTq

È É
T and the current output yc. The mean

values of the auxiliary outputs and the current output are
μs and μc, respectively. From Equation (12), the parameters
includes the kernel parameters θ¼ αjj;

È
αjc; μjj; μjcjj2 Lg and

the measurement noise σϵ. For the convenience of expres-
sion, we omit the notation θ and σϵ later. Based on our
covariance structure, we can modify the objective function
to reduce the computation complexity and make it suitable
to the optimization methods, such as L-BFGS method.

3.3.1. Maximum Likelihood Item. In our model, there is no
correlation between any two auxiliary outputs. We can
decompose the first item of the objective function as follows:

P y; xð Þ ¼ P y1; y2;…; yq; yc; x
À Á

¼ P yc y1j ; y2;…; yq; x
À Á

P y1; y2;…; yq; x
À Á

¼ P yc y1j ; y2;…; yq; x
À Á

× ∏
j2LR

P yj; x
À Á

:
ð19Þ

Combined with the the properties of the Schur comple-
ment and the operation of multivariate normal distribution,
the negative log-likelihood function is decomposed:

− logP y xjð Þ¼ 1
2

yc − Að ÞTB−1 yc − Að Þ½

þ ∑
j2LR

yTj Θ y
j j x; x

0ð Þ
h i

−1
yj

#
þ 1
2

log Bj j½

þ ∑
j2LR

log Θ y
j j x; x

0ð Þ
��� ��� #þ N

2
log 2πð Þ;

ð20Þ

where A¼ μc þPT
2 P

−1
1 ys −ð μsÞ, B¼ P3 − PT

2 P
−1
1 P2, Θ

y
j j x;ð x0Þ

¼ cov yj xð Þ;À
yj x0ð ÞÞ, and the notations P1,P2, and P3 denote

the partitions of Θ y expressed in Equation (7).
When we have N samples for these qþ 1 outputs, the

complexity of this part is reduced from O qþ 1ð ÞN½ �3ð Þ to
O qþ 1½ �N3ð Þ with our special covariance structure.

3.3.2. Sparsity Item. It is difficult to tackle the l0-norm func-
tion due to its noncontinuity and nonconvexity. The most
common strategy is to relax l0-norm with l1-norm. However,
the l1-norm can still not meet the requirement of smoothness
at point zero. Then, a Huber smooth approximation is
adopted for this problem [36]:

∑
j2LR

αjc
 

1; αjc
 

1 ¼
1
2a

α2jc; αjc
�� �� ≤ a

αjc
�� �� − a

2
; αjc
�� �� ≥ a

8><>: ; ð21Þ

where a is a small constant, e.g., 10−4.

3.3.3. Shape Distortion Item. DTW can be formulated as the
optimization problem:

DTW byc; ycð Þ ¼ min
W2Wm;n

W; η byc; yocð Þh i; ð22Þ

where W is the warping path to align all the points between
the predictions byc and the observers yoc ,Wm; n is the set of all
possible warping paths, η byc;ð yoc Þ is a similarity, m and n are
the length of byc and yoc , respectively. The smooth min opera-
tor is applied to make the DTW differentiable. The equation
is expressed as follows [37]:

DTWγ byc; yocð Þ ¼ −γ log ∑
W2Wm;n

exp −
W; η byc; yocð Þh i

γ

� �" #
;

ð23Þ

where γ approaches zero, Equations (22) and (23) are
equivalent.

The complexity of this part will not exceed O N3ð Þ for
each output, which is smaller than the complexity of MGCP
construction process in our method.

Finally, we merge Equations (20)–(22) into the optimi-
zation function Equation (11) to achieve the parameter iden-
tification. Since this objective function is not convex, we
initiate the parameter values for several times to avoid the
multiple local optima, which will slightly decrease the pre-
diction precision of our model [31]. The selection of hyper-
parameters λ1 and λ2 is conducted by a grid search with
cross-validation strategy. The implement of MGCP-R-D is
shown in Algorithm 1.

