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For the massive multiple-input multiple-output (MIMO) uplink, the linear minimummean square error (MMSE) detector is near-
optimal but involves undesirable matrix inversion. In this paper, we propose a low-complexity soft-output detector based on the
simplified Broyden–Fletcher–Goldfarb–Shannomethod to realize the matrix-inversion-free MMSE detection iteratively. To accelerate
convergence with minimal computational overhead, an appropriate initial solution is presented leveraging the channel-hardening
property of massive MIMO. Moreover, we employ a low-complexity approximated approach to calculating the log-likelihood ratios
with negligible performance losses. Simulation results finally verify that the proposed detector can achieve the near-MMSE perfor-
mance with a few iterations and outperforms the recently reported linear detectors in terms of lower complexity and faster convergence
for the realistic massive MIMO systems.

1. Introduction

Massive multiple-input multiple-output (MIMO) has become
one of the most critical techniques for future wireless com-
munications, which promises significant improvements in
data rates, spectral efficiency, and link reliability compared
to the small-scale MIMO [1]. Despite these attractive benefits,
the design of efficient signal detectors with high performance
and low complexity presents a thorny challenge in the practi-
cal massive MIMO uplink [2].

For achieving a good trade-off between performance and
complexity, linear detectors like zero-forcing and minimum
mean square error (MMSE) are often resorted to. They are
near-optimal with affordable complexity for massive MIMO
systems, especially when the number of antennas at the base
station (BS) is sufficiently large [3]. Unfortunately, the
involved high-dimensional matrix inversion is complex to
implement in practice [4].

To address this issue, the MMSE detector via the Neu-
mann series expansion (NSE) is introduced in Zhang et al.
[5], which employs a series of matrix-vector multiplications
to approximate the matrix inversion. However, the reduced

complexity is always accompanied by slow convergence.
Subsequently, iterative linear detectors such as Richardson
(RI) [6], conjugate gradient (CG) [7], Jacobi [8], and sym-
metric successive over-relaxation (SSOR) [9] are developed
to accelerate convergence. Nevertheless, they all perform
unsatisfactorily in the ill-conditioned propagation environ-
ments. To further enhance the detection performance, vari-
ous hybrid approaches like the joint Chebyshev polynomials
and SSOR (SSORCP) [10], and the fused steepest descent
and nonstationary RI (SDNRI) [11] have been proposed
successively but at the cost of the increased complexity.

The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method
as a popular quasi-Newton method is exploited in this paper to
iteratively achieve the low-complexity soft-output MMSE
detection without matrix inversion for the massive MIMO
uplink. Leveraging the unique massive MIMO properties that
theMMSE filteringmatrix is Hermitian positive definite (HPD)
and diagonally dominant, we provide the simplified BFGS-
based MMSE detector and prove its convergence. Moreover,
the involved Gram matrix computation can be circumvented
by adoptingmatrix-vectormultiplications for lower complexity.
In addition, two optimization approaches, including the
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selection of a proper initial solution and the approximated cal-
culation of log-likelihood ratios (LLRs), are presented to further
accelerate convergence and reduce complexity by utilizing the
channel-hardening property of massive MIMO. Simulation
results validate that the proposed BFGS-based detector can
attain near-MMSE accuracy with a significant complexity
reduction and is superior to other low-complexity linear detec-
tors even in poor propagation environments with a high loading
factor and correlated channels.

The rest of this paper is organized as follows. Section 2
briefly introduces the system model and soft-output MMSE
detection. Section 3 specifies the proposed BFGS-based linear
detector. Simulation results are shown in Section 4. Finally,
Section 5 concludes this paper.

Notations: The bold uppercase and lowercase denote
matrices and column vectors, respectively. ⋅½ �H , ⋅½ �−1, and
⋅j j represents the conjugate transpose, inverse, and absolute
operator, respectively. E ⋅f g denotes the expectation. The
K ×K identity matrix is denoted by IK .

