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Due to the development of digital radio frequency memory (DRFM), active jamming against the main lobe of the radar has become
mainstream in electronic warfare. The jamming infiltrates the radar receiver via the main lobe, covering up the target echo
information. This greatly affects the detection, tracking, and localization of targets by radar. In this study, we consider jamming
suppression based on the independence of RF features. First, two stacked sparse auto-encoders (SSAEs) are built to extract the RF
characteristics and signal features carried out by the actual radar signal for subsequent jamming suppression. This method can
effectively separate RF features from signal features, making the extracted RF features more efficient and accurate. Then, an SSAE-
based jamming suppression auto-encoder (JSAE) is proposed; the mixed signal, including the radar signal, jamming signal, and
noise, is input to JSAE for dimensionality reduction. Therefore, the radar signal and RF features, extracted by the two SSAEs in the
previous step, are used to constrain the features of the reduced mixed signal. Moreover, we integrate the feature level and signal
level to jointly achieve jamming suppression. The original radar signal is used to assist the radar signal reconstructed by the
decoder. By first filtering out interference-related features and then reconstructing the signal, we can achieve better jamming
suppression performance. Finally, the effectiveness of the proposed method is verified by simulating the actual collected data.

1. Introduction

The suppression of the radar main lobe active jamming has
always been a key research issue in modern electronic war-
fare, especially after the wide application of digital radio
frequency memory (DRFM) in the electronic countermea-
sures field that has greatly enriched the jamming mode; this
resulted in higher demand on the antijamming capability of
the radar. For instance, the intermittent sampling and for-
warding jamming, generated by DRFM, can produce multi-
ple false targets to overwhelm the real targets [1, 2]. The
process of generating jamming by DRFM generally includes
operations, such as intercepting radar signals, storing, sam-
pling, or convolution and product operations with noise, and
finally forwarding the processed jamming. Through this
series of processing, the jamming, generated by the original
radar signal, is strongly correlated [3]; therefore, extracting
relevant signal features from the traditional time domain,
frequency domain, or time–frequency domain has not led
to effectively suppressing jamming.

Currently, algorithms for suppressing the new jamming
types generated by DRFM are mainly designed from the
system and system level, waveform design and receiver level,
as well as signal and data processing level.

For instance, Guo et al. [4] proposed a method using
independent component analysis (ICA) to suppress main
lobe jamming. By utilizing principal component analysis
(PCA) to extract the main lobe jamming component from
the input mixed signal, separating the jamming samples in
the time domain from the echo. A projection matrix was then
created to suppress the main lobe jamming based on the
separated samples. Cao et al. [5] utilized optimized quadra-
ture phase encoding in transmit waveform design to mitigate
interrupted sampling repeater jamming (ISRJ). The encoding
objective function was derived from analyzing the principle of
quadrature phase encoding against intermittent sampling
jamming, followed by applying a genetic algorithm to deter-
mine the encoding sequence. In addition, Ly et al. [6] devel-
oped a CNN-based method for ISRJ identification and
antijamming target detection. FrFT was applied to counter
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SMSP jamming in distributed radar due to distinct FM slopes
between spectrum dispersive jamming and radar signals [7].
Multiple studies [8–10] examined jamming suppression in
distributed radar systems, identifying jamming signals by
analyzing unique spatial scattering traits that differentiate
genuine target echoes from deceptive jamming. Furthermore,
Nie et al. [11] proposed a method, based on sub-pulse coding
(SPC), to analyze single-channel synthetic aperture radar
(SAR) systems against RF jamming (RFJ) and deception jam-
ming (DJ). In addition, Tian et al. [12] proposed a scheme
using mismatched filters to suppress chopping and interleav-
ing (C&I) jamming by combining parameter estimation, sig-
nal reconstruction, and filter optimization based on enhanced
time–frequency characteristics of the signal and jamming
parameters. Furthermore, Li et al. [13] suggested a kurtosis-
based algorithm to reconstruct SMSP jamming signals by
determining the subpulse period, estimating the initial phase,
and adjusting the amplitude through kurtosis maximization
for effective signal suppression.

As a conclusion, the current study still has some limita-
tions, almost all the abovementioned research results mainly
focused on suppressing a certain main lobe active jamming.
Therefore, facing the different jamming methods, it was nec-
essary to reestimate the jamming parameters and design
algorithms to extract several features. The deep neural net-
works (DNNs) can automatically mine and extract potential
deep features; thus, using deep learning methods can gener-
alize solutions to different jamming scenarios. On the other
hand, the main lobe active jamming is generated by a jammer
based on digital RF storage technology. Due to the nonline-
arity of the frequency conversion link between the jammer,
the RF power amplifier, and other devices, the introduced
nonlinear distortion remodulates the modulated signal, and
the resulting jamming signal becomes correlated with the RF
signature of the jammer. Therefore, distinguishing jamming
signals and radar signals from RF characteristics is of great
significance to further suppress jamming. However, there is
less open literature on the use of RF signatures to suppress
radar jamming.

Thus, this paper proposes an algorithm to suppress dif-
ferent jamming patterns using stacked sparse auto-encoders
(SSAEs) and RF characteristics. Moreover, the main contri-
butions of this paper are summarized as follows:

(1) We propose two SSAEs to extract the RF character-
istics. The signal, emitted by the source, contains both
the signal features and the RF characteristics. If a
single SSAE is applied, the extracted RF characteristics
will be mixed with the signal features, resulting in
a low integrity of the extracted RF characteristics.
Therefore, two SSAEs models where one of them is
employed to extract the signal features of the radar
signal. These extracted signal features then serve as
constraints, optimizing the other network to accu-
rately and comprehensively extract RF characteristics.

(2) After extracting RF features by two SSAEs models,
we verified the independence of RF features. This
process allows confirming that the RF characteristics

of signals with different modulation methods emitted
by the same source are identical. Moreover, we make
sure that the RF characteristics of signals, having the
same parameters and emitted by several sources, are
different.

(3) We propose RF signatures combined with a jamming
suppression auto-encoder (JSAE) to counter multiple
main lobe active jammers. JSAE is mainly divided
into two parts to suppress jamming: The first one
consists of calling the signal features and RF charac-
teristics of the radar signal that have been extracted
in the encoding stage. Combining these two phases of
features to form the feature labels yields to constrain
the encoded features of the mixed signal. Given the
autonomy of RF characteristics, the differences between
the RF attributes of the jamming signal and the radar
signal previously extracted by the two SSAE models
become apparent. This divergence enables the identi-
fication and subsequent filtration of the jamming sig-
nal. As the signal characteristics within the feature
label guide the filtration process, not only does it facil-
itate the elimination of the jamming signal; however, it
also imparts constraints on the signal attributes within
the composite signal. The second part is in the decod-
ing stage, using the original radar signal to constrain
the reconstructed signal output by the decoder.

Finally, the technical solution used in this paper is shown
in Figure 1.

2. RF Signature for Jamming Suppression

In academia, there is no uniform definition of RF character-
istics. Generally speaking, they are also known as unintentional
modulation characteristics carried out by signals. Unlike inten-
tionally designed modulation characteristics, unintentional
modulation characteristics arise from the nonideal character-
istics of hardware devices or characteristics or errors generated
during the manufacturing process of the device. Therefore, RF
characteristics are inherent properties of the physical level;
they are independent, stable, and universal [14]. The first fea-
ture (i.e., independence) indicates that the RF characteristics,
contained in each hardware device, are unique, while the sec-
ond feature (i.e., stable) means that the RF characteristics will
not change due to the external environment conditions. At
present, RF signatures find widespread applications in wireless
transmitter identification within the communication field and
in individual radiation source identification in the radar field.

