
Research Article
Small Sample Fiber Full State Diagnosis Based on Fuzzy
Clustering and Improved ResNet Network

Xiangqun Li , Jiawen Liang , Jinyu Zhu , Shengping Shi , Fangyu Ding ,
Jianpeng Sun , and Bo Liu

Gannan Power Supply Company of State Grid Gansu Electric Power Supply Company, Hezuo 747000, China

Correspondence should be addressed to Xiangqun Li; 1705020211@hhu.edu.cn

Received 23 September 2023; Revised 31 December 2023; Accepted 22 January 2024; Published 8 February 2024

Academic Editor: Gordana Jovanovic Dolecek

Copyright © 2024 Xiangqun Li et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The optical time domain reflectometer (OTDR) curve features of communication fibers exhibit subtle differences among their
normal, subhealthy, and faulty operating states, making it challenging for existing machine learning-based fault diagnosis algo-
rithms to extract these minute features. In addition, the OTDR curve field fault data are scarce, and data-driven deep neural
network that needs a lot of data training cannot meet the requirements. In response to this issue, this paper proposes a communi-
cation fiber state diagnosis model based on fuzzy clustering and an improved ResNet. First, the pretrained residual network
(ResNet) is modified by removing the classification layer and retaining the feature extraction layers. A global average pooling
(GAP) layer is designed as a replacement for the fully connected layer. Second, fuzzy clustering, instead of the softmax classification
layer, is employed in ResNet for its characteristic of requiring no subsequent data training. The improved model requires only a
small amount of sample training to optimize the parameters of the GAP layer, thereby accommodating state diagnosis in scenarios
with limited data availability. During the diagnosis process, the OTDR curves are input into the network, resulting in 512 features
outputted in the GAP layer. These features are used to construct a feature vector matrix, and a dynamic clustering graph is formed
using fuzzy clustering to realize the fiber state diagnosis. Through on-site data detection and validation, it has been demonstrated
that the improved ResNet can effectively identify the full cycle of fiber states.

1. Introduction

With the advancement of science, technology, and power com-
munication, they have transitioned from power transmission
lines to fiber optic communication. Fiber optic communication
offers advantages such as high communication capacity and
compact size [1–4], and its stability plays a critical role in
ensuring the reliable operation of power systems. However,
in practical applications, some optical cables are deployed in
areas with frequent human activities, which makes them prone
to various faults. These faults can result in data loss [5],
decreased operational stability of the cable lines [6], and overall
cable failures. Therefore, it is crucial to implement a compre-
hensive state monitoring approach that includes prefault warn-
ings, fault alarms, and regular inspections to detect and address
potential cable failures on time. Such full-cycle statemonitoring
is of paramount importance.

The optical time domain reflectometer (OTDR), as a
device for evaluating fiber optic performance, has found wide-
spread applications in various aspects of communication
fiber, including construction, maintenance, and operation
[7–9]. The OTDR curve provides a comprehensive depiction
of the fiber optic’s full-cycle state, enabling effective assess-
ment of its performance throughout its operational lifespan.
Elsayed et al. [10] and Lalam et al. [11] have employed the
analysis of the power–distance relationship in OTDR curves
to identify various faults occurring in fiber optic lines and
locate them accurately. In literature [12], the application of
wavelet analysis in OTDR analysis is discussed. Experimental
results demonstrate a significant improvement in the perfor-
mance of OTDR under strong noise conditions, in which
model analysis is limited, and the algorithm is excessively
complex. The aforementioned methods involve decomposing
and extracting features from OTDR curves to identify fault
locations, which are suitable for cases where the fault features
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are relatively distinct. However, in practical scenarios, some
OTDR curves exhibit subtle differences between fault and
nonfault curves, especially subhealthy curves. The aforemen-
tioned methods fail to differentiate these subtle differences
due to insufficient feature extraction. Furthermore, optical
fibers are easily affected by external environmental factors,
and interference is unavoidable. If there is insufficient feature
extraction, it may result in certain errors and misdiagnoses.

