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In a cognitive satellite network (CSN) with GEO and LEO satellites, there is a large propagation losses between the sensing satellite
and the ground station. The results of spectrum sensing from a single satellite may be inaccurate, which will create serious
interference in the primary satellite system. Cooperative spectrum sensing (CSS) has become the key technology for solving the
above problems in recent years. However, most of the current CSS techniques are model-driven. They are difficult to model and
implement in CSNs since their detection performance is strongly dependent on an assumed statistical model. Thus, we propose a
novel CSS scheme, which uses convolutional neural networks (CNNs), self-attention (SA) modules, long short-term memory
networks (LSTMs), and soft fusion networks, called CSL-SFNet. This scheme combines the advantages of CNNs, SA modules, and
LSTMs to extract the features of the input signals from the spatial and temporal domains. Additionally, the CSL-SFNet makes use
of a novel soft fusion technique that improves detection performance while also considerably reducing communication overhead.
The simulation results demonstrate that the proposed algorithm can achieve a detection probability of 90% when the signal-to-
noise ratio is −20 dB; it has a shorter running time and always outperforms the other CSS algorithms.

1. Introduction

Currently, air-space-terrestrial-sea integrated networks have
become a hot research topic for B5G and 6G [1]. To achieve
global coverage with low time delays, the Cubesat-based LEO
mega satellite constellation, i.e., a satellite system consisting
of multiple orbital planes and hundreds of small satellites,
has become an important candidate technology.

However, with LEO mega satellite constellations becoming
increasingly operational, the available spectrum resources are
more crowded. To improve spectrum utilization, cognitive sat-
ellite networks (CSNs) with GEO and LEO satellites [2] have
become important candidate technologies. In the CSN, LEO
satellites are permitted to access the authorized spectrum of the
GEO satellites through spectrum sensing technology, which
can effectively increase the utilization efficiency of the autho-
rized spectrum. According toWang et al. [3], the GEOmust be
safeguarded, and the LEO’s interference with the GEOmust be
kept to a minimum. Nevertheless, due to the large propagation

delay and the fadings between the sensing satellites and the
ground station [4], the spectrum sensing results of one sensing
satellite may be unreliable, causing other LEO satellites to
incorrectly access the authorized bands of the GEO satellites
and interfere with them. Fortunately, the probability of these
false sensations can be decreased by combining the sensing
results from multiple space-separate LEO satellites that sense
the same spectrum band, i.e., cooperative spectrum sensing
(CSS) [5]. Fundamentally, CSS takes advantage of spatial sepa-
ration diversity, which greatly reduces the likelihood of multi-
ple channels deep fading at the same time [6]. Therefore, in
recent years, the CSS has received an increasing amount of
attention in satellite communication scenarios [7]. In CSS,
the fusion center (FC) is used to make the final decision on
spectrum availability. The decision-making process primarily
involves either soft combining or hard combining [8]. In soft
combining, each sensing satellite directly sends the local sens-
ing data to the FC, which provides the best detection perfor-
mance but at the cost of reporting link overhead [9]. The most
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important motivation for cognitive networks is to improve
spectrum efficiency, so it is disadvantageous for cognitive net-
works to produce a large communication overhead in the
reporting link [10]. Hard combining drastically reduces com-
munication overhead by allowing each sensing satellite tomake
a local decision first and then send the decision information to
the FC for the final decision. Nonetheless, this method cannot
make full use of the features of the local sensing data, whichwill
lead to a loss of features and a reduction of the detection
performance [5].

Traditionally, most research on CSS has focused on
model-driven methods. Their detection performance relies
heavily on predefined statistical models, which makes them
more difficult to model and deploy in real environments
[11]. Popular detection algorithms include energy detection
(ED), matched filter detection, cyclic smooth detection, and
eigenvalue detection. Among them, matched filter and cyclic
smooth detection both require a priori knowledge of the pri-
mary user (PU) signals, which is difficult to obtain in practice
[12]. Although eigenvalue detection does not require corre-
sponding a priori knowledge, it is difficult to deploy due to its
high computational complexity [13]. ED is simple and easy to
deploy. However, its detection ability rapidly degrades or even
fails to work when the signal-to-noise ratio (SNR) drops
below its lower detection limit [14]. Besides, based on the
energy observations of all secondary users (SUs), Taherpour
et al. [15] proposed an asymptotically optimum detection
algorithm. The simulation results show that the algorithm
outperforms the OR detector in Rayleigh fading and shadow-
ing environments, and it also performs almost as well as the
optimum detector. However, the algorithm also requires the
estimations of unknown parameters in the detector structure.

