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Motion artifacts are a major challenge in the in vivo application of catheter-based cardiac imaging modalities. Gating is a critical
tool for suppressing motion artifacts. Electrocardiogram (ECG) gating requires a trigger device or synchronous ECG recordings for
retrospective analysis. Existing retrospective software gating methods extract gating signals through separate steps based on
changes in vessel morphology or image features, which require a high computational cost and are prone to error accumulation.
In this paper, we report on an end-to-end unsupervised learning framework for retrospective image-based gating (IBG) of catheter-
based intracoronary images, named IBG Network. It establishes a direct mapping from a continuously acquired image sequence to
a gated subsequence. The network was trained on clinical data sets in an unsupervised manner, addressing the difficulty of obtaining
the gold standard in deep learning-based motion suppression techniques. Experimental results of in vivo intravascular ultrasound
and optical coherence tomography sequences show that the proposed method has better performance in terms of motion artifact
suppression and processing efficiency compared with the state-of-the-art nonlearning signal-based and IBG methods.

1. Introduction

Catheter-based cardiac imaging modalities, such as intravas-
cular ultrasound (IVUS) and intravascular optical coherence
tomography (IVOCT) [1], are important for the clinical diag-
nosis of coronary atherosclerotic disease (CAD). They have
similar imaging principles in that a guide wire is inserted into
the target vascular lumen and secured at the distal end under
the guidance of X-ray angiography. Then, a special catheter
with a probe at the tip is inserted into the lumen along the
guide wire and pushed to the distal end. While the catheter is
pulled back from the distal end to the proximal end, the probe
emits an energy beam toward the surrounding tissue (IVOCT
uses a low-coherence broadband infrared laser source, and
IVUS uses ultrasound at 20–50MHz). A detector at the tip
of the catheter collects ultrasound echoes or backscattered light
signals. Finally, sequential cross-sectional images (short-axis
view or Bmode) that show cross sections of the vessels, includ-
ing lumen, adventitia/media, intima, and plaque load [2] are

formed. Longitudinal view (L-view) slices along the long axis
of the vessel segment (i.e., time-axis view) are also obtained for
volumetric analysis.

A major challenge in the clinical application of intracor-
onary imaging is motion artifacts. Coronary arteries attach to
the epicardial surface and move rhythmically with the heart-
beat. When the catheter is continuously pulled back to collect
signals, the cardiac movement and pulsating blood flow in
the vascular lumen can cause jitter at the tip of the catheter
and lateral displacement relative to the lumen. The pullback
path is not always parallel to the long axis of the lumen. The
deflection of the probe causes the target tissue area to deviate
from the detector receiving focus, and the received echo
signal cannot accurately reflect the morphology of the target,
resulting in deformation and distortion of the vascular struc-
ture displayed in the image [3]. Furthermore, cardiac dynam-
ics causes a longitudinal oscillation of the catheter relative to
the lumen [4], resulting in repeated sampling of the same ana-
tomical area. Motion artifacts are the result of the combined
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effects of these factors. Unlike single-frame artifacts, such as
blurring artifacts, gain artifacts, acoustic artifacts, reverberation
artifacts, and guide wire artifacts, motion artifacts, are related to
the analysis of multiframe images. They appear as misalign-
ments (rotations and shifts) and distortions of vessel structures
between successive B-mode images, as well as sawtooth-shaped
longitudinal appearances in the L-view of pullback sequences
[5–7]. They affect the subsequent processing of image-derived
quantities for diagnosis or for input of computational models,
such as 3D vessel reconstruction [8], volumetric measurements
[9], and estimation of biomechanical parameters (wall strain
and elasticity) [10]. Although the acquisition speed of the fre-
quency domainOCT can be increased tomore than 100 frames
per second (fps) [11], suppressing motion to some extent, rela-
tive motion between the catheter and the wall of the vessel may
still affect the visualization of the entire pullback sequence, thus
decreasing precision in subsequent postprocessing procedures.

Gating is currently the main tool for suppressing motion
artifacts in in vivo cardiac imaging applications, including pro-
spective gating and retrospective gating, as shown in Figure 1.
Prospective gating is the use of electrocardiogram (ECG) trig-
gering devices to capture images in specific cardiac phases
(typically R-waves) [12–14]. It is not widely used in the clinic
because not all commercially available intravascular imaging
catheters include an ECG triggering option. Because only one
frame per cardiac cycle is captured, this image acquisition

method considerably extends catheterization duration and
increases radiation dose and surgical risk compared to con-
tinuous catheter pullback.