Input: D¼ xi; yið Þf gNi¼1, λ1, λ2, a, γ

1: Prefill the missing values of the auxiliary outputs
Dnew ¼ xi; y0ið ÞNi¼1 and reconstruct the dataset into
observed part Do ¼ xi; y

0
i

À Á
No

i¼1 and missing part Dm ¼
xi; y

0
i

À Á
Nm

i¼1 according to the missing states of the current
output.

2: Initiate the parameter θ¼ αjj;
È

αjc; μjj; μjcjj2 Lg, σϵ
3: For Do, calculate bθ and bσϵ by solving the optimization

problem Equations (18), (20)–(22), where the covariance
matrixes are obtained by Equations (11)–(13)

4: Calculate the missing values of the current output using
Equation (8) with bθ and bσϵ .

5: Return bθ , bσϵ
ALGORITHM 1: Pseudo code of MGCP-R-D.
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4. Case Application

4.1. Numerical Case Study Using Simulated Data. A numeri-
cal example is constructed to compare the performance and
study the characteristics of our method. The hyperpara-
meters, including θ¼ αjj;

È
αjc; μjj; μjcjj2 Lg and σϵ, are opti-

mized with L-BFGS method in GPflow [38]. For the
constants for the regularization items, we have a¼ 10−4 and
γ¼ 10−5. Three methods are introduced as benchmarks:

(i) The single GP model with a convolution kernel,
denoted as GCP. It only uses the current output for
training and testing.

(ii) A nonregularized multioutput GCP model with the
same covariance structure as ours, denoted as MGCP.

An numerical example is shown in Equation (24), which
has the inputs x1 2 −½ 30; 30� and x2 2 −½ 20; 40�, the current
output fc and three auxiliary outputs f1, f2, f3. The expressions
are expressed as follows:

f1 x1ð Þ ¼ 3 sin x1ð Þ þ r1
f2 x1; x2ð Þ ¼ 3 cos 2x1ð Þ þ x22 þ x2 þ r2
f3 x1; x2ð Þ ¼ 2 sin 2x1ð Þ þ x22 þ r3
fc x1; x2ð Þ ¼ 2 sin x1ð Þ þ x22 þ x2 þ r4;

ð24Þ
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FIGURE 5: Performance comparison with 70% missing ratio in numerical study. (a) GCP, (b) MGCP, (c) MGCP-R, and (d) MGCP-R-D.
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where r1, r2, r3, and r4 are the measurement noise with
standard deviation σ¼ 0:04. We repeat each method for 50
times and the performance of these methods are evaluated by
mean absolute error (MAE). Moreover, in order to avoid the
influence of unbalanced data missing, the middle stable 20
points are used for evaluation.

The results are illustrated in Figures 5 and 6. From
Figure 6, when the missing ratio is lower than 40%, all the
models with MGCP structure have the superior performance
than GCP due to the benefits of borrowing strength from
other outputs. However, the performance of MGCP deterio-
rates dramatically with the increase of missing ratio espe-
cially when the missing ratio is greater than 50%. We
believe that this is because the false connections between
these outputs decrease the model accuracy for prediction.
This is also verified by the subsequent correlation analysis.
The PCs and the scaling parameters between the auxiliary
outputs and the current output are shown in Tables 1 and 2,
respectively. In Table 2, both MGCP-R-D and MGCP-R
methods reduce the scaling parameter α1c to zero, which is
consistent with the actual situation because the correlation
between these two variables is low. Therefore, these results
demonstrate the effectiveness of our models.

4.2. Case Study with Air Quality Data. The public dataset
from KDD CUP Challenge 2018 contains the historical air
quality data of Beijing from January 1, 2017 to December 30,
2017 [39]. The pressure, humidity, wind direction, and wind
speed recorded by Zhaitang station are used as the input
variables. The air quality indexes are used as the outputs,
including PM2.5, NO2, O3, and SO2. In this section, PM2.5
is the current output needed to impute while NO2, O3, and
SO2 are the auxiliary outputs. Moreover, 60% of these out-
puts are randomly discarded. In the preprocessing process,
the outliers of the dataset are detected by box plot and pre-
filled by mean values, these input variables are standardized
into the range between 0 and 1, and the missing output
values are prefilled by GP.