In recent years, deep learning has made significant advance-
ments in the field of fault detection, with deep convolutional
neural networks (CNNs) demonstrating powerful capabilities
in feature extraction and classification. The literature [13]
investigated the application of data-driven fiber modeling
methods based on deep neural networks in optical communi-
cation systems, providing flexibility and generality to fiber
modeling while reducing computational complexity. The lit-
erature [14] utilized fiber sensing technology and deep learn-
ing algorithms for fault detection, demonstrating excellent
performance in automatic feature extraction of faults. The
residual network (ResNet) is a kind of deep CNN, due to
the introduction of residual blocks, which overcomes the
problem of gradient disappearance during training. The liter-
ature [15, 16] applies the powerful feature extraction ability of
ResNets for feature extraction. The literature [17] applied the
ResNet for fault diagnosis of turnouts, but the pooling layer
could not adapt to the input data size. Therefore, in this paper,
we propose to select the improved ResNet for feature extrac-
tion. However, the aforementioned fault diagnosis methods
for optical fibers utilizing models often include fully con-
nected layers. These fully connected layers, together with soft-
max, act as “classifiers” within the entire neural network.
However, during Net training, a majority of the data is used
to train the parameters of the fully connected layers. If the
classification layer can be implemented using a method that
does not require training, it would significantly reduce the
training data and simplify the structure of the CNN.

To enable the usage of deep ResNets in scenarios with
limited data samples, it is necessary to introduce improve-
ments. Our research has revealed that the fully connected
layers and softmax layers in ResNet consist of a substantial
number of parameters, accounting for approximately 90% of
the total parameters. By reducing the number of parameters
in the fully connected layers and adopting a nontraining-
based classification algorithm, a significant reduction in
training data can be achieved. Fuzzy clustering, as an unsu-
pervised classification method, leverages fuzzy mathematical
principles for classification without the need for training. It
has already demonstrated successful applications in diverse
domains, including shipbuilding [18, 19] and power sys-
tems [20, 21].

Based on the aforementioned insights, this paper pro-
poses an improved deep ResNet using adaptive global
mean pooling and fuzzy clustering to address the challenges
associated with limited data samples in the context of a
comprehensive diagnosis of optical fiber’s full cycle status.
The main contributions of this paper can be summarized as
follows:

(1) ResNet is used as a migration learning framework in
this study, and it is used as a feature extractor by fine-
tuning the network parameters with a small sample
of fiber optic OTDR curves collected in the field. The
extracted 512-dimensional feature vectors are classi-
fied by the fuzzy clustering algorithm (FCA), and as
the confidence factor changes from 0 to 1, a dynamic
cluster map is generated to obtain the classification
results of the system state.

(2) The proposed method in this study addresses the lim-
itation of insufficient feature extraction in machine
learning-based fault diagnosis methods. Constructing
a network based on migration learning and fine-
tuning the model requires only a small amount of
data to extract deep features from fiber optic OTDR
data, and the FCA, as an unsupervised diagnostic
algorithm, does not require a large amount of labeled
data, which provides a newway for the practical appli-
cation of full-cycle fiber optic diagnosis.

2. Theoretical Foundation

2.1. Convolutional ResNet. Deep learning mainly expresses
the information of data with deep-level features by building
multilayer networks. In recent years, CNNs have made break-
throughs in various image processing and feature extraction
[22, 23], andmore andmore scholars are using CNNs for fault
diagnosis. A CNN takes images as input and extracts local
features in the pooling layer after convolutional operations.
The convolution operation can be regarded as a “filter opera-
tion,” and its convolution form is as follows:

xlj ¼ f ∑
i2Mj

xl−1j ⋅ kli j þ blj

 !
: ð1Þ

In Equation (1), xlj is the Jth feature graph in layer l; f is
the activation function; kli j is the convolution kernel; Mj is
the feature set; blj is the jth offset of layer l.

After undergoing convolutional operations and entering
the pooling layer, the matrix size is reduced. With reduced
parameters of the neural network, the resulting feature vec-
tors are then fed into the classification layer for classification.
In this study, we adopted the ResNet [13], which has excel-
lent feature extraction capabilities. Compared to other net-
work architectures, the ResNet’s residual structure (shortcut
connection) allows direct transmission of input data infor-
mation to the output, addressing the problems of gradient
vanishing and accuracy degradation that arise with increas-
ing network depth. The ResNet-18 residual block structure is
illustrated in Figure 1. It consists of four residual blocks, with
two layers in each block. Each layer contains two 3× 3 con-
volutional layers, in addition to a fully connected classifica-
tion layer, resulting in a total of 18 layers. The ResNet
residual block structure, as shown in Figure 2, consists of
two layers. The input, denoted as x, undergoes residual
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FIGURE 1: Structure of ResNet-18.
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learning to form a residual function, as expressed in
Equation (2) in Figure 2.