2. Preliminaries

2.1. Uplink Massive MIMO System Model. We consider an
uplink massive MIMO system employing N antennas at the
BS to simultaneously serve K user antennas (K ≪ N) with
the loading factor β¼K=N . The received signal vector y 2
CN×1 at the BS can be expressed by

y ¼Hsþ n; ð1Þ

where H2CN×K denotes the complex channel matrix. s2
CK×1 denotes the transmitted signal vector with the average
power being Es per symbol, which is first encoded and then
mapped to a constellation setΩ ( Ωj j ¼ 2Q). n2CN×1 denotes
the complex additive white Gaussian noise vector with zero
mean and N0 variance. Without losing generality, H and N0
are assumed to be perfectly known at the BS.

For realistic massive MIMO systems, the spatial correla-
tion between signals needs to be considered, which often
employs the Kronecker model [12]. Hence, the channel
matrix H can be modeled as

H¼ R1=2
B TR1=2

U ; ð2Þ

where T2CN×K denotes an independent and identically dis-
tributed (i.i.d.) complex Gaussian matrix with zero mean and
unit variance. RU 2CK×K and RB 2CN×N denote the spatial
correlation matrices at the user and BS side, respectively. The
definition of RU is similar to that of RB, and can be expressed
by

R m;kð Þ
U ¼ ξU ⋅ ejθð Þk−m

R k;mð Þ
U ¼ R m;kð Þ∗

U

(
; 1 ≤m ≤ k ≤ K; ð3Þ

where ξU is the correlation coefficient to reflect the correla-
tion degree among transmitting antennas and θ denotes the
phase.

2.2. Soft-Output Linear MMSE Detection. For linear MMSE
detection, the estimate of the transmitted signal vector bs can
be expressed as

bs ¼ HHHþ N0E−1
s IKð Þ−1HHy ¼ A−1b; ð4Þ

where A¼HHHþN0E−1
s IK , G¼HHH, b¼HHy denote the

MMSE filtering matrix, Gram matrix, and matched-filter
output, respectively. Notice that H is column asymptotically
orthogonal for massive MIMO, ensuring that A is HPD.

After the MMSE estimate of the transmitted signal, the
soft-information LLRs can be extracted from the estimated
results for the channel decoder to further improve the detec-
tion performance. LetU¼A−1G andV¼UA−1, Equation (4)
can be rewritten as bs¼UsþA−1HHn combined with (1).
Thus, the kth estimated symbol of bs is modeled as bsk ¼
μksk þ zk, where μk ¼Ukk denotes the equalized channel gain
and zk denotes the noise-plus-interference (NPI) with vari-
ance ν2k ¼E zkj j2f g¼∑K

m≠k Umkj j2Es þN0Vkk. The max-log
approximated LLR Lk; b of the bit b for the kth symbol can
be calculated by

Lk;b ¼ γk min
x2Ω0

b

bsk
μk

− x

���� ����2 − min
x02Ω1

b

bsk
μk

− x0
���� ����2

 !
; ð5Þ

where γk ¼ μ2k=ν
2
k denotes the signal-to-interference-plus-

noise ratio (SINR), and Ω0
b;Ω

1
b correspond to the subsets

of Ω for which the bit b equals to 0 and 1, respectively.
It can be seen obviously that the matrix inversion A−1 is

required by both the MMSE estimation and LLR calculation.
However, the computational complexity of the exact A−1 is
O K3ð Þ, which always leads to high computational burden in
practical massive MIMO systems.

3. Methodology

Equation (4) can be rewritten as

Abs ¼ b: ð6Þ

Since A is HPD, finding the solution of Equation (6) is
equivalent to solving a strictly convex quadratic optimization
problem, that is

min f sð Þ ¼ 1
2
sHAs − bHs: ð7Þ

The quasi-Newton method [13] is widely recognized as
the most efficient method to solve such kind of uncon-
strained optimization problems, which can be expressed in
the line-search iterative form as

skþ1 ¼ sk − αkBkgk; ð8Þ

where αk denotes the step size, and the search direction can
be denoted by dk ¼ −Bkgk. Thereinto, Bk is a symmetric
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matrix updated to approximate the Hessian inverse A−1. gk is
the gradient of f sð Þ at sk that can be calculated by gk ¼
Ask − b.