In the case of this public dataset, a substantial amount of
data has been discarded, making it impractical to retrieve all
the missing values. Therefore, it is imperative to choose an
effective method for evaluating the performance of the pro-
posed algorithm. We obtain the accuracy of the established
model by the error between the prediction values and the
observed values. There are 80% of the total dataset that
are the training dataset and the rest data are regarded as
the testing dataset. In the training process, the parameters
are optimized by Algorithm 1. Then, in the testing process,
the values of the current output are estimated with the new
input variables. The mean square error (MSE) and MAE
between estimated value and observations are calculated to
evaluate the performance of the method.

Different data imputation methods are introduced for
performance evaluation. Miss forest (MISS-F) method uses
the other features to predict and impute the current value
and improves its precision by combining many weak trees
[40]. The expectation maximization (EM) estimates the
incomplete value by calculating the maximum likelihood
[41]. This algorithm uses only the current output to obtain
its imputation values. The K-nearest neighbors (KNN) uses
observations to find the KNN of missing values, and the
average of nonmissing values is adopted as the missing
values [8]. The matrix factorization(MF) reconstructed the
original values by matrix decomposition [42]. The multiple
imputation by chained equations (MICE) obtains the miss-
ing values by combining different simple imputation meth-
ods through the regression model [43]. For EM and KNN, we
implement them with impyute package with the recom-
mended parameters. For MICE and MF, the fancyimpute
package is applied to implement these two algorithms [44].
All the experiments are run 30 times and the mean values are
taken as the final result to reduce the influence of contin-
gency. The hyperparameters involved in all algorithms are
tuned followed by 10 fold cross-validation strategy and the
best hyperparameters are applied. The parameter of MGCP-
R-D is determined to be λ1 ¼ 10 and λ2 ¼ 100.

The results of seven approaches are illustrated in Figure 7
and Table 3. Except for these above approaches, the perfor-
mance of MGCP and MGCP-R is also tested, but the results
are far worse than the listed methods. It is observed that the
proposed MGCP-R-D behaves well. Obviously, the results of
the selected methods are related to the data structure of the
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FIGURE 6: Comparison of MAE with different missing ratios.

TABLE 1: Pearson correlation between the auxiliary outputs and the
current output with 70% missing ratio in numerical study.

f1 : fc f2 : fc f3 : fc

Correlation 0.0647 0.981 0.965

TABLE 2: Part of parameters estimation with 70% missing ratio in
numerical study.

MGCP-R-D MGCP-R MGCP

α1c 0 0 12.2
α2c 15.1 1.26 69.3
α3c 3.49 5.21 31.3
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dataset. By enhance the strength with the related outputs,
MGCP-R-D could obtain more intrinsically useful informa-
tion for data imputation.

4.3. Case Study with Sintering Raw Materials Data. As shown
in Figure 8, the sintering process with a 360 m2 sintering
machine is studied. The workshop of sintering plant includes
mixing, sintering, crushing, cooling machine, and other equip-
ments. The data of the variables are collected by distributed
control system and are sent to the database. The complement
of the chemical contents is vital for the prediction and control of
the sintering process. However, the missing of the chemical
contents are heavy due to the delayedmeasurement and refresh-
ment. For example, the delayed refreshment of the rawmaterial
caused the excess emissions of sulfur content, and even leads to
the failure of sintering sulfur treatment system, which is a real
production accident occurred in running steel plant.

In Figure 8, the missing situations of these input material
variables Yc, Y1, Y2, Y3, and Y4 are presented, and the intro-
duction of these variables is shown in Table 4. The blue lines
denote the observations while the white space denotes these

missing values. It is observed that the pattern of the missing
values is missing at random because these chemical contents
are related to the dosing scheme of the sintering process and
the quality of the sinter product. The characteristics of the
chemical contents are presented as follows:

(1) Irregular missing intervals: Since the chemical con-
tents of different raw materials are measured with
different frequencies, the missing situation for differ-
ent varies greatly. Moreover, the sampling intervals
for the same variable can vary according to the actual
measurement situation. The irregular data missing-
ness have increased the difficulty of data imputation.