Retrospective gating is implemented by hardware or soft-
ware. Retrospective hardware gating involves continuously
withdrawing the catheter to obtain sequential images cover-
ing several cardiac cycles, while simultaneously recording
ECG signals. After cardiac catheterization, images are retro-
spectively analyzed against the ECG signal, and those images
acquired in the same phase (usually R-wave) for each cycle
are selected to form a gating subsequence [15]. Unlike pro-
spective ECG triggering, retrospective hardware gating does
not prolong intervention time. However, it is difficult to ensure
full synchronization between ECG recording and interven-
tional image acquisition. The ECG records the overall physio-
logical electrical activity of the heart, while motion artifacts
present in the intracoronary image sequences depend on the
local movement of the catheter relative to the vascular lumen.
In addition, a more difficult problem is choosing the most
effective R–R fraction to achieve maximum interframe stabil-
ity, especially in the case of arrhythmias.

Retrospective software gating utilizes signal processing
techniques (signal-based gating, SBG) or image processing
techniques (image-based gating, IBG) to extract implicit car-
diac phases from signals or images collected through contin-
uous catheter pullback. It does not require ECG trigger
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FIGURE 1: Overview of gating technology for catheter-based cardiac imaging.
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devices or ECG records for retrospective analysis. Therefore,
it can overcome the shortcomings of ECG gating and achieve
gating without synchronous ECG recording. The state-of-
the-art SBG method presented in [16] uses an affinity prop-
agation (AP) algorithm to cluster the correlation matrix of
raw imaging signals, extract static signal frames, and then
reconstruct the gating images from the static frames of signals.
Because not all commercially available intravascular imaging
systems allow raw signal acquisition, SBG is not as commonly
used as IBG. IBG is implemented in two ways: morphological
feature-based and grayscale feature-based. The former is to
extract approximately periodic gating signals by tracking the
changes in vessel wall contour or lumen centroid position
over time in B-mode images [17, 18]. It requires precise seg-
mentation of all B-mode images to extract vessel wall con-
tours. Manual segmentation is time-consuming, while the
accuracy and robustness of automatic segmentation are diffi-
cult to ensure. The latter analyzes the changes in the intensity
features of B-mode images throughout the entire pullback
sequence. It eliminates the need for prior segmentation and
can achieve fully automatic gating. For example, it can be
implemented by constructing a dissimilarity matrix based on
the normalized correlation of the intensity features between
successive frames. The path with the lowest cumulative dis-
similarity is then found in the matrix using dynamic program-
ing to extract the gating signal [19, 20]. In addition, gating
signals can be extracted from local changes in the local average
of pixel intensity [21], the variation of the motion blur [22],
changes in local grayscale features [23], combinations of image
edges and pixel intensity [24], phase changes of different fre-
quency components of images [25], or linear combinations of
several features of images [26]. These methods require travers-
ing all pixels in each B-mode image, resulting in a computa-
tionally heavy load. Addressing this issue, manifold learning
has been employed to reduce high-dimensional image sequences
to low-dimensional manifolds. The low-dimensional feature
vectors that can describe cardiac motion are used to construct
a distance function [27, 28].

Traditional retrospective software gating methods extract
the gating signal based on image features and signal proces-
sing through separate steps. They are sensitive to image noise
and artifacts, making it difficult to ensure the robustness of
the gating results and are prone to error accumulation. Over
the past decade, deep learning has emerged as a potential
preferred solution for quickly and accurately analyzing large
cardiac imaging data sets [29]. Addressing the issue of IBG
for near-infrared spectroscopy IVUS, Bajaj et al. [30] built a
neural network model using bidirectional-gated recurrent
units to detect end-diastolic frames. This work is the first
attempt to use deep learning for IBG by analyzing the abso-
lute intensity difference between corresponding pixels in suc-
cessive frames. The process is computationally intensive, and
the results are sensitive to image noise and artifacts. Recently,
they improved their work exploring forward and backward
motion features of IVUS sequences by integrating dedicated
motion encoders and a bidirectional attention recurrent network
[31]. In both works, neural network models were trained in a
supervised manner on ECG-defined gold-standard end-diastolic

frames. Labeling samples is a laborious task and requires rigor-
ously synchronized intravascular image acquisition and ECG
recording.

In this work, we propose an unsupervised deep learning
framework to achieve retrospective software gating of intra-
coronary image sequences. The main contributions are sum-
marized as follows:

(1) We enable end-to-end mapping from a continuous
pullback intracoronary image sequence to a gated
sequence covering several cardiac cycles. In particular,
a CNN framework named IBG Network (IBG-Net) is
developed to detect gating frames from the original
image sequence. It has clinical significance in suppres-
sing motion artifacts associated with the cardiac cycle
in intracoronary imaging.

(2) We train IBG-Net on clinical data sets in an unsu-
pervised manner, addressing the difficulty of obtain-
ing a gold standard in motion suppression and IBG
techniques.

(3) We validate the feasibility and superiority of this method
in clinical data sets. The experimental results show that
compared to traditional SBG and IBGmethods, the pro-
posed method performs better in terms of the visual
effects of L-view and the quantitative evaluation metrics
of vascular wall boundary smoothness, interframe dis-
similarity, and vascular geometry measurement.

