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Lithium-ion batteries have been used in a wide range of applications, including electrochemical energy storage and electrical
transportation. In order to ensure safe and stable battery operation, the State of Health (SOH) needs to be accurately estimated. In
recent years, model-based and data-driven methods have been widely used for SOH estimation, but due to the uncertainty of
battery charging conditions in practice, it is difficult to obtain a fixed local segment. In this paper, the charging curve is first divided
into several equal voltage difference segments based on charging segment voltage difference ΔV in order to solve the random
charging segment problem. Time interval of equal charge voltage difference of the voltage curve, coefficient of variation and
euclidean distance of the charging capacity difference curve are extracted as health features. The improved flow direction
algorithmlong short term memory-based SOH assessment method is proposed and verified by the Oxford battery degradation
dataset and experimental battery degradation dataset with a maximum error of 0.6%.

1. Introduction

With the advantages of low self-discharge rate, high power
density and long life [1], lithium-ion batteries have been
widely used in the energy storage systems, electric vehicles,
and other fields. In practical applications [2], improper han-
dling of lithium ions can lead to deterioration of battery per-
formance or even abnormal deterioration, which may
increase battery safety risks. Accurate battery state of health
(SOH) prediction is essential for battery management system
(BMS) during battery operation to prevent these problems.
SOH is an evaluation index to measure the battery life [3],
reflecting the degradation degree and reliability of the battery
[4].With the concern of the battery SOH in automotive appli-
cations, this paper focuses on the SOH estimation of batteries.

In recent years, lithium-ion battery SOH estimation
methods can be broadly classified into three categories:

experimental analysis method, model-based method, and
data-driven method [5, 6]. The experimental analysis method
is to evaluate the batteries SOH by directly measuring the
parameters of the battery through specific experimental
equipment and a standardized operation procedure, which
mainly includes the coulomb counting method, open circuit
voltage (OCV) method, and electrochemical impedance spec-
trum (EIS) method [7, 8]. The traditional monitoring method
is mainly based on voltage and current, which cannot reflect
the internal mechanism, so the accuracy is greatly reduced.
Recently, with the development of EIS, it has been possible to
estimate the state of health quickly and accurately online [9].
Equivalent circuit model-based methods use a simplified set
model of the combination of resistance, inductance, and
capacitance to describe the battery behavior and mainly
include empirical recession models, equivalent circuit models
(ECM), and recession mechanism models [10, 11]. These

Hindawi
IET Signal Processing
Volume 2023, Article ID 8839034, 16 pages
https://doi.org/10.1049/2023/8839034

https://orcid.org/0000-0002-4382-3678
mailto:jcjiang@hbut.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1049/2023/8839034


methods require detailed cell specifications and demanding
computational power to solve complex partial differential
equations, which are more complicated in the practical
applications.

Data-driven based methods [12] have attracted much
attention due to the lack of need to construct a mechanistic
model, and they have been widely used for SOH estimation
due to a large amount of battery data. A large number of
machine learning algorithms have been used for battery SOH
estimation, such as support vector machine (SVM) [13],
Gaussian process regression (GPR) [14], relevance vector
machine (RVM) [15], Bayesian network (BN) [16], extreme
learning machine (ELM) [17], long short-term memory
(LSTM) neural network [18], and other machine learning
methods are applicable to nonlinear systems such as batter-
ies. Zhang et al. [19] review how to use the latest data-driven
algorithms to predict the SOH of LIBs, and proposes a gen-
eral prediction process, including the acquisition of datasets
for the charging and discharging process of LIBs, the proces-
sing of data and features, and the selection of algorithms.
Wen et al. [20] proposed a battery SOH prediction model
based on incremental capacity analysis and BP neural net-
work was proposed to predict the SOH of batteries under
different ambient temperatures. Considering the problem
that BP neural networks tend to fall into local optimum,
Gong et al. [21] selected four health indicators during charg-
ing and discharging and constructed a battery capacity deg-
radation model based on LSTM neural network, which has a
higher estimation accuracy with a maximum error within
3%. Since LSTM is well suited for nonlinear systems such
as battery degradation, the IFDA-LSTM is proposed in this
paper to solve the battery SOH estimation.

In addition to improving estimation accuracy and algo-
rithmic efficiency, much research has been devoted to the
extraction of health features (HFs). For the data-driven
method, it is crucial to extract features that are closely related
to the battery SOH. In recent years, incremental capacity
analysis (ICA) has been considered as an effective method
for offline estimation of SOH. Li et al. [22] used incremental
capacity (IC) curves to extract health indicators to model
battery degradation and applied gray correlation analysis
and entropy weighting to assess the relevance and impor-
tance of HIs, respectively. Liu et al. [23] used the discharge
voltage difference at equal voltage intervals as a HF to esti-
mate the battery SOH. Patil et al. [24] extracted eight fea-
tures, such as voltage maximum from the battery discharge
curve and another 13 features by equation. However, there
are still some problems in estimating the battery SOH based
on charging data. The degradation features extracted from
the above studies are based on the fact that there are whole or
partial charging data, but the electric vehicles (EVs) charging
starting state of charge (SOC) and charging duration are
usually random, so it is difficult to obtain the corresponding
features under some charging cycles. Shu et al. [25] proposed
a machine learning method for online diagnosis of the SOH
of batteries. A prediction model for future voltage profiles is
established based on the ELM algorithm with the short-term
charging data. This method allows the estimation error of

SOH to be kept within 2%. Qian et al. [26] presented a one-
dimensional convolution neural network- (1D CNN-) based
method that takes random segments of charging curves as
inputs to perform capacity estimation for lithium-ion batter-
ies. When the segmentation data are selected from the last
part of charging curves, RMSEs of all of the network models
are larger than 7.5%.

