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Multipath interference in radar signals caused by sea, ground, and other environments poses significant challenges to the target
detection, tracking, and classification capabilities of radar systems. Existing methods for radar signal identification require labeled
samples and focus mainly on the classification of normal signals. However, in practice, anomalous samples (multipath interference
signals) may be scarce and highly imbalanced (i.e., mostly normal samples). To address this problem, we propose a deep anomaly
detection with attention (DADA) for semisupervised detection of multipath radar signals. The method transforms radar signals
into time–frequency images and is trained exclusively on normal samples. The autoencoder architecture is extended with a feature
extractor network to capture latent sample features. CBAM attention is introduced to improve feature extraction. By learning the
distribution of normal samples in high-dimensional image space and low-dimensional feature space, a two-dimensional feature
space representing normal samples is constructed. A one-class SVM then learns the boundary of normal samples for anomaly
detection. Extensive experiments on radar signal datasets validate the effectiveness of the proposed approach.

1. Introduction

Multipath interference is a common problem in radar sys-
tems due to the reflections and diffraction of radar signals
from the ground, sea, and other environments. As a result,
the transmitted signal travels along multiple paths before
arriving at the receiver [1]. The superposition of these delayed
versions of the original signal causes distortion, resulting in
the interference that can degrade the radar’s performance in
detecting, tracking, and classifying targets. In particular, this
interference can affect the radar’s ability to distinguish the
true target signal from noise and clutter. For example, in
the operation of shipboard radar reconnaissance equipment,
signals may encounter multiple reflections from the sea sur-
face, nearby islands, and the ship’s own surface structures. In
such situations, the radar system receives signals not only

from the direct transmission path, but also from the various
reflected paths, creating a multifaceted interference field.
From a technical point of view, this affects not only the accu-
racy of the radar’s measurement of signal amplitude and pulse
width, but also the directional estimation of the signal. In the
real-world electromagnetic environment of the battlefield, the
complex multipath effects can lead to a spike in false readings
in the signal processing of the radar reconnaissance equip-
ment. This can lead to tactical false alarms andmissed targets.
In extreme cases, it can even lead to a blockage of the radar’s
receive channels, critically affecting its tactical performance.
Therefore, detection and identification of multipath induced
spurious signals have become an essential task in the radar
signal processing to mitigate these effects.

Traditional radar signal identification techniques typi-
cally extract features from signals in the time domain,
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frequency domain, and time–frequency domain to identify
different radar modulation signals. For example, the studies
by Yibing et al. [2–4] mainly focus on a complexity feature
extraction in the time domain, while the study by Lunden
and Koivunen [5] uses power spectral density in the fre-
quency domain for feature extraction. However, with the
increasing complexity of the radar signals, methods based
solely on the time or frequency domain often fail to achieve
the desired identification results. As a result, time–frequency
domain feature extraction has become a research hotspot in
the field, as it can reveal more abundant properties of the
radar signals. Several time–frequency transform methods,
such as short-time Fourier transform (STFT) [6], fractional
Fourier transform (FrFT) [7], Choi-Williams Distribution
(CWD) [8], and smoothed pseudoWigner–Ville distribution
(SPWVD) [9, 10], have been widely used for radar signal
feature extraction. The core idea of these methods is to con-
vert radar signals into time–frequency images and use deep
learning image processing techniques for signal identification.
Although these methods are effective in classifying various
normal radar signals that are received, they do not consider
how to detect anomalous multipath signals. However, these
methods provide a valuable insight that different types of
radar signals demonstrate distinguishable differences in the
time–frequency structure after time–frequency transforma-
tion. Specifically, if analysis shows that the time–frequency
representations of multipath and normal signals have signifi-
cant detectable differences, then such differences can be uti-
lized to identify and detect multipath signals. In summary,
time–frequency domain features have the potential to differ-
entiate types of radar signals in complex electromagnetic
environments, thus providing a viable new approach to the
detection and identification of multipath signals.