The remainder of this article is organized as follows:
Section 2 describes the proposed method in detail. Section 3
provides relevant results from clinical image experiments and
an analysis of quantitative evaluation metrics. Section 4 pro-
vides a relevant discussion of the factors that affect the
performance of this method and its limitations. Section 5
concludes the article with a summary.

2. Materials and Methods

An overview of our method is illustrated in Figure 2. Intra-
coronary image sequences are acquired by continuously
withdrawing the catheter at a constant speed during routine
cardiac catheterization. For each pullback sequence, cor-
rupted frames are manually selected and discarded prior to
subsequent analysis. The remaining images, which cover sev-
eral cardiac cycles and fully show the morphology of the
lumen, wall, and plaques of the vessel, are fed into IBG-Net.
The network finally outputs a gated subsequence.

2.1. IBG-Net Architecture. IBG-Net consists of two modules:
the underlying feature learning (UFL) module and the gating
frame extraction (GFE) module. The UFL module is used to
extract feature vectors from the input successive B-mode
images frame by frame. Its output is a feature vector library
in which the feature vectors extracted from each image are
stored. As illustrated in Figure 3, the GFE module consists of
a 3× 3 convolutional layer with 64 feature channels, four
residual blocks (ResBlocks), an average pooling (avgpool)
layer, and two fully connected (FC) layers. Each ResBlock
consists of two residual basic blocks (BasicBlocks), each of
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which contains two 3× 3 convolutional layers. Furthermore,
the third, fifth, and seventh BasicBlocks contain a 1× 1 con-
volution layer to reduce the number of feature channels to 1.
Each convolutional layer is followed by a batch normaliza-
tion layer. The FC layers project feature vectors into a 128-
dimensional space and perform L2 normalization. The first

FC layer has 512 output neurons, and the second one has 128
output neurons, outputting the 128-dimensional feature vec-
tor of the input image. The linear rectification function ReLU
is used as the activation function.

The GFM module detects the gating frames by compar-
ing the dissimilarity between feature vectors of different
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frames output by the UFL module. Specific processing details
are as follows: First, as illustrated in Figure 4, the dissimilar-
ity between the feature vectors extracted from two images
with an interval of k frames is calculated as follows:

di;iþk ¼ 1 − sim vi; viþkð Þ ¼ 1 −
viTviþk

vik k ⋅ viþkk k ; ð1Þ

where di;iþk represents the dissimilarity between frame i, Ii,
and frame i+ k, Iiþk; vi and viþk are the feature vectors
extracted from Ii and Iiþk, respectively,simðvi; viþkÞ : is the
cosine similarity between vi and viþk, the superscript “T”
represents the transpose of a vector, and k⋅jj: represents vec-
tor modulo. The average dissimilarity of two images sepa-
rated by k frames over the entire image sequence is obtained
by the following:

d kð Þ ¼ 1
N − k

∑
N−k

i¼1
di;iþk; ð2Þ

where k ranges from 0 to N− 1, and N is the total number of
frames in the input image sequence.

Then, the average heart rate, R, in beats per minute
(bpm), is estimated from the local peak of the frequency
spectrum of the average dissimilarity signal. Given that the
human heart rate is between 45 and 200 bpm, we search for
this peak in the frequency range of 45–200 bpm. The length
of the cardiac cycle in frames is subsequently obtained by
D0 ¼ 60f =R, where f is the frame rate of the image acquisi-
tion in fps.

Assuming that the first frame I1 in the input image
sequence is a gating frame, the similarity between the current
gating frame Im and a frame in the ½D0 − 1;D0 þ 1� : interval is
calculated as follows:

sm;mþr ¼ sim Im; Imþrð Þ ¼ sim vm; vmþrð Þ ¼ vmTvmþr

vmk k ⋅ vmþrk k ;

ð3Þ

where r 2 ½D0 − 1;D0 þ 1� : and sm;mþr is the similarity
between frame m, Im, and frame m+ r, Imþr . The frame with

the greatest similarity is detected as the next gating frame.
This process is repeated until all gating frames are detected.

2.2. Training Data Preparation. We trained the proposed
learning framework on clinically acquired image data sets in an
unsupervised learningmanner. Our data sets consist of IVUS and
IVOCT image sequences collected from patients prior to stent
implantation during routine cardiac catheterization. The IVUS
studies were acquired using a commercially available Jomed
Endosonic (Beringen, Switzerland) imaging system with a 2.9
F 30MHz mechanically driven catheter; its pullback speed is
0.5mm/s. The B-mode images were acquired at a frame rate
of 30 fps, with a size of 256× 256 pixels and a grayscale range
of 0–255. The IVOCT studies were acquired using a spectral
domain OCT system (C7XRTMOCT system, LightLab Imaging/
St. Jude Medical Inc., St. Paul, MN, USA) equipped with a 2.7F
C7 Dragonfly OCT catheter; its pullback speed is 20mm/s.
B-mode images were acquired at an A-line rate of 120 kHz
and a frame rate of 100 fps, with a size of 240× 240 pixels. The
images were resized to 256× 256 pixels to build the data sets.