In this paper, both the radar signal and jamming signal
are, respectively, simulated using the receiver to collect the
signal data emitted by several signal source devices in the
microwave anechoic room. Because of the nonideal charac-
teristics of the internal semiconductor components of the
hardware device, such as the signal source, the emitted signal
will carry RF characteristics. Based on the RF characteristics
of its own equipment, and knowing that both the radar signal
and jamming signal are generated and transmitted by differ-
ent types of signal sources, the RF characteristics carried by
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the two types of signals are unique and stable. Therefore,
the analysis of the jamming suppression is considered first.
During this analysis, the RF characteristics, carried by radar
signal and jamming signal, are independent; yet they have a
corresponding relationship with the signal source equipment.

2.1. General Structure of Radar Transmitter. Currently, the
main vibration amplification-type radar transmitter with the
best performance is often used. The structure diagram of
the overall components is shown in Figure 2. Although its com-
position structure is complex and its production cost is high, it is
able to achieve the modulation of complex signals and generate
coherent signals. The main vibration amplification-type radar
transmitter consists mainly of a radiation source structure
cascaded through a solid-state frequency source, a modulator,
and an RF amplifier chain. The fundamental component of
the solid-state frequency source is the frequency synthesizer.
It is capable of producing RF signals with varying frequencies
andmodulation modes for the entire radar system.Moreover,

these frequencies sequentially traverse a three-stage amplifi-
cation process within the RF amplification link to finally gen-
erate high-power RF signals. In the structure of the complete
radar transmitter, due to the influence of the solid-state fre-
quency source, the self-noise, and the nonlinear factors within
the entire RF amplification link, the transmitted radar signal
will carry out the RF characteristics. In addition, during the
signal modulation process, it will introduce error; this error
will be multiplied by the original signal and will introduce the
RF characteristics to the signal.

2.2. DRFM Structure. The role of DRFM has grown substan-
tially in contemporary electronic warfare. DRFM functions
as an electronic mechanism for storing and retransmitting
signals through high-speed digital acquisition technology.
Moreover, DRFM [15] can store intricate modulated radar
signal waveforms. In addition, the jamming signal, generated
after processing, is highly similar to the original radar signal,
resulting in high jamming performance and efficiency. The
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structure diagram of DRFM is displayed in Figure 3. Therefore,
DRFM includes six components: down-conversion, data quan-
tization, memory storage, number recovery, up-conversion, and
jamming control.

During the generation of the jamming signal, the original
radar signal is quantized by the analog-to-digital conversion,
and the noisy signal is generated due to the quantization error.
Concerning the digital-to-analog converter, it is used for data
recovery as it forms flicker distortion due to the nonideal
characteristics, and nonlinear distortion is generated by the
power amplifier after up-conversion. The original input signal
undergoes another modulation within each component of the
jamming machine, resulting in forwarding jamming to gen-
erate spurious components, and noise in the jamming signal
emitted. Thus, the jamming signal has RF characteristics.

3. Extraction of RF Features by Two SSAEs

DNNs are often used to extract data or images of hidden
features [16, 17]. In this section, SSAE1 is the first method
employed to extract the signal features from the ideal radar
signal using unsupervised means. The ideal radar signal used
is generated by simulation software without RF features.
Then, SSAE1 is integrated with SSAE2 to form two SSAEs.
These SSAEs are employed to extract the RF features of
the real-pickup radar signal. The emitted signal by the signal

generator is referred to as the real-pickup signal in this paper.
The use of two combined SSAEs leads to a better extraction
of the RF features of the real-pick radar signal at different
abstraction levels. This will ensure that the potential RF fea-
tures of the signal generator, that can stably characterize the
simulated radar radiation source, are identified based on the
real-pick radar signal; moreover, the extracted RF features
are not sensitive to signal parameter variations.

Since different signal generators are employed to simu-
late the radar side and the interferer side, respectively, the RF
features, carried by the radar signal and the interferer signal
collected at the receiver side, are different. This is used as the
basis to achieve interference suppression. After the addition
of noise to the mixed signal comprising both the radar signal
and interferer signal as well as the input to JSAE, the primary
focus in the interference suppression process is to impose
constraints on the encoded mixed signal’s features. These
features are based on the RF features and signal features
derived from the harvested radar signal. Moreover, they are
extracted by the collaboration of the two SSAEs and are used
as feature labels. Simultaneously, the original radar signal is
utilized as signal labels to assist in constraining the recon-
structed signal after decoding, under the two parts. Finally,
the interference suppression is achieved by filtering out the
interference signal and reconstructing the radar signal using
the joint constraint of both parts.
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3.1. Signal Feature Extraction by SSAE1. The following steps
are applied to extract the signal RF features of the ideal radar
signal while using a single SSAE network. The SSAE is an
unsupervised learning network model where the encoder and
decoder are fully connected. Moreover, the SSAE is typically
composed of multiple sparse auto-encoder (SAE) stacks, and
a single SAE generally contains three layers: input, hidden,
and output layers. Encoding occurs from the input to the hidden
layer, whereas decoding is performed between the hidden to the
output layer. Therefore, Figure 4 shows the SSAE1 structure for
extracting the signal characteristics of the ideal radar signal. In
more detail, the network structure consists mainly of an input
layer, an output layer, a three-layer hidden layer serving as an
encoder, and another three-layer hidden layer serving a decoder,
with a fully connected structure between each layer.

Referring to Figure 4, three layers of SSAE1 are constructed
with three encoders and decoders. Consequently, the dataset
containing the ideal radar signal is normalized and inserted
in SSAE1. In addition, the signal features of the ideal radar
signal are extracted using the layered pretraining and global
training fine-tuning. Finally, the SSAE1 model is saved after
accomplishing the training. In this paper, all signal datasets,
input to the network, are preprocessed to eliminate the real
and imaginary components of the signal data. Subsequently,
these datasets are connected to generate the in-phase and
quadrature (I/Q) data. The input nodes of the neural net-
work used in this paper consist of 4,000 samples.

In extracting the ideal radar signal features, the training
process of SSAE1 follows the principle of layer-by-layer greedy
training and supervised fine-tuning. First, the layer-by-layer
training is applied to get the individual weights and biases of
each layer. Then, these weights and biases serve as the initiali-
zation parameters of the whole deep-level network for global
training, i.e., fine-tuning the whole network. Therefore, for
the layer-by-layer pretraining, SSAE1 starts the self-encoding

and training from the first layer, and the hidden features
learned in the first AE layer will be used as input for the
next AE layer. For example, after encoder1 has been trained
using the first AE layer, the encoding phase is only left, and
the output of the hidden layer of the first AE is used as the
input layer of encoder2 of the second AE layer. Hence, auto-
encoding and training are performed, and the parameters of
the previous network layers remain stable. After the layer-by-
layer training, the network is globally trained for fine-tuning.
Thus, SSAE1 completes the signal feature extraction of the
ideal radar signal by pretraining and fine-tuning.