Anomaly detection is a prominent research area, com-
monly confronted with the challenge of highly imbalanced
data samples, where normal samples significantly outnumber
the anomalous ones. In this scenario, traditional supervised
deep learning classification models often underperform.
Semisupervised anomaly detection methods have emerged
as essential tools to address this problem. Schlegl et al. [11]
employs the generator of the generative adversarial networks
(GAN) learn the distribution of normal images. During test-
ing, new images are inversely mapped to the latent space and
the difference in latent space is assumed to reflect anomalies.
This method requires iterative optimization to find the best
matching representation in the latent space, resulting in low-
computational efficiency. Zenati et al. [12] introduces an anom-
aly detection framework based on BiGAN, which learns the
encoder simultaneously during the GAN training process.
This achieves an end-to-end joint training procedure, elimi-
nating the need for computationally expensive inverse latent
space mapping during the testing phase. Akcay et al. [13, 14]
adopt an anomaly detection strategy based on an adversarial
training. This approach is trained using only normal samples
and employs a reconstruction strategy to enable the network
to learn the distribution of normal image samples in the latent
space. However, the design of the model tends to lead to
overfitting. Sabokrou et al. [15] also employs an adversarial

training approach. This method reconstructs input data by
learning latent space of normal data, and uses adversarial
training to enhance model performance. When encountering
anomalous data that differs significantly from the normal
data, the reconstruction error of themodel increases markedly,
thereby achieving anomaly detection.

The core idea of these methods is that abnormal samples
exhibit significant differences from normal samples in both
the high-dimensional image space and the encoded low-
dimensional latent space. Motivated by the results of such
research, we develop a deep anomaly detection with atten-
tion (DADA) model for detecting multipath interference in
radar signals. The method takes the time–frequency image
of radar signals as input and trains the model using only
normal radar signals. We extend the structure of autoenco-
ders by incorporating a feature extractor to capture the latent
feature space of normal samples. By simultaneously consid-
ering the high-dimensional image space and the encoded
low-dimensional feature space, the feature distribution of
normal samples can be more accurately captured. Then, by
employing a one-class SVM to learn the boundary of the nor-
mal sample feature space, we can achieve efficient anomaly
detection. In addition, to better capture the time–frequency
characteristics of radar signals, especially the line portions
representing the main structural features, we introduce the
CBAM attention mechanism to enhance model performance.
This mechanism allows the network to adaptively focus on the
feature regions with the most structural differences in the sig-
nal. Therefore, the main innovations and contributions of this
paper are summarized as follows:

(1) This paper proposes a semisupervised anomaly detec-
tion model for detecting multipath interference in the
radar signals.

(2) Ourmodel extends the typical autoencoder structure by
incorporating a feature extractor to capture the latent
feature space of time–frequency images. In addition, we
employ theCBAMattentionmechanism to focus on the
key high-frequency structural components within the
time–frequency images, thereby enhancing the model’s
representational capability.

(3) By jointly considering the high-dimensional space
of images and the latent space, we construct a two-
dimensional feature space describing normal samples.
Then, one-class SVM is utilized to learn the boundary
of the feature space for anomaly detection.

2. Radar Multipath Effects

Radar multipath effect refers to the phenomenon wherein a
wave, during its propagation from the transmitter to the
target, traverses through multiple propagation paths. This
effect captures scenarios where both a primary direct wave
and several secondary indirect waves coexist at the receiving
point. The received signal exhibits amplitude variations due
to interference arising from the relative phase alignments
between the direct and indirect waves. Specifically, different
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phase alignments lead to constructive or destructive summa-
tion of these waves at the receiver, thereby shaping the final
observed amplitude variation of the signal.

Figure 1 presents a schematic diagram illustrating the
multipath interference effects on radar signals propagating
over the sea surface [16]. The direct propagation path A→D
and the reflected paths A→Bi→D contribute to the multi-
path interference, where i indicates the multiple reflected
paths. In the figure, h1 and h2 represent the antenna heights
of the radar and the receiver, respectively. Moreover, the
path length of AD is denoted as Rd, while the path lengths
of ABi and BiD are expressed as R1i and R2i, respectively.
Under the multipath effect, signals arriving at the receiver
through different propagation paths exhibit relative time
delays due to the path length differences. Signals from vari-
ous paths are superimposed at the receiver, and the resultant
interference depends on the phases and amplitudes of each
path signal. In addition, due to varying propagation paths,
the signals undergo distinct levels of amplitude attenuation,
phase shift, and Doppler frequency shift during propagation
(especially when the reflecting surfaces or receiver are in
motion). The composite signal at the receiving antenna can
be expressed as follows:

S tð Þ¼ Sdirect tð Þ ×Hdirect tð Þ þ ∑
N

i¼1
Ai × Sdirect t − τið Þ

×Hreflected;i tð Þ × ej ϕiþ2πfd tð Þ;

ð1Þ

where SdirectðtÞ represents the direct path signal, N represents
the total number of reflected paths.HdirectðtÞ andHreflected; iðtÞ
are the attenuation and distortion models for the direct and
i-th reflected signals, respectively. Ai represents the amplitude
attenuation of the i-th reflected path, τi represents the time
delay caused by the longer path length compared to the direct
path, ϕi is the initial phase shift of the i-th reflected path, and
fd refers to the frequency shift due to the Doppler effect, which
is related to the relative motion between reflecting objects and
the receiver. Figure 2 presents the SPWVD time–frequency
representations of four radar signal types, including linear
frequency modulation (LFM), nonlinear frequency modula-
tion (NLFM), binary phase shift keying (BPSK) and quadra-
ture phase shift keying (QPSK), in both normal andmultipath

scenarios. Evident structural discrepancies exist between the
time–frequency signatures of the normal and multipath signals,
which could facilitate detection of the multipath interference.