3.1. Low-Complexity BFGS-Based Detector. As a famous
quasi-Newton method, the BFGS method is utilized herein
due to its numerical stability [14]. We consider the exact line
search, and thus the step size needs to satisfy

f sk þ αkdkð Þ ¼min
α>0

f sk þ αdkð Þ: ð9Þ

According to dHk gkþ1 ¼ 0, we can obtain

αk ¼ −
dHk gk
dHk Adk

: ð10Þ

The basic idea underlying quasi-Newton methods is to
obtain the advantages of Newton’s method while using only
the first-order information. Thus, the approximation of
Hessian inverse must fulfill the following quasi-Newton
condition:

Bkþ1qk ¼ pk; ð11Þ

where pk ¼ skþ1 − sk and qk ¼ gkþ1 − gk.
For the BFGS quasi-Newton method, the approximation

Bk to the inverse Hessian matrix is updated by

Bkþ1 ¼ Bk −
pkq

H
k Bk

pHk qk
þ Bkqkp

H
k

pHk qk

þ 1þ qHk Bkqk
pHk qk

� �
pkp

H
k

pTk qk
:

ð12Þ

Since pk ¼ skþ1 − sk ¼ αkdk and dHk gkþ1 ¼ 0, we can
derive pHk gkþ1 ¼ 0. Hence, we have

dkþ1 ¼ −Bkþ1gkþ1 ¼ −Bkgkþ1 þ
pkq

H
k Bk

pHk qk
gkþ1: ð13Þ

In the authors’ previous work [15, 16], it has been proved
that for 0≤m≤ k,

Bmgkþ1 ¼ B0gkþ1: ð14Þ

Thus, Equation (13) can be simplified to

dkþ1 ¼ −B0gkþ1 þ
pkq

H
k B0

pHk qk
gkþ1: ð15Þ

Notice that B0 is always initialized as a simple HPD
matrix, which can be set as an identity matrix herein for
further lower complexity. Hence, we have

dkþ1 ¼ − gkþ1 þ
pkq

H
k

pHk qk
gkþ1

¼ − IK −
pkq

H
k

pHk qk

� �
gkþ1:

ð16Þ

Suppose

Skþ1 ¼ IK −
pkq

H
k

pHk qk
; ð17Þ

we can obtain dkþ1 ¼ − Skþ1gkþ1, which is similar to the
search direction of the traditional BFGS method but with
significant complexity reduction. In addition, by adding an

extra term −
qkp

H
k

pHk qk
, Skþ1 can be transformed into a HPD

matrix without changing the search direction.

3.2. Initial Solution Selection. Consider the selection of an
initial solution, which is generally set to a zero vector if no
prior information about the exact solution can be obtained.
In practice, the initial solution often plays an essential role in
the convergence rate, thus affecting the complexity and accu-
racy. An initial solution close to the final solution will lead to
fewer iterations. Therefore, it is of great significance to select
an appropriate initial solution.

For massive MIMO systems, the column vectors of the
channel matrix H are asymptotically orthogonal when
N ≫ K , that is

hHi
hj
N
→ 0;  i ≠ j;  i; j¼ 1; 2;⋯;K; ð18Þ

where hi is the ith column vector of H. Thus the Gram
matrix G and filtering matrix A are diagonally dominant
especially when the loading factor is small [17]. Leveraging
the special massive MIMO properties described above, a low-
complexity initial solution is proposed as

s0 ¼ N−1b: ð19Þ

Therefore, since the diagonal-approximate initial solution
more closer to the final solution than the zero-vector initial
solution, the proposed BFGS-based detector can achieve a
more rapid convergence rate. Moreover, such a hardware-
friendly initialization way adds very little computation.