Recently, with the rapid development of data-driven sig-
nal processing techniques, machine learning (ML) and deep
learning (DL) techniques have attracted extensive attention
from industry and academia in the context of future wireless
communication [12, 16]. Applying ML/DL to CSS can make
the spectrum sensing process of each sensing satellite more
adaptable to changes in the channel environment since it
does not require any prior knowledge of the new environ-
ment. Additionally, the main advantage of CSN is its cogni-
tive capability, i.e., the self-learning capability in the radio
environment, which is analogous to the ML/DL model.
Therefore, the ML/DL model is widely used in cognitive net-
works [17]. Applying ML/DL to CSS can make the spectrum
sensing process of each sensing satellite more adaptable to
changes in the channel environment since it does not require
any prior knowledge of the new environment. Ahmadfard
et al. [18] proposed a probabilistic spectrum sensing data
falsification (SSDF) attack against a soft-judgment spectrum
sensing model. In this attack, the attacker is able to perform
parameter configuration adaptively. Simulation results dem-
onstrate the effectiveness of the proposed attack strategy. For
the SSDF attacks scenario, Parhizgar et al. [19] proposed a
scheme based on clustering the SUs to counter SSDF attacks.
By using ML algorithms to classify each of the clusters as
reliable or unreliable, the simulation results showed that
support vector machine (SVM) and artificial neural network

(ANN) outperformed other ML classification algorithms and
showed good detection performance. Ghaznavi and Jamshidi
[20] proposed a method based on clustering the SUs and
estimating some unknown parameters of their received power
to solve the problem of SSDF attack, which is based on the
clustering algorithm in classical ML, has low computational
complexity and shows good detection performance in detect-
ing malicious users. Similarly, Ghaznavi and Jamshidi [21]
proposed a reliable method based on clustering the cooperat-
ing sensors, which significantly improves the performance of
cognitive radio networks with attackers. Paul et al. [22] pro-
posed a CSS model based on deep Q-learning, which outper-
forms the widely popular SVM-based classification methods
and traditional CSS methods under SSDF attacks. Yang and
Tong [23] proposed a spectrum sensing algorithm using an
SVM-optimized RBF neural network, and the results show
that the detection performance of spectrum sensing can be
further improved by an ML-optimized RBF neural network
algorithm, which opens up a new direction for the application
of ML and neural network. In [24], a federated learning (FL)
algorithm is proposed to distribute the data collection and
model training process over many devices. The results show
that the detection accuracy of the FL algorithm is similar to
that of detection using convolutional neural networks
(CNNs), achieving the goal of simplifying the spectrum sens-
ing process in the network. In [25], anML-based CSS method
was proposed. Although it achieved good sensing perfor-
mance, it also greatly affected its robustness when the noise
power was too large. In [26], ANN is used for spectrum sens-
ing. However, ANN was prone to overfitting, which will
directly affect the sensing results of the test data. In addition,
Shachi et al. [8] proposed a spatiotemporal system model of a
CSS scenario for which a CNN is trained to classify the PU
states to achieve spectrum sensing. Compared with traditional
methods, this scheme achieves a higher detection probability.
Nevertheless, the algorithm sends the local training samples
directly to FC, resulting in a significant communication over-
head and a decline in the efficiency of training and testing.

However, as far as we know, there are very few studies on
applying ML/DL to the spectrum sensing problem in CSNs.
Ding et al. [27] proposed a satellite-based spectrum predic-
tion system that constructs a joint long short-term memory
network (LSTM)-autoregressive moving average (ARMA)-
assisted spectrum prediction scheme by combining LSTMs
and ARMA models. This scheme effectively reduces predic-
tion errors and enables advanced prediction of future spec-
trum occupancy. In [16], a spectrum sensing method
utilizing temporal convolutional networks (TCN) is intro-
duced for CSNs. This method employs TCN to extract the
time domain characteristics of the received signal in order to
ascertain whether the PU exists. For a CSN with low SNR,
Ding et al. [28] proposed a spectrum sensing scheme that
combines CNNs and LSTMs, demonstrating good sensing
capability. Nevertheless, these studies have only considered
the spectrum sensing of individual sensing nodes and have
not taken into account the fading effects on satellite-to-
ground links. In this paper, we explore a novel DL-based
CSS scheme in a CSN consisting of GEO and LEO satellites.
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In Figure 1, the GEO relay satellite for full-climate and full-
time tracking, telemetry, and command systems is used as
the PU, and LEO satellites are used as SUs to share the
spectrum with the PU. Between the satellite-ground link of
this CSN, similar to [29], the fading model we consider
mainly includes free-space transmission loss, cloud attenua-
tion, and atmospheric absorption. The main research con-
tributions of this paper are summarized as follows:

(1) First, in the proposed CSN, we analyze the effects of
the antenna direction of the GEO earth station on the
SNR over Ka-band satellite-ground links.