2.3. Network Training. In IBG-Net, the UFL module must be
trained with a training set, following the steps shown in
Figure 5. First, the ith sample xi from the training set is input
into a random augmenter to generate two correlated images,
which are represented by xi;1 and xi;2, respectively, through
random rotation, random shift, random color dithering, and
random Gaussian blur. Then, xi;1 and xi;2 are input into the
twin UFL subnetwork composed of two UFL modules F1(·)
and F2(·) with shared weights to obtain the feature vectors
vi;1 and vi;2 of the two correlated images as follows:

vi;1 ¼ F1 xi;1
À Á

vi;2 ¼ F2 xi;2
À Á

(
: ð4Þ

The similarity between xi;1 and xi;2 is obtained by the
following:

sim xi;1; xi;2
À Á¼ sim vi;1; vi;2

À Á¼ vi;1Tvi;2
vi;1

  ⋅ vi;2
  : ð5Þ

The adaptive moment estimation algorithm (Adam) [32]
is used to optimize the parameters of the twin UFL subnet-
work to determine the optimal network model with the least
loss. For each batch in the training set, the loss function is
defined as follows:

Lθ ¼
1
2Q

∑
Q

i¼1
L xi;1; xi;2
À Áþ L xi;2; xi;1

À ÁÂ Ã
; ð6Þ

where θ denotes the set of all learnable parameters in the
network, Q denotes the number of samples in each batch,
Lðxi;1; xi;2Þ : is the loss between xi;1 and xi;2, and Lðxi;2; xi;1Þ : is
the loss between xi;2 and xi;1,
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FIGURE 4: Schematic diagram of computing the dissimilarity between
the feature vectors extracted from two images with an interval of
k frames.
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L xi;1; xi;2
À Á¼ −log

exp sim vi;1; vi;2
À Á

=τ
Â Ã

exp sim vi;1; vi;2
À Á

=τ
Â Ãþ ∑Q

k¼11 k≠i½ � exp sim vi;1; vk;1
À Á

=τ
Â Ãþ exp sim vi;1; vk;2

À Á
=τ

Â ÃÈ É
L xi;2; xi;1
À Á¼ −log

exp sim vi;2; vi;1
À Á

=τ
Â Ã

exp sim vi;2; vi;1
À Á

=τ
Â Ãþ ∑Q

k¼11 k≠i½ � exp sim vi;2; vk;1
À Á

=τ
Â Ãþ exp sim vi;2; vk;2

À Á
=τ

Â ÃÈ É

8>>>><
>>>>:

; ð7Þ

where τ is an adjustable parameter, and 1½k≠i� 2 f0; 1g : is an
indicator function evaluating to 1 if k ≠ i and 0 otherwise.

In addition, the network parameters are tuned through
the five-fold cross-validation to make full use of all data and
avoid the local optimal solution due to data distribution bias
caused by improper data set partitioning.

Figure 6 shows the training loss relative to the epoch,
where batch size= 16, learning rate= 0.01, and the weight
decay is 10−4. With the increase of the epoch, the loss
decreases rapidly. When the epoch is greater than 600, the
change in the loss is no longer significant. Therefore, we set
the stopping rule for training at the maximum epochs of 600.

2.4. Network Implementation. After training, IBG-Net can be
used for offline gating of intravascular image sequences.
Because the trained network can achieve end-to-end map-
ping from the original image sequence to the gated subse-
quence, the sequential images, after manually removing

corrupted frames are, directly input into the network, and
the network outputs a gated image sequence. Figure 7 shows
the flow chart of the specific implementation of the network.

3. Results

3.1. Experimental Design

3.1.1. Data Sets. We collected 36 IVUS pullbacks from
25 patients with hidden information (such as name, sex, and
age), with a total of 43,100 frames, including 13 left anterior
descending, 9 left lateral arteries, and 14 right coronary
arteries. In addition, we collect 21 IVOCT pullbacks from
14 patients with hidden information, with a total of 22,500
frames, including 9 left anterior descending, 5 left lateral
arteries, and 7 right coronary arteries. The samples in both
data sets are shuffled and are randomly partitioned into
training and test with a ratio of 8 : 2. To avoid overfitting,
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FIGURE 5: Training UFL module using a twin subnetwork composed of two UFL modules with shared weights. Two correlated images, xi,1 and
xi,2, are generated from the ith sample xi in the training set using a random data augmenter. They are inputted into the twin UFL subnetwork
to extract their feature vectors vi,1 and vi,2.
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the training sets are augmented by random rotation (clockwise
and counterclockwise, at angles up to 180°), random shift
(horizontal or vertical), and random shear, given that the object
of interest in intravascular B-mode images is the cross-section of
vessels with a quasisymmetric structure. The augmented IVUS
training set contains 49,680 samples, and the IVOCT training
set contains 32,750 samples.