3. Proposed Approach

3.1. Anomaly Detection Definition. Anomaly detection refers
to the identification of abnormal samples that deviate signif-
icantly from the expected pattern of normal data distribu-
tion. In this paper, normal and abnormal samples are
denoted by x and x0, respectively. Let PX and PX0 represent
the probability distributions of the normal and abnormal
samples, respectively.

Our model is trained exclusively on the data set of nor-
mal samples according to PX . During testing, the test set
contains both normal (x) and abnormal (x0) samples, where
the distribution PX0 of the abnormal samples differs from the
normal distribution PX .

The goal of our anomaly detection model is to assign
each test sample an anomaly score that reflects its probability
of belonging to the anomalous distribution PX0 . A higher
score indicates a higher probability that the sample is abnor-
mal (x0). By setting a threshold for the anomaly score, normal
and abnormal samples can be effectively distinguished. The
anomaly detection task can be formulated as finding a func-
tion f : x→ s, where x is the input sample and s is the anom-
aly score. The decision rule for classifying a sample as
anomalous is:

if s>τ; classify as abnormal x0ð Þ: ð2Þ

The threshold τ depends on the desired tradeoff between
true positive and false positive rates in detecting anomalies.

3.2. Model Architecture. Figure 3 presents the overall archi-
tecture of the proposed model, which comprises two mod-
ules: an autoencoder network with an attention mechanism
and a feature extractor. In this structure, the input sample is
first encoded and reconstructed by the autoencoder network,
followed by the feature extractor learning the latent space of
the samples.

The first subnetwork is an autoencoder network consist-
ing of an encoder (En) and a decoder (De). The primary task
of the autoencoder is to learn and reconstruct the input
image. The primary task of the autoencoder is to learn and
reconstruct the input image. Given an input image x, the
encoder generates a latent vector z through downsampling,
formulated as z¼ EnðxÞ, where z2Rd (d≪ w× h× c). The
latent vector z is assumed to be the optimal low-dimensional
representation of the input x. The encoder comprises con-
volutional layers, batch normalization, and leaky ReLU acti-
vation functions. To enhance the model’s sensitivity to key
high-energy line features and reduce attention on less signif-
icant background regions in the time–frequency images of
Figure 2, we introduce the CBAM attention mechanism after
each convolutional layer. The CBAM integrates both a chan-
nel attention submodule and a spatial attention submodule
to strengthen the representational capability of convolutional
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FIGURE 1: Schematic diagram illustrating multipath interference
effects on sea surface signal propagation.
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neural networks (CNNs). This allows the model to focus
more on the relevant channels and spatial features.

3.2.1. Channel Attention Submodule. Given an input feature
map X 2Rh×w×c, where h and w denote the height and width,
respectively, and c represents the number of channels, this
submodule aims to identify the more salient channels. The
channel attention coefficients are computed as follows:

Mc ¼ σ MLP AvgPool Xð Þð Þ þMLP MaxPool Xð Þð Þð Þ:
ð3Þ

Here, AvgPool and MaxPool refer to global average pool-
ing and max pooling operations, respectively. MLP denotes
multilayer perceptron, and σ is the sigmoid activation

ðaÞ ðbÞ ðcÞ ðdÞ

ðeÞ ðfÞ ðgÞ ðhÞ
FIGURE 2: Two-dimensional time–frequency images extracted using SPWVD. Subfigures (a–d) represent the time–frequency images of
normal LFM, NLFM, BPSK, and QPSK signals, respectively. Subfigures (e–h) represent the time–frequency images of the corresponding
multipath LFM, NLFM, BPSK, and QPSK signals, respectively.
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FIGURE 3: Schematic representation of the DADA model’s architecture.
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function. This results in the final channel-wise enhanced
feature map:

X0 ¼Mc ⊗ X; ð4Þ

where⊗ denotes element-wise multiplication.Mc provides a
scalar coefficient for each channel to multiply with all the
spatial positions of the corresponding input channel.