If X is the unlabeled ideal radar signal input data, the
output of layer i coding is represented as follows:

hi ¼ f zið Þ ¼ f wihi−1þbið Þ;  0 ≤ i ≤ n; ð1Þ

where hi;wi, and bi are the activation vector, weight vector,
and bias vector of layer i, respectively. Moreover, zi ¼
wihi−1 þ bi denotes the excitation vector, and f ð⋅Þ: denotes
the activation LeakyReLu function that is expressed as
follows:

LeakyReLu zð Þ ¼max αz; zð Þ; ð2Þ

where 0<α<1 is a preset parameter.
When i¼ 0, the input layer h0 ¼X represents the input

of the network; however, when i¼ n, the network output
layer is targeted, and the final linear output of the network
hn is the following:

hn ¼ zn ¼ wnhn−1 þ bn: ð3Þ

As already mentioned, SSAE1 is a three-layer codec net-
work. A sparsity constraint is added to the hidden layer neurons
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to ensure that the output of most neurons is null. Therefore, the
network loss function of a single layer of SSAE1, during the
pretraining phase, applies the mean squared deviation with
the sparsity constraint term, as shown in the following equation:

Loss1 ¼
1
N

∑
N

i¼1

1
2
bhi − xi



 


2 þ β∑

s2

j¼1
KL ρj jbρjÀ Á

; ð4Þ

where N denotes the number of samples, xi represents the
ith sample of the single-layer encoder input in SSAE1, andbhi denotes the ith sample of the corresponding single-layer
decoder reconstructed output. Moreover, S2 represents the
number of neurons in the hidden layer, ρ indicates the
parameter of the sparsity constraint and it tends to zero,
and bρj is the average activation of the hidden neurons that
is expressed as follows:

bρj ¼ 1
N

∑
N

i¼1
aj 2ð Þ X jð ÞÀ ÁÂ Ã

; ð5Þ

where að2Þj ðXðjÞÞ : denotes the activation of the hidden neuron j
of the neural network with a network inputX. Since the hidden
layer neuron should approach zero, it is necessary to control the
value of bρ by using ρ sparsity. Thus, the Kullback–Leibler (KL)
divergence is constructed as a regular constraint term:

KL ρj jbρ jÀ Á¼ ρIn
ρbρj

 !
þ 1 − ρð ÞIn 1 − ρ

1 − bρj
 !

: ð6Þ

The β parameter in Equation (4) represents the weight of
the control sparsity penalty factor with the following prop-
erties: when bρj is close to zero or one, the relative entropy is
large at this point; however, when bρj is equal to ρ;KLðρj jbρjÞ :

¼ 0 and it increases as the difference between bρj and ρ
becomes larger. Therefore, to satisfy the sparsity requirement,
β should be minimized when bρj is close to ρ [18–23]. More-
over, the pretraining to extract the signal characteristics of the
ideal radar signal is conducted by minimizing the mean
square error (MSE) between the estimated values of the
decoded layers and the input values of the encoded layers to
get the initial values of the parameters and update them. This

provides the basis of the global training to fine-tune the
parameters.

After pretraining and fine-tuning, the parameters for the
global training, the following loss function, that deploys the
MSE criterion, is applied:

Loss1 ¼
1
N

∑
N

i¼1
by i − yik j2; ð7Þ

where yi denotes the ith ideal radar signal input, and by i is the
ith reconstructed ideal radar signal, obtained from the last
layer of the decoder output. Fine-tuning the parameters dur-
ing global training serves to optimize the parameters and
update the network. This is achieved by the minimization
of the MSE between the reconstructed signal and the ideal
radar signal.

3.2. Two SSAEs to Extract RF Features. After applying SSAE1
and extracting the signal features from the ideal radar signal,
three SAEs are employed to construct the three-layer SSAE2
to extract the RF features. The structure of SSAE2 is identical
to SSAE1. Therefore, it contains an input layer, an output
layer, a three-layer hidden layer serving as an encoder, and a
three-layer hidden layer serving as a decoder. The original
radar signal dataset is normalized and inserted into the
SSAE2 to extract the RF features through hierarchical pre-
training, global training, and fine-tuning. Since the radar
signal input to the SSAE2 contains signal features and RF
features, the former area extracted by SSAE1 and must be
used as constraints to optimize the extraction of RF features
by SSAE2 to ensure the complete and accurate extraction of
these features. The flowchart of the two SSAEs for extracting
RF features is displayed in Figure 5.

The layer-by-layer pretraining and global training differ
between SSAE2 and SSAE1. The second layer of the SSAE2
encoder input represents the combined output from the pre-
vious layer of the SSAE1 and SSAE2 encoders, and the com-
bined output contains the first layer of the SSAE1 encoder
output. The combined output of the second-layer encoder of
SSAE2 is input to the second-layer decoder of SSAE2 for
reconstruction, and the MSE of the encoder input of the
second-layer of SSAE2 is calculated. As previously presented,
both SSAE1 and SSAE2 have three encoding layers. The
layer-by-layer pretraining ends when SSAE2 is combined
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with SSAE1 to complete the third layer of SSAE2 encoding
and decoding training. In the layer-by-layer pretraining, the
decoder output of SSAE2 and the encoder input of each layer
calculate the MSE and are used to initialize and update the
network parameters of that layer. Moreover, the loss function
of the SSAE2 layer-by-layer training is identical to the
SSAE1 layer-by-layer training, and the sparse constraint
term, defined in Equation (4), is applied.

Subsequently, the global training of SSAE2 is conducted
to fine-tune the network parameters. The first-layer coding
outputs of SSAE2 and SSAE1 are merged and input into the
second-layer encoder of SSAE2. Then, the second-layer cod-
ing outputs of SSAE2 and SSAE1 are merged and input into
the third-layer coding of SSAE2. The coded output of the
third layer of SSAE2 represents the RF characteristics. The
third-layer coding outputs of SSAE2 and SSAE1 are merged
and input into the third-layer decoder for reconstruction.
The network parameters of SSAE2 are updated by calculating
the MSE using the reconstructed signal from the last layer of
the encoder and the original input signal. The loss function
of SSAE2 for global training and fine-tuning is equivalent to
that of SSAE1 for global training (Equation (7)).

4. JSAE Jamming Suppression

4.1. Primary and Secondary Suppression. Two different signal
sources are used to simulate the radar transmitter and the
jammer because the two signal generators, considered in this
study, are different. Thus, the radar signal emitted by the
source and the simulated signal have distinct RF features,
providing a basis for jamming suppression. The network
structure of JSAE is identical to SSAE1 and SSAE2. More-
over, jamming suppression is performed using the feature
level as the primary part and the signal level as the secondary
part. First, the RF features of the real radar signal are extracted
by both SSAEs, and the signal features are considered as fea-
ture labels to restrict the hybrid features obtained using

layer-by-layer coding of the mixed signal consisting of the
radar signal and the interference signal generated by
JSAE. Then, the mixed features are decoded layer-by-layer
by JSAE to get the reconstructed radar signal. Finally, the
real radar signal is employed as the signal label to constrain
the reconstructed radar signal. Note that the JSAE training
process is shown in Figure 6.

The RF characteristics and signal characteristics of the
extracted radar signals, as depicted in Figure 6, serve as encod-
ing filters. The use of the extracted RF characteristics of the
radar signals helps distinguishing between radar signals and
interference signals within mixed signals, thereby suppressing
interference.