(2) Second, in the proposed CSN, we propose a novel
CSS model, which uses CNNs, self-attention (SA)
modules, LSTMs, and soft fusion networks, called
CSL-SFNet. This model uses a compromise between
soft combining and hard combining in the FC, i.e.,
each SU satellite sends only local sensing soft features
(SSFs) to the FC. This approach fully utilizes the

feature information contained in the PU signals while
simultaneously lowering the communication over-
head. The CSL-SFNet consists of CSLNet deployed
on LEO satellites, and Soft-FusionNet deployed on
GEO satellites. The CSLNet consists of the CNN,
the SA module, and the LSTM, which can extract
the complex features of the PU signals from the spatial
and temporal domains. In addition, Soft-FusionNet is
mainly composed of three dense layers, which are
used to aggregate SSFs from all the SUs and make
the final decision. The simulation results demonstrate
that the proposed algorithm can obtain a detection
probability (Pd) of 90% when the SNR is −20 dB
with less running time and always outperforms the
other CSS algorithms.

(3) Finally, we must maintain a constant false alarm
probability (Pf ) in order to comply with the IEEE
802.22 standard’s transmission requirement [30].
Therefore, to maximize Pd at a given Pf , inspired by
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FIGURE 1: Cooperative spectrum sensing model for the proposed CSN.
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the Neyman–Pearson criterion, this paper designs a
threshold-based detectionmechanism at the output of
Soft-FusionNet, which can conveniently control Pf .

The remainder of this paper is organized as follows: In
Section 2, the CSN systemmodel is described. In Section 3, the
proposed CSS network model framework is introduced. To
evaluate the proposed algorithms, Section 4 presents the sim-
ulation results. Finally, Section 5 makes a few conclusions.

2. System Model and Problem Formulation

2.1. System Model. In the CSN shown in Figure 1, the GEO
relay satellite working in the Ka-band is the PU, which is
considered an FC because of its wide coverage and relatively
static characteristics with the ground station, and the Soft-
FusionNet is deployed on the PU. In addition, LEO satellites
with an orbital altitude of 550 km are SUs, and CSLNet is
deployed on each SU. The PU satellite beam coverage
includes both multiple GEO earth stations (GESs) and
LEO earth stations. The antenna beam of the SU satellite
overlaps with that of the PU satellite. The PU satellite will
suffer serious interference if the SU satellites access the same
frequency range. Additionally, in this CSN, the PU satellite
sends data to the GES in the downlink. In the uplink, the GES
sends commands to the PU satellite. We assume that the
spectrum data from the PU satellite or GES can be received
by the SU satellites within the beam coverage of the PU
satellite. For convenience, we focus on the uplink scenario
where the GES communicates with a single PU satellite.
During sensing, the SU satellites at different locations receive
data from the GESs, and CSLNet extracts SSFs from the data
first. Second, each SU satellite sends the local SSFs to the FC
through the reporting link (i.e., the channel used when the
SU communicates with the FC). Then, the FC combines all
the SSFs and sends them to Soft-FusionNet to make the final
decision. Finally, the FC broadcasts the sensing results to all
the SUs. Thus, the CSS problem can be described as a binary
hypothesis testing problem, and the signal samples received
by the SU satellites can be written as follows [29]:

x nð Þ ¼
w nð Þ; H0ffiffiffiffiffiffiffiffi

Pt
ges

q ffiffiffiffiffiffiffiffiffiffiffiffi
hges;leo

p
s nð Þ þ w nð Þ; H1

8<: ; ð1Þ

where

hges;leo¼
Pr
leo

Pt
ges

¼ Gt
ges βð ÞGr

leo;max

⋅
c

4πfdges;leo αð Þ

 !
2

10−
AcþAg

10 ;
ð2Þ

with H0 and H1 denoting the hypotheses that a PU is present
and absent, respectively. xðnÞ : 2CN×1 denotes the signal sam-
ples received by the SU, and sðnÞ : 2CN×1 is the signal sample
sent by the GES. wðnÞ : 2CN×1 represents the noise vector,
which is assumed to follow a circularly symmetric complex

Gaussian distribution with zero mean and variance σ2w. Pr
leo and

Pt
ges denote the received power of the SU and the transmitted

power of the GES, respectively. α stands for the elevation angle
between the SU satellite andGES. dges;leoðαÞ : is the distance of the
GES to the SU, which is mainly affected by α. c and f represent
the velocity of the light and the working carrier frequency,
respectively. Ag and Ac represent the propagation factors of the
atmospheric absorption and the cloud attenuation in the uplink,
respectively [29]. Furthermore, Gr

leo;max is the max gain of the
receive antenna of the SU satellites, which is constant because the
receive antenna continuously tracks the GES. β is the off-axis
angle of the GES in the direction of the SU satellites. Gt

gesðβÞ :

stands for the gain of the GES transmit antenna in the direction
of the SU, which is mainly affected by the β. The antenna gain is
expressed by the following [3]:

Gt
ges βð Þ ¼ Gt

ges;max
J1 μð Þ
2μ

þ 36
J3 μð Þ
μ3

� �
2
; ð3Þ

where

μ¼ 2:07123
sin βð Þ

sin β3dBð Þ ; ð4Þ

with J1ð⋅Þ : and J3ð⋅Þ : are the first- and third-order Bessel func-
tions, respectively. β3dB is the angle that corresponds to the 3dB
beamwidth. Gt

ges;max is the maximum gain of the GES transmit
antenna when β¼ 0°, and its expression is as follows:

Gt
ges;max ¼ η

4πA
c=fð Þ2 ; ð5Þ

where η stands for the antenna efficiency and A is the
antenna area. In addition, it can be proven by geometric
relations that β is also a function of α. The dotted line in
Figure 2 presents the variation in the antenna gain Gt

gesðαÞ :
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FIGURE 2: Influence of elevation angle α on SNR and antenna gain.
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with α. The setting of simulation parameters is shown in
Table 1.

Then, the SNR of the received signals can be expressed as
follows [29]:

SNR ¼ Pt
gesGt

ges αð ÞGr
leo;max

kTleoB

⋅
c

4πfdges;leo αð Þ

 !
2

10−
AgþAc

10 ;
ð6Þ

where k stands for Boltzmann’s constant. B and Tleo denote
the bandwidth and noise temperature of the receiver at the
SU satellites, respectively. Figure 1 shows that dges;leoðαÞ : fol-
lows the law of first decreasing and then increasing when the
sensing LEO satellite travels along its orbit at high speed.
dges;leoðαÞ : can be expressed as follows:

dges;leo αð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
esin αþ 2HleoRe þ H2

leo

p
− Resin α; ð7Þ

where Re denotes the radius of the Earth and Hleo is the
altitude of the LEO. Apparently, the SNR is mainly influ-
enced by Gt

gesðαÞ : and dges;leoðαÞ : when f is constant. The solid
line in Figure 2 shows that the SNR of the received signals is
greatly affected by the position of the SU satellites, and it can
be seen that the fluctuation of SNR reaches 60 dB. Therefore,
the sensing results of the SU satellites far away from the GES

are likely to be unreliable. To improve the overall sensing
performance, a robust CSS scheme using CSL-SFNet is
designed in this paper and will be described in detail later.

3. CSL-SFNet for CSS

3.1. CSL-SFNet. Figure 3 shows the network architecture of
the proposed CSL-SFNet for CSS, which consists of two
parts. The first part, called CSLNet, is deployed on each SU
satellite to obtain the SSFs from the input data. We first use a
CNN to extract features from the input signals. Since the
gradient of the traditional stacked CNNmodel will disappear
as the network depth increases, we introduce the residual
module, which can successfully address the problem of gra-
dient disappearance by fuzing the input with the output
features of the convolution layer. Additionally, LSTM is
used to extract the deeper time-dependent features from
the high-dimensional abstract features output by the residual
module. The main goal of the SA module [31] is to focus on
specific regions with strong dependencies in the output fea-
tures of the residual module, which can significantly increase
how efficiently crucial feature information is extracted. The
second part of the architecture, called Soft-FusionNet, is
deployed on a PU satellite to make the final decisions; it
consists of three dense layers with 128, 32, and 2 neurons.
The specific parameter settings of the proposed CSS archi-
tecture are shown in Table 2.

TABLE 1: Description of the system model parameters.

Parameter Symbol Value

Training set size (per SNR) — 1,000
Test set size (per SNR) — 100
Batch size — 512
Dropout rate — 0.1
Learning rate — 0.0001
Optimizer — Adam
Modulation scheme — 16QAM
SNR range — −20 to 0 dB
Sample length N 512
Transmit power of GES Pt

ges 40 dBm
Noise temperature of SU Tleo 175K
Carrier frequency f 29.9GHz
Bandwidth B 24MHz
Atmospheric absorption factor Ag 0.75 dB
Cloud attenuation factor Ac 1.25 dB
Antenna diameter of SU Dleo 0.3m
Antenna diameter of GES Dges 0.3m
Antenna efficiency η 55%
Probability of detection/false alarm Pd=Pf —

Optimal model parameter of CSLNet Θ∗
—

Optimal model parameter of Soft-FusionNet Φ∗
—

Maximum gain of the GES’s transmit antenna Gt
ges;max —

Maximum gain of the SU’s receive antenna Gr
leo;max —

Noise uncertaint factor ε —

IET Signal Processing 5



3.2. Data Preprocessing. For the proposed CSLNet, which is
only suitable for noncomplex numbers, we partition the
input samples into real and imaginary parts. Thus, the input
samples can be written as follows:

xm ¼ re xm 0ð Þð Þ; im xm 0ð Þð Þ½ �; re xm 1ð Þð Þ; im xm 1ð Þð Þ½ �;f
… re xm Nð Þð Þ; im xm Nð Þð Þ½ � g;m¼ 1; 2;…M;