3.2.2. Spatial Attention Submodule. This module aims to
identify the more pertinent spatial regions. Taking the
channel-wise feature map X0 as input, the spatial attention
coefficients are computed as follows:

Ms ¼ σ Conv AvgPool X0ð Þð Þ þ Conv MaxPool X0ð Þð Þð Þ;
ð5Þ

where Conv represents the convolution operation. The
resulting spatial attention enhanced feature map is as fol-
lows:

X00 ¼Ms ⊗ X0: ð6Þ

By integrating channel and spatial attention, the CBAM
module can effectively focus on the salient channels and
spatial regions in the input feature. This allows the model
to concentrate more precisely on task-relevant features, thus
enhancing its representation capability.

Subsequently, through the upsampling process of the
decoder (De), the input image x is reconstructed from the
latent vector z, yielding the reconstructed image bx ¼DeðzÞ.
The architecture of the decoder comprises deconvolutional
layers, ReLU activations, and batch normalization, with a
tanh layer applied to generate the final output.

The second subnetwork is the feature extractor (FE),
which is inspired by the design of Siamese networks [17].
It shares the same architecture as En while having different
parameterization. This network is designed to extract mean-
ingful feature representations for the input image x and its
reconstructed counterpart bx . Through FE, we can obtain
vx ¼ FEðxÞ and vbx ¼ FEðbxÞ, representing the latent features
of the input and reconstructed images, respectively. These
feature representations are used to evaluate the similarity
between the input and reconstructed images. During testing,
they can also be employed for anomaly detection.

3.3. Model Training. In this study, we train the model using
only normal samples, aiming to enable the model to learn
and reconstruct normal samples and capture their character-
istics in the latent vector space. For the abnormal samples in
the test set, as they are never trained on the model, the model
struggles to achieve effective reconstruction. As a result, the
feature extractor network computes the latent vectors vx and
vbx for the input and reconstructed images, respectively, lead-
ing to a significant reduction in their similarity. To validate
this process, we devise two objective functions to indepen-
dently optimize each subnetwork to capture the key features
of normal samples.

The first loss function is reconstruction loss. Similar to
autoencoders, the reconstruction loss aims to minimize the
discrepancy between the input sample x and its recon-
structed counterpart bx . This serves as a measure of the mod-
el’s capability in learning and recovering the original normal
sample characteristics. Formally, it is defined as follows:

Lrec ¼ Ex∼pX ∥ x − bx∥1: ð7Þ

By minimizing Lrec, the model is enabled to generate
images closely resembling the normal samples.

The second loss function is the feature similarity loss.
The inputs to this loss are from the original sample and
reconstructed sample. During training with normal samples,
the FE network extracts features from both the original sam-
ples x and the reconstructed samples bx . Considering the
reconstructed sample closely resembles the normal sample,
the latent feature space, extracted by the FE network, is
expected to exhibit minimal discrepancy. Therefore, we
employ the feature similarity loss Lsim to optimize the model
by minimizing the difference between the latent representa-
tions of the original input vx ¼ FEðxÞ and the reconstructed
image vbx ¼ FEðbxÞ. Lsim is formally defined as follows:

Lsim ¼ Ex∼pX FE xð Þ − FE bxð Þk k22: ð8Þ

3.4. Anomaly Detection with One-Class SVM. To enable effec-
tive anomaly detection, we incorporate the features extracted
by the DADAmodel with a one-class SVM. For this purpose,
two metrics are constructed to characterize normal sample
patterns.

Reconstruction Similarity: This is defined by calculating
the Euclidean distance between the original input X and its
reconstructed counterpart bX , reflecting the discrepancy
between the input and reconstructed images. It is formulated
as follows:

R Xð Þ ¼ X − bX









2
: ð9Þ

3.4.1. Latent Vector Similarity. This metric calculates the
Euclidean distance between the latent vector VX of the origi-
nal input and VbX of the reconstructed image, indicating the
deviation between original and reconstructed inputs in the
latent space. It is formulated as follows:

L Vð Þ ¼ VX − VbX









2
: ð10Þ

Based on the two metrics RðXÞ and LðVÞ, a two-
dimensional feature space can be constructed, where each
training sample xi is represented as a two-dimensional vector
½RðxiÞ; LðviÞ�. This two-dimensional feature space serves as
the input to the one-class SVM.