SOH estimation based on short random charging seg-
ment and improved LSTM is proposed in this paper. The
main contributions of this paper are as follows:

(1) The charge capacity difference curve shifts down-
ward and the rise rate in the region during the battery
degradation is slowed down. In this paper, the coef-
ficient of variation (CV) and Euclidean distance (ED)
of the charging capacity difference curve are extracted
as HFs to characterize the SOH of the battery. As the
battery performance degrades, the charging voltage
curve shifts to the right, and the moment of rising
to a certain voltage constantly advances. Time interval
of equal charge voltage difference (TIECVD) is extracted
as a HF; the ability of the features to characterize the
battery SOH over a relatively small range of random
charging segments is further enhanced.

(2) The improved flow direction algorithm-LSTM (IFDA-
LSTM) based SOH estimation optimization model is
constructed, and LSTM neural network combined
with IFDA is used to optimize the number of nodes
in the implicit layer and the initial learning rate of the
LSTM model. The validity of the model is verified by
Oxford and experimental datasets.

The rest of the paper is organized as follows: the Oxford
degradation and experimental degradation datasets are pre-
sented in the second part. The charging capacity difference
curve and the voltage-dependent health characteristics are
given in the third part. In the fourth part, a SOH estimation
model based on IFDA-LSTM is proposed. In the fifth part
using simulations of different battery datasets are presented.
Conclusions are given in the sixth part.

2. Lithium-Ion Batteries Dataset

2.1. Oxford Dataset. The experimental battery electrodes
were made from a mixture of graphite anodes and lithium
cobalt oxide (LCO) and nickel cobalt oxide (NCO) cathodes
[27], which consisted of eight 0.74A hr Kokam batteries
named #1–#8. Table 1 shows the main parameters of the
battery. In the degradation test, the lithium battery was
repeatedly charged at a constant current of 1.48 A and dis-
charged to simulate Artemis urban driving conditions, with
capacity measured every 100 cycles. The ambient tempera-
ture of the batteries was 40°C. Figure 1 shows the Oxford
dataset battery capacity.

2.2. Experimental Dataset. The laboratory-built lithium-ion
battery degradation experimental rig consists of Galaxy
SDJ405F high and low-temperature humidity and heat test
chamber, Arbin LBT single-cell battery test equipment,

2 IET Signal Processing



upper computer, test and training host, and other equip-
ment. Its topology is shown in Figure 2.

The test batteries were two Panasonic NCR18650BD
ternary lithium batteries, named BD01 and BD02, respec-
tively. The ambient temperature of the batteries was 20°C.
Table 2 shows the main parameters of the experimental bat-
tery. Two batteries were discharged at 0.61 A with a rated
capacity of 3 A hr at an upper and lower limit voltage of 4.2/
2.75 V. Accelerated battery degradation experiments were
conducted with a constant current of 3.2 A and a constant
voltage of 4.2 V (current reduced to 0.64A). Considering that
the battery is rarely fully discharged in practice, the discharge
process was set to a high current of 6.4 A until the voltage
cutoff at 2.75 V. In the initial cycle, the average charge capac-
ity of the two cells is calibrated to have SOH equal to 1. The
experiment is stopped when the battery capacity degradation
to 80%. Figure 3 shows the experimental battery capacity.

3. Healthy Feature Extraction

The discharge curve of the battery changes with the working
conditions, which makes it difficult to obtain stable data,
while the charging working conditions are often fixed, so it
is easier to obtain the effective features. However, the charg-
ing interval of EVs is random and the charging starting
voltage or SOC is not fixed. Therefore, how to achieve an

accurate estimation of battery capacity under short random
charging fragment data is the key challenge.

In this paper, the commonly used capacity definition
method is used to define the battery SOH, as shown in Equa-
tion (1).

SOH¼ Qnow

Qrated
× 100%; ð1Þ

whereQnow andQrated indicate the current capacity and rated
capacity of the battery, respectively.

This section focuses on analyzing the degradation pro-
cess of the Oxford dataset, dividing the charging curve into
several equal voltage difference segments, extracting TIECVD
of the voltage curve, CV and ED of the charging capacity
difference curve as HFs within a random segment.

3.1. Charging Fragment Division Method. Due to the uncer-
tainty of the battery charging conditions in practice, it is
difficult to obtain a fixed local segment every time, so the
charging curve is divided into a number of segments with
equal voltage differences.

First, the charging segments are divided. As shown in
Figure 4, the charging capacity curve can be divided into
multiple equal length segments based on the charging seg-
ment voltage difference ΔV. In this case, since the battery is
rarely consumed to too low a level before charging [28], there
is no need to start the segmentation from the lowest cutoff
voltage.

In summary, the charging capacity curve can be divided
into N segments; each segment is shifted backward in turn by
one step, where the value of 0.01V is fixed [29], as shown in
Equation (2).

N ¼ Vend − Vstart − ΔV
0:01

þ 1; ð2Þ

where Vstart and Vend are the starting and ending voltages.