ð8Þ

where reð⋅Þ: and imð⋅Þ : represent the real part and the imagi-
nary part, respectively. N andM denote the length and num-
ber of samples, respectively. The received samples need to be
labeled in the offline training stage, and the labeled samples
can be represented as follows:

X ¼ x1; y1ð Þ; x2; y2ð Þ;⋯ xM; yMð Þf g m¼ 1; 2;⋯;Mð Þ;
ð9Þ

where ðxm; ymÞ : stands for the mth sample of the training set
X. ym 2f0; 1g: represents the label of xm. ym ¼ 1 and ym ¼ 0
denote the hypotheses of H1 and H0 in Equation (1), respec-
tively. Since CSS is a binary hypothesis test problem, training
CSLNet can be considered a binary classification problem.
Therefore, we can encode the label ym as a one-hot vector,

Conv 1 Residual
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Residual
block 2

LSTM Dense

SSFs

CSLNet architecture

Self-attention block
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Conv (64, 1 × 2)

Conv (32, 1 × 2)
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CSS architecture

Fusion center
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Global decision
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32
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……
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FIGURE 3: The architecture of cooperative spectrum sensing in cognitive satellite network based on CSLNet. The architecture consists of two
subnetwork models. The front subnetwork is SCLNet, which is used to extract the sensing soft features (SSFs) of the data from each SU
satellite and sends the SSFs to the PU satellite for feature fusion. The rear subnetwork is Soft-FusionNet, which is responsible for fuzing the
SSFs from various SU satellites and outputs the final spectrum sensing results.

TABLE 2: Configuration of the CSL-SFNet model.

Hyper-parameter Layer name

CNN (activation function: ReLu)
64× (1 × 2) Conv1
(1 × 2) Maxpool1
64× (1 × 2) Residual block 1: Conv 2, 3
64× (1 × 2) Residual block 2: Conv 4, 5
64× (1 × 2) Value: Conv 6
32× (1 × 2) Key and query: Conv 7, 8

LSTM (activation function: ReLu) —

Number of hidden units: 64 LSTM1
Dense (activation function: Softmax)

Neurons number: 32, 2 Dense 1, 2
Neurons number: 128, 32, 2 Soft-FusionNet: Dense 3, 4, 5
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ym ¼ 1; 0½ �T ;H1

0; 1½ �T ;H0

(
; ð10Þ

to indicate the state of the PU.

3.3. Offline Training. For the proposed CSS model, the offline
training is divided into two stages. The first stage is that each
SU trains the CSLNet through the labeled training samples
offline. For convenience, we define a clear physical meaning
for the network output that is normalized by the softmax
function, i.e.,

pkΘ xmð Þ ¼
pkΘ∣H1

xmð Þ
pkΘ∣H0

xmð Þ

" #
; ð11Þ

with

pkΘ∣H1
xmð Þ þ pkΘ∣H0

xmð Þ ¼ 1; ð12Þ

where Θ stands for the trained weights of CSLNet, and pkΘð⋅Þ :

denotes the entire CSLNet deployed on the kth SU satellite.
pkΘ∣Hi

ðxmÞ : represents the class score of Hi output by CSLNet.
Besides, a generic objective function is defined for each SU in
the training stage by using the maximum-likelihood crite-
rion, i.e.,

Lk Θð Þ ¼ ∏
M

m¼1
pkΘ∣H1

xmð Þ
� �

ym pkΘ∣H0
xmð Þ

� �
1−ym : ð13Þ

According to the objective function (Equation (13)), we can
define a cross-entropy cost function for CSLNet training, i.e.,

Lossk Θð Þ ¼ −
1
M

∑
M

m¼1
ym log pkΘ∣H1

xmð Þ
� �h

þ 1 − ymð Þ log 1 − pkΘ∣H1
xmð Þ

� �i
:

ð14Þ

CSLNet training’s purpose is to determine the optimum
weight parameter as follows:

Θ∗ ¼ argmin
Θ

Lossk Θð Þ: ð15Þ

We obtain the optimal model parameter Θ∗ by minimiz-
ing Equation (14). Meanwhile, the backpropagation algo-
rithm and the Adam-based optimizer are used to train the
CSLNet. Then, we call the output of the well-trained CSLNet
the SSF and express it as follows:

pkΘ∗ xmð Þ ¼
pkΘ∗∣H1

xmð Þ
pkΘ∗∣H0

xmð Þ

" #
: ð16Þ

In the second stage, FC first combines all the SSFs sent by
the SU satellites into one SSF vector as follows:

PSSF ¼ p1Θ∗ xmð Þ; p2Θ∗ xmð Þ;⋯pKΘ∗ xmð ÞÈ É
: ð17Þ

Second, PSSF is used to train Soft-FusionNet to obtain the
optimal model parameter Φ∗. Since the training process of
Soft-FusionNet is similar to that of CSLNet, we will not
describe it in detail. Finally, the outputs of the well-trained
Soft-FusionNet are pΦ∗∣H1

ðxmÞ : and pΦ∗∣H0
ðxmÞ :, which are the

class probabilities of H1 and H0, respectively.
Finally, Figure 4 presents the loss value changes during

the offline training process of the single CSLNet and Soft-
FusionNet. We can clearly see that the loss values of both
networks decrease as the number of epochs increases without
any apparent overfitting. Moreover, we can also observe that
the loss value of Soft-FusionNet is significantly lower than
that of CSLNet. This indicates that the SSFs extracted by
multiple CSLNets can effectively reduce the decision error
in FC through soft fusion. This result demonstrates the effec-
tiveness of the proposed soft fusion scheme in CSS.

3.4. Online Detection. In the online detection part, the SU satel-
lites receive new unlabeled signal samples from GES and send
them into the proposed CSS architecture to obtain the corre-
sponding class probabilities pΦ∗∣H1

ðxmÞ : and pΦ∗∣H0
ðxmÞ :. We can

obtain the final decision result by comparing the values of
pΦ∗∣H1

ðxmÞ : and pΦ∗∣H0
ðxmÞ :. However, to fulfill the IEEE 802.22

standard’s transmission requirement, we must maintain a con-
stant Pf . Inspired by the Neyman–Pearson criterion, we design a
threshold-based decision scheme at the output of Soft-FusionNet
that can control the desired Pf by updating the threshold. First,
we randomly choose L samples under the ym ¼ 0 label from the
training samples and constitute the selected L samples as a new
sample set fx̃1; x̃2;⋯ x̃Lg:. Then, the sample set is put into the
proposed CSS scheme to obtain the corresponding results. Then,
we sort the results in descending order as follows:

Training loss of CSLNet
Validation loss of CSLNet
Training loss of Soft-FusionNet
Validation loss of Soft-FusionNet
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FIGURE 4: Training loss of CSLNet and Soft-FusionNet.
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pΦ∗∣H1
exkð Þ ≥ pΦ∗∣H1

ex lð Þ;  81 ≤ k ≤ l ≤ L: ð18Þ

Second, the detection threshold can be expressed as follows:

γ ¼ pΦ∗∣H1
exround Pf Lð Þ
� �

; ð19Þ

where rundð⋅Þ: denotes the rounding down function. Finally,
for the new online samples x0m, the decision result can be
obtained by the following:

pΦ∗∣H1
x0mð Þ≷

H1

H0

γ: ð20Þ

Above, the proposed CSS algorithm is summarized in
Algorithm 1.

4. Simulation and Analysis

4.1. Simulation Environments. In the proposed CSN sce-
nario, we use the GNURadio [32] to generate the sample
dataset of PU signals. The PU signal is a 16QAM modulated
signal commonly used in satellite communication scenarios
[14]. The SNR of the received signals is greatly influenced by
α. Thus, to verify the SNR robustness of the proposed algo-
rithm, we generate weak signal samples in the SNR range of
−20 to 0 dB as the dataset according to Equation (6). The
relevant parameter settings for the generated data samples
are shown in Table 1. In addition, to further analyze the
effects of the direction of the antenna of GES on the SNR
over the Ka-band satellite-ground links, we incorporate noise
uncertainty (NU), which has a significant impact on the
performance of the actual detection. For the NU scenario,
the estimated noise power is bσ2

w ¼ εσ2w, where σ2w denotes the
actual noise power. ε stands for the NU factor [11], which
obeys a uniform distribution with an interval of ½−U ;U � :. In

our scenario, we let U ¼ 1, which indicates that 1 dB of NU is
introduced. Finally, all the algorithms are implemented
based on Python 3.7, and the simulation platform is a PC
equipped with an NVIDIA GeForce RTX2080Ti GPU and an
Intel (R) Core i9-9900K CPU.

4.2. Simulation Results. In this part, the performance of all
the CSS algorithms will be evaluated by two key performance
indicators, i.e., Pf and Pd , which can be represented as Pf ¼
PðT>γ∗∣H0Þ : and Pd ¼PðT>γ∗∣H1Þ :, respectively, where T
and γ∗ are the test statistics and detection threshold of the
corresponding algorithm, respectively.

