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The sintering process is a crucial thermochemical process in the blast furnace iron-making system. Tumble strength (TS), as a vital
performance to assess sinter quality, is difficult to monitor due to the lack of timely measurement. Constructing a data-driven
model for TS is an alternative for monitoring TS. However, the time-varying dynamic sintering process makes the task of
modelling challenging. And the data are incomplete and insufficient in practice for modelling since there are unknown time
delays in the system and lack actual TS value. The digital twin (DT) technique is a powerful tool to simulate the system dynamics
with the real-time interaction between physical processes and virtual agents in cyberspace. This paper introduces a DT-enabled
equivalent of the sintering system and proposes online data-driven modelling for TS monitoring. The time delay in the system is
estimated for variable sequence alignment based on a modified maximum information coefficient method. The data used for
modelling is enriched based on a multi-source information fusion technique. An adaptive update method is proposed to deal with
the time-varying dynamics. The iterative forgetting factor-based algorithm is designed for the support vector regression method
and guarantees a fast computational speed. Implementation and validation of the model on a DT-enabled sintering system show
the efficiency of the proposed method. The accuracy of TS monitoring reaches 99.6% by analysis of 3 months’ data.

1. Introduction

Sintering is a process of forming various types of mining iron
ore, coke, flux, and other raw materials through heat and
pressure to iron-enriched sintered ore. The quality of sin-
tered ore is essential for guaranteeing the quality of iron since
sintered ore is the main source for the blast furnace iron-
making system [1, 2]. Tumble strength (TS), as an important
indicator of sintering quality, is vital for guaranteeing the
smooth operation of the blast furnace [3, 4]. However, TS
is difficult to measure online due to the lack of monitoring
equipment [5, 6]. Monitoring TS by establishing correspond-
ing models is challenging since sintering is a complex time-
varying dynamic thermo-chemical process with unavoidable
system delays. Data-driven modelling has received lots of
attention in academia and industry due to its effectiveness
in practical applications [7–10]. However, it is still difficult to
select suitable input variables for modelling due to the

complex dynamics of sintering. Recently, various neural net-
works methods, such as Elman, back-propagation, grey, and
extreme learning machine (ELM), have been developed to
predict the quality of sintered ore based on input variables
selected by correlation analysis [11–15]. However, this input
variable selection method may result in neglecting important
variables due to system uncertainties. For instance, the
approach described by Umadevi et al. [11] did not take
into account factors such as air pressure and the height of
the sintering material within the sintering bed. Considering
these variables is essential for modelling heat transfer during
the sintering process [9]. It then reduces the accuracy of
modelling. To tackle this problem, a dynamical time-fea-
tures-expanding method is proposed by reconstructing the
time sequence of input variables [3]. Many learning-based
methods have been developed to increase the model’s accu-
racy. Wang et al. [16] developed an integrated method of
ELM and AdaBoost algorithm. The integrated methods
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increase the model accuracy, although the computing time of
the model is long. Er et al. [17] proposed a fuzzy neural
networks-based method and predicted the quality in two
steps, i.e., offline learning and online prediction. The two-
step procedure helps the model to cover a long-term predic-
tion, which shows the potential for constructing the online
model.

However, there are some issues to be considered for
online TS modelling and updating according to system
dynamics. First, the data are incomplete and insufficient in
the sintering field. The time delay in the sintering process
results in sequence mismatching in the data. The actual TS
value is sampled every 8 hr which is insufficient for the data-
driven model to learn the intrinsic relationship between vari-
ables. Second, the accuracy of the data-driven model will be
degraded due to the time-varying process. It may even lead to
online TS monitoring failure. To tackle these problems, we
must answer the following two subquestions: (1) How to
expand the data and extract suitable features in the data
for data-driven modelling? (2) How to design an update
mechanism for the data-driven model to adapt to the sinter-
ing process?

The digital twin (DT) technique is proposed to connect
the physical process with virtual agents [18, 19]. DT can
accurately reflect the state of the physical entities through
the model built for the digital entities. DT can also update the
model according to historical and current measurements for
the physical entities. Therefore, it is beneficial to apply the
DT technique for TS modelling and updating. Moreover, DT
has a strong potential to improve productivity for the com-
plex process industry since all kinds of models are applied to
estimate and predict the system dynamics [20–22]. Recently,
Zhou et al. [23] built a cloud platform-based application of
the iron-making DT. Aheleroff et al. [24] proposed the DT as
a Service (DTaaS) reference architecture and applied it to
industrial cases. The previous research has focused on elucidat-
ing the architecture details, creating services, and outlining
applications for the DT system. However, a comprehensive
exploration of constructing a TSmodel remains endeavour [25].