3.2. HFs Related to Charging the Capacity Difference. The
charged capacity within each segment Q= [Q1, Q2,……,
Qn] is unknown, while the charging capacity difference ΔQ
=Q–Q1 is known and can be used for quantitative analysis.
The degradation evolution of ΔQ during the voltage range
(3.6, 4.0 V) of the #1 cell is shown in Figure 5.

It can be seen from Figure 5 that the incremental capacity
curve shows a clear pattern of variation with the battery
degradation. As shown above, the ΔQ curve shifts down
and the rising rate slows down with the battery degradation.
The HFs can be extracted in the region.

TABLE 1: Main parameters of Kokam batteries.

Cathode material Nominal capacity (A hr) Nominal voltage (V) Discharge cutoff voltage (V) Charge cutoff voltage (V)

LCO and NCO 0.74 3.7 2.7 4.2
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FIGURE 1: Capacity of eight cells in the Oxford dataset.
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TABLE 2: Main parameters of NCR18650BD battery.

Nominal capacity (A hr) Nominal voltage (V) Discharge cutoff voltage (V) Charge cutoff voltage (V) Charge temperature
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FIGURE 4: Charging capacity curve segmentation diagram.
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FIGURE 3: Capacity of two experimental cells.
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In order to quantify the variation of the charge capacity
difference curve, the CV and the ED are calculated in this
paper and used as HFs.

The CV is a dimensionless measure to analyze the degree
of data dispersion, which is used to compare the degree of
variation of the curve. The CV is introduced in the ΔQ–V
curve of the charging fragment, as shown in Equation (3).

CV¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

i
ΔQi − ΔQ
À Á

M

vuut
ΔQ

;
ð3Þ

where ΔQ is the mean value of ΔQ for each sampling point
within the fragment.

The ED is the absolute distance between curves and a
relatively simple metric for analyzing the similarity of curves.
The ED is introduced into the ΔQ–V curve of the charging
segment. The Q–V curves were interpolated to solve for the
same number of data elements. The interpolated Q-sequence
is of equal length. The ED between two sets of ΔQ sequences
ΔQ1 ¼ ΔQ11;f ΔQ12;…;ΔQ1ng and ΔQ2 ¼ ΔQ21;f ΔQ22;…;
ΔQ2ng is shown in Equation (4).

ED¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

i
ΔQ1i − ΔQ2ið Þ2

r
: ð4Þ

3.3. HFs Related to Charging Voltage Curve. In the degrada-
tion experiment, the charging voltage rose faster as the bat-
tery performance degraded. The charging voltage curve of
the #1 battery is shown in Figure 6. It is evident that, with the
increase of the testing period, the charging voltage curve
shifts to the right and the time for it to reach a certain voltage
is kept advancing.

Considering the difficulty of obtaining the complete
curve, the TIECVD can be extracted as a HF, and the calcu-
lation formula is shown in Equation (5).

TIECVD V1;V2ð Þ ¼ t1 − t2 ¼ Δt; ð5Þ

where V1 and V2 are the voltages corresponding to the dif-
ferent times during the charging process.

It can be observed that as the battery ages, the voltage
curve shifts upward, indicating a certain relationship between
voltage and SOH. Considering that this section requires
the simultaneous extraction of both CV and ED at HFs, we
choose to set the voltage range for V1 and V2 between 3.6
and 4.0 V.

3.4. Correlation Analysis between HFs and SOH. In order to
evaluate the correlation between the extracted features and
the battery capacity, the Pearson correlation coefficient and
Spearman correlation coefficient were introduced, respec-
tively. The ability of the extracted HFs to characterize the
degradation of battery capacity was verified by analyzing
batteries #1–#8.

The CV and ED were introduced within the ΔQ–V curve
of each charging segment, and TIECVD was extracted
from the voltage profile. The correlation between the three
extracted HFs and the battery capacity was analyzed. As
shown in Equation (2), the number of segments N is deter-
mined by the segment voltage difference ΔV. When ΔV takes
a larger value, the more data within the segment, the more
information is described, but at the same time, it increases
the difficulty of data acquisition.

In this section, the voltage interval is defined as (3.6 and
4.0 V), the voltage window length ΔV= 0.4 V [30], and every
0.01V is extracted from ΔV, then each charging interval
contains 21 charging segments. Figure 7 shows the three
features extracted from the Oxford degradation dataset
regarding the capacity difference and voltage, and the fea-
tures are normalized for the comparison purposes. As can be
seen from Figure 7 below, the CV and ED features follow a
similar but not identical trend with battery capacity degra-
dation combined with TIECVD. It can be observed that for
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FIGURE 5: ΔQ–V curve for #1 during (3.6 and 4.0V).
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FIGURE 6: Charging voltage curve of #1 battery.
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almost all charging segments, the three HFs have a strong
correlation with battery capacity.

In order to further determine the correlation between the
two, ΔV is taken as 0.40:−0.01 : 0.20 V in turn for the analy-
sis here, and the number of segments N is obtained as
21 : 1 : 41, respectively, where the first segment is the lowest
voltage segment. The obtained data were analyzed using
Pearson and Spearman correlation coefficients, and the
results are shown in Figure 8.