3.3. Approximated LLR Calculation. Although the proposed
BFGS-based detector can circumvent the exact calculation of
A−1 required by MMSE detection, the LLR calculation men-
tioned previously still needs to calculate A−1. To address this
issue, we provide an approximated LLR calculation approach
to calculating the channel gain and NPI variance inspired by
Dai et al. [18].

According to the diagonally dominant property of the
MMSE filtering matrix A−1, we can rewrite the equalized
channel matrix as
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U¼ IK − N0E−1
s A−1 ≈

N
N þ N0E−1

s
IK ; ð20Þ

that is, the inverse of the equalized channel gain can be
approximated as

μ−1k ≈ 1þ N0E
−1
s

N
: ð21Þ

Following Liu et al. [19], the NPI variance can be calcu-
lated as

ν2k ¼ Esμk 1 − μkð Þ: ð22Þ

Thus, the posteriori SINR can be given by

γk ¼
1

Es μ−1k − 1
À Á ≈ N

N0
: ð23Þ

We can see obviously that the complexity can be greatly
reduced by utilizing Equations (21) and (23) to approach the
exact LLR calculation. In summary, the proposed low-
complexity BFGS-based iterative detector for achieving the
soft-output MMSE detection is shown in Algorithm 1.

It’s worth pointing out that we can change the calculation
in line 8 to Adk ¼HH Hdkð Þþ λdk, which can also save the
complex Gram matrix calculation required by the MMSE
filtering matrix A in the preprocessing step. Hence, the pro-
posed BFGS-based detector can be flexibly adapted to vari-
ous propagation environments for lower complexity.

3.4. Convergence Analysis. We focus on the convergence rate
of the proposed BFGS-based iterative detector in this subsec-
tion. Let s∗ be the unique minimum point of f , and utilize the
A-norm of the error vector ek ¼ sk − s∗ to evaluate the con-
vergence rate.

We first expand the square of the A-norm of ekþ1 ¼ ek þ
αkdk as

ekþ1k k2A ¼ Aekþ1; ekð Þ − αk Aekþ1; dkð Þ: ð24Þ

Since s∗ ¼A−1b, we can get Aekþ1 ¼Askþ1 − b¼ gkþ1,
and thus Aekþ1;ð dkÞ¼ 0 referring to the exact line search.

Combined with dk ¼ − Skgk, we derive that

ekþ1k k2A ¼ Aek; ekð Þ þ αk Adk; ekð Þ
¼ ekk k2A þ αk dk; gkð Þ
¼ ekk k2A 1 −

dk; gkð Þ2
Adk; dkð Þ A−1gk; gkð Þ

� �
¼ ekk k2A 1 −

gHk Skgk
À Á

2

gHk SkASkgk
À Á

gHk A
−1gk

À Á !
:

ð25Þ
Assuming Qk ¼ S1=2k AS1=2k and xk ¼ S1=2k gk, we have

gHk Skgkð Þ2
gHk SkASkgkð Þ gHk A

−1gkð Þ ¼
xHk xkð Þ2

xHk Qkxkð Þ xHk Q
−1
k xkð Þ. By applying the Kan-

torovich inequality [20], we finally obtain

ekþ1k k2A ⩽
Ck − ck
Ck þ ck

� �
2
ekk k2A; ð26Þ

where Ck and ck are, respectively, the largest and smallest

eigenvalues for Qk. Due to that S1=2k QkS
−1=2
k ¼ SkA, we see

that SkA is similar Qk with the same eigenvalues.
Therefore, the convergence of the proposed BFGS-based

detector can be guaranteed. Moreover, if S−1k is close to A,
both ck and Ck will be close to unity leading to the rapid
convergence rate.

4. Simulation Results

In this section, the simulation results of BER performance
versus different SNRs and the numerical comparison of
computational complexity are provided to verify the effec-
tiveness of the proposed BFGS-based detector compared to
other conventional linear detectors. The performance of the
exact MMSE detector is included as the benchmark for com-
parison. Rate-0.5 convolutional code with [133o; 171o] poly-
nomial and 64-QAM modulation are employed in all
simulations.