In this paper, we introduce the DT platform for the sin-
tering process for TS monitoring. An equivalent of the sin-
tering system operates on the DT platform. A data-driven
DT-enabled TS model is built with an update mechanism
according to the time-varying sintering process. We intro-
duce a multi-source information fusion method to expand
the data and eliminate the sequence mismatching problem
by delay estimation. The main contributions of this study
are: (1) an online dynamic modelling method for the DT-
enabled sintering system is proposed. It provides a compre-
hensive solution for online TS monitoring. The application
of the DT sintering system shows that the proposed method
achieves accurate TS monitoring with a 1min prediction
interval. (2) A multi-source information fusion technique
is proposed to overcome the limitation of incomplete and
insufficient data for modelling in the practical processes. (3)
An iterative update method is proposed for model training
that covers the time-varying sintering process in the long

term. The algorithm also guarantees computational speed
as it avoids frequent model retraining.

The paper is organised as follows: the DT-enabled TS
model scheme and problem formulation are given in Section 2.
The main methods, including delay estimation, multi-
source information fusion, and the update mechanism,
are given in Section 3. In Section 4, we conduct the imple-
mentation and application of the DT-enabled sintering
system and the data-driven model in practice. Section 5
concludes the paper.

2. System Architecture and
Problem Formulation

The architecture of the DT-enabled sintering process is
shown in Figure 1. The data generated from the physical
sintering system is sent to the virtual agent. The virtual agent
stores different kinds of data for DT model construction. The
results of the models can be used for monitoring, simulation,
and process optimisation.

2.1. DT-Enabled TS Model.We proposed a DT-enabled data-
driven model for online TS modelling in Figure 2. The model
can be used to monitor the TS value online. The scheme
contains a virtual agent and a physical process. The virtual
agent and physical process form a closed loop.

In the physical process, sensors such as thermocouples,
pressure sensors, and flow sensors sample the state variables
of the sintering process. Moreover, we introduce an infra-red
camera to capture the red layer (the ore whose temperature is
above 1; 000°C) thickness εi of the sintered ore at the tail of
the sintering bed. The details about expanding data will be
shown in Section 3. The height of mixed materials Δhi, the
air volume below the sintering bed Qi, the air pressure below
the sintering bed Δpi, and the weight of the raw material
M1;f …;Mng are used as the input variables for data-driven

modelling according to [9, 26, 27]. The variables are listed in
Table 1. The input variables are sent to the virtual agent
uninterruptedly for TS data-driven modelling and update.

In the virtual agent, the data-driven model is designed to
consider the non-uniformity of materials in the sintering bed
by using multiple submodels, each representing a different
area. The multiple submodels can improve model accuracy
but also increase its computational complexity. DT tech-
nique with strong computing power and multi-threading
technique can help to speed up computation time as the
submodels do not depend on each other. The outputs of
the submodels are the red layer thickness of sintered ore at
each area at the tail of the sintering bed. The reason for
introducing the red layer thickness as an intermediate output
is the TS value is insufficient for model training. The rela-
tionship between the TS value and the red layer thickness is
explored based on the experiments on the sinter pot tests.
The details about the sinter pot tests will be given in Section
2. The TS value θ is calculated based on the fitting formula
with the red layer thickness. The TS values can be used as
control feedback for the physical system.
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The submodel is trained with delay analysis. Specifically,
the delay between input variables is eliminated by aligning
the data to the same time sequence based on the results of
delay analysis. The iterative forgetting factor-based SVR
(iFFSVR) algorithm is used for training and updating the
model in real-time based on new input data.