F ¼W2σ W1; xð Þ: ð2Þ

In Equation (2), σ is the activation function ReLU. After
shortcut and ReLU on the second layer, the output y is
obtained. There are two output expressions for y, when the
number of channels is constant as follows:

y ¼ F x; Wif gð Þ þ x: ð3Þ

When the output channel is changed, and the number of
channels is changed from 64 to 128, as the dashed line con-
nection shown in Figure 1, the shortcut makes a linear
change Ws to x at this time as follows:

y ¼ F x; Wif gð Þ þWsx: ð4Þ

In Equation (4), x is the input, y is the output of the
neural network, W is the convolution adjusting the dimen-
sion of the channel.

The ResNet-18 network has been trained on millions of
images and possesses rich feature representation capabilities.
From the structure of the ResNet, it can be observed that the
first 17 layers serve as feature extraction layers, while the
18th layer functions as the classification layer. In this study,
we adopt the ResNet-18 model and utilize the first 17 layers
as a feature extractor to extract features from OTDR curves.
This study combines migration learning with fault data fea-
ture extraction, uses a small number of samples to fine-tune
the existing trained model, adapts to the current situation
where communication fiber fault data is not easy to obtain,
and can provide scientific guidance for the full state diagnosis
of communication fibers.

2.2. Global Average Pooling (GAP). The parameters in the
last full connection (FC) layer of ResNet-18 account for
80%–90% of the whole network, which reduces the training
speed and is prone to an overfitting phenomenon. This paper
proposes to replace FC with the GAP layer and reduce
parameters. After the feature extraction of the convolutional
layer, the features are expanded and classified by the FC layer
in the traditional method. The GAP to replace the FC can be
arbitrary dimension features in 1D output, which enhances
the feature extraction ability of the convolutional layer while
retaining the spatial information extracted by the convolu-
tional layer and pooling layer, reducing the number of

parameters in the model. The amount of data training is
reduced, and the overfitting is also prevented. Figure 3 shows
the GAP and FC structure comparison. In this paper, we
propose to design a dimensionally adaptive GAP layer to
replace the end of the network FC layer. The GAP layer
designs an adaptive tensor matrix ½ x; wout; n � :, in which x
is the number of feature graph channels output by the previ-
ous residual block, wout represents the size of the feature
graph inputted by the residual block to the GAP layer, and
n represents the number of fault types output. The calcula-
tion of wout is shown in Equation (5):

wout ¼
win − F
stride

þ 1; ð5Þ

where the convolution layer win is the size of the feature
graph, F is the size of the convolution kernel, and stride is
the step size. For the feature map input from the previous
convolution layer to GAP, the pooling kernel of GAP auto-
matically matches the number and dimension of the convo-
lutional kernel output. In this paper, when the OTDR curve
image goes through the operation in the convolutional layer
and residual block and outputs a 7× 7× 512 feature map into
the GAP layer, the GAP layer can match the number and
dimension of the pooling kernel by itself, and use the pooling
operation to calculate a global average equivalent to FC as the
GAP output feature value for the subsequent classification.
Finally, the activations function is used to output 512 fea-
tures in the GAP layer.

The operation mode of GAP is as follows:

Slavg-pooiing ¼
1
c
∑
c

i¼1
Xl
1:h;1:w:i: ð6Þ

In Equation (6), Slavg-pooiing represents the mean value
obtained by applying GAP to the lth layer convolution.
∑c

i¼1X
l
1:h; 1:w:i refers to the range of pixel points in the output

feature map corresponding to the mean pooling kernel,
spanning from the first row to the hth row horizontally
and from the first column to the wth column vertically.
The adoption of GAP reduces the number of parameters of
the model to a certain extent. Compared with the traditional
structure of ResNet, such usage of the model fine-tuning of
the data demand is smaller, for only a small amount of
communication fiber fault data are needed to obtain a
good performance of the feature extractor, which is better
adapted to the object of the study.