One-class SVM has been extensively utilized and dem-
onstrated to be effective in anomaly detection tasks [18–20].
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Its fundamental concept involves identifying a hyperplane
that maximizes the margin between the classes of normal
and anomalous samples. Specifically, the feature space for
normal samples is constructed to form the training dataset:
f½Rðx1Þ; Lðv1Þ�; ½Rðx2Þ; Lðv2Þ�;…; ½RðxnÞ; LðvnÞ�g. Given this
data set, one-class SVM seeks to address the following opti-
mization problem:

  min
w;b;ξ

1
2
wj j2 þ 1

δn
∑
n

i¼1
ξi − ρ

Subject to :  
w ⋅ ϕ R xið Þ; L við Þ½ �ð Þ ≥ ρ − ξi

ξi ≥ 0

: ð11Þ

Here, w and b parameterize the separating hyperplane,
ϕð⋅Þ transforms the data into a higher dimensional feature
space, ξi signifies the training error, and δ governs the ratio of
outliers.

Solving this optimization problem yields the decision
function as follows:

f x; vð Þ ¼ sgn w ⋅ ϕ R xð Þ; L vð Þ½ �ð Þ þ b − ρð Þ: ð12Þ

In this context, a test sample is categorized as normal if
f ðx; vÞ>0; otherwise, it is considered an anomaly.

Following the detailed discussion above, the complete
process of the DADA model is presented in Algorithm 1.

4. Experimental Results and Evaluation

4.1. Dataset: Details and Specifications. The dataset used in
our experiments is derived from the “Radar Signal Simulation
Platform under Complex Electromagnetic Environment” at
the Southwest China Research Institute of Electronic Equip-
ment. This platform employs a parabolic equation method to
generate synthetic radar signal data. The parabolic equation
technique serves as the foundation of radar signal processing
by aligning and filtering the received echo signals with a
reference signal identical to the transmitted one. This proce-
dure yields a complex signal with a parabolic trajectory in the
time domain. The simulated echo signals incorporate noise
and Doppler effects to mimic real-world radar returns.

Figure 4 displays a representation of the simulated sce-
nario incorporating multipath effects from sea surface reflec-
tions. These effects distort the received signal as it follows
different propagation paths before arriving at the receiver. In
the simulation, the receiver representing an aircraft at 8,000m
altitude follows a circular trajectory, while the transmitter at
3,000m altitude moves along a linear path directing toward
the circle’s center. Both the transmitter and receiver are
simulated using vertical polarization dipole antennas. The

y

Emitter start

20 km

50 km

x

Receiver center

(300,000, 0, 8,000)
(0, 0, 3,000)

150 m/s

Sea surface

Receiver start
100 m/s

FIGURE 4: The schematic diagram of the simulation scenario [16].
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transmitter power is set to 100W with a gain of 20 dB and the
receiver has a gain of 13 dB. Four signal types are generated in
the simulation: LFM, NLFM, BPSK, and QPSK. The carrier
frequency is uniformly fixed at 2,000MHz for all signals. For
LFM, the pulse width (PW) ranges from 5 to 15μs and the
bandwidth (BW) from 10 to 20MHz. NLFM uses the same
PW of 5–15µs and BW of 10–20MHz. For BPSK and QPSK,
the number of subpulses ranges from 16 to 32, and the BW is
from 2 to 5MHz. To meet the requirements of the model, the
training dataset contains 2,000 samples for each normal signal
type. The test dataset comprises 200 samples per signal type,
including both normal and multipath interference cases.

The radar signals are transformed into two-dimensional
time–frequency images using the SPWVD technique to cap-
ture their dynamic spectral characteristics. SPWVD, an
advanced time–frequency analysis method, jointly represents
nonstationary signals in both time and frequency domains.
Derived from theWigner–Ville Distribution (WVD), SPWVD
incorporates a smoothing kernel tomitigate the issues of cross-
term interference and noise sensitivity associated with WVD.
SPWVD achieves high-resolution signal representations, accu-
rately capturing time-varying frequency content more than
traditional techniques such as STFT and wavelet transform.
This superior resolution is highly advantageous for analyzing
and characterizing radar signals, where time–frequency fea-
tures are vital for precise representation and detection. Figure 2
depicts the SPWVD-generated time–frequency images for
both the normal and multipath interference signals across
the four radar signal types.

4.2. Model Parameter Settings. In this work, we develop the
model using the PyTorch deep learning framework. The
experiments are implemented on a computer equipped
with an RTX 3080 GPU and CUDA 11.7, running the Win-
dows 10 operating system. The Adam optimizer is utilized to
optimize the model with the following hyperparameter set-
tings: learning rate lr= 0.0002, first momentum exponential
decay rate β1= 0.9, second momentum exponential decay
rate β2= 0.999, and numerical stability term ε= 1e−8.