2.2. Problem Formulaton. A 3D coordinate system describes
the sintering bed. In Figure 3, x, y, and z represent the width,
length, and height of the sintering bed, respectively. The raw
material is added to the head of the sintering machine. The
sintered ore is gradually produced when it is transported to
the tail of the sintering machine. The TS of the sintered ore at
the sintering bed tail in each area is inconsistent due to the
non-uniformity of the mixed materials. The notion T x;ð y; z;
tÞ is defined as the TS density at the position x;ð y; zÞ at time
t, and the TS result is considered as an integral of TS density
to the volume. The TS at time t can be formulated with
consideration of the system delay,

TS t þ tcð Þ ¼
Z

Xf

0

Z
Yf

Ys

Z
h x;y;tð Þ

0
T x; y; z; tð Þdxdydz; ð1Þ

where tc is the cooling time, representing the time interval
between the hot sintered ore running at the tail of the sinter-
ing bed and the cooled sintered ore sampled for testing. The
notion Yf is the tail of the sintering bed and Yf −

À
YsÞ repre-

sents the length of the ore block. The notion h x;ð y; tÞ is the
height of the ore block at x;ð yÞ at time t.

Since Equation (1) shows the sintering process is a 3D
system with system delay, where and when to sample input
variables for TS modelling need to be determined. According
to the local thermal non-equilibrium theory by Zhang et al.
[9], Loo et al. [26], Ye et al. [27], Nath and Mitra [28], and
Alazmi and Vafai [29], TS is related to the variables Δh;Q;
Δp;M1;…;Mn, where M1;…;Mn are the composition of
sintering raw materials. In contrast to correlation analysis
techniques, the variable selection method based on the
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FIGURE 1: The architecture of DT-Enabled sintering system.
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sintering mechanism can choose appropriate input variables,
unaffected by the uncertainties of the system. These variables
are also available in practice. For application, we assume that
the height of sintered ore at the tail of the sintering bed h x;ð
y; tÞ is constant, and T x;ð y; z; tÞ from x;ð YsÞ to x;ð Yf Þ keeps
invariant, which means the TS density varies along the
x-axis. We now use T x;ð tÞ and h to denote the TS density
at the position x at time t and the height of sintered ore for
clarity, respectively. In practice, the sintering raw materials
are added at the head of the sintering bed at time t. To
analyse the non-uniformity along the x-axis, we denote the
added raw materials as M1 x;ð tÞ;…;Mn x;ð tÞ. Simulta-
neously, we sample the height of mixed materials, the air
volume, and the pressure bellow at the head of the sintering
bed, which are denoted as Δh x;ð tÞ, ΔQ x;ð tÞ and Δp x;ð tÞ,
respectively. By modelling the relationship between input
variables and TS value, we can determine the TS value as

soon as the materials are added. Note that it needs tf time to
sinter the raw materials into sintered ore. Thus, the TS den-
sity is T x;ð tþ tf Þ with the materials added at x;ð tÞ.

Then, the TS can be given as follows:

TS t þ tf þ tc
À Á¼ Yf − Ys

À Á
h
Z

Xf

0
T x; t þ tf
À Á

dx: ð2Þ

For calculation, we discrete Equation (2) as follows:

TS t þ tf þ tc
À Á

≈ Yf − Ys

À Á
h∑

N

i¼1
T xi; t þ tf
À Á

ΔX; ð3Þ

where i¼ 1; 2;…;N represents each area along the x-axis of
the sintering bed, and N represents the total number of areas.

TABLE 1: List of variables used for the data-driven model.

Notions Variables Positions of measure points Roles Sampling interval

Δhi The height of mixed materials Evenly distributed at the head of the sintering bed

Input
1min

Qi The air volume of the below Distributed at the head of the sintering bed
Δpi The air pressure of the below Distributed at the head of the sintering bed

M1;…;Mn The weight of raw material
Located at each raw material storage (including
ore, coke, flux, etc.)

εi The thickness of red layer Images from the tail of the sintering bed Intermediate output

θ TS value
Located at sintered ore storage away from the
sintering bed

Output 8 hr
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FIGURE 2: The DT-enabled data-driven TS model.
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Since the function T xi;ð tþ tf Þ is unknown, we use
gi Δh;ð Q;Δp;M1;…;Mn; xi; tÞ¼ Yf −

À
YsÞhT xi;ð tþ tf ÞΔX,

where gi ⋅ð Þ is a nonlinear function. In this way, we can use N
data-driven submodels to formulate gi ⋅ð Þ to represent TS in
each area, considering material non-uniformity in the sinter-
ing bed. Note that the function gi ⋅ð Þ is still unknown. To
learn the function gi ⋅ð Þ based on insufficient and incomplete
data in practice, we need to manage to enrich the data and
eliminate the time delay in the data to obtain an accurate
model. Moreover, an adaptive update mechanism needs to be
designed for the function gi to reflect the time-varying sin-
tering process.