Moreover, the use of the extracted signal characteristics
of the radar signals provides a foundation for subsequent
signal reconstruction. The mixed signals consist of both RF
characteristics and signal characteristics carried out by the
interference signals as well as the radar signals. This implies
that the mixed signals contain a combination of both types of
characteristics. Leveraging the unique and constant nature of
RF characteristics, the extracted RF features from radar sig-
nals are used to constrain the mixed features following JSAE
multilayer encoding. This differentiation enables discrimina-
tion between the RF characteristics of the radar signals and
interference signals within the mixed signals, thereby achiev-
ing interference suppression. While using the extracted RF
characteristics of the radar signals for interference suppres-
sion, concurrent employment of the extracted signal charac-
teristics from these radar signals is applied to enhance the
constrain on mixed features following the encoding. Then,
the filtering stage of the signal characteristics, related to
interference signals from the mixed signals, results in more
accurate signal characteristics of the radar signals. Note that
the precise signal characteristics are crucial for reconstruct-
ing radar signals. Interference suppression is initially exe-
cuted at the feature level, using both the RF features and
signal features from the extracted radar signal. These features
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are employed to constrain the hybrid features obtained after
encoding the hybrid signal. Subsequently, the hybrid features
derived from the compression of the hybrid signal are
decoded and recovered layer-by-layer by JSAE to obtain the
reconstructed radar signal. Finally, the original radar signal is
used to enhance the reconstructed radar signal after carrying
out suppression at the signal level. As for the second interfer-
ence suppression, it is performed at the signal level. In other
words, JSAE uses the RF features, signal features, and the
signal itself to complete the interference suppression; how-
ever, the interference suppression from the feature level is
primary, and the suppression at the signal level serves only
as an aid to the interference suppression at the feature level.
Therefore, this suppression is secondary. Finally, the primary
and secondary are considered by setting the weight coeffi-
cients of the loss function.

4.2. Pretraining and Global Training of JSAE. The JSAE
training also consists of layer-by-layer pretraining and global
training, but these two parts differ from those of the first two
networks (e.g., SSAE1 and SSAE2). JSAE only uses the fea-
ture labels to enhance the mixed features after each encoding
layer; therefore, it does not decode and reconstruct the fea-
tures after each layer. During global training, JSAE uses the
feature labels and signal labels to limit the features after three
layers of encoding and decodes the reconstructed signals.
The first layer-by-layer pretraining step consists of inserting
the mixed signal composed of the radar signal with the target
and the jamming signal to serve as the training set. This set
will be used later on to train JSAE. The completed SSAE1 and
SSAE2 are meanwhile used. The mixed signal is coded in the
first layer to obtain the mixed features containing the RF and
signal features. The real radar signal is input into SSAE1 and
SSAE2. After the first-layer coding of both networks, the
signal and RF features of the first layer are obtained sepa-
rately. Then, both parts of features serve as feature labels and
are jointly substituted into the loss function along with the
encoded features of the mixed signal to calculate the MSE.
Furthermore, the JSAE layer-by-layer training loss function
includes a sparse constraint term to extract deep-level fea-
tures. The expression of the loss function in the hierarchical
pretraining can be expressed as follows:

Loss2 ¼
1
N

∑
N

j¼1

1
2
jjbh j − hjjj2 þ β∑

s2

j¼1
KL ρjjbρjÀ Á

; ð8Þ

where bhj denotes the output feature of the jth mixed signal
passing through the single-layer encoder of JSAE, and hj
denotes the ith feature label.

In addition, the layer-by-layer greedy training mode is
applied. The input of the encoder in the second layer of JSAE
training is the output of the first-layer encoder. Thus, the
input of the second-layer encoder represents the hybrid fea-
ture output of the first-layer encoder. The hybrid feature is
then encoded using the second-layer encoder that generates a
hybrid feature with fewer dimensions. Similar to the first-
layer training, real radar signal features, encoded by the sec-
ond layer of SSAE1, and RF features, encoded by the second

layer of SSAE2, are combined to form the feature tags. More-
over, the MSE between the combined feature labels and the
mixed features of the mixed signal, derived from the second-
layer encoding of JSAE, is calculated. By analogy, the pre-
training of JSAE third layer is completed.

Subsequently, global training is performed to update the
network parameters. Thus, the mixed signal is fed into JSAE
to be hierarchically encoded, and the final dimension-reduced
mixed features are obtained from the output of the third
encoding layer. Although the mixed signal undergoes three-
layer encoding for dimension reduction, the actual radar sig-
nals are processed through the three encoding layers of SSAE1
to get the signal features of the final dimension-reduced radar
signal. Additionally, the actual radar signals are also processed
through the three encoding layers of SSAE2 to generate the RF
features of the final dimension-reduced radar signal. These
two feature parts are then merged and used as feature labels.
The first term of the loss function for global training is calcu-
lated by computing the MSE value between the feature labels
and the mixed features obtained from the three-layer encod-
ing of JSAE. The dimension-reduced mixed features are then
decoded through the three JSAE decoding layers to recon-
struct the radar signal. Subsequently, the actual radar signals
are used as signal labels, and their MSE, with the recon-
structed radar signals, is considered as the second term of
the loss function. The main difference between the global
training and the layer-wise training of JSAE is that, during
global training, only the mixed features obtained from the
third layer are used to determine the value of MSE with the
merged feature labels; moreover, the MSE is computed between
the decoded reconstructed radar signals and the original
radar signals. Thus, the expression for the loss function of
JSAE global training is determined as follows:

Loss2 ¼ λ1 ×
1
N

∑
N

k¼1

bhk − hk



 


2 þ λ2 ×

1
N

∑
N

i¼1
by i − yik k2;

ð9Þ

where hk represents the signal features and RF features out-
put from the combined kth real radar signal after the third
layer of SSAE1 and SSAE2 coding, bhk denotes the mixed
features obtained from the kth mixed signal after the third
layer of JSAE coding, and λ1 and λ2 denote the weight coeffi-
cients of both mean squared deviations in the loss function,
respectively. Note that λ1>λ2 as JSAE performs jamming
suppression primarily at the feature level and aids in con-
straining the jamming at the signal level. During training, we
explored various combinations of weighting parameters while
ensuring that λ1>λ2 and λ1 þ λ2 ¼ 1. The specific values of λ1
and λ2 have a negligible impact on the final results; therefore,
they do not significantly affect the overall jamming suppres-
sion performance.

5. Analysis of Experimental Results

5.1. Experimental Data Setup. An ideal radar signal, required
for extracting signal features using simulation software, is
first generated. This signal includes two modulation signals
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commonly used in pulsed radar systems, the linear frequency
modulation (LFM) and the binary phase-shift keying (BPSK).
To avoid overfitting, since the same signal data are input into
SSAE1, a small amount of Gaussian white noise is added to
the ideal radar signal, yielding to a signal-to-noise ratio (SNR)
equal to 30 dB. The real radar signal used for RF feature
extraction and jamming suppression consists also of these
two modulation methods. Since the signal features extracted
by SSAE1 in applied to assist SSAE2 in RF feature extrac-
tion, the signal parameters of the collected radar signal shall
be maintained constant as the ideal radar signal. The ideal
signal data of the baseband, generated by the simulation
platform, are sent to the signal generator, which modulates
the baseband signal into an RF signal. Then, the RF signal is
transmitted by the signal generator, and the final collection
is the I/Q data of the zero intermediate frequency signal;
this latter is obtained after the received signal undergoes
down-conversion and filtering processing by the receiver.