Input: H, y, N0, Es;

Output: LLRs;

1 Preprocessing:

2 b¼HHy, λ¼N0E
−1
s ,

3 A¼HHHþ λIK ;

4 Initialization:

5 s0 ¼N−1b, g0 ¼As0 − b, d0 ¼ − g0;

6 Iteration:

7 for k¼ 0;⋯;maxIter − 1 do

8 rk ¼Adk;

9 αk ¼ −
dHk gk
dHk rk

;

10 pk ¼ αkdk, qk ¼ αkrk;

11 skþ1 ¼ sk þ pk;

12 gkþ1 ¼ gk þ qk;

13 dkþ1 ¼ − gkþ1 þ pkq
H
k gkþ1

pHk qk
;

14 end

15 bs¼ skþ1;

16 LLR calculation:

17 μ−1k ≈ 1þ λ
N;

18 γk ¼ N
N0
;

19 for k¼ 1;⋯;K do

20 for b¼ 1;⋯;Q do

21 ψk; b ¼ minx2Ω0
b

bsk
μk
− x

��� ���2 −�
minx02Ω1

b

bsk
μk
− x0

��� ���2Þ;
22 Lk; b ¼ γkψk; b.

23 end

24 end

ALGORITHM 1: Proposed BFGS-based detector.
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4.1. BER Performance. Figure 1 shows the BER performance
evaluation of the proposed BFGS-based detector in i.i.d. Ray-
leigh fading channels with 128× 8 antenna configuration.
We can see that the performance of the simplified BFGS-based
detector without initialization is identical to that of the conven-
tional BFGS-based detector as we analyzed in Section 3.1.
Moreover, the different number of iterations exhibits the pro-
posed BFGS-based detector with the initial solution s0 ¼N−1b
can achieve rapid convergence rate. Besides, the performance

of the proposed BFGS-based detector with the approximated
LLR calculation is very close to the performance of the exact
MMSE detector, which illustrates the effectiveness of the pro-
posed detector in typical massive MIMO systems.

Figure 2 provides the BER performance comparison of the
proposed BFGS-based detector with the existing low-complexity
linear detectors (namely, NSE, CG, SSOR, SDNRI) in i.i.d. Ray-
leigh fading channels with 128× 8 and 128× 32 antenna con-
figurations, respectively. It first can be seen that the proposed
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FIGURE 1: BER performance of the proposed detector in i.i.d. Rayleigh fading channels with 128× 8 antenna configuration.
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FIGURE 2: Performance comparison of the proposed detector with other detectors in i.i.d. Rayleigh fading channels with different antenna
configurations. (a) 8× 128 and (b) 32× 128.
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BFGS-based detector achieves near-MMSE detection perfor-
mance with a small number of iterations for both the two differ-
ent antenna configurations. NSE-based and SSOR-based
detectors both perform well under the antenna configuration
with the small loading factor but do not work in the big loading
factor case. Compared with the proposed BFGS-based detector,
CG-based detector converges slower while SDNRI-based detec-
tor converges faster. However, notice that SDNRI adopts the
hybrid approach, which is more complex at each iteration
correspondingly.

We compare the BER performance of the proposed
BFGS-based detector with that of the other low-complexity
linear detectors mentioned above in the spatially correlated
channels with 128× 8 and 128× 32 antenna configurations
in Figure 3. The correlation coefficients ξB and ξU reflect the
degree of the channel correlation. The greater the channel
correlation coefficient, the higher the channel correlation
and the worse the propagation environment. On the whole,
the channel correlation will lead to slow convergence of the
iterative detectors under the same antenna configuration. We
can observe that NSE-based and SSOR-based still perform
worst in the poor propagation environments. Although
SDNRI-based detector works well in i.i.d. Rayleigh fading
channels but it converges very slowly when the channel cor-
relation is increased. Compared to other low-complexity lin-
ear iterative detectors, the proposed BFGS-based detector
performs satisfactorily in such ill-conditioned propagation
cases with a great loading factor and correlated channels.