3. Main Results

3.1. Delay Estimation and Multi-Source Information Fusion.
In this subsection, we estimate the delay between two vari-
ables and use a multi-source information fusion technique to
deal with modelling, with incomplete and insufficient data.

3.1.1. Delay Estimation. Since the system delay is in the pro-
cess, the same time-tagged data may not correctly match the
model sequence. Moreover, the delay is unknown. To con-
struct a suitable variable set for accurate modelling, the
delays between the samples need to be estimated and
eliminated.

Suppose there are two time series of variables, xi 1 : n½ � ¼
xi; xiþ1; …; xiþn½ �> and yi 1 : n½ � ¼ yi; yiþ1; …; yiþn½ �>, rep-
resent n observation sample sequence of X and Y , respec-
tively. A finite set of ordered pairs of X and Y under time lag
k is Dn

i; k ¼ xi;ðf yiþkÞ; xiþ1;ð yiþ1þkÞ;…; xiþn;ð yiþnþkÞg.
Given a grid G, which partitions the x-values of D0

i; k 2R2

into x bins and y-values of D0
i; k into y bins. According to

Reshef et al. [30], the estimation of mutual information
between two variables with a delay of k is given as follows:

M D0
i;k

� �
¼ max

xy<B nð Þ

max I D0
i;k Gj

� �
log min x; yf g

8<
:

9=
;; ð4Þ

where D0
i; k Gj is the distribution induced by the points in D0

i; k

on the cells of G. The term I D0
i; k Gj

� �
denotes the mutual

information (MI) of D0
i; k Gj . ω 1ð Þ<B nð Þ≤O n1−εð Þ; 0<ε<1.

Then, to identify the time delay between X and Y , the
sliding window method by Zhai et al. [31] is adopted. The
time delay τ between X and Y can be obtained as follows:

arg max
τ2Z

M Dn
i;τ

À ÁÈ É
: ð5Þ

When τ is the time delay between X and Y , the maximum
information coefficient (MIC) of Dn

i; τ is the largest term

among M Dn
i;0

À Á
;f M Dn

i;1

À Á
;…;M Dn

i;k

� �g. The sign of τ pro-

vides the direction of the time delay between variables X and
Y . If τ is positive, the direction of the delay is from variable Y
to X, i.e., X lags behind Y . When τ is negative, the direction is
from variable X to variable Y , i.e., Y lags behind X.

Remark 1. In practice, the sampling frequencies of variables
are sometimes inconsistent. For example, the sampling period
of the height ofmixedmaterials is 1min, and that of TS is 8 hr.
The difference in sampling frequencies makes it not possible
to analyse the time delay directly by the proposed method
since the data densities are not the same. Therefore, frequency
matching of the two variables is required. To unify the fre-
quency, the data with high frequency are re-sampled under
the low frequency. In this way, the sample datasets of two
variables are the same in size, and the time delay can be
analysed based on the proposed method.

The sequence of variables is adjusted according to time
delay τ, which is identified based on Equation (5). Define x̃ni
and ỹni as the adjusted variables for x

n
i and y

n
i , respectively. The

sequences of variables are displaced to be stacked as follows:

exi 1 : n½ � ¼ xi; xiþ1;…; xiþn½ �>;eyi 1 : n½ � ¼ yiþτ; yiþ1þτ;…; yiþnþτ½ �> : ð6Þ
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3.1.2. Multi-Source Information Fusion. Since the actual
value of TS cannot be obtained every minute for modelling,
the multi-source information fusion technique is used to
introduce an intermedia variable for modelling. Motivated
by existing studies on the relationship between burning tem-
perature field and TS [26], we use the infra-red image data of
the sintering bed tail section as an intermedia variable. Then
we use the sinter pot test results to connect TS value and the
infra-red image data.

The infra-red images show the combustion pattern of the
sintered ore at the sintering bed tail section. The TS is related
to the thickness of the red layer, i.e., the ore whose tempera-
ture is above 1; 000°C. Then, the sinter pot test results connect
the sinter quality and the thickness of the red layer. Figure 4
shows the temperature distribution of materials on the sinter-
ing bed tail section, which is obtained from an infra-red image
with a resolution of 640 × 480. The thickness of the red layer
can be obtained from the infra-red image.