As shown in Figure 8, setting different charging fragment
voltage differences ΔV can obtain different numbers of frag-
ments, and the vertical coordinates indicate the number of
charging fragments corresponding to different ΔV. The more
the color in the graph tends to yellow, the stronger the cor-
relation between the two, and vice versa. The more it tends to
blue, the weaker the correlation. CV, ED, and TIECVD
extracted within the different fragments have different cor-
relation coefficients with battery capacity. The Pearson and
Spearman correlation coefficients are close to 1 within most
of the fragments, and the 3 HFs can characterize the capacity
degradation of the cell well. However, it can be observed that
the correlations start to perform poorly when the number of
fragments reaches 24. Collectively, the features are better
characterized when the charge is set at a lower voltage differ-
ence or with fewer voltage fragments. Considering the prac-
tical situation, the setting of charging fragment voltage
difference ΔV should not be too small in order to ensure
the quality of the extracted HFs.

4. Battery Health Estimation Based
on IFDA-LSTM

4.1. LSTM Neural Network. LSTM neural networks can alle-
viate the problem of gradient disappearance and gradient
explosion [31], and show excellent capabilities in terms of
robustness and sensitive data. Each recursive module in the
LSTM filters information through four hidden layers: for-
getting gates, input gates and output gates, and finally a
unit state that saves and refreshes long-term memory. The
basic structure of the LSTM is depicted in Figure 9.

The forgetting gate is used to control whether or not to
forget, and its mathematical expression is Equation (6):

ft ¼ φ Wf ht−1; xt½ � þ bf
À Á

; ð6Þ

where φ is called the Sigmoid activation function. Wf and bf
are the weighting matrix and bias vector, respectively.

The input gate, which is the second gate, has the expres-
sions Equations (7) and (8):

it ¼ φ Wi ⋅ ht−1; xt½ � þ bið Þ ð7Þ

Ct ¼ tanh Wc ⋅ ht−1; xt½ � þ bcð Þ: ð8Þ

The results of both the previous forgetting gate and the
input gate act on the cell state Ct, whose expression is Equa-
tion (9).

Ct ¼ ft ⊗ Ct−1 þ it ⊗ Ct ; ð9Þ

where “⊗” means that the two vectors are multiplied by the
corresponding elements.

The last stage is the calculation of the new hidden state,
whose expressions are Equations (10) and (11).

ot ¼ φ W0 ⋅ ht−1; xt½ � þ b0ð Þ; ð10Þ

ht ¼ ot ⊗ tanhCt: ð11Þ

However, the selection of the number of nodes in the
hidden layer of the LSTM and the optimization of the initial
learning rate are both crucial. It is worthwhile to study how
to select the parameter values of LSTM and improve the
prediction ability of LSTM.

4.2. Improved Flow Direction Algorithm. To improve the
FDA [32], the initial solution of the population is generated
by a Cubic chaotic map, which makes the position distribu-
tion of the water flow more uniform and improves the local
search ability of the algorithm. Then the inertia weight strat-
egy is introduced to improve the global optimization and
local development ability of the algorithm. Finally, the opti-
mal neighborhood perturbation strategy and greedy strategy
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are used to update the global optimal solution. The number
of nodes in the hidden layer and the initial learning rate of
LSTM are determined by the proposed IFDA algorithm.

(A) First, the cubic chaotic mapping shown in Equations
(12) and (13) is incorporated into the initialization
phase of the FDA algorithm to make the initial loca-
tion of the water flow more uniformly distributed,
thus facilitating a better search in space at the initial
stage of the algorithm.

Z ið Þ ¼ rand 1; dimð Þ i¼ 1

Z ið Þ ¼ Z i − 1ð Þ × 1 − Z ið Þ2ð Þ i ≥ 2

(
; ð12Þ

Flow−X ið Þ ¼ lb þ ub − lbð Þ × Z ið Þ; ð13Þ

where the number of variables dim. The upper and lower
boundaries ub and lb. Flow_X(i) is the location of flow i. The
rand is a random value uniformly distributed between 0 and
1. Assume that there exists a β-neighborhood around each
flow whose location is generated by the shown in Equation
(14):

Neighbor
−
X ið Þ ¼ Flow−X ið Þ þ randn 1; dimð Þ × Δ;

ð14Þ

where Neighbor_X(i) denotes the ith position of a neighbor,
and randn is a normally distributed random value with mean
0 and standard deviation 1. Smaller values Δ result in a
search over a smaller range, while larger values allow a search

over a larger range, and to establish a balance between global
and local search, Δ is linearly reduced from large values to
small values as shown in Equations (15) and (16):

Δ¼W × rand × X rand − rand × Flow−X ið Þð
× Best−X − Flow−X ið Þk kÞ; ð15Þ

X rand ¼ lb þ rand 1; dimð Þ × ub − lbð Þ; ð16Þ

where Xrand is a random position generated by Equation (17).
W is a nonlinear random number weight between 0 and inf,
which is calculated as follows:

W¼ 1 −
iter

Max Iter

� �
2×randnð Þ� �

× rand 1; dimð Þ

×
iter

Max−Iter
× rand 1; dimð Þ:

ð17Þ

As mentioned above, the flow moves with a velocity of V
to the neighbor with the minimum objective function. On
the other hand, the velocity of the flow to a neighboring point
is directly related to its slope. Accordingly, the flow velocity
vector is determined using the shown in Equation (18).

V ¼ randn × Sf ; ð18Þ

where Sf denotes the slope vector between the neighbor and
the stream’s current position. randn generates various solu-
tions to increase the global search. The slope vector of flow i
with respect to neighbor j is also determined by the shown in
Equation (19).