In more detail, Table 1 lists the parameters of the ideal
radar signal generated by the simulation platform and the
ones emitted by the signal generator. This represents the input
data for SSAE1 and SSAE2. Moreover, different transmit
power levels and carrier frequencies are used for the RF signal
emitted from the signal source. The data generation and
acquisition of the jamming signal are the identical to the radar
signal. Therefore, the signal generator processes the jamming
signal data, generated by the simulation platform, and emits
the jamming RF signal, which is received and processed by the
receiver. Five different jamming signals with distinct jamming
styles are used at this level. They have a jamming-to-signal
ratio (JSR) range of 10–30 dB. Moreover, the parameters of
the jamming signals are listed in Table 2. Finally, the network
parameters of SSAE1 for signal feature extraction, SSAE2 for
RF feature extraction, and JSAE for jamming suppression are
displayed in Table 3.

The reason for setting the number of network layers to
three in both SSAE1 and SSAE2 is to efficiently extract radio
frequency features and signal features without prolonging the
training time. Reducing the number of layers to two would
affect the extraction of radio frequency features, consequently
influencing the jamming suppression performance. More-
over, opting for a four-layer network during training would
yield to limited feature extraction effects but significantly
increase the iteration time. To maintain compatibility with
JSAE, which relies on features extracted from the networks
SSAE1 and SSAE2, these latter are configured with three
layers. JSAE needs to use the features extracted by the first
two networks, so it also needs to maintain the three-layer
network settings. In addition, the number of nodes in each
layer of the networks is reasonably determined based on the
signal length. Therefore, the node settings for the input layer
and each encoding layer need not adhere strictly to the manu-
script’s specifications; they can be adjusted according to the
actual signal characteristics.

Floating points of operations (FLOPs) represent the num-
ber of floating point operations and are employed to measure
the computational effort of the model. Subsequently, we assess
the computational complexity of the model based on FLOPs.

Moreover, SSAE1, SSAE2, and JSAE all incorporate a
fully connected structure. The number of parameters and
computational performance (FLOPs) of the fully connected
layer are computed using the following equations:

Params¼ Ninput þ 1
À Á

⋅ Noutput; ð10Þ

FLOPs¼ 2 ⋅ Ninput ⋅ Noutput; ð11Þ

where Ninput and Noutput represent the number of input and
output nodes of the fully connected layer. Table 4 shows the
number of parameters and FLOPs for each network.

5.2. Signal Data Acquisition. The radar transmitter and jam-
mer are simulated using transmitting and receiving equip-
ment in a microwave anechoic chamber. Moreover, the radar
and jamming signal data are collected to analyze the RF
characteristics of the different signal sources. The schematic
diagram of the transmitting and receiving equipment is
shown in Figure 7.

The signal sources deployed at the transmitting end are
Keysight N5172B and Keysight N5182B. Both signal genera-
tors are RF vector signal generators. Finally, the Ceyear
4051E signal/spectrum analyzer is used as the receiver end.

We chose LFM and BPSK signals as the radar signal. As
the jamming signal, ISRJ, SMSP jamming, C&I jamming,
smart noise convolution jamming, and smart noise product
jamming were applied. Keysight N5172B was used to simulate
the radar signal transmission for the two differentmodulation
methods, and Keysight N5182B was applied to compute the
signal transmission of the five types of jamming patterns. In
addition, this second tool has another purpose. It was used to
simulate and transmit the radar signals keeping the same
signal parameters and modulation parameters as Keysight
N5172B. After that, by extracting and comparing the RF fea-
tures of both tools, it can be verified that the signals with the
same parameters and modulation methods, and emitted by
different signal sources, contain different RF characteristics.

We denote the transmitted LFM signal as sðtÞ ::

s tð Þ ¼ Arect
t
T

� �
exp j2π fct þ

1
2
Kt2

� �
þ jφ0

� �
; ð12Þ

where A is the amplitude of the signal, T represents the pulse
width of the signal, fc denotes the carrier frequency of the
signal, and φ0 is the initial phase, which is null; moreover,
K ¼ B

T is the FM slope, and B is the bandwidth of the signal.
Referring to Equation (10), the rectangular pulse rectðtÞ: is
represented as follows:

Rect
t
T

� �
¼

1;   −
T
2
≤ t ≤

T
2

0;  t>
T
2
; t< −

T
2

8><>: : ð13Þ

A 7-bit Barker code sequence was applied for encoding.
The BPSK is expressed as follows:
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TABLE 2: Signal parameters of the jamming signal at the transmitter.

Jamming patterns Jamming parameters SNR

Smart noise convolution jamming Noise time width, Ls (μs) 20, 30, 40

JSR: 10–30 dB

Smart noise product jamming Noise bandwidth, Bs (MHz) 3, 4, 5
SMSP jamming Sampling multiplier, N 4, 5, 8

C&I jamming
Number of segments of signal interception, m 3, 4

Number of copies per subpulse, n 2, 3
ISRJ Number of intervals for sampling, M 3, 4, 5

TABLE 3: Parameter setting of the networks.

SSAE1 SSAE2 JSAE

Parameters Value
Input layer 4,000 4,000 4,000
Hidden layer 1 1,500 1,500 3,000
Hidden layer 2 500 500 1,000
Hidden layer 3 50 50 100
Hidden layer 4 500 1,000 1,000
Hidden layer 5 1,500 3,000 3,000
Output layer 4,000 4,000 4,000
Learning rate 0.0001 0.0001 0.0001
Optimizer Adam optimizer Adam optimizer Adam optimizer
Activation function LeakyReLU LeakyReLU LeakyReLU

TABLE 4: Number of parameters and flops.

Neural network Params FLOPs

SSAE1 13.56M 27.10M
SSAE2 36.22M 72.40M
JSAE 66.43M 132.80M

Transmit signal source Receiver

Transmitting
antenna 

Receive
antenna 

FIGURE 7: Schematic diagram of the transmitting and receiving equipment.
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s tð Þ ¼ Arect
t
T

� �
exp j 2πfct þ ϕ tð Þ þ φ0½ �f g; ð14Þ

where ϕðtÞ: represents the phase modulation function (ϕðtÞ : ¼
πmðtÞ :), andmðtÞ : indicates the 7-bit Barker code sequences. As
the value ofmðtÞ : is either 0 or 1, the value ofϕðtÞ : will be 0 or π.