The sinter pot tests are conducted to obtain the formula,
to regress the relationship between thickness and TS [27].
The sinter pot is a cylinder made of heat-resistant steel. The
diameter of the sinter pot used in this paper is 300mm, and
the height is 1,000mm. Five thermocouples were inserted
into the sinter pot at the height of 200; 400; 600; 800, and
1; 000mm, respectively. The test procedure is the same as the
practical production. In the test, the mixed materials are put
into the sinter pot, and the igniter ignites, and burns the
material thoroughly from top to bottom. After the combus-
tion, the sintered ore is formed by cooling, crushing, screen-
ing, and other operations. The temperature in the sinter pot
can be directly obtained through five thermocouples, and
then the TS of the sintered ore is obtained by the manual
detection. Figure 5(a) shows the temperature fluctuations of
a sinter pot test and Figure 5(b) shows the temperature field
changing in the sinter pot and the demonstration of the red
layer. Based on sinter pot tests, the fitting formula is intro-
duced into the data-driven model [27]:

θ ¼ β1 ln ϑð Þ þ β2; ð7Þ
where ϑ represents the thickness of the red layer (mm), θ
represents the TS (%), β1 and β2 are coefficients determined

based on the sinter pot tests. The fitting formula enables us to
use the thickness of the red layer as an intermediate variable to
train the model, instead of using the insufficient TS value. Spe-
cifically, we can use input variables Δh;f Q;Δp;M1;…;Mng
and intermediate variable ϑ to learn bgi Δh;ð Q;Δp;M1;…;
Mn; xi; tÞ instead of learning gi Δh;ð Q;Δp;M1;…;Mn; xi; tÞ.
Thus, it has

TS t þ tf þ tc
À Á¼ β1 ln ∑

N

i¼1
bgi ⋅ð Þ

� �
þ β2 ¼ ∑

N

i¼1
gi ⋅ð Þ: ð8Þ

3.2. Iterative Update Mechanism for TS Model. To learn the
function bgi ⋅ð Þ, we assume bgi xtð Þ¼ ytþtf ¼ωiϕ xtð Þþ b,
where xt is input variable set sampled at t in the DT system,
ytþtf is the thickness of the red layer at tþ tf in the DT
system and b is the bias. The time interval is 1min. Function
ϕ ⋅ð Þ is a nonlinear function mapping xt from the original
state space into a higher dimension. Then, support vector
regression (SVR) is formulated according to Vapnik [32] as
follows:

min
ωi;b

1
2

ωik k2; ð9Þ

s:t: ytþtf − ωiϕ xtð Þ − b
��� ��� ≤ ϵ: ð10Þ

Parameter ϵ is the pre-defined threshold. According to
Vapnik [32], Equations (9) and (10) can be transformed into
quadratic programming, and for any input variable set x, it
has

bgi xð Þ ¼ ∑
n

t¼1
αt − α∗tð ÞK xt; xð Þ ¼ Kα; ð11Þ

where α¼ α1 − α∗1; α2 − α∗2 ; …; αn − α∗n½ �> is Lagrangian
dual multipulier, K ¼ K xt;½ ð xÞ;K xtþ1;ð xÞ;…;K xtþn;ð xÞ�
and K ⋅ð Þ¼ϕ ⋅ð Þ is Gaussian kernel function.

Different coefficient α of each submodel represents the
non-uniformity in the sintering process. Note that the
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sintering process is time-varying since the operation condi-
tion changes with time. Consequently, the output value
changes. An initial training procedure cannot meet the
long-term accurate prediction requirement. To avoid fre-
quent offline retraining procedures, the iFFSVR algorithm
is proposed for iterative changing the support vector coeffi-
cient α by the forgetting factor to obtain a more accurate
data-driven model timely. When Equation (11) is trained
with initial data x0, the initial output is y0. The variable
with the subscript t is its iterative version at time t. The
following procedure updates the coefficient αt when the
DT system sends an actual value ytþtfþ1.