4.2. Complexity Comparison. We analyze the computational
complexity through the required number of complex-valued

multiplications. The total complexity mainly comes from the
preprocessing step and iteration process. In general, the pre-
processing includes the calculation of the matrix A and the
vector b as shown in Algorithm 1, which requires NK2 þNK
multiplications. The NSE-based CG-based, and SSOR-based
detectors all share such preprocessing complexity. Notice
that the Gram matrix computation-free detectors like the
SDNRI-based detector do not require the preprocessing step.
Besides, the proposed BFGS1-based detector corresponds to
Algorithm 1 requiring the preprocessing, while the proposed
BFGS2-based detector adopts matrix-vector multiplications
to avoid the Gram matrix computation.

The complexity of the aforementioned iterative detectors
at each iteration is presented in Table 1. Thereinto, L denotes
the number of iterations. It can be seen that the proposed
BFGS-based detector significantly reduces the complexity of
the conventional BFGS method for MMSE detection. More-
over, we can observe that it has lower complexity compared
with other typical low-complexity linear detectors.

86 10 12 14 16
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Exact MMSE
Proposed BFGS, k = 5
Proposed BFGS, k = 6
NSE, k = 6

CG, k = 5
CG, k = 6
SSOR, k = 6
SDNRI, k = 6

10–4

10–3

10–2

10–1

100

ðaÞ
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Proposed BFGS, k = 11
NSE, k = 11
CG, k = 9

CG, k = 11
SSOR, k = 11
SDNRI, k = 9
SDNRI, k = 11

ðbÞ
FIGURE 3: Performance comparison of the proposed detector with other detectors in spatially correlated channels with different antenna
configurations. (a) 8× 128, ξB ¼ ξU ¼ 0:8 and (b) 32× 128, ξB ¼ ξU ¼ 0:6.

TABLE 1: Comparison of computational complexity.

Detectors Number of multiplications

NSE [5] 2K2
− 2K þ L−ð 2ÞK3

  L>2ð Þ
SSOR [9] 4K2ð þ 4KÞL
CG [7] 2K2ð þ 7KÞL
SDNRI [11] 4NKð þ 7KÞL
Conventional BFGS 7K2ð þ 7KÞL
Proposed BFGS1 K2ð þ 5KÞL
Proposed BFGS2 2NKð þ 7KÞL
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The total complexity evaluation of the discussed iterative
detectors is specified in Table 2. As can be clearly seen from
the above performance simulation, the proposed detector
performs best in the propagation cases with large loading
factor and correlated channels. Thus, we evaluate the com-
plexity comparison with the simulated number of iterations
in Figure 3(b) accordingly. The multiplications of the exact
Cholesky-based MMSE detection are included as a baseline
for comparison. It can be seen that the proposed BFGS-based
detector has the lowest complexity while attaining the best
performance compared with the other linear detectors. Thus,
we can conclude that the proposed detector achieves a better
performance and complexity trade-off.

5. Conclusion

In this paper, we propose a simplified BFGS method to iter-
atively realize the massive MIMO MMSE detection without
matrix inversion, which is identical to the conventional
BFGS method theoretically but reduces the complexity sig-
nificantly. The convergence analysis of the proposed BFGS
method is also provided. By fully utilizing the special prop-
erties of massive MIMO that the MMSE filtering matrix is
diagonally dominant, the efficient initial solution and
approximated LLR calculation are further proposed to
enhance the detection performance in terms of the conver-
gence rate and computational complexity. In addition, the
Gram matrix computation can be transformed into the
matrix-vector multiplications for lower complexity. Numer-
ical results demonstrate that the proposed BFGS-based soft-
output detector can achieve near-MMSE performance with a
few iterations and is superior to other typical low-complexity
linear detectors, especially in poor propagation environ-
ments. Future works will focus on the hybrid approaches
based on the proposed BFGS method and then the efficient
design of the corresponding hardware architecture.
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