The principle of ISRJ generation consists of intercepting
the radar signal by the jammer antenna, storing it, sampling
it, and forwarding it. Sampling and forwarding actions are
performed sequentially until the end of the signal [24]. Inmore
detail, the schematic diagram of ISRJ is shown in Figure 8,
where Ts represents the sample plus one period of intermittent
forwarding, and τ indicates the sample period. Therefore, the
sampling signal is defined as follows:

p tð Þ ¼ Rect
t
τ

� �
× ∑

þ1

n¼−1
δ t − nTsð Þ

¼ τj
Ts

þ 2τ
Ts

∑
þ1

n¼1

sinnπfstτj
nπfstτj

cos2πnfstt;  0< t ≤ T;

ð15Þ

where fst ¼ 1
Ts
is the frequency of the ISRJ. The model of ISRJ

is defined when the radar signal is expressed with respect to
sðtÞ: as indicated below:

J3 tð Þ ¼ s tð Þ ⋅ p tð Þ
¼ τj

Ts
s tð Þ þ 2τj

Ts
∑
þ1

n¼1

sinnπfstτj
nπfstτj

cos2πnfstt ⋅ s tð Þ;  0< t ≤ T:

ð16Þ

Moreover, SMSP jamming exhibits a high overlap in the
time and frequency domains of radar echoes. For instance,
Sparrow et al. [25] observed several comb-like dense false
targets after pulse compression that reduces the radar detec-
tion performance [26]. SMSP jamming consists of multiple
subpulses, which are sampled and reconstructed by DRFM
after intercepting the radar signal. If there are n subpulses of
SMSP jamming and the FM slope of the jamming k¼ nK , the
signal model of the ith subpulse can be expressed as follows:

ji tð Þ ¼ Rect
t − 2i − 1ð ÞT= 2nð Þ

T=n

� �
¼ Exp j2πfc t − i − 1ð ÞT=n½ � þ jπnK t − i − 1ð ÞT=n½ �2 þ jφj

È É
;

ð17Þ

where φj is the initial phase of the jth subpulse. The recon-
structed amplitude normalized SMSP jamming signal model
is expressed as follows:

J2 tð Þ ¼ ∑
n

i¼1
ji tð Þ: ð18Þ

In addition, C&I jamming is another type proposed by
Sparrow et al. [25]. A high-density false target group is formed
after matching the filtering. Moreover, C&I jamming differs
from SMSP jamming in that the FM slope of the subsignal is
identical to that of the intercepted radar signal. Therefore,
C&I jamming can be regarded as the result of superimposing
the ISRJ after applying multiple time delays [27, 28]. The prin-
ciple of C&I jamming is displayed in Figure 9. This type consists
of repeatedly applying Equation (14). Finally, the signalmodel
of C&I jamming is expressed as follows:

J3 tð Þ ¼ ∑
N−1

n¼0
J1 t − nτð Þ: ð19Þ

In smart noise convolution jamming, the jammer receives
the radar signal and performs a convolution modulation on
both the noise and the radar transmission signal. Thus, the
signal is amplified and transmitted [29]. The jammer receives
the radar signal with a time delay τ; moreover, the Gaussian
white noise generated by the jammer is presented by n1ðtÞ :.
The signal model of the smart noise convolution jamming is
expressed as follows:

J4 tð Þ ¼ s t − τð Þ⊗ n1 tð Þ; ð20Þ

where ⊗ denotes the convolution operation.
Similarly, in smart noise product jamming, the radar trans-

mits the signal, and the noise signal is multiplied, modulated,
and amplified to be ready for transmission. In contrast to
smart noise convolution jamming, the noise signal is a Gauss-
ian white noise after applying the low-pass filtering [30, 31].

…

Sampling Forwarding
T

Ts τ

P1 P4 P5 P6P4–1 P5–1 P6–1P3P2P1–1 P3–1P2–1

FIGURE 8: Schematic diagram of ISRJ.

…

Sampling Forwarding
T

Ts τ

P1 P2–2 P3 P3–2P2–3 P3–1 P3–3P2P1–2P1–1 P2–1P1–3

FIGURE 9: Schematic diagram of C&I jamming principle.
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The signal model of the smart product jamming noise signal is
expressed as follows:

J5 tð Þ ¼ s t − τð Þ × n2 tð Þ: ð21Þ

In Equation (18), n2ðtÞ : is a narrowband noise signal and
can be expressed as a low-pass filtering operation of n1ðtÞ : as
indicated in the following equation:

n2 tð Þ ¼ n1 tð Þ ×H tð Þ: ð22Þ

Furthermore, the Ceyear 4051E signal/spectrum analyzer
is deployed as the receiver for RF signals. The receiver’s
sampling rate is specified to be 1.25 times the measurement
bandwidth on this device. In addition, after down-conversion
processing, the receiver takes a low-pass filtering operation on
the received RF signals setting the measurement bandwidth at
the receiver side as the bandwidth of the low-pass filter.
Therefore, attempting to further increase the sampling rate
of the signal at the receiver end, it is required to artificially
increase themeasurement bandwidth; however, this approach
can make the signal more spurious and seriously distorted.
Thus, it will not be used for subsequent research, by testing
and observing the time domain and frequency domain wave-
forms of the acquired signal. So, it can be concluded that the
measurement bandwidth is optimal when it is equal to twice
the bandwidth of the transmitted signal.

Therefore, we have selected the following parameter values,
taking into account both the number of input nodes of the
neural network and the limitations of the receiver equipment.
These parameters are the bandwidth of the fixed transmitter
jamming signal and radar signal that is set to 20MHz, the
sampling rate of the fixed transmitter baseband signal and the
receiver sampling rate of the signal that is equal to 50MHz,
and the pulse width of the signal that is equal to 40 μs.

The ideal radar signals of each of the two modulation
methods are generated using the simulation software with
4,750 sets consisting of the dataset of SSAE1. The N5172B
signal generator is used to transmit both LFM and BPSK sig-
nals, encompassing various combinations of transmit power
and distinct carrier frequencies. According to Table 1, five sets
of transmit power levels and carrier frequencies are config-
ured for the transmitted signals. Hence, when considering free
combination, there are 25 different transmit power and car-
rier frequencies for each modulation mode of radar signals
that are transmitted at the transmitting end. These signals,
coming from the twomodulations, are collected by the receiver
side and regrouped in 190 groups for each combination of
transmit power and carrier frequency; therefore, a total of
4,750 groups are considered for each modulation under 25
combinations of parameters, and a total of 9,500 groups are
obtained for both modulations; they constitute the dataset
of SSAE2. As for the N5182B signal generator, it also trans-
mits five types of jamming signals. Table 2 shows that the
signal parameters are adjusted for each type of jamming
signal, so that each one has three different signal parame-
ters. Consequently, when being merged with the combination

of different transmit power and carrier frequency parameters,
the N5182B will transmit 75 different transmit power, carrier
frequency, and jamming signal parameters for each type of
jamming. The receiver side collects 16 sets for each combina-
tion of parameters; thus, a total of 1,200 sets are collected for
each type of jamming, resulting in a total of 6,000 sets of data
for the five types of jamming. Then, the different values of the
dry signal ratio for each type of jamming are set as shown in
Table 2.

In addition, since the RF features are only related to the
hardware devices, another 6,000 sets of LFM signals are
deployed, serving as radar echoes generated by N5172B.
The signal parameters of the radar echoes are identical to
those of the LFM signals in the dataset used to extract the RF
features, i.e., 240 sets are used for each parameter combining
the different transmit power and carrier frequencies. The
6,000 sets of LFM signals are combined with another 6,000
sets of jamming signals collected by N5182B. Moreover, dif-
ferent noise levels are added, and the mixed signals are uti-
lized as the training and test sets for JSAE, while the LFM
signals, obtained separately, are used for the JSAE tagging
dataset.

Finally, the neural networks used in this study are trained
using the minimum mean square error (MMSE) criterion to
optimize the loss function and evaluate the performance of
the network models. The dataset for each neural network is
randomly divided: it consists of 80% of the input dataset
for the training, while the remaining 20% is used for testing
purposes.

5.3. Simulation Process. The simulation platform is based on
Python 3.8 and Tensorflow—Gpu, whereas the Spyder plat-
form is used for debugging.