2.3. Fuzzy Clustering Algorithm (FCA). Fuzzy clustering is an
unsupervised learning method. With the principle of fuzzy
mathematics and the similarity index rij ¼Rðxi; xjÞ : introduced
into clustering analysis, the fuzzy equivalence matrix is
obtained by using the transitive closure method after calibra-
tion.When λ changes from 0 to 1, the dynamic clustering graph
is obtained. The specific process is as follows:

Step 1: Data standardization
The data includesN types. Let the domain of the classified

object be X¼ ½x1; x2;…; xn�:, and each object has n indices
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FIGURE 2: Residual block structure.
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representing its properties, that is, Xi ¼ ½xi1; xi2;  …; xin� :, i¼
ð1; 2;…; nÞ :. The corresponding data matrix is obtained as
follows:

x ¼

x11 x12 ⋯ x1a

x21 x22 ⋯ x2a

⋮ ⋮ ⋮
xn1 xn2 ⋯ xna

2
66664

3
77775: ð7Þ

To solve the problem of different dimensions caused by
different data, the data x is usually transformed by transla-
tion standard deviation and translation range as follows:

x
0
ik ¼

xik − xk
sk

: ð8Þ

In this equation, i¼ 1; 2;…; n; k¼ 1; 2;…;m; xk ¼
1
n∑

n
i¼1xik; sk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1ðxik − xkÞ2

q
.

After the translation standard deviation transformation,
the influence of the dimension between the data is solved, but
there are x0ik ∉ ð0; 1Þ:, so it is necessary to translate the x0ik by
the line as follows:

x00ik ¼
x

0
ik − min

1≤i≤n
x

0
ik

È É
max
1≤i≤n

x
0
ik

È É
− min

1≤i≤n
x

0
ik

È É : ð9Þ

Till now, the effect of the magnitude is eliminated for all
x0ik 2 ð0; 1Þ :.

Step 2: Establishing fuzzy similarity matrix (calibration)
The fuzzy matrix is obtained from Step 1, and the degree

of similarity rij between samples needs to be calculated to
establish the fuzzy similarity matrix, which operation is also
known as calibration. The main distance method to deter-
mine rij is shown below, and this paper uses the Euclidean
distance method to determine rij.

The Euclidean distance is defined as shown in Equation (10):

d xi; xj
À Á¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
m

k¼1
xik − xjk
À Á

2

r
: ð10Þ

Step 3: Establish a fuzzy equivalent matrix.

The matrix R obtained through calibration in Step 2,
needs to be transformed into an equivalent matrix R∗, that
is, R starts from the starting point, and finds the quadratic
R→ R2 →⋯ R2i →⋯ in turn. After finite operations, there
is RK ∘ RK ¼RK . At this time, RK is transitive, and RK is the
equivalent matrix R∗.

Step 4: Cluster analysis
After applying the aforementioned steps, the fuzzy equiv-

alence matrix R∗ is obtained. For any given λ2 ½0; 1� :;Rλ ¼
rijðλÞ : is referred to as the λ-cut matrix of the fuzzy equiva-
lence matrix as follows:

rij λð Þ ¼ 1 rij ≥ λ

0 rij<λ

(
: ð11Þ

When rij ≥ λ exists, the two samples are classified into
one class. For different confidence levels λ2 ½0; 1� :, different
clustering results can be obtained, thus forming a dynamic
clustering graph. When in practice, the OTDR curve data in
the case of fiber failure is usually insufficient, so this study
chooses the FCA, an unsupervised clustering method, to
realize the full state diagnosis of communication fibers,
which has a number of advantages such as no need for train-
ing, adapting to small samples, and so on.

3. Fiber OTDR State Curve Analysis

The analysis of measurement curves using OTDR is facili-
tated by the backscattering generated by Rayleigh scattering
and Fresnel reflection during the transmission of light in
optical fibers. In optical fiber communication systems, cable
faults are a significant cause of communication failures.
OTDR technology enables the detection of the operational
status of optical fibers, providing characterization of their
healthy, subhealthy, and fault conditions. Therefore, it plays
a crucial role in the maintenance of optical fibers.

3.1. Normal OTDR Rate Curve. Figure 4 illustrates the nor-
mal curve graph obtained from testing fiber optic cable lines
using an OTDR instrument. The distance between markers A
and B represents the length of the tested fiber optic cable line,
with AB indicating the Fresnel reflection edge.