4.3. Performance Analysis with Varying Multipath Interference
Signals. In this study, we employ various evaluation metrics to
assess the performance of the anomaly detection model. These
metrics include:

(1) Precision (P): Precision measures the proportion of
true positive (TP) instances among the instances

classified as positive by the model, calculated as P=
TP/(TP+ FP), where FP represents false positives.

(2) Recall (R): Recall quantifies the proportion of true
positive instances correctly identified by the model
out of all true positive instances, calculated as R=
TP/(TP+ FN), where FN represents false negatives.

(3) F1-score (F1): The F1-score is the harmonic mean of
precision and recall, providing a single metric that com-
bines both aspects. It is calculated as F1= 2×(P×R)/
(P+R).

These evaluation metrics allow for a comprehensive
assessment of the anomaly detection model’s performance,
ensuring its effectiveness and reliability across various scenarios.

We assess the performance of our proposed method by
analyzing test sets containing varying numbers of multipath
interference signals. Specifically, we conduct four experi-
ments, each involving a test set with an incrementally increas-
ing number of multipath signals. To validate the effectiveness
of the DADA model, this study conducts a comprehensive
comparison between traditional radar signal feature extrac-
tion algorithms and deep learning models. For traditional
algorithms, features are extracted from the time, frequency,
and time–frequency domains. In the time domain, complexity
features (CC) of the signals are extracted, including box
dimension, information dimension, multiscale entropy, and
sparsity. These features can effectively characterize the tem-
poral dynamics of the signals [2–4]. In the frequency domain,
key features based on spectral correlation (SC) are extracted,
including the cyclic frequency peaks and core statistical
parameters of the power spectral density (PSD), such as total
power in the bandwidth, average power, variance of power,
skewness, and kurtosis of the power distribution [21]. These
frequency domain features aim to fully capture and describe
the energy distribution and intrinsic nonstationarity of radar
signals in the frequency domain. In the time–frequency domain,
the wavelet ridge frequency cascade features (WRFCCF) of sig-
nals based onwavelet transform are extracted to depict statistical
characteristics on the time–frequency plane by capturing
instantaneous frequency information [22]. One-class SVM
is utilized on the above extracted features for anomaly
detection. For deep learning models, mainstream algorithms
including AnoGAN [11], EGBAD [12], and GANomaly [13]
are selected for comparison.

4.3.1. Experiment 1: Test Set with Single Multipath Signal.
In this experiment, we evaluate the performance of our

Train Set: Normal radar signal dataset, transformed using SPWVD.

1: for a set number of training iterations

2: Minimize the reconstruction loss Lrec in Equation (7) to align bx with x.

3: Minimize the feature similarity loss Lsim in Equation (8) to reduce the latent representation differences between x and bx .
4: End for

5: Construct a two-dimensional feature space from R(X) and L(V) using Equations (9) and (10).

6: Employ one-class SVM to learn the decision boundary for normal samples.

ALGORITHM 1: DADA.

IET Signal Processing 7



proposed method on a test set containing a multipath inter-
ference signal to assess its ability to detect and handle a single
interference source. The results are shown in Table 1.

4.3.2. Experiment 2: Test Set with Two Multipath Signals. In
the second experiment, we increase the number of multipath
interference signals in the test set to two to evaluate the
robustness of our method when dealing with multiple sources
of interference. The experimental results are shown inTables 2
and 3.

4.3.3. Experiment 3: Test Set with Three Multipath Signals.
The third experiment expands the test set to three multipath
interference signals and evaluates the performance of our
method in more complex scenarios with higher interference
levels. The experimental results are shown in Table 4.

4.3.4. Experiment 4: Test Set with Four Multipath Signals. Finally,
the fourth experiment evaluates our proposed method on a

test set containing all fourmultipath interference signals, aim-
ing to demonstrate its effectiveness in handling the most chal-
lenging cases under high interference levels. The results are
shown in Table 5.

As shown in Tables 1–5, our proposed method achieves
superior F1-scores compared to other methods across all
datasets. It is observed that the model finds it relatively
easy to process test sets containing only a single multipath
interference signal, achieving the best performance on LFM
and NLFM with F1-scores of 0.990 and 0.979, respectively. In
comparison, the performance on BPSK and QPSK declines
slightly, indicating greater challenges in detecting anomalies
for these signal types.

As more multipath signal types are included in the test
set, the overall performance of all methods decreases, espe-
cially when BPSK signals are present. This further highlights
the difficulty that BPSK signals pose for anomaly detection.
Although the CCF and SC methods achieve 100% recall,

TABLE 2: Performance metrics for the seven methods (test set with two multipath signals).