5.3.1. Data Generation and Acquisition. The simulation soft-
ware is used to generate the ideal radar signal for both mod-
ulation methods (Table 1). The ideal radar signal is generated
by the N5172B signal generator, and the receiver gets the RF
radar signal. The RF feature extraction is performed. Finally,
the N5182B is used to transmit both modulation types with
the same signal parameters as the N5172B radar signal and is
acquired by the receiver. The signal is used for the RF feature
comparison. As for the LFM signal, it is transmitted through
the N5172B and acquired at the receiver side as the radar
echo. Different types of interference signals are generated
using the simulation software and transmitted through the
N5182B signal generator. Finally, the acquired radar echoes
are combined with different interfering signals, resulting in
mixed signals.

5.3.2. Establish the Dataset. The real and imaginary parts of
the complex signal data, obtained in Step 1, are extracted and
combined, i.e., the first half of each sample data is the real
part, whereas the second half represents the imaginary part.
The data are normalized and divided into a training set and a
test set for each network dataset.

5.3.3. Establish the Neural Network. SSAE1, SSAE2, and JSAE
are built according to the structure shown in Figures 4–6, as
well as Table 3, respectively.
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5.3.4. Extraction Characteristics. SSAE1 extracts the signal
features from the ideal signal and the RF features from the
radar signal transmitted byN5172B.Moreover, SSAE2 extracts
the RF features from the radar signal transmitted by N5182B.
The results of both parts of the RF features are compared.
Furthermore, a comparison is proposed between the RF fea-
tures contained in radar signals of different modulationmeth-
ods emitted by the same signal generator. This is achieved to
verify the independence of the RF features; therefore, the RF
features exhibit a mapping relationship with the individual
hardware and are independent of the signals themselves.

5.3.5. Jamming Suppression. The signal and RF features of the
radar signals, emitted by the N5172B signal generator and
extracted in step 4, are used as feature labels to participate in
the JSAE training. Moreover, the radar signals, generated by
the N5172B and acquired by the receiver, are utilized as
signal labels to participate in the JSAE training to achieve
jamming suppression.

5.3.6. Test Suppression Effect. The test set is used to verify the
performance of the trained JSAE model on the reconstructed
radar signal after jamming suppression. The algorithm’s abil-
ity to suppress jamming is evaluated through pulse compres-
sion of the suppressed reconstructed signal and a comparison
of the SNR gain curves before and after suppression.

5.4. Simulation Results and Discussion. Figures 10 and 11 show
the 50-dimensional RF features extracted from the signals
generated by N5172B and N5182B, respectively, for the differ-
ent modulation methods. Moreover, Figures 12 and 13 show a
comparison of the reconstructed and the original signals gen-
erated by N5172B and N5182B, respectively.

Furthermore, the RF features extracted from different mod-
ulated signals, emitted by the same signal generator, remain
consistent. This verifies that the RF features remain unchanged
across different signal parameters and are exclusively linked to

the hardware device. However, the RF features, extracted
from signals emitted by different signal generators with the
same parameters, are not consistent, indicating that the RF
features have unique characteristics. The decoder reconstructs
the signal by retrieving the feature information that was ini-
tially extracted by the encoder in the layers; thus, the compre-
hensiveness and accuracy of feature extraction are critical in
the process of signal recovery. The recovered LFM and BPSK
signals show that the reconstructed signal overlaps with the
original input signal, indicating good reconstruction perfor-
mance by both SSAEs.

The signal data rðtÞ : of JSAE’s training set consists of three
parts: the collected LFM echo signal sðtÞ: emitted by N5172B,
the jamming signal jðtÞ : emitted by N5182B, and the Gaussian
white noise nðtÞ : with an SNR varying between−10 and 30 dB.
These are fed into the JSAE network for training; therefore,
the expression is as follows:

r tð Þ ¼ s tð Þ þ j tð Þ þ n tð Þ: ð23Þ

The JSAE undergoes pretraining and global training, fol-
lowing Equation (9), with feature labels serving as the primary
constraint and signal labels serving as the auxiliary constraint.
After finishing the training phase, the JSAE model is saved,
and the performance of jamming suppression is evaluated by
applying the test set. Therefore, Figures 14(a)–18(a) show the
pulse pressure before and after applying the jamming sup-
pression for the five jamming types where JSR and SNR are
equal to 30 dB. Moreover, Figures 14(b)–18(b) show the com-
parison between the reconstructed signal and the original
signal after suppression.

The pulse pressure map, prior to suppression, shows that
the primary lobe of the pulse compression, generated by
the real target signal, is almost completely obscured by the
dense false target spikes. This concealment effectively masks
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FIGURE 10: RF features extracted from different modulated signals
(N5172B).
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FIGURE 11: RF features extracted from different modulated signals
(N5182B).
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the real target and poses significant challenges for radar
detection. The suppressed pulse pressure map can obviously
get the location of the target pulse pressure spikes more
accurately by filtering out the false target spikes caused by
the jamming signal via pulse compression. However, the
pulse pressure spikes of the suppressed signal can coincide
well with the pulse pressure spikes without interference. This
shows that the spikes, generated by the mixed signal after
suppression and then through the pulse pressure, are the real
target. Forwarding the false target signals so that the gener-
ated false target amplitude is reduced by more than 20 dB.
After the elimination of the smart noise interference, the

target peak can be accurately detected and the side lobe of
the pulse pressure will be reduced by more than 15 dB.

The comparison of the reconstructed and original signals
revealed that the first three jamming types provide recon-
structed signals identical to the original signal. However, the
last two jamming types generate lower jamming suppression
performance due to the different jamming mechanisms.
Therefore, smart noise jamming is generated by adding noise
and the intercepted radar signal through convolution or multi-
plication modulation. The first three types of sample-and-for-
ward jamming only involve the sampling and retransmission of
the intercepted radar signal without incorporating secondary
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FIGURE 12: Comparison of reconstructed and original signals (N5172B): (a) LFM and (b) BPSK.
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modulation with noise. Although there is a difference in the
accuracy of the reconstructed signals after interference suppres-
sion between forwarding jamming and smart noise jamming, the
JSAE suppression is able to eliminate false targets and accurately
get the location of the real target, verifying the excellent perfor-
mance of the proposed method.

We carried out a quantitative analysis of the jamming
suppression performance using this method. The SINR gain

is R where R¼ SINR2 − SINR1. Moreover, SINR1 represents
the signal-to-jamming and the noise ratio before jamming
suppression, whereas SINR2 indicates the signal-to-jamming
and noise ratio after jamming suppression. Furthermore,
Figure 19(a)–19(e) shows the results for SNR varying between
−10 and 30 dB for the five jamming types. Referring to these
findings, R increases with the JSR. If the JSR is high, the
accuracy of applying combined features to filter out the
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jamming signal and reconstruct the radar signal after distin-
guishing the jamming signal and radar signal with RF features
is higher, resulting in better jamming suppression performance.

Since there is no existing literature regarding the sup-
pression of multiple interferences using DNNs, the compar-
ison experiment in this paper is determined to quantitatively
compare the SMSP jamming suppression algorithm pro-
posed by Li et al. [13] with the JSAE suppression of SMSP
jamming. Therefore, Figure 20 shows the comparison of the

signal-to-jamming and noise ratio gain curves of the algo-
rithm proposed in this paper against the SMSP jamming
suppression algorithm outlined in Li et al.’s [13] study, under
various SNRs.