Sf i; j; dð Þ ¼ Flow−fitness ið Þ − Neighbor
−
fitness jð Þ

Flow−x i; dð Þ − Neighbor
−
x j; dð Þk k ;

ð19Þ

where Flow_fitness(i) and Neighbor_fitness(j) denote the
target values of flow(i) and neighbor(j), respectively. The
parameter d denotes the dimensionality of the problem.
The following relation is used to determine the new position,
as shown in Equation (20).

Flow−newX ið Þ ¼ Flow−X ið Þ þ V

×
Flow−X ið Þ − Neighbor

−
X jð Þ

Flow−x ið Þ − Neighbor
−
x jð Þk k :

ð20Þ

(B) To further balance the algorithm’s global search and
local exploration capabilities, a new random inertia
weight is added in this paper to define the range of V,
as shown in Equations (21) and (22).
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V−max¼ p × ub − lbð Þ iter¼ 1

V−max¼ p − p − qð Þ × iter
Max−Iter

� �
2

� �
× ub − lbð Þ iter>1

;

ð21Þ
V−max¼ −p × ub − lbð Þ iter¼ 1

V−max¼ − p − p − qð Þ × iter
Max−Iter

� �
2

� �
× ub − lbð Þ iter>1

;

ð22Þ

Population
initialization 

Establish the neighborhood
unit of flow 

Whether the fitness
value of the best

neighbor unit is better
than the flow fitness

value    

Generate new flows
by neighbors

Equations (12) and (13)

Random generation
of new flow 

Calculate fitness of
new flows 

If fitness of new
flows are less than that

of the current?  

Yes

No

Replace current flow
with new flows 

Output the optimal LSTM
hyperparameters θ∗ and ρ∗  

Update Vmin and Vmax 

If fitness of
neighbors are less than

that of the current

Yes

No

Replace current flow
with best flows 

Yes

No

Start

Battery history
data (t, I, V) 

Data preprocessing,
classification of training

sets and test sets

ΔQ
CV

ED

V TIECVD

Health feature extraction

Step1: HFs extraction 

Data normalization

Battery SOH
estimation prediction

model evaluation

Step2: IFDA-LSTM

Initializes the IFDA
parameter 

Train the LSTM model
with the optimal

hyperparameters based on the
training set   

End

RMSE
Equation (20)

MAE
Equation (19)

R2

Equation (21)

Step1: SOH estimation 

FIGURE 10: Flowchart of SOH estimation based on IFDA-LSTM model.

TABLE 3: Parameters setups of the models.

Description Value

Flow number 20
Number of neighborhoods 1
Max number of iterations 10
Batch size 30
Input layer CV-ED-TIECVD
Output layer SOH

IET Signal Processing 9
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FIGURE 11: Battery SOH estimation results based on different methods.
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where p and q are the maximum and minimum values of
random inertia weights, which are taken as 0.1 and 0.01,
respectively, Max_Iter is the maximum number of iterations,
and iter is the current number of iterations.

During the flow of water, since the fitness value of any
neighboring water flow cannot be smaller than the fitness

value of the current water flow, so if the fitness value of
the domain water flow is smaller than the fitness value of
the current water flow, then it will flow in the same direction
as the current water flow. Otherwise, it will flow in the direc-
tion of the dominant slope, as shown in Equation (23):

Flow−newX ið Þ ¼ Flow−X ið Þ þ randn 1; dimð Þ × Flow−X rð Þ − Flow−X ið Þð Þ
Flow−newX ið Þ ¼ Flow−X ið Þ þ randn 1; dimð Þ × Best−X − Flow−X ið Þð Þ

(
; ð23Þ

(C) During the global position update process, the
neighborhood at the optimal position is perturbed
so that the convergence rate of the algorithm can be

increased and premature maturation of the algo-
rithm can be avoided. The definition is shown in
Equation (24):

Best−X−new ið Þ ¼ Best−X ið Þ þ 0:5 × rand 1; dimð Þ rand<0:5

Best−X−new ið Þ ¼ Best−X ið Þ rand ≥ 0:5

(
; ð24Þ

where Best_X_new is the generated new individual, Best_X is
the best individual at the current global update, and rand is a
random number with uniform distribution of (0, 1).

Usually, more newly generated neighborhood positions
are obtained after optimal neighborhood perturbation, and

then a greedy strategy is needed to perform shrinkage rank-
ing and determine whether to keep them. The greedy strat-
egy formula is shown in Equation (25):

Best−X−final ið Þ ¼ Best−X−new f Best−X−newð Þ< f Best−Xð Þ
Best−X−final ið Þ ¼ Best−X f Best−X−newð Þ ≥ f Best−Xð Þ

(
; ð25Þ

where Best_X_final is the optimal individual after the shrink-
age ranking of the greedy strategy, and f(i) is the iter water
flow adaptation value. If the generated water flow adaptation
value is smaller than the adaptation value of the original best

individual, it replaces the original best individual as the
global best individual in the iterations iter; if it is not as
good as the original best individual, the global best individual
does not change.

TABLE 4: SOH estimation errors for Kokam cells.