3.1.2. Baseline Methods. To test the performance of the pro-
posed learning framework and demonstrate its superiority,
the state-of-the-art SBG [16] and traditional IBG [19] meth-
ods are used as the baseline. The IBG method utilizes AP
clustering to achieve the classification of signal frames, as
introduced in Section 1. For brevity, it is called the AP
method hereafter. The traditional IBG method is based on

a comprehensive search for the optimal path in the grayscale
dissimilarity matrix.

3.1.3. Evaluation Metrics. The effectiveness of gating methods
to suppress motion artifacts is evaluated from four aspects:
(1) the visual effect of the L-view of nongated and correspond-
ing image-gated image sequences, (2) quantitative measures
of vessel wall boundary smoothness, (3) the interframe dis-
similarity of image sequences before and after gating, and
(4) volume measurement of vessel segments.

To visually evaluate the improved quality of the gated image
sequence, vascular lumen boundaries are detected from L-view
slices. Specific steps are illustrated in Figure 8. In the L-view
slice, starting from the central axis of the catheter, all pixels are
traversed to the left and right, respectively. According to the
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FIGURE 7: IBG-Net implementation flow chart. Fð⋅Þ: represents the operation of the UFL module. FðIjÞ: represents the extraction of feature
vectors from the image Ij. V represents the feature vector library. V :appendðvjÞ: means adding the feature vector vj of Ij to V .M represents a
set of gating frames. M:appendðImÞ: means adding the image Im to M.
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preset threshold of intensity difference between adjacent pix-
els, it is determined whether the current pixel is a lumen
contour point. If so, the coordinates of that point are recorded
until all lumen contour points are obtained.

The curvature and standard deviation (SD) of the vessel
wall border are used as quantitative metrics to evaluate the
smoothness of the vessel wall in the L-view and the cross-
sectional view, respectively. The curvature of the vessel wall
border in the L-view is defined as follows:

κ xð Þ ¼ f 0 xð Þj j
1þ f 0 xð Þð Þ2½ �32 ; ð8Þ

where f ðxÞ: is a parametric curve representing the boundary
of the vessel wall, f 0ðxÞ : and f 0ðxÞ : are the first derivative and
the second derivative of f ðxÞ :, respectively, and κðxÞ : is the
curvature of f ðxÞ: at the point x. SD measures the dispersion
of the distance from the center of the image (i.e., the center of
the catheter) to the upper border of the vascular intima/
lumen in each B-mode image. It is defined as follows:

s¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

l1 − l
À Á

2 þ l2 − l
À Á

2 þ⋯þ lN − l
À Á

2
Â Ãr

; ð9Þ

where li (i¼ 1; 2; :::;N) is the distance (in pixels) from the
center of the image to the upper border of the vascular lumen
in the ith frame, as shown in Figure 9; and l is the average of
li over the entire image sequence.

Average interframe dissimilarity (AIFD) [20] and gating
frame number difference (GFND) [4, 20] are two metrics
commonly used to measure the performance of gating meth-
ods. AIFD is calculated as the average of the dissimilarity
between two frames in a pullback sequence consisting of
N frames as follows:

d ¼ 1
N2 ∑

N

i¼1
∑
N

j¼1
di;j; ð10Þ

where di;j is the dissimilarity between frame i and frame j,
calculated from Equation (1). GFND is the absolute value of
the difference between the theoretical gating frame number
Ng and the actual gating frame number Na as follows:

ΔN ¼ Ng − Na

�� ��; ð11Þ

where Ng ¼N0=D0;N0 is the total number of frames con-
tained in the nongated image sequence, and D0 denotes the
cardiac cycle length in frames.

Left RightStart

FIGURE 8: Schematic diagram of detecting lumen borders in an L-view slice. All pixels in an L-view slice are traversed starting from the
catheter axis until all border points are determined based on the preset intensity threshold.

ðaÞ ðbÞ
FIGURE 9: Distance from the catheter center to the upper border of the vascular lumen in an IVUS image (a) and an IVOCT image (b).

8 IET Signal Processing



3.1.4. Implementation Details. In our experiments, we imple-
mented the baseline approaches and built, trained, and tested
IBG-Net using a Tesla P100-PCIE-16GB 1.3285GHz GPU
from NVIDIA, an Intel Core i7-12700H CPU, and 16GB of
video memory. The operating system is Ubuntu1 8.04, the
software environment is Python 3.8 for the programing
language, and the deep learning framework is Pytorch 1.7.