3.2. OTDR Fault Curve. Based on the field results, the opera-
tional states corresponding to the OTDR curves of fiber
optics can be categorized as healthy, subhealthy, and faulty

… … …

Flatten

FC: Fully connected GAP: Global average pooling

FIGURE 3: Comparison of FC and GAP structures.
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status. The corresponding reflection curves are depicted in
Figure 5, and the analysis of typical curves for each state is
presented in Table 1. By compiling various representative
OTDR curves into a fault database, when a specific fault
occurs in the field, the type of it can be identified by com-
paring it with the curves in the fault database, knowing what
state of fiber optic it is. If a new type of operational state
curve emerges in the field, it can be incorporated into the
fault database for expansion.

4. Build Fiber Optic Condition
Diagnostic Model

A fiber optic state diagnosis model is established based on the
content described in the previous section.

4.1. Transfer Learning (TF). The so-called TF is to pretrain
the ResNet in the source domain and then transfer the param-
eters in the source domain to the target domain. In this study,
the network parameters of layers 1–16 are frozen, and a new
convolutional layer is introduced to replace the last trainable
layer of the ResNet. This is done to align with the new dataset
in the target domain, and subsequently, the deep network is
fine-tuned using small sample data in the target domain; at
this point, the TL-ResNet model is established.

4.2. GAP Layer Replace Fully Connected Layer. Due to the
large number of parameters in the fully connected layer,
overfitting is easy to occur in the case of small samples, which
reduces the classification accuracy of the network. In this
regard, the TL-ResNet-GAP model is constructed based on
the ResNet-18 network by replacing the average pooling
layer in the ResNet with the GAP layer, as described in
Section 2.2.

4.3. FCA Instead of Softmax Layer Classification. The TL-
ResNet-GAP-FCA model is established by incorporating
the FCA in place of the classification layer in the TL-
ResNet-GAP network. The activations= (net, x, layer) func-
tion was used to output the features extracted by the GAP
layer, and the extracted features were used to construct the
corresponding feature vector matrix for subsequent fault
diagnosis.

4.4. Fiber Full State Diagnosis Experimental Procedure. The
specific diagnostic workflow model of the improved model is
shown in Figure 6, which can be divided into the following
three diagnostic steps:

(1) Use the OTDR to collect the communication fiber
and get the fiber OTDR curve data.

(2) Use the ResNet framework to build a migration
learning model, replacing the original model softmax
layer with the GAP layer. With a small sample of
fiber data, the model is fine-tuned for training to
improve the feature extraction ability of the model.
The fine-tuned model is used as a feature extractor to
extract 512-dimensional feature vectors from the
curve data.

(3) The FCA is used to divide the feature vectors, and a
dynamic clustering map is generated by calculating
the fuzzy equivalence matrix, while the confidence
factor is then varied from 0 to 1 to generate a
dynamic clustering map, and finally, the classifica-
tion results of the fiber optic state are obtained.

5. Method Verification and Analysis

5.1. Build the Set of State Feature Vectors. A total of 60 sets of
6 different operating state curves were collected from the
field, with each state consisting of 10 sets. By utilizing the
small sample fiber data, the network’s GAP parameters
were trained to enhance the model’s feature extraction
capability.

With the improved TL-ResNet-GAP ResNet employed
as the feature extractor, the OTDR curve images from
Figure 5 are input into the ResNet-GAP network, and the
feature vectors of the OTDR curves are extracted at the GAP
layer and establish the corresponding set of feature vectors.
The results of the feature vector collection are presented in
Table 2. The feature vector matrix, composed of the feature
vectors from multiple curves, serves as the repository of
typical sample curves for constructing the fault curve
library. If a test curve is not recorded in the fault curve
library, it is added as a sample curve to expand the library.
By clustering the test curves obtained in the field and the
curves in the sample library using fuzzy clustering, the pur-
pose of fault classification can be achieved based on their
consistent features.

5.2. State Diagnosis Experiment on Improved ResNet Network.
To validate the feasibility of the proposed model, a field
OTDR state curve was collected, as shown in Figure 7. The
curves labeled as d0 and d1 represent the test curves. Through
field inspection and maintenance, two faults were identified,
which were consistent with the subhealthy curves f1 and fault
curves f3, respectively. The improved ResNet was employed
to extract features from the OTDR curves, as presented in
Table 3.