Batteries
MAE (%) RMSE (%) R2

LSTM FDA-LSTM IFDA-LSTM LSTM FDA-LSTM IFDA-LSTM LSTM FDA-LSTM IFDA-LSTM

#1 1.14 0.35 0.34 1.34 0.60 0.39 0.97 0.98 0.99
#2 1.19 0.93 0.76 1.48 1.14 0.98 0.97 0.98 0.99
#3 1.04 0.34 0.30 1.60 0.42 0.34 0.95 0.97 0.99
#4 1.08 0.62 0.43 1.22 0.79 0.56 0.97 0.98 0.99
#5 0.84 0.53 0.49 1.47 1.30 1.02 0.95 0.96 0.98
#6 1.52 0.75 0.25 1.06 0.79 0.34 0.97 0.98 0.99
#7 1.92 0.57 0.45 1.49 0.62 0.48 0.94 0.97 0.99
#8 1.78 0.85 0.42 1.34 1.01 0.51 0.97 0.98 0.99
Mean 1.31 0.62 0.43 1.38 0.83 0.58 0.96 0.98 0.99
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FIGURE 12: Absolute percentage of estimation error within each segment of Kokam cells.
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4.3. Batteries SOH Estimation Process. In this paper, the
number of nodes in the hidden layer and the initial learning
rate of the LSTM are optimized using the IFDA to improve
the prediction accuracy of the model. The IFDA can solve the
problem of the joint optimization of the parameters in the
LSTM neural network model and enhance the estimation
accuracy of the network. Compared with the standard FDA,
IFDA not only makes the iterative process of model parame-
ters more stable but also significantly faster in finding the
optimal global solution. The SOH estimation process of the
IFDA-LSTM model is shown in Figure 10. The process is as
follows:

Step 1: processing of data acquired in the laboratory;
Step 2: the data were analyzed to extract HFs from the

ΔQ curves and voltage curves and the extracted
features were normalized;

Step 3: based on the optimized IFDA algorithm in Sec-
tion 4.2, the hyperparameters of the LSTM neural
network are optimized to output the runoff
pso∗ ¼ θ∗;ð ρ∗Þ with the best fitness and location.
The θ∗ and ρ∗ are the hyperparameters of the
LSTM model;

Step 4: initialize the LSTM parameters and train the
model LSTMbest based on the training set;

Step 5: input test sets data, model output estimation
result and error.

Some of the network parameters are shown in Table 3.
The SOH estimation was performed on the test set data

using the trained estimation model, and the estimation
results were evaluated by error analysis using three metrics:
mean absolute error (MAE), root-mean-square error (RMSE),

and correlation coefficient (R2).

MAE¼ 1
M

∑
M

i¼1
SOH0

i − SOHij; ð26Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

∑
M

i¼1
SOH0

i − SOHið Þ2
s

; ð27Þ

R2 ¼ 1 −
∑M

i¼1 SOH0
i − SOHið Þ2

∑M
i¼1 SOHi − SOHi

À Á
2 ; ð28Þ

where SOHi, SOH0
i and SOHi denote the baseline, estimated,

and mean values, respectively, andM denotes the number of
test samples. Smaller MAE and RMSE values indicate that
the estimation error of the method is smaller. Closer to 1 for
R22 (0, 1) represents the better model estimation.

5. Simulation Results Analysis and Discussion

This section focuses on the feasibility of the proposed SOH
estimation approach based on the random charge segments,
including the SOH estimation of different batteries in differ-
ent segments and the result analysis.

5.1. Validation of the Estimated Results from the Oxford
Dataset. To assess the performance of the proposed IFDA-
LSTM approach, two estimation methods are employed for
comparison, namely, LSTMandFDA-LSTM.Where IFDAopti-
mizes the number of nodes in the implicit layer and the initial
learning rate of the LSTM to improve the prediction accuracy
of themodel. In this section, the leave-one-out cross-validation
(LOOCV) method is used to traverse the eight batteries in the
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FIGURE 13: SOH estimation results of NCR18650BD battery.
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Oxford degradation dataset. The estimated results for batteries
in the Oxford dataset #1–#8 are shown in Figure 11.

As shown in Figure 11, the IFDA-LSTM proposed in this
paper exhibits high accuracy on all the cells and has higher
reliability and performance compared to the several other
methods.

Then, the SOH estimation error results for the eight
Kokam cells in the Oxford dataset are analyzed. The MAE,
RMSE, and R2 of SOH estimation for cells #1–#8 under
LSTM, FDA-LSTM, and IFDA-LSTM are given in Table 4.
From Table 4, it can be seen that the estimation errors of the
LSTM and FDA-LSTM algorithms are within a certain
range, and the estimation results show better results. the
MAE, RMSE, and R2 of IFDA-LSTM are 0.43%, 0.58%,
and 0.99%, with the smallest estimation errors, all outper-
forming several other methods.

To more visually depict the error for each segment,
Figure 12 shows a 3D strip plot of the absolute percentage

of the estimated error within the segments using the eight
Kokam cells in the Oxford University dataset. The errors are
plotted as a function of the number of segments and cycles,
where the number of segments per cell is 21.

As shown in Figure 12, the SOH estimation based on
random charging segments on the eight cells from #1 to #2.

Performed well overall within each segment. The abso-
lute average estimation errors for each cell were 0.341%,
0.492%, 0.303%, 0.963%, 0.955%, 0.365%, 0.785%, and
0.342%, respectively. Although the estimation errors of the
partial cycle count for some segments were relatively large,
they were still within acceptable limits, and most of the esti-
mation results were satisfactory.

5.2. Validation of SOH Estimation Based on the Experimental
Dataset. To further validate the applicability of the proposed
method, SOH estimation is performed on two NCR18650BD
batteries, and the first 70% of the historical data are selected
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as the training set and the last 30% of the historical data are
used as the test set for SOH estimation using the proposed
IFDA-LSTM. The SOH estimation results are given in
Figure 13. The figure reveals that the proposed IFDA-LSTM
has satisfactory accuracy on both of the two NCR18650BD
batteries.