3.2. Results of IBG-Net Gating. Figure 10 shows heatmaps of
the image features extracted from clinically collected IVOCT
and IVUS images using trained IBG-Net. It can be seen that the
extracted features are concentrated around the vascular lumen
and wall. Figure 11 shows the average dissimilarity signals and
their amplitude spectra, where the average dissimilarity plots
exhibit approximate periodicity, with local minima within
each cycle corresponding to roughly equally spaced frame
intervals, associated with periodic cardiac movements. The
amplitude spectra exhibit an obvious peak in the frequency
range of 45–200 bpm, corresponding to an average heart rate
of about 87 and 78 bpm, respectively. Given that IVUS and
IVOCT images are captured at frame rates of 30–100 fps,
respectively, the approximate length of the cardiac cycle is
21 frames and 77 frames, respectively. Figure 12 shows the
L-view of the nongated and corresponding image-gated
IVUS/OCT image sequences, as well as the 3D appearance
of the vessel segments shown in the pullback sequences.
Apparently, the vessel walls in the nongated image sequences
have a sawtooth appearance, whereas, in the IBG-Net-gated
image sequences, the vessel walls become visually smooth. This
improvement is even more obvious in 3D views.

Figure 13 shows the results of the quantitative evaluation
of the vessel wall smoothness. It can be seen from Figure 13

that after gating, the curvature and its variation along the
boundary of the vessel wall decrease significantly, indicating
that the continuity and smoothness of the vessel wall are
significantly improved. Table 1 provides the quantitative
results of AIFD, GFND, and SD for the image sequences
before and after gating. Obviously, the GFND of IBG-Net-
gated sequences is less than 2, and compared to nongated
sequences, the AIFD and SD are significantly reduced. These
results suggest that IBG-Net can effectively suppress motion
artifacts associated with cardiac cycles.

3.3. Results of the Comparison Experiment. Figure 14 shows
the AIFD and SD metrics of gated image sequences obtained
using IBG-Net and baseline methods, respectively. Both the
AIFD and SD of the IBG-Net-gated sequences are signifi-
cantly lower than those obtained using the traditional IBG
method and slightly lower than those obtained using the AP
method, indicating the effectiveness of IBG-Net in reducing
motion artifacts.

To quantitatively demonstrate that the proposed method
can quantify the volume change of vessel segments more
accurately than existing methods, the volume of vessel seg-
ments in gated image sequences obtained using ECG gating,
IBG-Net, AP, and IBG, respectively, is recorded in Table 2.
Figure 15 shows the difference in vessel volumes between
different methods using ECG gating as the gold standard.
It can be seen that the volume obtained by IBG-Net is closest
to that obtained by ECG gating, followed by AP, and the
difference between the results obtained by IBG and ECG
gating is the largest.

In addition, to evaluate the implementation efficiency
of the methods, the analysis time of the three methods is

IVOCT image

IVUS image

A
ct

iv
at

io
n 

va
lu

e

1

0.8

0.6

0.4

0.2

0

A
ct

iv
at

io
n 

va
lu

e

1

0.8

0.6

0.4

0.2

0

IVOCT feature heatmap

IVUS  feature heatmap

FIGURE 10: Pseudo-color-coded feature heatmaps of IVOCT and IVUS images obtained using IBG-Net, showing that the extracted features
are concentrated around the vascular lumen and walls.
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FIGURE 11: Average dissimilarity plots and their amplitude spectra for (a) an IVOCT and (b) an IVUS image sequence. In the amplitude
spectra, two red dotted lines show the search range for the average heart rate, which is 45–200 bpm. The red dots marked with coordinates
indicate the strong local peaks found within this range, whose horizontal coordinate is the estimated average heart rate. That is, the average
heart rates estimated from the IVOCT and IVUS image sequences are 78 and 87, respectively.
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FIGURE 12: Examples of nongated image sequences and their gated results using IBG-Net. (a) L-view of IVOCT pullback sequences; (b) L-view
of IVUS pullback sequences; (c) 3D appearances of the vessel segments shown in the pullback sequences before and after gating. In subparts
(a) and (b), panels A and B show the L-view of the nongated and gated image sequences, respectively. Panels D and E display the L-view of the
nongated and gated image sequences with detected lumen boundaries. Panels C and F show the gated image sequences after stretching
without and with lumen boundaries. Before gating, the vessel walls have a sawtooth appearance, while after gating, the vessel walls become
visually smooth. This conclusion can be easily drawn from the 3D appearance of the vascular segments.
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recorded in Table 3, where the time of IBG-Net does not
include training time. The IBG method needs to preprocess
each frame in the image sequence and design the filter. The
AP method needs to reconstruct the image frame by frame
after selecting the gating signal frames. IBG-Net can directly
obtain gated image sequences in an end-to-end manner,
which saves running time and improves processing efficiency.