First, we will verify the impact of the number of SU
satellites on the detection performance of the proposed algo-
rithm. We set different SU numbers and selected test samples
with SNR=−16 dB to evaluate the detection performance of
the proposed scheme. In Figure 5, we clearly discover that
when the SU number increases, the detection performance of
the proposed approach is also enhanced. This is because
more hidden features of the PU signals can be learned by
the proposed algorithm as the number of SUs increases. In
addition, considering the operating point with Pf ¼ 1%, the
Pd of the proposed algorithm reaches 99% when the number
of SUs is 7, but only 25% in the case of a single SU. Mean-
while, we also find that the Pd of the proposed scheme is close
to convergence when the number of SUs is 7.

Second, to further evaluate the detection performance of
the proposed algorithm, we compare it with other spectrum
sensing algorithms, including ED, CNN, LSTM, and multi-
layer perceptron (MLP). The CNN model consists of two
convolution layers containing 128, 64 filters with a filter
size of 3 and two dense layers with 128, 2 neurons. The
LSTM model consists of one LSTM layer containing 64 neu-
rons and two dense layers with 64, 2 neurons. And the MLP
consists of five dense layers with 256, 500, 250, 120, and 2
neurons, respectively. All the algorithms are evaluated using
data samples with an SU number of 9 and a sample length of

1: Set i¼ 0; initialize maximum training epochs E; initialize Θ and Φ with random weights;

2: Collect the training set X and feed it into CSLNet;

3: for i≤ E do

4: According to Equation (15), SUs train the CSLNet by the backpropagation algorithm to obtain the optimal model parameters Θ∗;

5: end for

6: SUs send the output SSFs of well-trained CSLNet to FC;

7: FC combines SSFs as PSSF;

8: for i≤ E do

9: FC trains the Soft-FusionNet by the backpropagation algorithm to get the optimal model parameters Φ∗;

10: end for

11: FC calculates the threshold γ based on Equations (18) and (19);

12: SUs receive the test sample x0m online and input it into the well-trained CSLNet to obtain the new SSFs, which are transmitted to FC;

13: FC outputs the corresponding category probability vector pΦ∗ ∣H1
ðx0mÞ: and pΦ∗ ∣H0

ðx0mÞ: and decides the final PU state based on Equation (20);

14: FC broadcasts the final decision result to each SU.

ALGORITHM 1: CSL-SFNet Based CSS.
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512 to ensure a fair comparison, and the optimal hyperpara-
meters of each model are determined using a large number of
simulations. According to Equation (20), different detection
thresholds can be obtained by changing the value of Pf . We
choose the test sample data with SNR=−16 dB under vari-
ous thresholds and feed it into each detection algorithm to
obtain the receiver operating characteristics (ROC) curves.
In Figure 6, we find that the proposed algorithm outperforms
other schemes at any Pf level. Apparently, the data-driven

DL algorithms are better than the model-driven ED. This is
because the neural network model has adaptive learning
ability and can automatically extract hidden features from
the PU signals, but ED can only make decisions based on the
energy level of the PU signals. When the SNR level is low, it is
difficult for the ED to accurately sense the state of the PU. In
addition, NU is also common in CSNs, so it is necessary to
study the robustness of the SNR of the proposed algorithm in
the case of NU. The dotted line in Figure 6 presents the
sensing performance of each detection algorithm when the
NU is 1 dB. We find that the proposed algorithm is less
affected by NU, while the detection performance of other
schemes is more affected by NU. Additionally, to verify the
effectiveness of the proposed scheme at different SNR levels,
we set Pf to 1% and show the Pd − SNR curves of each algo-
rithm in Figure 7. As with the ROC curve, the proposed
algorithm still outperforms other sensing algorithms, achiev-
ing a Pd of over 90% even at SNR=−20 dB, while the ED can
hardly work at this SNR level. Then, to further verify the
sensing capability of the proposed algorithm in different
SNR ranges, we generated untrained test samples with an
SNR range of −28 to −20 dB for testing all sensing algo-
rithms. As can be seen in Figure 8, the proposed algorithm
still shows the best detection performance at these untrained
SNR levels, while CNN, MLP, and ED can barely work.

Additionally, to demonstrate the effectiveness of each com-
ponent in the proposed CLS-SFNet, we further conducted abla-
tion experiments. From Figure 9, we can see that the impact of
the LSTM layer on sensing performance is relatively significant.
This is because the model’s input IQ data is a type of time series,
and the LSTMcan further learn the temporal correlations within
the input features, thereby significantly improving the percep-
tion performance. However, the impact of the SA module on
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FIGURE 5: ROC curves for different numbers of SU satellites with
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sensing performance is relatively smaller, but SA can help the
model weight the data at different positions in the feature
sequence when processing it, allowing the model to focus
on the most important parts of the sequence, thereby improv-
ing the efficiency of model training. Overall, both the LSTM
layer and the SA are essential components of the proposed
model and are crucial for the enhancement of the overall
model performance.