αtþ1 ¼ αt þ
Ltþ1K>

tþ1

1þ K tþ1LtK>
tþ1

etþ1; ð12Þ

where the subscript t represents time t, etþ1 ¼ ytþtfþ1 −

K tþ1αt , and Lt ¼ K>
t K tð Þ−1. Note that the error etþ1 is

obtained to calculate the bias between the virtual agent and
the physical process in the DT system. The term ytþtfþ1 is

the actual value at tþ tf þ 1 and K tþ1 is constructed based

on input variables at tþ 1. To keep the term K>
t K t being

non-singular, it can be regularised by adding a small value
diagonal matrix [33]. The term K tþ1LtK>

tþ1 influences the
estimation results because it is related to the new samples
used in the data-driven model. Furthermore, to alleviate the
influence of the old sample while increasing the variation
caused by the new data, a forgetting factor 1≥ γt>0 is added
to the Lt .

Ltþ1 ¼ Lt −
LtKT

tþ1K tþ1Lt
ε−1tþ1 þ K tþ1LtK>

tþ1
; ð13Þ

where

εtþ1 ¼ γt −
1 − γt
ξtþ1

: ð14Þ

The forgetting factor γt is updated according to the new
samples matrix K tþ1 and the model output error etþ1 as
follows:
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γtþ1 ¼ 1þ 1þϖð Þ ln 1þ ςtþ1ð Þ þ κtþ1 þ 1ð Þζtþ1

1þ ςtþ1 þ χtþ1
− 1

� �
ςtþ1

1þ ςtþ1

� �� �
−1
; ð15Þ

where χtþ1 ¼ e2tþ1=ζtþ1, ζtþ1 ¼ λt ζtð þ e2tþ1=1þ ξtþ1Þ, κtþ1 ¼
λt νtð þ 1Þ, and ςtþ1 ¼K tþ1LtK>

tþ1. The term ϖ is a fixed
number. Initial values ζ and κ are between 0 and 1.

When the operation changes drastically, the accuracy of
the data-driven model decreases [31]. In case of the iterative
update no longer guarantees the model’s accuracy, a retrain-
ing strategy needs to be designed. The average error triggers
the retrain to keep the update procedure efficient. Specifi-
cally, the average error ē is defined as follows:

ē ¼ ∑
N

i¼1

1
N

bgi xtð Þ − ytþtf

� �
: ð16Þ

The threshold ϵ>0 in Equations (9) and (10) triggers the
update procedure. When ē ≥ ϵ, the model is retrained with a
new dataset. The new dataset is selected by substituting the
samples with small Lagrangian multipliers. Algorithm 1 gives
the pseudocode of the proposed adaptive update method.

The proposed method does not need a frequent retrain-
ing procedure because of its iterative design. This guarantees
the stability of the DT-enabled system when the model is
updated with the physical process. The number of training
samples of the method is always the same in this study, and
the size of the matrix of the model keeps unchanged, which
helps to keep a low-computational cost.

4. Implenmentation and Verification

To realise the practical application of online TS monitoring,
we designed the sintering DT-enabled system and imple-
ment the proposed model in the system.

4.1. DT-Enabled Platform for Sintering. The implementation
of the DT-enabled system relies on the numerous models,
which further form DT-enabled service components and
provide services for the DT-enabled system through model
integration and data interaction. The operation and manage-
ment of the models depend on a unified platform called the
DT-enabled platform. The relationship between the modules
in the DT-enabled platform is illustrated in Figure 6. Since
the models are constructed independently from each other
and provide at least one service for the DT-enabled system,
the model construction method coincides with the idea of
micro-services. Micro-services are different from monolithic
applications. The latter is to develop and deploy all the appli-
cation functions together. Micro-services divide an applica-
tion into several small service modules. Each service is
deployed independently and runs independently in its pro-
cess [34]. The services communicate, coordinate, and coop-
erate through lightweight communication protocols [35].
Therefore, it is reasonable to build the DT-enabled platform
for sintering based on the micro-service architecture. We use
harbour to store Docker images and Rancher to implement
the Kubernetes function and manage images to construct a
DT-enabled platform.

4.2. Application of TS Monitoring. To verify the proposed TS
data-driven model, the DT-enabled platform is established
with a TS monitoring service for a 360m2 sintering bed in
Guangxi, China. Verification is applied to the TS model to
evaluate its performance in the TS monitor. To illustrate the
results and comparisons, four services are constructed for
visualisation in the front-end website. Specifically, the online
TS monitoring micro-service is the core module of the

Input: Δhi;ð Qi;Δpi;M1;…;Mn; iÞ, yi obtained from sintering field, parameters ϖ, ζ, κ, and ϵ.