3.4. Influence of Stenting. Stent implantation is an interven-
tional treatment for CAD, which can effectively improve the
blood supply of narrowed arteries. The commonly used car-
diac stents in clinical practice are typically bendable metal
meshes used to expand and remodel stenotic vascular lumens.
Figure 16 shows an IVUS image and an IVOCT image
captured from post-stent subjects, as well as an L-view of the
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FIGURE 13: Curvature of vessel wall borders in L-view slices of nongated and gated (a) IVOCT and (b) IVUS image sequences. Compared to
the nongated sequences, the curvature of the vessel wall borders and its variation in the gated sequences are significantly reduced, indicating
that the continuity and smoothness of the vessel wall are significantly improved.

TABLE 1: Evaluation metrics for IBG-Net gating results.

Image seq. Seq. length (frames) GFND
AIFD SD

Nongated Gated Nongated Gated

IVUS
I 600 0 0.8711 0.5315 3.5396 1.4872
II 600 0 0.8958 0.6834 5.4994 2.9542
III 600 0 0.8881 0.7001 3.6035 1.5305
IV 300 1 0.7503 0.3463 3.8102 1.5691
V 300 0 0.8276 0.4669 5.7188 2.7946
VI 300 1 0.8022 0.5945 3.7991 1.6564

IVOCT
I 1,200 1 0.7442 0.5048 5.7946 4.6842
II 1,200 1 0.7256 0.4951 5.3243 4.2753
III 1,200 0 0.7935 0.5305 5.9846 4.8246
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two image sequences in which sawtooth-shaped vessel walls
can be observed. Figure 17 shows the average dissimilarity
signals obtained by IBG-Net and the traditional IBG method
based on changes in image intensity [19], respectively, and the

lumen centroid offset signals obtained by the method based on
changes in vascular morphology [20]. It can be seen from
Figure 17 that neither the average dissimilarity signal nor the
lumen centroid offset signal presents obvious periodicity.
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FIGURE 14: (a) The average interframe dissimilarity and (b) standard deviation of vessel wall boundaries in the nongated image sequences and
the gated image sequences using different methods. The bold numbers showed the best performance among the comparison methods.
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Their magnitude spectra have multiple peaks with lower
amplitudes within the frequency range of 45–200bpm, making
it impossible to determine the average heart rate. This is
because IBG-Net, vessel morphology-based methods, and
pixel intensity-based methods all detect gating frames based
on the periodic changes in vascular cross-sectional features.
However, there is a certain elasticity gap between the metal
mesh and the arterial wall. The impact of cardiac motion on
metal stents is not as significant as on arterial walls. Therefore,
the temporal variation of cross-sectional features of arterial
vessels in sequential intravascular images cannot accurately
reflect periodic cardiac dynamics. In this case, none of these
three methods can accurately detect gating frames. One possible
solution is to suppressmotion artifacts directly through image

registration without discarding any frames, despite being
computationally intensive.

4. Discussion

4.1. Clinical Significance. Motion artifacts exist in in vivo
intracoronary image sequences collected by continuously
withdrawing the catheter, which are caused by the elasticity
of the vessel wall, cardiac and respiratory motion, and rapid
movement of the catheter within the lumen. Respiratory
motion can be suppressed by acquiring images while the
patient holds his breath. Given the rhythmic and continuous
nature of cardiac motion, gating techniques are usually used
to synchronize image acquisition with the cardiac cycle.

TABLE 2: Measurements of vessel volume in cubic millimeter (mm3) obtained by IBG-Net and baseline methods.

Image seq. Seq. length (frames) ECG-gated IBG-Net AP IBG

IVUS
I 600 246.962 251.842 239.764 260.568
II 600 258.365 254.567 265.412 272.482
III 600 289.227 284.759 282.116 269.996
IV 300 101.736 96.473 92.848 115.562
V 300 131.880 125.664 122.454 142.766
VI 300 124.436 128.564 118.775 142.968

IVOCT
I 1,200 512.068 517.112 519.654 498.308
II 1,200 536.794 532.722 543.615 551.779
III 1,200 528.982 533.226 538.046 549.751

200
IVUS I
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FIGURE 15: Comparison of vessel volumes between IBG-Net and baseline methods.

TABLE 3: Analysis time of IBG-Net and baseline methods.

Image seq. Seq. length (frames)
IBG-Net AP IBG

Number of gating
frames

Analysis
time (s)

Number of gating
frames

Analysis
time (s)

Number of gating
frames

Analysis
time (s)

IVUS I 600 29 15.31 30 91.3 27 156.2
IVUS II 600 20 15.19 20 90.6 21 155.1
IVUS III 600 25 15.26 25 91.7 26 156.4
IVOCT 1,200 14 8.29 15 51.1 17 87.1