The experimentally measured estimated errors within
each fragment of the NCR18650BD battery are plotted as
3D bar graphs; as shown in Figure 14, where the number
of segments per cell is 16.

As shown in Figure 14, the estimation accuracy of BD01
is particularly impressive in the SOH estimation of the ran-
dom charging section of the two batteries, with an average
estimation error of 0.15% absolute and a maximum estima-
tion error of only 0.81%. The estimation accuracy of BD02 is
slightly lower than that of BD01, but it still performs well,
with an average estimation error of 0.29% in absolute value
and a maximum estimation error of 2.31%.

In summary, the effectiveness of the optimization algo-
rithm proposed in this paper is verified by comparing it with
other algorithms. The effectiveness of the proposed SOH
estimation method based on random charging segments is
demonstrated in the Kokam and NCR18650BD battery.

6. Conclusion

In this paper, a new SOH estimation method based on CV-
ED-TIECVD HFs and the IFDA-LSTM estimation model for
random charging data of Li-ion batteries are proposed. The
method divides the charging curve into several equal voltage
difference segments by analyzing the charging process of
different degradation batteries, extracts the TIECVD, CV,
and ED as HFs, and form a set of CV-ED-TIEVD HFs within
the random segments.

The performance of the proposed SOH estimation
method based on the random charging segments is validated
by the Oxford dataset and experimental dataset, and the
results reveal that the proposed method boasts high accuracy
and reliability. The results show that the MAE stays within
0.43% and 0.32%, and the RMSE stays within 0.58% and
0.43% for both the Oxford dataset and the experimental
dataset. In addition, the proposed method maintains good
estimation performance for different datasets. Thus, using
CV-ED-TIECVD as HFs makes the features cover more
complete information and the results are presented better.
The IFDA-LSTM estimation model can accurately estimate
the SOH of the battery in short and random charging seg-
ment after obtaining HFs charging data.

Data Availability

Datasets were derived from the following public domain
resources: https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-
46d3-9b1a-7d4a7bdf6fac.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Authors’ Contributions

Aina Tian contributed in the methodology, writing–- origi-
nal draft preparation, visualization. Zhe Chen contributed in
the data curation, writing–reviewing and editing, and visual-
ization. Zhuangzhuang Pan contributed in the conceptuali-
zation and experimental propulsion. Chen Yang contributed
in writing guide. Yuqin Wang and Kailang Dong contributed
in the software. Yang Gao contributed in the resources. Jiu-
chun Jiang contributed in the supervision.

Acknowledgments

This work is supported by the National Natural Science
Foundation of China (grant numbers 52207233 and
52177212), the Science and Technology Research Program
of the Hubei Provincial Department of Education (grant
numbers T2021005 and Q20212401), and theWuhan Science
and Technology Bureau (grant number 2022020801020263).

References

[1] M. S. Whittingham, “Ultimate limits to intercalation reactions
for lithium batteries,” Chemical Reviews, vol. 114, no. 23,
pp. 11414–11443, 2014.

[2] A. Tian, C. Yang, Y. Gao et al., “A state of health estimation
method of lithium-ion batteries based on DT-IC-V health
features extracted from partial charging segment,” Interna-
tional Journal of Green Energy, vol. 20, no. 9, pp. 997–1011,
2023.

[3] X. Lai, Y. Huang, X. Han, H. Gu, and Y. Zheng, “A novel
method for state of energy estimation of lithium-ion batteries
using particle filter and extended Kalman filter,” Journal of
Energy Storage, vol. 43, Article ID 103269, 2021.

[4] A. Eddahech, O. Briat, N. Bertrand, J.-Y. Delétage, and
J.-M. Vinassa, “Behavior and state-of-health monitoring of li-ion
batteries using impedance spectroscopy and recurrent neural
networks,” International Journal of Electrical Power & Energy
Systems, vol. 42, no. 1, pp. 487–494, 2012.

[5] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. VanMierlo,
and P. Van den Bossche, “Critical review of state of health
estimation methods of li-ion batteries for real applications,”
Renewable and Sustainable Energy Reviews, vol. 56, pp. 572–587,
2016.

[6] S. Zhang, B. Zhai, X. Guo, K. Wang, N. Peng, and X. Zhang,
“Synchronous estimation of state of health and remaining
useful lifetime for lithium-ion battery using the incremental
capacity and artificial neural networks,” Journal of Energy
Storage, vol. 26, Article ID 100951, 2019.

[7] X. Shu, S. Shen, J. Shen et al., “State of health prediction of
lithium-ion batteries based on machine learning: advances and
perspectives,” iScience, vol. 24, no. 11, Article ID 103265,
2021.

[8] L. Ungurean, G. Cârstoiu, M. V. Micea, and V. Groza, “Battery
state of health estimation: a structured review of models,
methods and commercial devices,” International Journal of
Energy Research, vol. 41, no. 2, pp. 151–181, 2017.

[9] M. Zhang, Y. Liu, D. Li et al., “Electrochemical impedance
spectroscopy: a new chapter in the fast and accurate estimation
of the state of health for lithium-ion batteries,” Energies,
vol. 16, no. 4, Article ID 1599, 2023.

IET Signal Processing 15

https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac
https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac


[10] D.Wang, H. Huang, Z. Tang, Q. Zhang, B. Yang, and B. Zhang,
“A lithium-ion battery electrochemical–thermal model for a
wide temperature range applications,” Electrochimica Acta,
vol. 362, Article ID 137118, 2020.