Output: The prediction g xið Þ.
1 Use initial data set to train SVR and obtain K0α0;

2 t¼ 0;

3 Compute g x0ð Þ according to Equation (11);

4 while true do

5 Construct K tþ1 based on tþ 1-th samples;

6 Obtain Ltþ1 according to Equations (13), (14), and (15);

7 Compute αtþ1 according to Equation (12);

8 Obtain g xtþ1ð Þ according to Equation (11);

9 Calculate ē according to Equation (16);

10 if ē ≥ ϵ then

11 Select new sample to retain the SVR and obtain K tþ1αtþ1;

12 Compute g xtþ1ð Þ according to Equation (11);

13 end

14 t¼ tþ 1.

15 end

ALGORITHM 1: Iterative update algorithm.
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quality monitoring service. The online TS monitoring micro-
service uses the latest real-time data to monitor the TS and
writes the monitoring value to the database. At the same
time, the query service queries the latest monitoring values
in nearly 2 hr from the database and displays the monitoring
information to users in time. Furthermore, to show the mon-
itoring accuracy to users, when the actual value is updated,
the monitoring accuracy micro-service calculates the relative
error between the monitoring value and the actual value. The
monitoring value and actual value of the past week are dis-
played to the user for comparison through the monitoring
result comparison micro-service.

4.2.1. Result in TS Monitoring. The data-driven model is
established and used to monitor long-term TS value in this
part. A total of 1,305,600 samples in 38,400 sample sets from
approximately 27 days of data are used to train, update, and
test the model. It should be noted that the actual TS value is
sampled three times a day, and we select 80 samples of the

actual TS value to show the monitoring error of the data-
driven model. Table 1 shows the variables used for the data-
driven model. The input and intermediate data are used for
training and testing the model. The initial data-driven model
uses the first 300 sets of samples for training, and a fivefold
cross-validation grid searches the parameters. Then, we set
the parameter N ¼ 6 in Equation (8), γ0 ¼ 0:1, ζ0 ¼ 1, κ0 ¼
0:1,ϖ¼ 20 in iFFSVR, ϵ¼ 0:01 in the update procedure, and
β1 ¼ 16:8891; β2 ¼ − 17:6491 in the fitting formula. Finally,
the output data is used to verify the performance of the
proposed scheme. Figure 7 shows the long-term monitoring
of TS value based on the proposed data-driven model. Com-
parisons are conducted based on the methods proposed by
Umadevi et al. [11], Wang et al. [16], and Ye et al. [27] using
our practical data. Figure 8 shows the relative error of the
proposed method. Regarding model monitoring accuracy,
98:75% of the monitoring results based on the proposed
method are within 1% of the relative error, and the maxi-
mum relative error is only 1:23%, which satisfies the

Client
Model provided Data support

Service

Integration
DT system for

sinteringTwin service layer

Microservices architecture

Micro-services

Micro-services

Running environment
Containerization and orchestration technology

DT platform

Model management

API
gateway

Twin model
Implementation

Micro-services

Database

Image
storage

FIGURE 6: The relationship between modules in the DT-enabled platform.
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FIGURE 7: Long-term monitoring of TS value for about 27 days.
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requirement of the practical application. Other methods do
not perform well since they overlooked the time delay in the
process and the time-varying nature.

Statistical results, namely root-mean-square error (RMSE),
mean relative error (MRE), normalised mean square error
(NMSE), and Pearson correlation coefficient (R), were used
to evaluate the accuracy of the model.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m

∑
m

i¼1
yi − byið Þ2

r

MRE ¼ 1
m

∑
m

i¼1

yi − byij j
yi

NMSE ¼∑m
i¼1 yi − byið Þ2
∑m

i¼1y
2
i

R ¼ ∑m
i¼1 yi − ȳð Þ byi − b̄yÀ Á

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 yi − ȳð Þp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑m

i¼1 byi − b̄yÀ Áq ;

ð17Þ

where yi, byi, ȳ , and b̄y are the actual value, the predicted value,
the average actual value, and the average of predicted value,
respectively. The term m is the size of the sample set.