Finally, we further evaluate the generalization ability of
the proposed approach using the RadioML2016.10a [32]
dataset, which contains eight types of modulation signals
and is widely used for modulation recognition scenarios. It

consists of the I/Q signal vector of size 2× 128× 1, which
takes into account typical radio communication impair-
ments such as time delays, frequency offsets, and sample rate
drifts. In Figure 10, the dotted line represents the detection
ability of the proposed algorithm for untrained modulation
schemes. We find that the Pd of the proposed approach for
all the modulated signals reaches 100% when SNR=−12 dB.
The results show that the proposed algorithm still has good
detection abilities for untrained modulated signals.

4.3. Complexity Analysis. The proposed CSL-SFNet consists
of a CNN layer, LSTM layer, and dense layer. For the CNN
layer, the computational complexity of one data sample is
Oð∑I

i¼1nc;i−1sc;inc;imc;iÞ : [33], where I is the number of con-
volution layers; nc;i is the number of convolution kernels in
the ith layer; nc;i−1 is the number of input channels in the ith
layer; sc;i is the spatial size of convolution kernels; and mc;i is
the spatial size of the output features of the ith layer. Accord-
ing to Table 2, the number of convolution kernels of the
CNN layers used is only 64 and 32. For simplicity, we let
nc;1 ¼ 64 and nc;7 ¼ 32 represent the other CNN layers with
the same number of convolution kernels. In addition, sc;1 ¼ 2
is used to represent the convolution kernel size of all the other
convolution layers. In our spectrum sensing, the size of one
sample is 2×N × 1, so the total computational complexity of
the convolution part is Oðsc;1nc;1Nð2þ 5nc;1

2 þ nc;7ÞÞ :. Accord-
ing to Sak et al. [34], for the LSTM layer, its computational
complexity is related to the number of hidden units and the
input size. In our scenario, the computational complexity of
the LSTM layer isOð4nlðN2 þ nl þ 1ÞÞ :, where nl stands for the
number of hidden units. Additionally, for the dense layer, the
computational complexity is Oðninnd;iÞ :, where nin and nd;i
represent the input size and the number of neurons in the
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dense layer, respectively. Finally, the total computational
complexity of the proposed CSS architecture is as follows:

O sc;1nc;1N 2þ 5nc;1
2

þ nc;7

� �
þ 4nl

N
2
þ nl þ 1

� ��
þ nlnd;1 þ nd;1nd;2 þ nd;2nd;3 þ nd;3nd;4 þ nd;4nd;5

Á
:

ð21Þ

Outside of the computational complexity, the communi-
cation overhead between the SU satellites and the FC is also an
important problem. In the proposed scheme, the SU satellite
sends the SSFs to the FC through the reporting link instead of
directly sending the received signal data to the FC. The com-
munication overhead required by the SU to send the SSFs of
one data sample is only 96 bytes, while the communication
overhead required to send one data sample to the FC is
8,000 bytes. In the simulation, the total number of training
samples is 42,000, and the number of SUs is 9. The proposed
algorithm converges after training for 20 epochs, and the total
communication overhead is only 692.14 Mbytes. However,
the communication overhead required is 59,062.5 Mbytes if
all the SUs send data samples directly to the FC. Evidently, the
proposed algorithmwill show impressive advantages in future
scenarios with larger data.

Finally, we analyze the test samples using different algo-
rithms and calculate the running time accordingly. Analyz-
ing Figures 6 and 11, we find that when SNR=−20 dB, the
CSS algorithm based on LSTM and the proposed algorithm
can achieve more than 90% of Pd . However, the running time
of the algorithm based on LSTM is almost five times that of
the proposed algorithm. Because LSTMs have a more com-
plex internal structure, leading to slower processing speeds
for longer input data. Although the proposed model includes
LSTM layers, their inputs are feature data that has been
dimensionality reduced by multiple convolutional modules,
resulting in relatively lower complexity. This enables the
proposed model to have shorter running times. In addition,
the longer running time is very disadvantageous for the

spectrum sensing of the high-speed moving LEO satellites.
Thus, although the running time of the proposed approach is
slightly longer than that of a traditional ED, the proposed
scheme is a promising CSS scheme in terms of its excellent
detection performance.

5. Conclusion

In this paper, we propose a novel CSS algorithm using CSL-
SFNet in a CSN with LEO and GEO satellites. The algorithm
employs a soft fusion technique in FC, which can fully utilize
the features of the primary signals and significantly lower the
communication overhead of the reporting link. The simula-
tion results show that the proposed algorithm is insensitive
to NU and is robust to untrained modulation types. Further-
more, even in an environment with SNR=−20 dB, the Pd of
the proposed algorithm can still reach more than 90%, and it
always outperforms the other CSS algorithms with less com-
munication overhead and a shorter running time.
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