(2) Complex relationships between missing values: The
missing values of the same materials are determined
by the dosing scheme. In order to produce qualified
sinter product, there are some constraints among these
input raw materials. Moreover, the quality indexes of
produced sinter product are related to these chemical
contents. However, due to the complex chemical reac-
tion in the sintering process, this modeling for these
relationships is difficult to establish.

In our study, the raw data are collected from the actual
running sintering plant of a steel company from January 27,
2022 to April 3, 2022. Due to the long sampling period, there
are total 1,000 sets of data colleted. Among them, 900 sets of
samples are treated as training data, while the remaining 100
sets of samples are testing data. According to the analysis of
the data, there are quantities of missing values included in
the samples, about 50%–70%. The missing ratio is calculated
by the proportion of the missing values in the number of
the total values of the selected chemical contents [45, 46]. For
the testing data, there are only 32 sets of samples remaining.
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FIGURE 7: Results of different approaches. Performance of (a) MGCP-R-D and (b) different approaches.

TABLE 3: The performance comparison of different approaches.

Methods MAE+ STD MSE+ STD

KNN 4.61+ 0.65 74+ 5.7
MGCP-R-D 4.77+ 0.42 81+ 5.4
MICE 6.19+ 0.58 137+ 17.8
MISS-F 7.25+ 0.0.83 133+ 12.2
GCP 9.57+ 1.13 405+ 30.3
MF 10.63+ 2.11 359+ 31.5
EM 16.3+ 2.52 745+ 80.3

Bold values signify that the MGCP-R-D is our proposed method.
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The variables of the model are determined according to the
Pearson coefficient (PC) method and the mechanism of the
sintering process mentioned previously, which is described
in Table 4.

These existing quality indexes of the sinter quality data
are used as the input variables, and these chemical contents
of the raw materials are utilized as the outputs. For the input
variables, the outliers are detected by box plot, and the

outliers are replaced by the average value of before and after-
ward two values of these values. These inputs variables are
further standardized to [0, 1]. On the other hand, for these
outputs, the Guassian process is applied to prefill the missing
values, as illustrated in Figure 9. Since all these data are
incomplete, this prefilling process is used as the preprocess
for establishing the model. These outputs are further sepa-
rated as the current output and the auxiliary outputs. The
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FIGURE 8: Time series of sintering raw materials with missing data measured and stored in the database. Based on our model, the processed
data are returned to the database and the human machine interface (HMI) can display the processed data.

TABLE 4: Selected variables for imputation.

Variables Materials Symbol Min Max Unit

X1 Sinter CaO 11.12 11.89 %
X2 Sinter R 2.01 2.25 —

X3 Sinter SiO2 4.97 5.67 %
X4 Sinter TFe 55.21 55.82 %
Y1 Mixed iron ore TFe 62.03 62.55 %
Y2 Quicklime powder CaO 80.47 85.51 %
Y3 Dolomite powder CaO 48.33 54.26 %
Y4 Dolomite powder S 0.131 0.174 %
Yc Mixed iron ore SiO2 5.24 5.66 %
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algorithm for obtaining the missing values of the current
output is implemented by Algorithm 1.

In our experiments, 11 data imputation methods are
introduced for performance evaluation, including these
above methods, long short term memories (LSTM) and
last observation filling (LOF). LSTM methods are used to
predict and update missing values, which are prefilled with
the mean values. LOF method applies the last observation as
the missing values [17]. These experiments are carried out
independently for 30 times. According to the description of
the introduction section, these methods are the mainstream
methods to compare the performance of the proposed
method in different fields. The hyperparameters involved
in all algorithms are tuned followed by 10 fold cross-
validation strategy and the best hyperparameters are applied.
As illustrated in Figure 10, the parameter of MGCP-R-D is

determined to be λ1 ¼ 0:1 and λ2 ¼ 0:1, and the penalty fac-
tor λ of MGCP-R is set as 10. Compare to MGCP-R, MGCP-
R-D is less sensitive to the selection of parameters due to its
larger number of penalty coefficients, which makes it more
robust to parameter selection.