Table 2 compares the statistical results of the proposed
data-driven model to those of other methods found in the
literature [11, 16, 27]. The table shows the number of update
times and the longest update computing time of the pro-
posed method. The results show that the RMSE, MRE, and

NMSE of the monitoring based on the proposed method are
smaller than those based on the methods in the literature [11,
16, 27]. Note that the data in the table are directly taken from
the literature to show their best statistical results. The results
in Figure 7 are given from experiments with our dataset,
whose statistical results are not performing well compared
with those given in their papers. The statistical results also
show that the correlation coefficient (R) of the monitoring
based on the proposed method is larger compared to the
other methods. This means that the proposed data-driven
model is more accurate and effective. The update frequency
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FIGURE 8: Long-term monitoring error of TS value based on our method for about 27 days.

TABLE 2: Statistical results of TS prediction based on different methods.

Method by Wang et al.
[16]

Method by Umadevi et al.
[11]

Method by Ye et al.
[27]

Our DT-enabled
method

RMSE 0:74 – 0:48 0:37
MRE (%) 0:74 <3:50 0:51 0:40
NMSE – 0:34 – 2:30× 10−5

R 0:84 0:81 – 0:91
Update frequency1 – – – 3:39× 10−2

The longest computing time (s)2 – – – 23:58
1The update frequency is the ratio of the total update times and the number of sample sets. 2The longest computing time used for the retraining.
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of the proposed method is 3:39× 10−2, which indicates that
the model updates occasionally. The average update interval
is around 30min. The longest computing time of the update
is 23.58 s, which is shorter than the sampling interval (i.e.,
1min). This indicates that the proposed data-driven model
can provide accurate and timely monitoring results that meet
the actual industry operation requirements.

Moreover, we conduct comparisons of computational
speeds to demonstrate the efficacy of the proposed method.
Specifically, we utilise the approaches described by Umadevi

et al. [11], Wang et al. [16], and Ye et al. [27] incorporating
retraining procedures for updating the data-driven model.
The statistical outcomes of the computing time for these
updates are presented in Figure 9, with each method under-
going 500 update procedures. Our method exhibits the
shortest average computing time for updates, primarily due
to the iterative mechanism of calculating most updates.
Notably, two outliers correspond to the retraining proce-
dures’ computing times. Compared to a similar data-driven
model (SVR) as illustrated by Ye et al. [27], the proposed
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FIGURE 10: Long-term workload of online TS prediction micro-service.

FIGURE 11: Front-end website of TS monitoring service in DT-enabled sintering system.
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iterative update mechanism significantly enhances comput-
ing speed by approximately a factor of 10.

4.2.2. Result in TS Monitoring Workload. The online moni-
toring micro-service is established based on the proposed
data-driven model. The online monitoring micro-service
consumes an immense workload on CPU, network, and
memory among the constructed micro-services since it con-
tinuously monitors the TS results and automatically updates
the model. Figure 10 shows the workload of monitoring
micro-service in 99 days. The network I/O, memory, and
CPU workloads of the online TS monitoring micro-service
keep stable for a long time in the DT-enabled system, which
shows that the proposed data-driven model is efficient. The
maximum relative standard variance of the workload is
7.82%, which shows the stability of the proposed method.
The stability of the operation is critical for industry operation
and the DT-enabled system. The breakdown of a micro-
service in the DT-enabled platform could lead to system-
level failure since the micro-service is essential and provides
basic data for other services.

Figure 11 is the front-end website of the TS monitoring
service on site. We showed the north side, the south side, and
the mean monitor value on the screen. The monitoring
results, accuracy, and comparisons are shown on the right
side of the front-end website, which is powered by micro-
services.

5. Conclusion

This paper developed an online data-driven TS model for the
DT-enabled sintering system. We introduced a system-
delay-estimation-based variable modification and an infra-
red image-based data enrichment procedure to deal with
incomplete and insufficient data for constructing a data-
driven TS model. The modelling includes a multi-submodel
scheme, TS model mechanism analysis, and iFFSVR algo-
rithm with an update strategy to deal with non-uniformity
material and time-varying nature in the sintering process. A
concrete systematic solution for implementing and applying
TS value monitoring in the DT-enabled platform is given to
illustrate the detailed development procedure. A 3month
operation for a sintering bed in Guangxi, China, is per-
formed to show the efficiency of the data-driven TS model.

Despite the advantages of the proposed method demon-
strated above, it also requires some future research. The TS
value is given based on the fitting formula. In general, the
sintering material used for sintered ore production is stable
for the long term in practice. The fitting formula can cover
the long-term operation condition. When the material
changes drastically, it requires an update mechanism for
the formula.
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