First, we compare the influence of SNR. The results indi-
cate that the SNR has a clearer effect on the suppressing SMSP
jamming algorithm proposed in Li et al.’s [13] study com-
pared to the proposed method in this work. Comparing the
SINR gain changes in the two stages of SNR=−10∼20 dB and
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FIGURE 18: (a, b) Smart noise product jamming.
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SNR= 20 dN∼30 dB, following the SNR conditions of the
previous stage, the SINR gain curve increases more rapidly;
therefore, the SINR gain curve rises more rapidly at high SNR.
However, there is a significant difference in the ability to
obtain the SINR gain under low SNR conditions. However,
after suppressing the SMSP interference in this paper, the
SNR gain curve rises at both SNR stages (SNR=−10∼20 dB
and SNR= 20∼30 dB). The increase is relatively gentle and
there is no big gap, so the algorithm proposed in this paper is
less affected by SNR.

Then, a comparison between the SINR gains obtained by
the two methods under different JSR conditions is per-
formed. For a low JSR, such as JSR= 10 dB, the SINR gain,

obtained by the algorithm proposed in this paper, is better
under low SNR conditions [13]. Conversely, when SNR is
high, the algorithm in Li et al.’s [13] study demonstrates a
larger SINR gain; however, in actual situations, the value of
JSR is usually higher than 10 dB. Under this consideration,
the SINR gain, obtained after SMSP interference suppres-
sion, is obviously better than the algorithm proposed in Li
et al.’s [13] study. In addition, the interference suppression
algorithm proposed in this paper can effectively figure
against a variety of interferences, not just one interference
suppression. Therefore, under comprehensive comparison,
JSAE has better generalization ability, high efficiency, and
robustness.
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To enhance the clarity of our proposed algorithm’s per-
formance, we have incorporated additional experiments that
involve other methods utilizing deep learning for jamming
cancelation. In this expanded analysis, we compare our
approach to another experiment in this manuscript. This
added set of comparison experiments also applies DNNs to
distinguish and eliminate jamming by considering distinct
RF features in radar and jamming signals. However, the fun-
damental distinction lies in the design of the DNN responsible
for extracting these RF features. Moreover, we extracted the
RF features by designing two SSAEs, whereas the comparison
experiment only extracted the RF features using a single con-
ventional SSAE. Furthermore, the number of network layers

and node settings of the comparison algorithm are consistent
with our proposed algorithm. However, the signals acquired
by the experiment contain both RF and signal features. Con-
sequently, if a single network is employed to extract the fea-
tures, it will generate the two parts of the features that must be
mixed together. This may not guarantee that the extracted RF
features are better. Moreover, as the core idea of this paper
consists of using the RF features of radar and jamming signals
to differentiate, the performance of RF feature extraction can
directly influence the performance of jamming suppression.
Therefore, in these comparative experiments, a single self-
encoder network is employed to initially extract the RF fea-
tures. The subsequent jamming suppression process aligns
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FIGURE 21: Comparison of pulse pressure results between two algorithms for (a) ISRJ, (b) SMSP jamming, (c) C&I jamming, (d) smart noise
convolution jamming, and (e) smart noise product jamming.
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FIGURE 22: SINR gain after jamming suppression of comparison method for (a) ISRJ, (b) SMSP jamming, (c) C&I jamming, (d) smart noise
convolution jamming, and (e) smart noise product jamming.
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with the methodology outlined in this paper. It involves using
the extracted RF features as a label to constrain the mixed
signal after JSAE coding hybrid features. Finally, the radar
signal is reconstructed.

Figure 21(a)–21(e) shows the pulse compression com-
parison diagram after applying the jamming suppression
between the comparative experiment and the proposed algo-
rithm in this work. Each parameter of the signal, the signal-
to-noise ratio, and the jamming-to-signal ratio are consistent
with Figures 14–18. Furthermore, Figure 22(a)–22(e) shows
the signal-to-jamming and noise ratio gain obtained after
applying the jamming suppression in the comparative exper-
iment. The comparison of the pulse pressure results of the
two algorithms after eliminating jamming yields to confirm
that the proposed algorithm generates obvious side lobe gain
after pulse pressure compression. In addition, the discrepancy
between the side lobes and the peak pulse pressure, following
jamming suppression by the proposed algorithm, remains at
−60 dB. The difference between the side lobe and the pulse
pressure peak is obtained by applying a comparison algorithm
after the jamming suppression and it is around 30 dB. There-
fore, the pulse pressure results obtained by the proposed algo-
rithm after the application of the suppressing jamming are
closer to those without jamming, verifying that this algorithm
is able to eliminate jamming more thoroughly. Furthermore,
by comparing both algorithms in conjunction with Figures 19
and 22, it can be seen that the proposed algorithm can obvi-
ously generate a higher signal-to-jamming and noise ratio
gain while using identical text jamming type, signal-to-noise
ratio, and jamming-to-signal ratio. Moreover, according to
the comparison algorithm, we have proposed a method where,
as the signal-to-noise ratio increases, the gain in signal-to-
jamming-to-noise ratio becomes more noticeable. Based on
the comparison of the above two parts, the proposed algorithm
has better jamming suppression performance. Finally, the
comparison of jamming suppression performance also
demonstrates the advantages of both SSAEs that were
designed in this work to better extract the RF features.

Tables 5 and 6 present a comparison of the jamming
suppression performance of the two algorithms, respectively.
In more detail, Table 5 assesses the signal-to-jamming-to-noise
ratio gain achieved after jamming suppression. Meanwhile,
Table 6 evaluates the power difference between the target peak
and side lobes obtained through pulse compression after

jamming suppression. To better simulate real-word situation,
the background conditions applied for comparison represent
a dry signal-to-noise ratio of 30 dB and a signal-to-noise ratio
of 10 dB. The greater the difference between the target peak
and the side lobe after pulse compression, the more helpful it
is to accurately detect the target position.

6. Conclusion

We proposed a JSAE network to suppress several jamming
types. The proposed method is based on the RF character-
istics, which depend on the hardware and can be used to
differentiate jamming signals from radar signals. Moreover,
the RF characteristics of the radar signal are extracted using
two SSAEs, and the JSAE filters out the jamming signal and
reconstructs the radar signal to achieve jamming suppres-
sion. Moreover, the experimental results show that the JSAE
could effectively filter out the jamming signal, facilitating the
target detection and positioning after jamming suppression.
The method of this paper exhibited better jamming suppres-
sion performance and generalization ability and higher effi-
ciency than the traditional jamming suppression method
even when varying the interference types. It does not require
the estimation of the jamming parameters. In addition, the
JSAE proved to be insensitive to noise. The proposed method
generates pulse pressure peaks that are overlapped with the
nonjamming signal for false target jamming and smart noise
jamming, providing a high SINR gain at a low SNR, demon-
strating its robustness.
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TABLE 5: Signal-to-jamming-to-noise ratio gain comparison.

Units (dB) ISRJ SMSP jamming C&I jamming Smart noise convolution jamming Smart noise product jamming

Proposed method 50.6 49.0 46.8 38.3 44.3
Method of comparison 33.9 30.2 31.2 30.7 31.5

TABLE 6: Pulse compression comparison.

Units (dB) ISRJ SMSP jamming C&I jamming Smart noise convolution jamming Smart noise product jamming

Proposed method 60.1 58.8 63.5 62.8 59.5
Method of comparison 20.8 18.5 21.3 25.4 23.7
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