For the performance index, the hit rate HR Mð Þ is also
defined to evaluate the performance of all algorithms:

HR Mð Þ ¼ 1
n
∑
n

i¼1
Ei Mð Þ × 100%; ð25Þ

where Ei is required as follows:

Ei Mð Þ ¼ 1;  if   yi − byij j<M%

0;  if   yi − byij j>M%

(
; ð26Þ
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FIGURE 9: Preprocessing process of output data (TFe). (a) Original time series data for TFe and (b) fitting results for TFe by Gaussian process.
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where yi is the true value and byi is the predicted value,
respectively, and the total number of the samples is n. Two
values of HR1(0.25) and HR1(0.5) are used here, which
means the percentage of their estimation errors are less
than 0.25% and 0.5%, respectively.

Compared with these related algorithms, the proposed
MGCP-R-D method achieves the best performance and is
the only method with a hit rate (HR1) exceeding 80%. The
statistical results of different methods are illustrated in
Table 5. STD stands for the standard deviation. From the
table, our proposed MGCP-R-D has the best performance
compared to other methods. It has the lowest MAE value and
the largest HR(0.25) and HR(0.5). The values of them are
0.204, 81.2%, and 96.9%, respectively. MGCP has the worst
values and failed to realize the imputation. The worst perfor-
mance of MGCP may be caused by the failure of parameter
estimation according to the analysis in numerical study.
Compared to other methods, both GCP and EM use only
the current output but ignore the effects of the auxiliary
outputs, which greatly reduces the ability to obtain richer

information. The performance of LSTM for data imputation
is poor. This may be due to the heavy reliance on the quality
and quantity of the data. Moreover, the box plot of the top
seven algorithms with the best performance is shown in
Figure 11, which is applied to present the distribution char-
acteristics of these methods.

The results of MGCP-R-D and MGCP-R are shown in
Figure 12. We can observe that the shape of the MGCP-R-D
is more gentle. Compared to MGCP, the trend of MGCP-R-D
tends to fit the data globally. Because both MGCP-R and
MGCP-R have the same covariance structure. MGCP-R regu-
larize the relation among the current and auxiliary outputs.
Based on MGCP-R, MGCP-R-D further consider the penalty
of shape distortion. To sum up all the above analysis, we con-
sider that MGCP-R-D have the best performance due to its
borrowing strength from other outputs and the consideration
of distortion loss. Especially, while themissing ratio is larger, the
penalty of shape loss can enhance the capability for global fitting.

As shown in Figure 13, the proposed MGCP-R-D
method has been applied to an actual running sinter plant.
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TABLE 5: The performance comparison of different methods.

Methods MAE+ STD HR1 (%) HR2 (%)

MGCP-R-D 0.204+ 0.0295 81.2 96.9
MICE 0.238+ 0.0292 76.1 93.3
MGCP-R 0.247+ 0.0487 66.2 93.1
MF 0.248+ 0.0368 65.6 92.9
MISS-F 0.250+ 0.0325 66.7 93.2
KNN 0.259+ 0.0171 59.4 89.1
EM 0.274+ 0.0167 62.5 87.5
LOF 0.328+ 0.1292 61.7 81.3
GCP 0.693+ 0.302 43.7 59.4
LSTM 5.5+ 1.0292 57.5 46.8
MGCP 170,941+ 17,095 0 0

Bold values signify that the MGCP-R-D and MGCP-R are the proposed approaches in this paper.
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The chemical content information of the raw materials col-
lected from the actual plant is transmitted to the data center.
Data exchange between the cloud and data center is carried
out to update the data timely. These missing values of these
data are imputed by our proposed algorithm. Finally, these
data are displayed on our designed software interface. This
method achieves good performance in actual running.