Method
LFM NLFM (LN) LFM BPSK (LB) LFM QPSK (LQ)

P R F1 P R F1 P R F1

CCF 0.639 1.000 0.779 0.671 0.997 0.802 0.667 1.000 0.800
SC 0.659 1.000 0.794 0.591 1.000 0.743 0.660 1.000 0.795
WRFCCF 0.675 0.950 0.789 0.610 0.700 0.651 0.621 0.927 0.744
AnoGAN 0.755 0.902 0.822 0.520 0.942 0.670 0.528 0.992 0.689
EGBAD 0.673 0.965 0.793 0.503 0.995 0.668 0.540 0.995 0.700
GANomaly 0.731 1.000 0.844 0.541 0.553 0.547 0.576 0.657 0.614
DADA 0.910 0.962 0.936 0.711 0.990 0.828 0.911 0.848 0.878

TABLE 1: Performance metrics for the four methods (test set with single multipath signal).

Method
LFM (L) NLFM (N) BPSK (B) QPSK (Q)

P R F1 P R F1 P R F1 P R F1

CCF 0.709 1.000 0.829 0.687 1.000 0.814 0.665 0.995 0.797 0.689 1.000 0.816
SC 0.657 1.000 0.793 0.678 1.000 0.808 0.586 1.000 0.739 0.664 1.000 0.798
WRFCCF 0.707 0.990 0.825 0.697 0.990 0.818 0.670 0.935 0.460 0.604 0.980 0.748
AnoGAN 0.673 0.970 0.795 0.803 0.960 0.874 0.498 0.995 0.664 0.593 0.870 0.705
EGBAD 0.668 0.995 0.799 0.921 0.995 0.956 0.505 0.990 0.669 0.619 0.975 0.757
GANomaly 0.872 1.000 0.931 0.854 0.899 0.876 0.576 0.953 0.719 0.898 0.605 0.723
DADA 1.000 0.980 0.990 1.000 0.960 0.979 0.731 0.925 0.817 0.866 0.905 0.885

TABLE 3: Performance metrics for the seven methods (test set with two multipath signals).

Method
NLFM BPSK (NB) NLFM QPSK (NQ) BPSK QPSK (BQ)

P R F1 P R F1 P R F1

CCF 0.680 1.000 0.809 0.672 1.000 0.804 0.698 1.000 0.822
SC 0.586 1.000 0.739 0.672 1.000 0.804 0.592 1.000 0.744
WRFCCF 0.672 0.907 0.772 0.637 0.952 0.763 0.663 0.910 0.767
AnoGAN 0.507 0.990 0.671 0.518 0.995 0.681 0.542 0.985 0.699
EGBAD 0.558 0.987 0.712 0.579 0.990 0.731 0.591 0.985 0.739
GANomaly 0.684 0.632 0.655 0.657 0.953 0.777 0.980 0.514 0.674
DADA 0.745 0.992 0.851 0.905 0.937 0.921 0.800 0.910 0.851
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their F1-scores are lower. The performance degradation with
more signal types is more pronounced for deep learning
models such as AnoGAN, EGBAD, and GANomaly, espe-
cially on the test set with all four multipath signals. Our
method consistently shows better overall performance and
is more robust in complex environments.

Figures 5 and 6 illustrate the model’s reconstruction on
the test set signals. Figure 5 shows the reconstructed images
when the test set contains single multipath signal. For each
signal type, the first image represents the normal signal,
and the other two are multipath interference signals. It is
observed that the model can effectively reconstruct normal

TABLE 4: Performance metrics for the seven methods (test set with three multipath signals).

Method
LFM NLFM BPSK (LNB) LFM NLFM QPSK (LNQ) LFM BPSK QPSK (LBQ)

NLFM BPSK QPSK
(NBQ)

P R F1 P R F1 P R F1 P R F1

CCF 0.660 1.000 0.795 0.656 1.000 0.792 0.673 1.000 0.804 0.677 1.000 0.807
SC 0.591 1.000 0.743 0.664 1.000 0.798 0.583 1.000 0.736 0.584 1.000 0.738
WRFCCF 0.660 0.906 0.764 0.637 0.926 0.755 0.651 0.925 0.764 0.663 0.930 0.774
AnoGAN 0.540 0.950 0.688 0.557 0.918 0.693 0.522 0.985 0.682 0.536 0.963 0.689
EGBAD 0.545 0.985 0.701 0.516 0.986 0.677 0.562 0.986 0.716 0.513 0.995 0.677
GANomaly 0.762 0.622 0.685 0.948 0.740 0.831 0.545 0.846 0.663 0.852 0.600 0.704
DADA 0.759 0.951 0.845 0.872 0.965 0.916 0.736 0.991 0.845 0.740 0.978 0.843

TABLE 5: Performance metrics for the seven methods (test set with four multipath signals).