[11] J. Wang, P. Liu, J. Hicks-Garner et al., “Cycle-life model for
graphite-LiFePO4 cells,” Journal of Power Sources, vol. 196,
no. 8, pp. 3942–3948, 2011.

[12] X. Yu, N.Ma, L. Zheng, L.Wang, and K.Wang, “Developments
and applications of artificial intelligence in music education,”
Technologies, vol. 11, no. 2, Article ID 42, 2023.

[13] Y. Zhang, Y. Liu, J. Wang, and T. Zhang, “State-of-health
estimation for lithium-ion batteries by combining model-
based incremental capacity analysis with support vector
regression,” Energy, vol. 239, Part B, Article ID 121986, 2022.

[14] Z. Wang, C. Yuan, and X. Li, “Lithium battery state-of-health
estimation via differential thermal voltammetry with gaussian
process regression,” IEEE Transactions on Transportation
Electrification, vol. 7, no. 1, pp. 16–25, 2021.

[15] Z. Chen, N. Shi, Y. Ji, M. Niu, and Y. Wang, “Lithium-ion
batteries remaining useful life prediction based on BLS-RVM,”
Energy, vol. 234, Article ID 121269, 2021.

[16] G. Dong, W. Han, and Y. Wang, “Dynamic bayesian network-
based lithium-ion battery health prognosis for electric vehicles,”
IEEE Transactions on Industrial Electronics, vol. 68, no. 11,
pp. 10949–10958, 2021.

[17] B. Gou, Y. Xu, and X. Feng, “An ensemble learning-based
data-driven method for online state-of-health estimation of
lithium-ion batteries,” IEEE Transactions on Transportation
Electrification, vol. 7, no. 2, pp. 422–436, 2021.

[18] Y. Zhang, R. Xiong, H. He, and M. Pecht, “Long short-term
memory recurrent neural network for remaining useful life
prediction of lithium-ion batteries,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 7, pp. 5695–5705, 2018.

[19] M. Zhang, D. Yang, J. Du et al., “A review of SOH prediction
of li-ion batteries based on data-driven algorithms,” Energies,
vol. 16, no. 7, Article ID 3167, 2023.

[20] J. Wen, X. Chen, X. Li, and Y. Li, “SOH prediction of lithium
battery based on IC curve feature and BP neural network,”
Energy, vol. 261, Part A, Article ID 125234, 2022.

[21] Y. Gong, X. Zhang, D. Gao et al., “State-of-health estimation
of lithium-ion batteries based on improved long short-term
memory algorithm,” Journal of Energy Storage, vol. 53,
Article ID 105046, 2022.

[22] X. Li, Z. Wang, L. Zhang, C. Zou, and D. D. Dorrell, “State-of-
health estimation for li-ion batteries by combing the incremental
capacity analysis method with grey relational analysis,” Journal
of Power Sources, vol. 410-411, pp. 106–114, 2019.

[23] D. Liu, J. Zhou, H. Liao, Y. Peng, and X. Peng, “A health
indicator extraction and optimization framework for lithium-
ion battery degradation modeling and prognostics,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 45, no. 6, pp. 915–928, 2015.

[24] M. A. Patil, P. Tagade, K. S. Hariharan et al., “A novel
multistage support vector machine based approach for li ion
battery remaining useful life estimation,” Applied Energy,
vol. 159, pp. 285–297, 2015.

[25] X. Shu, G. Li, Y. Zhang, J. Shen, Z. Chen, and Y. Liu, “Online
diagnosis of state of health for lithium-ion batteries based on
short-term charging profiles,” Journal of Power Sources,
vol. 471, Article ID 228478, 2020.

[26] C. Qian, B. Xu, L. Chang et al., “Convolutional neural network
based capacity estimation using random segments of the

charging curves for lithium-ion batteries,” Energy, vol. 227,
Article ID 120333, 2021.

[27] D. Yu, D. Ren, K. Dai et al., “Failure mechanism and predictive
model of lithium-ion batteries under extremely high transient
impact,” Journal of Energy Storage, vol. 43, Article ID 103191,
2021.

[28] J. Wu, X. Cui, H. Zhang, and M. Lin, “Health prognosis with
optimized feature selection for lithium-ion battery in electric
vehicle applications,” IEEE Transactions on Power Electronics,
vol. 36, no. 11, pp. 12646–12655, 2021.

[29] Z. Deng, X. Hu, P. Li, X. Lin, and X. Bian, “Data-driven battery
state of health estimation based on random partial charging
data,” IEEE Transactions on Power Electronics, vol. 37, no. 5,
pp. 5021–5031, 2022.

[30] Z. Deng, X. Hu, Y. Xie et al., “Battery health evaluation using a
short random segment of constant current charging,” iScience,
vol. 25, no. 5, Article ID 104260, 2022.

[31] A. H. Mirza, M. Kerpicci, and S. S. Kozat, “Efficient online
learning with improved LSTM neural networks,”Digital Signal
Processing, vol. 102, Article ID 102742, 2020.

[32] H. Karami, M. V. Anaraki, S. Farzin, and S. Mirjalili, “Flow
direction algorithm (FDA): a novel optimization approach for
solving optimization problems,” Computers & Industrial
Engineering, vol. 156, Article ID 107224, 2021.

16 IET Signal Processing