5. Conclusion

The chemical contents of sinter ore material are of great sig-
nificance to the monitoring andmodeling of sintering process.
In this paper, we proposed a novel MGCP-based framework to

deal with the data imputation of these chemical contents with a
high missing ratio. The strength of the current output is
enhanced by the knowledge transferred from the related out-
puts through the common latent function. Meanwhile, the
negative effects of pseudo relationships and the missing situa-
tions over a long period are considered by introducing regu-
larization item and dynamic time distortion, respectively.
Compared with other related methods, the proposed method
achieved the best estimation accuracy, which verify its effec-
tiveness. Our approaches can also be used for a variety of
industrial applications with large quantities of missing values.

According our experiments, the parameter selection and
the outliers are the main challenges for our proposed
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method. Especially, the inappropriate selection of parameters
λ1 and λ2 will greatly decrease the precision. Moreover, The
time interval between two missing points is an important
factor to consider. Nowadays, some researches about the
varying length of the missing interval have been reported.
In the future, the effects of time interval will be further
investigated based on the analysis of the characteristics of
sintering process.

Appendix

Derivation of Θy
jc x;ð x0Þ

Θ y
jc x; x

0ð Þ ¼ cov yj; yc
À Á

¼ E yj ⋅ yc
À Á

− E yj
À Á

⋅ E ycð Þ

¼ E Qjj xð Þ ⋆ Rj xð Þ þ ϵj xð ÞÀ Á
× ∑

q

l¼1
Qlc xð Þ ⋆ Rl xð Þ þ ϵc xð Þ

� �� �
¼ E ∑

q

l¼1

Z 1

−1
Qlc uð ÞRl x − uð Þdu ×

Z 1

−1
Qjj u0ð ÞRj x0 − u0ð Þdu0

� �
  þ Στjc

¼ ∑
q

l¼1

Z 1

−1

Z 1

−1
Qlc uð ÞQjj u0ð Þ × E Rl x − uð ÞRj x0 − u0ð Þdudu0À Á

  þ Στjc

¼ ∑
q

l¼1

Z 1

−1

Z 1

−1
Qlc uð ÞQjj u0ð Þ × cov Rl x − uð Þ;Rj x0 − u0ð ÞÀ ÁÈ

  − E Rl x − uð Þð E Rl x0 − u0ð Þð Þgdudu0 þ Στjc

¼
Z 1

−1

Z 1

−1
Qjc uð ÞQjj u0ð Þ × cov Rj x − uð Þ;Rj x0 − u0ð ÞÀ Á

dudu0

  þ Στjc

¼
Z 1

−1
Qjc u−tð ÞQjj uð Þduþ Στjc;

ð27Þ

where the second step is derived by the definition of covari-
ance, the third step is based on the fact that the mean of the
output (E yj

À Á
) is equal to zero and Equation (6), the fourth

step is obtained by the definition of convolution and the
independence between the function and measurement vari-
ance, the fifth step is the variables exchange, the seventh step
is based on the mean of Gaussian white noise process R xð Þ is
zero, and the eighth step is derived according to the
cov Rj xð Þ;À

Rj x0ð ÞÞ¼ δ x−ð x0Þ and δ is the Dirac delta
function.

Combined with Equation (10):

Qkj xð Þ ¼ αkj 4πμ2k j

� �
−
1
4N t 0j ; μ2k j
� �

¼ αkjπ
−
1
4 μkj
�� ��−1

2exp −
x2

2μ2k j

 !
;

ð28Þ

we can derive the final expression of Θ y
jc x;ð x0Þ:

Θ y
jc x; x

0ð Þ ¼ αjjαjc
2
1
2 μjjμjc
�� ��12

μ2j j þ μ2jc

��� ���12 exp −
x − x0ð Þ2

2 μ2j j þ μ2jc

� �
24 35þ Στjc:

ð29Þ

The derivation processes of Θ y
j j x;ð x0Þ and Θ y

j j x;ð x0Þ are
similar to that of Θ y

jc x;ð x0Þ.
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