Based on the information presented in Table 2 and the
current Table 3, a feature vector matrix was constructed. The
feature vector matrix was subjected to standardization,
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TABLE 1: Classification and analysis of OTDR curves for different status of fibers.

Code Running state Curve types Curve characteristic

f0 Healthy Normal OTDR curve
The curve has a sharp peak at the beginning and end, and
becomes flat in the middle of it

f1

Subhealthy

The cable is overbent There are “small steps” in the middle
f2 The bending radius of the cable is rather small The curve fluctuates in the intermediate stage

f3
The breakpoint is too close to the test point or
in a blind spot

The curve has no middle flat stage and no end peak

f4
Fault

Fiber break A large peak appeared in the middle flat stage of the curve

f5
Dirty on the end of the cable or poor quality on
the end of the surface

There is no reflection spike at the end of the curve

IET Signal Processing 7



Image processing Conv 1

0 5 10 15 20 25 30
0
5

10
15
20
25
30
35
40

Distance (km)

A

BO
pt

ic
al

 p
ow

er
 (d

Bm
)

GAP
512 features

14 × 14
28 × 28

7 × 7

Fuzzy clustering algorithm

ResNet 1 ResNet 2
ResNet 3

ResNet 4

56 × 56

Characteristic matrixFuzzy similar matrix

FIGURE 6: Fiber optic fault diagnosis flowchart.

TABLE 2: Feature vector states.

OTDR curve 1 2 3 4 5 … 509 510 511 512

f0 1.65 1.75 0.26 0.10 0.08 … 0.76 0.02 0.32 0.84
f1 0.74 2.02 1.05 0.13 0.07 … 0.28 0.04 0.77 0.26
f2 0.29 1.00 0.41 0.53 0.17 … 0.84 0.53 0.63 0.92
f3 0.72 2.60 0.86 0.67 0.11 … 0.79 0.40 1.06 0.75
f4 0.60 2.04 0.76 0.14 0.09 … 0.14 0.29 0.72 0.91
f5 1.49 2.82 0.83 0.20 0.34 … 0.23 0.06 0.79 0.40
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FIGURE 7: Curves to be measured.

TABLE 3: Characteristic vector of the curves to be tested.

The OTDR to be tested 1 2 3 4 5 … 510 511 512

d0 0.59 1.16 0.52 0.74 0.16 … 0.34 0.48 0.57
d1 1.60 2.49 0.94 0.09 0.05 … 0.06 0.90 0.50
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ensuring that the data distribution ranged from 0 to 1. The
resulting matrix X was denoted as follows:

X ¼

0:6831 0:4722 0 ⋯ ⋯ 0:8881 0 0 0:8603

0:2178 1 0:7637 ⋯ ⋯ 0:9305 0:7519 1 0:7281

0:2254 0:6384 1 ⋯ ⋯ 0:1962 0:0439 0:6097 0

0:1588 0:6504 0:6390 ⋯ ⋯ 0 0:5396 0:5366 0:9613

1 0:8647 0:5409 ⋯ ⋯ 0:0436 0:4274 0:7988 1

0 0 0:1912 ⋯ ⋯ 1 1 0:4170 0:9722

0:1516 0:1000 0:3353 ⋯ ⋯ 0:4728 0:6373 0:2210 0:4578

0:6626 0:9317 0:8598 ⋯ ⋯ 0:1276 0:0946 0:7833 0:3587

2
666666666666664

3
777777777777775

: ð12Þ

To assess the similarity among samples, the Euclidean
distance method, as described in Equation (10), was
employed to calibrate the matrix X and obtain the fuzzy

equivalence matrix R. Subsequently, the method in Step 3
was utilized to transform matrix R into a fuzzy similarity
matrix R∗:

R∗ ¼

1 0:3365 0:4251 0:4251 0:4251 0:2877 0:3365 0:4251

0:3365 1 0:3365 0:3365 0:3365 0:2877 0:4820 0:3365

0:4251 0:3365 1 0:5451 0:4319 0:2877 0:3365 0:6522

0:4251 0:3365 0:5451 1 0:4319 0:2877 0:3365 0:5451

0:4251 0:3365 0:4319 0:4319 1 0:2877 0:3365 0:4319

0:2877 0:2877 0:2877 0:2877 0:2877 1 0:2877 0:2877

0:3365 0:4820 0:3365 0:3365 0:3365 0:2877 1 0:3365

0:4251 0:3365 0:6522 0:5451 0:4319 0:2877 0:3365 1

2
666666666666664

3
777777777777775

: ð13Þ

In the fuzzy similarity matrix R∗, as the confidence factor
λ getting bigger, a dynamic clustering graph is formed, as
illustrated in Figure 8. When λ= 0.655, the tested curve d1 is
similar to curve f1, and they are classified into the same
cluster. Similarly, when λ= 0.482, the tested curve d0 is simi-
lar to curve f3 in terms of faults, and they are classified into
the same cluster. These results are consistent with the find-
ings from the on-site detection.

A total of 60 sets of OTDR curves were collected from
the field. The improved pretrained ResNet-GAP model and
the original ResNet model were employed for fault diagno-
sis of the curves. Overall, 80% of the dataset was employed
as the training set and 20% as the testing set for fault
diagnosis.

The unmodified ResNet model was selected and trained
with the dataset of 60 OTDR curves. The training accuracy
curve is depicted in Figure 9. Furthermore, the diagnostic
results were compared with the actual field results. The diag-
nostic accuracy achieved by combining the proposed ResNet-
GAP model with fuzzy clustering was 96.7%, while the
unmodified ResNet achieved an accuracy of only 75%. These
results demonstrate the practical value of the improved
algorithm.

5.3. Comparison Analysis with Other Algorithms. To verify
the superiority of the TL-ResNet-GAP-FCA fault diagnosis
algorithm compared to the current mainstream fault diagno-
sis methods, a time–frequency domain feature extraction
method was applied to the OTDR curves. The extracted
features, including absolute mean, root mean square, vari-
ance, peak factor, etc., are presented in Table 4.

In this study, four algorithms, LSTM, CNN, SVM, and
SAE, are selected for experimental comparison and valida-
tion, and the accuracy rate is used as the model evaluation
index. The FCA alone requires that the dimension of the
input data cannot be too large, so it is supplemented with
the time–frequency domain extraction algorithm for fault
diagnosis, and the experimental results are shown in Table 5.
From Table 5, it can be seen that the accuracy rates of LSTM,
CNN, SAE, SVM, and fuzzy clustering are 58.3%, 66.7%,
83.3%, 75%, and 86.7%, respectively. In contrast, the accuracy
of the improved ResNet-GAP model is 96.7%. These results
indicate that the improved ResNet outperforms other intelli-
gent fault diagnosis algorithms with significantly higher accu-
racy. In addition, the improved ResNet does not require
manual feature extraction of the target under test, which
results in better fault diagnosis performance.
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TABLE 4: Time-domain feature extraction methods.

Algorithm Computational formula

Absolute average μ1 μ1 ¼ 1
n∑

n
i¼1jx1j :

Mean square root μ2 μ2 ¼
ffiffiffiffiffiffiffi
1
n x

2
1

q
Standard error μ3 μ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n∑

n
i¼1ðxi − μ1Þ2

q
Variance μ4 μ4 ¼ 1

n∑
n
i¼1ðxi − μ1Þ2

Peak factor μ5 μ5 ¼mini¼1
nðxiÞffiffiffiffiffiffiffiffiffiffiffi

1
n∑

n
i¼1x

2
i

p

The margin factor μ6 μ6 ¼ maxðxiÞ
ð1n∑n

i¼1

ffiffiffiffi
x2i

p
Þ2
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6. Conclusions

In this paper, the TL-ResNet-GAP-FCA network is applied to
the full-cycle status diagnosis of optical fibers, addressing the
challenge of small sample diagnosis in deep networks. First, the
OTDR curves are input into the feature extractor, where they
undergo multiple convolutional and residual operations. The
features are then extracted at the GAP layer of the improved
ResNet-GAP network. Fuzzy clustering is employed in the
classification layer to group similar samples together. Experi-
mental results demonstrate that the improved ResNet exhibits
fast processing speed and excellent diagnostic performance,
achieving an intelligent diagnosis of optical fibers in the context
of small sample sizes. This approach effectively addresses the
challenges associated with deep network diagnosis of small
samples in the full-cycle diagnosis of optical fibers.
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