IET Signal Processing 15



H
or

iz
on

ta
l c

ut
V

er
tic

al
 cu

t

Struts

H
or

iz
on

ta
l c

ut
V

er
tic

al
 cu

t

Struts

FIGURE 16: Coronary arterial IVOCT and IVUS image sequences captured from subjects after stent implantation. In the B-mode images, the
stent struts are clearly visible. In the L-view slices, the sawtooth artifacts can be observed.
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Furthermore, in the interpretation of L-views, analysis of
images obtained at the same cardiac phase gives a more accu-
rate quantification of the volume changes of vessel segments
with plaque load than using a complete nongated pullback
sequence [33]. Online ECG gating requires a dedicated trigger
acquisition device. It takes approximately seven times the
acquisition time of continuous pullback, which limits its
application in vivo. Although offline ECG gating does not
extend the image acquisition time, complete synchronization
between interventional image acquisition and ECG recording
cannot be guaranteed. Determining optimal sampling points
is also a difficult task. This technique cannot be used for image
sequences without ECG recordings.

The method proposed in this article overcomes these
limitations and realizes end-to-end fast retrospective soft-
ware gating. It can significantly suppress motion artifacts
and facilitate integration with subsequent procedures, such
as 3D vessel reconstruction and quantitative measurement
of morphological parameters, which are of importance for
clinical applications.

4.2. Necessity of Unsupervised Learning. The purpose of IBG
is to detect frames acquired in the same phase of each cardiac
cycle based on periodic changes in cross-sectional image fea-
tures. As introduced in Section 1, traditional nonlearning
approaches typically employ morphological feature-based or
intensity feature-based strategies. The former involves extract-
ing the contours of the vascular lumen or wall in each image,
calculating the centroid of the lumen, analyzing the changes in
lumen shape, extracting and filtering the gating signal, and
detecting the cardiac phase. The latter involves traversing all
pixels in each cross-sectional image, constructing an intensity
dissimilarity matrix or analyzing local changes in pixel inten-
sity, searching for the optimal path in the dissimilarity matrix
or analyzing the signal reflecting the pixel intensity changes,
and detecting the local extremes of the signal. Performing these
steps separately in sequence is time-consuming, and errors
from each step may accumulate to the next step, affecting
the accuracy of the gating results.

This study aims to construct a convolutional neural net-
work to achieve end-to-end mapping from a continuous
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FIGURE 17: Average dissimilarity plots and magnitude spectra of image sequences acquired from poststent subjects: (a) average dissimilarity
plots and amplitude spectra obtained using IBG-Net; (b) average dissimilarity plots and amplitude spectra obtained based on changes in
image intensity feature changes; (c) lumen centroid offset plots and magnitude spectra. Obviously, there is no significant periodicity in the
average dissimilarity plots and the lumen centroid offset plot. Their amplitude spectra have multiple peaks with lower amplitudes within the
frequency range of 45–200 bpm, marked by two red dotted lines, making it impossible to determine the average heart rate.
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pullback sequence to a gated subsequence. Compared with
traditional methods, it avoids the accumulation of errors in
each step and shortens the overall analysis time. The network
is trained in an unsupervised manner using clinical in vivo
data sets, where the network can improve the accuracy of
feature extraction by learning prior knowledge of image fea-
tures, thereby improving the gating accuracy. Unlike super-
vised training, there is no need for gold standard data such as
ECG-defined ones, thus reducing the difficulty of construct-
ing a data set and avoiding synchronous challenges and sus-
ceptibility to arrhythmias in ECG gating.

4.3. Limitations and Future Work. A common limitation of
gating techniques is the retention of only one frame per
cardiac cycle, which may result in the loss of some clinically
valuable information. Single-phase-gated image sequences
cannot be used for hemodynamic assessment, vessel elastic-
ity analysis, or biomechanical characterization, which typi-
cally require the use of complete pullback data. Additionally,
as described in Section 3.3, the proposed method can only
achieve satisfactory gating results for image sequences acquired
from subjects without stent implantation. However, in the
image sequences collected from poststent subjects, vascular
features do not change significantly enough between succes-
sive frames for effective gating. In future work, we plan to
develop a deep learning framework to estimate the motion
field between successive frames, based on which images are
elastically registered, to achieve direct suppression of motion
artifacts.

5. Conclusions

This work proposes an unsupervised deep learning frame-
work for retrospective gating of continuous pullback intra-
coronary image sequences. The constructed neural network
extracts feature vectors from each cross-sectional image and
obtains the signal associated with the cardiac cycle by ana-
lyzing changes in the feature vectors between successive
frames. The network was trained and tested using clinically
acquired IVUS and IVOCT image sequences. The results
show that the visual effect of the L-view slices of the gated
image sequence is significantly improved. Quantitative eval-
uation metrics based on AIFD, GFND, vessel wall boundary
curvature, and SD, and vessel volume are also significantly
improved. Furthermore, the proposed method is superior to
the traditional SBG and IBG methods in terms of accuracy
and processing time. It does not require any image prepro-
cessing procedures such as segmentation or contour extrac-
tion. The results verify the feasibility of using deep learning
to perform retrospective gating.
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