Method
LFM NLFM BPSK QPSK (LNBQ)

P R F1

CCF 0.668 1.000 0.801
SC 0.672 1.000 0.804
WRFCCF 0.644 0.907 0.753
AnoGAN 0.534 0.938 0.681
EGBAD 0.515 0.998 0.680
GANomaly 0.649 0.550 0.595
DADA 0.787 0.902 0.841

FIGURE 5: Comparison of input images and generated images using the autoencoder. The figure consists of four rows of images. Rows 1 and 3
show the input images, respectively, while Rows 2 and 4 display the corresponding generated images.
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signals but struggles with anomalous multipath signals,
since it only learns normal signal characteristics. Figure 6
displays the reconstructions when two multipath signal
types are present in the test set. As the model performs
well on normal signals, all images here contain multipath
signals. Compared to Figure 5, slight distortions emerge
when reconstructing signals in Figure 6, e.g., LFM features
appearing in BPSK multipath signals, possibly due to the
inclusion of information from both normal signal types
during reconstruction. Nevertheless, the model remains unable
to properly reconstruct multipath signals, which facilitates

anomaly detection. Experiments 3 and 4 show similar recon-
struction performance with more multipath signal types, fur-
ther demonstrating the correlation between the model’s
anomaly detection capability and the number and types of
multipath signals in the test set. In summary, the model can
reconstruct normal signals well but fails to effectively recon-
struct multipath signals. Also, its reconstruction capability
declines with more signal types in the test set, yet anomalous
signals can still be successfully identified. This validates that
the model can effectively detect anomalies by learning the
characteristics of normal signals.

FIGURE 6: Comparison of input images and generated images using the autoencoder for another set of data. The organization of this figure is
similar to Figure 5. Rows 1 and 3 show the input images, respectively, while Rows 2 and 4 display the corresponding generated images.
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FIGURE 7: Comparative evaluation of different methods based on ACC and FPR on all datasets: (a) ACC comparison and (b) FPR comparison.
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To more comprehensively evaluate the model perfor-
mance, Figures 7(a) and 7(b) present the accuracy (ACC)
and false positive rate (FPR) of different methods on all
datasets, respectively. The ACC reflects the model’s capabil-
ity in correctly recognizing all instances. A higher ACC sig-
nifies that the model can effectively distinguish between
positive and negative samples, demonstrating its overall clas-
sification performance. The FPR refers to the proportion of
negative samples incorrectly classified as positive, which is
especially critical for anomaly detection tasks since it
directly correlates to the number of false alarms. A lower
FPR denotes that the model excels at avoiding mislabeling
normal samples as anomalies. Our method attained higher
ACC and lower FPR on most datasets, with FPR being 0 on
LFM and NLFM datasets. These results further validate the
efficacy of our proposed method.

Figure 8 illustrates the decision boundary delineated by
the one-class SVM for normal and abnormal samples within
the test data of the LN dataset. The model effectively encap-
sulates the majority of the normal data points within the
decision boundary, which is shown as an elliptical contour.
Notably, the normal samples are predominantly inside the
ellipse, while the abnormal samples are largely outside the
ellipse, indicating a clear separation of the two classes by
the model.

Overall, these results demonstrate that the proposed
method offers improved anomaly detection performance,
surpassing previous advanced techniques.

5. Conclusion

To address the issue of multipath interference detection in
radar signals, we have proposed a semisupervised anomaly
detection approach called DADA in this study. The method
is trained exclusively on normal signals. By extending the
autoencoder architecture and incorporating a feature extrac-
tor network, it can capture the latent feature space of the
samples. To better extract the time–frequency characteristics
of radar signals, a CBAM attention mechanism is introduced

to enhance feature learning. The method jointly considers
the high-dimensional image space and the low-dimensional
feature space, constructs a two-dimensional feature space
representing normal samples, and performs anomaly detec-
tion by learning the feature space boundary using one-class
SVM. The effectiveness of the proposed approach is vali-
dated through extensive experiments on multiple datasets
in each experimental group. Reconstruction analysis shows
that DADA can effectively reconstruct normal signals, but
fails for multipath signals. Results show that DADA consis-
tently achieves higher accuracy and F1-scores compared to
benchmarks, and exhibits greater robustness when more sig-
nal types are present in the test set. Our future work will
evaluate the generalizability of the method on more datasets.
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